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Abstract
We investigate the tramsport equation
50 1 +1
B () ey = F felx) f U{x,u")du’ + £(x,u) (0<x<r=x)
_1 :

with suitable boundary conditions through an equivalent integral
equation. Assuming the inéoming filuxes, the internal source term
f(x,1), the cross section c{x) and the parameter & to be nonnegative,
we prove the existence of a unique dominant eigenvalue £ = EQ(T) for
which the homogenecus problem has a positive solution (ecritical case),
the existence of a unique positive solution for E < EO(T) (nen—cri-
tical case), and the sbsence of positive solutions for £ > EO(T)
(supercritical case). We show EO(T) to decrease continuously from

@ to some Eo{w)>0 whenever 7 increases from 0 to = (monotonicity).

The results are obtained by studying an cperator that leaves invar-

iant the cone of nonnegative functions in LN(O,T).

7EPerma]mani: Addresst Dept., of Physics and Astronomy, Vrye Universiteit,
De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands.

7The research leading to this article was dome during the auther's visit
to Blacksburg in the summer of 1982.
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Introduction

The time—independent neutron transport equation in a homoge-
neous finite or semi-infinite slab medium with spatially dependent

collision ratio fe(x) reads as follows:

+1
i %y{x,u) + (x4} = lﬁc(x)j- Pz, Ydut + F(x.u) (0<x<t).
> 2 1 :
1)

Studied on the finite siab O<x<t<w one imposes the boundary conditions

P00 = ¢() (O=uxl), Pt ) = §(ed (mlsu<l); (2)
on the half-iine O<x<t = w one imposes the conditions

PO, 1) = $(w){(0=n<t), fﬂ [ | %du = 001) G (3

The popular method to study Eg, (1) is the methed of singular
eigenfunction expansion for which the present state of affairs has
been reviewed by Larsen.1 Tan the present article a different method
is adopted that allows ome to inﬁestigate the existence and unique-
ness of nonnegative solutions ¥ of Egs. (1)-(2) and Eqs. (1)-(3),
where we assume that £>0 and ¢(u), c(x) and £(x,p) are suitable
nonnegative functions. These positivity requirements all are.
prescribed by the physics behind the mathematical preblem.

Let us introduce some notation. By H = L2[-1,1] we denote the
Hilbert space of square integrable real-valued functioms on [-1,1]
with inner preduct <f,g> =.j—+1 f(u)g(upyén. Further, let y(x) and

-1
f{x) be vectors in B, T and B the self-adjoint operators and Q

and @ the complementary orthogonal projections defined by

P EYQ) = plx,p), £ = £lx.p) (%)
+1
¥ — l 1 1]
(M) =G, GO =3 [ b (4b)
-1

(@m0 = h(w) (520), () (W) = 0(:50). (4c)
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Then the ranges of Q_ are the subspaces Ran Q+ = Lz[G,l] and
Ran @¢_ = £2{-1,01. The integro-differential equation (1) can now

be written in the concise form
(T ' (x) = -v(x) + Le(E@BYP(x) + £(x) (0<x<T) (5a)
with boundary conditions

Lin oy -q¢ll =tim [lQu@ -qell =0 (b

x40 T

for finite T with ¢ = H, and with boundary conditions

Ba Jou@ -l =0, 9| =0 e (5¢)

x0
for T = = and ¢ € Ran Q+ ¢ H, By a solution of the boundary value
problem (5a)—(5b) (resp.{(5a}=(5¢)) we mean a function ¢ from (0,7)
(resp.(0,=))} into H such that Ty is strongly differentisble on (0,7)
(resp.(0,2)) and satisfies (5a)—(5b) (resp.(5a)={5c)).

In this article we are searching for nomnegative sclutions of
(5a)=(5b) and (5a)-(5e). Throughout the paper c{x) will be a
bounded measurable nonnegative function om (0,7) and XK will denote
the subset of funetions h e H = in—l,l] such that h{uy) » 0 for
almost every -l<u<l. We assume throughout that £ > 0, ¢ ¢ K and
f is 2 bounded uniformly Holder continuous function2 from [0,71(xc
finite) or [0,»)} (T==) into K. We shall prove the following results:

Theorem 1. Let ¢ be finite and e(x) > @, except for a set in
(0,¢) of measure zero, Then one of the following three situations
occurs:

(a) non-critical case. For every 4 ¢ E and bounded uniformly

Holder continuous £:(0,T) -» H there exists a unique solu-
tion $:{0,7) > H. Whenever ¢ ¢ K and £(x) ¢ K far O<x<T,

also the solution ¢ assumes its values in K.

b. eritical case. For ¢ = 0 and £ = ( there exists a nontri-
vial solution #:{0,t) + K, which is unique up to multipli-
cation by a positive constant. Whenever ¢ ¢ K and f(x) e K
for O<xz<t, and at.leasf one of them is nom~trivial, there

does not exist any sclution ¢ taking its values in K.
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c. supercritical case. For ¢ ¢ ¥ and £{x) & K for O<x<t, the

existence of a soluticn ¥:{0,t) + ¥ implies that ¢ = 0,

£ =0 and ¢ = 0. Moreover, there exists a;unique positive
number EO(T), such that for 0<E<£U(T), g = EO(T) and £ > EO(T)
the non-critical, critical and supercritical cases oceur,
respectively. The function T -+ EO(T) is strictly monotonic

and continuous with 1im €D(T) = o and lim EO(T) dgf. ﬁo(m)> 0.

)0 e
Theorem 1 concerns the criticality problem of finding for fixed
T the unigque parameter £ for which (5a)-(5b) with ¢ = 0 and £(x) = 0

has a positive solution. The monotonicity of T!+-£0(T) implies that
for every & > ge(m) there also is a unique T for which this problen
has a positive solution, The former problem one could call the
dominant eigenvalue problem; the latter is the actual critical slab
problem.

For co(x)El one has EO(w)=1, which corresponds to the c=I half-
space Droblem.3 For this case Busoni, Mangiarotti and Frosali4 proved
Theorem 1 partially.5 In fact, they settled the existence of 50(1), the
cccutrence of the case (2) for 0<£<£0(t) and the uniqueness of a solution
P {0, 1)K for E=EO(T}, ¢=0 and f=0. In the iphomogeneous case and below
criticalicy Busbridge6 studied an integral form of Eq.{1). Kelley6 proved
part (b) and the existence of EO(T) in a different way for positive
CEL](O,T}. Teczan7 récently showed interest in the monotonicity of the
critical slab value Tn for the homogeneous case with a backward scatter=
inz term.

The critical half-space problem was dealt with for expenential

-x/s

media {(c(x) = e ) by Pomraning,8 whe obtained numerical results,

In the present article we prove amalogues of Theorem i, (a) and (c).

Theorem 2. Let T = = agnd e{x) > 0, except on a set of measure
zero. Then one of the following situations occurs;:
(a) 0<E<Eﬂ(w):gggfcritical case. For every ¢ ¢ H and
bounded uniformly Holder continuou52 function f£:(0,%) + H
there exists a unique solutiom ¥:(0,=) » H. Wheneve;
4 ¢ K and £f{x) ¢ K for O<x<=, the solution ¥ also assumes
its values in K.

(el E>€O(m):supercritical case., For ¢ € K and f(x} & K there

dees not exist a solution P :(0,%) + K, unless ¢ =0, £ =0

and ¢ = 0.



POSETIVITY ARD MONOTONICITY PROPERTIES 263

Both theorems will be proved by reducing the boundary value
problems (5a)-{5b} and {5a)-{5¢) to a scalar integral equation,

which can be written in the form

(I-2R)=8, (6)
on the Banach space BC{0,t) of bounded continuous functions
£:(0,7) *R with norm || ¢ {| = sup {|g(x)|:0<x<7}. 1In this space

we consider the cone (see Section 2 for the definition)

Kc ={re BF(O,T):E(X)?O for O<x<t}.

For ¢ ¢ K and £(x) &€ X (0<x<t) it appears that 4 ¢ Kc and R{KC}_E Kc'
We are searching for solutions y in Kc'

In order to investigate Bq. (6) we shall apply the theory of
operators leaving invariant a cone im a Banach space. This theory
made considerable progress by the pioneering work of Krein and
Rutman,-9 and Krasnoselskii.lo Theorems 1 and 2 will appear as
consequences of this theory.

in Section 1 the problems (5a)-{5b) and {5a)~(5c) are proved
to be equivalent to a scalar integral equation, which will be put
into the form {6#). Section 2 reviews some of the theory of comnes
in a Banach space. In Section 3 the proofs of Theorems 1 and 2
will be given, and at the end of the section we prove a statement

of Tezcan7 rigorously.

1. Statement as a vector equation

Congider the wvector e{y) = 1 in H and define the propagator
function H(x){(0 # x IR} by

_1 —_
e g, 0 s

HE) (1) =
0 N xu<0 .
One eagily computes that
s g - 11 '
Ei(x) = <H(x)e, e > = f Lerixle g # x & R. N
1

1EMMA 1., For finite (resp. infinite) 17 let f be a bounded
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uniformly Holder continuou52 function from [0,1] (resp.[0,~)) into H.

Then 1 _
T _e(T—X)T

T T
Fee) - {17 g, Q1EG) + [ Hey) (£G)-£G0) 1y,
‘ G

with the second semigroup taken zero for T = «, is a bounded continuous
function from [0,t](resp. 0,%)) into H. Further, TF(x)} is strongly

differentiable on (0,T)} ané
(TM) ' (x) = -F{x) + £(x) , O<x<r . (8)

Proof. Choose 0<a<l and M such that Ilf(y) - f(X)JI s;M|y—x|a.
Then

. T-%
[ MG tee-ceot |l ay < ¥ [ =17 [[He || as < = 22
0 o -x

As Ref. 12 shows that N °&f j- |z|a-1 {| H(z) || dz < =, the bounded-
ness of F and its vanishing at w are clear. Now define G(x,y) such

that

£(x) - £(y) = |xv|% 6(x,¥).

Then G is bounded on [G,T]2 (resp. {O,m)z for T = =) and, if
necessary, by lowering o, one could choose G to be continuous.

Fizx g > 0, If 1 is finite, there exists a two-variable H-valued
polynomial p(x,y) such that the differemce || G(x,y) - plx,y) || =
(e/4) (B<x,y<7). At the same time the coefficients of the pelynomial
p{x,¥) could be taken to be polynomials in H = Lz[—l,i]. Without

any trouble one establishes that q(x) =./”T lX—Y§a Hiz-y)p{x.y)dy

is continuous in x on {0,«) with “ q(x)eﬂ + 0 as x + », Put

T
r(x) ='[ H(x-y){f(y)~£(x) Mdy. For Osxl, x.<® we have the estimate
Q

2

1
lre) -ty o« fatx) - at) |l +e<dly=l+35e,

which, for finite t, proves the continuity of r and thus of F. For
infinite © one proceeds differemtly. Singling out a compact Inter-

val [a,b] ¢ [0,=), one chooses finite ¢ such that

Iljﬁw Hix—y) {f{y) - £(x)}dy H < % g for a<z<b. Then one proves
g



POSITIVITY AND MONOTONICITY PROPERTIES 205

the continuity of s(x) = jﬁc Hiz—y)1£(y) - £(x)}dy on [0,») | analo-
gously to the continuity groof for finite T, and establishes the
continuity of F on [0,=).

Let us derive (8). Premultiplying (8) by Q,_ one gets the
Cauchy problems i

]
<
wa

1

(TF)' () = -F (x) + Qf(x)(0<x<n), (TF,)(0) (9a)

It

(T% )" (x)

IF

~F_(x)} + Q_f{x)(0<xz<7), (TF)(1) = 0. (9b)
where F (x} = Q F(x). Let us construct the solutions. Because in RanqQ,

the self-adjoint operator ¥T—1Q+ generates a bounded analytic semi-

13
group and Q+f:(D,T) > B, are bounded and uniformly H8lder continuous,
the above Cauchy problems both have unique selutions TF+ and TF_la

and these solutions have the form

TF+(x)

X 1t * { 1
/ 0 ) Q,f(y)dy, TF_(x) = 'f U sy,
X

Define G(x) TF+(x) + TF_(x); then one can write

-1 -1 T
G(x) = T[T-e <% Q+-e(T—x)T Q If(x) +f TH(x-y) {f (y)-£{x) My,
0

and thus G(x) = TF(x) with F(x) as in the statement of the lemma.

Hence, TF is strongly differentiable om (0,7) and satisfies Eq. (8).

Theorem 3.. For finite (resp. infinite) T let f be a bounded
uniformly Holder continuous function frem [0,1] (resp.[0,=)) into H.
Then an essentially bounded (strongly measurablezS) funceion ¢: (0,1)+H
is a solution of the boundary value problem (5a)-(5b) (for fimite T) or
(5a)-{5c) (for 1==), if and only if it is a solution of the vector-
valued integraltequation

&) - €[ eHGDBIGyY = v (Ooxer), (10)
0

where the right-hand side is given by

-1 -1
w(x) = [e_XT Q + e(T-X)T

Q_10e-£(x)) + £(x) +

T (11)
+ [ Ha-p G - £601ay.
0
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Every such solution is continuous on [0,7] for finite T (resp. [0,%)

for 1 = ),
Proof. Note that

~1

[e—xT 0.+ e(T—X)Thl
+

wix) = Q ¥ + F(x), O<z<t,

which implies the differential equation

(Tw) ' (x} = —w(x) + £(x) , O<x<i.

The theorem can now be proved as is done for homogeneous media (i.e.,
c(x) = 1).16 The boundedness of Zc(y) on (0,T) assures the validity
of all estimates made in the prooif.

Using e(u) = 1 and putting £{x} = <¢(x}, e > one immediately

derives from (10} and (7) the scalar integral eguation
1, 7" '
c) - 58 [ eELGPTOEY = ), e>(0<x<1), (12)
0
Conversely, once Eq. (12) is solved for ¢ = Lw(OgT), one puts
1 T
P(x) = wix) + 55 ~£ eyIt(vIH(z—v)e dy {(0D<x<T) (13)

and gets an essentially bounded (strongly measurable) seclution of
Eq. (10). BHence, the boundary value problems (5z) — (5bB) and
and (5a) - (5¢) have been reduced to the scalar integral equation

(12), TFor homogeneous media (c(x) 1} Eq. (12) was discovered in

radiative transfer applications;17 inhomogeneous media versions
appeared much latar.18
Let us study Eq. (12} on the Banach space BC(0,t). On this

space the operator
1 "
R =3 [ emmeeyimay (14)
0 .
is bounded with norm

T
”R!|€-% ess sup!c(y)?. J‘ Ei{z)dz, {(15)
O<y<t -7

and Eq. (12) is written in the form
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(1-8R)z = &, (16)

where o(x) = <w(x), e>{0<z<1). We shall come back to Eq. (18)

in Section 3,

2. Operators leaving invariant 4 eone in a Banach sgace

Let X be a real Banach space. A non-cmpty elosed subset K in
X is called a cone in X if it has the following properties:

(1) x.y e K = xty €K, (2) x e K, 0 % Ax ¢ Ky, (3 x,2-x e K¥x=0.
A cone ¥ in X is called reproducing if every z ¢ X can be written in
the form z = x-y with ¥,y € K. A cone K in X is called normal if
there exists a constant M such that % e ¥ and ¥—x% € K imply that
0= |Ix]l<m 1 vi. 19 The get of aonnegative functions in L [-2.1]
(I<p<w)is anormal and reproducing cone., The set of nonnegatlve
functions in BC{0,7} is a normal and reproducing cone also.

A bounded Iinear operator R on X is called positive. {(with
respect to K) if R leaves Invariant the cone K. For 0 #e £ K one
defines R to be e-bounded below {resp. sbove) if for all O#xeK there are
m el and o >0 (resp. m € N and £>0) such thar 2 % x-ce € K (resp.
fe- R™x & X). IfR is bhoth e~bounded above and e-bounded below for
the same 0 # e ¢ X, for every 0 # x ¢ K there exist m £ N and
w, B>0 smhtMt{R%%m,&—R%}EK,mﬂintmscweRis
said to be e-positive,

Whenr referring to spectral properties of R on real Banach
spaces X, one complexifies X by embedding X into the compiex
space X = ¥HX and defining R by R (xtiy) = Rx + iRy, The

complex space X will be a Banach space with respect te the norm

| z+tiyl = Sup {ll= i coss + [ v || sing} (x,veX),
0<0<27
and in this way X is isometrically embedded in X and | R Il = | R |,
The spectral properties of R, such as eigenvalues and spectral
radius, are simply defined as the ones of B, 1In particular, for
the spectral radius one has r{ R)éngr( Ry = 11m || 7 ﬂlfn.
halad

Proposition 1.2G Let X be a2 normal and reprodueing cone in X
ané R a positive operator on X. Then the spectral radius (R} of
R belongs to the spectrum of R. Tn particular, R does not have

eigenvalues A such that |Aa{>r(R).
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Proposition 2.9’10 Let K be a reproducing cone in X, and let
R be a compact positive operator. Then either r(R) = {0} or there
exist A > 0 and 0 # x € K with Rx = ix.

Proposition 3.9’10 Let K be a reproducing cone in X, and let

R be e-positive for some 0 # e £ K. Assume that Rx = xx for some

L eCand 0 #x e K. Then

(1) the operator R is x-positive;

(2) A is a positive eigenvalue of R of geometric multiplicity one;

(3) any other eigenvalue of R does not correspond to eigenvectors
in K;

(4) all eigenvalues of R are contained in {AJu{zeC:0 [z|<Ar}.
Proposition 4.10 Let K be a reproducing cone in X, and let

R be e-positive for some 0 # ¢ ¢ K. If X is a positive eigenvalue

of R corresponding to an eigenvector in K, then the equation
(u-Rx =y @an

does not have any solutions x in K whenever 0 # y € K and u < A.
Under the conditions of Proposition 4, certainly A<r{R) For

1 > r(R) the equation (17) has a unique solution x for y & X, and
1 ¥ (ot
x=(-R)Ty= gy TR,
n=0
Thus ¥ £ K whenever v e K.

3. Proofs of Theorems 1 and 2.

In Section 1 we have writtem Eq. (12} in the form (16), where
R is given by (14). On the real Banach space BC(0,T) we consider
the cone KC of nommegative functions. Directly from the definitions
one shows Kc to be a reproducing and normal cone invariant under R.
Since one could factorize R = CM, where (Cx)(x) = %:{T Ei{x-y)c{y)dy
is a convolution,operatorz1 and (M) (x) = e(x)r(x) ig.a multiplica-
tion by an Lw-function, the operator L = CM is bounded on Lm(O,T)
with range contained in BC(0,t); for fimite 1, C is a compact opera-

tor from Lw(O,r) into BC(0,T), and thus L = CM is compact on BC(0,T).

LEMMA 2. Let c{x)>0, except on a subset of (0,1) of measure
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zero. Then, for e(p) =1 in Kc and finite T, the operator R is

e-positive,

Proof. Certainly, if ¢ e Kc’ then for O<x<Tt
0 = (Re)(x} < supl{R) (=) |:0<z<td = AR Il |,

and thus | R{l. ) 2 e-t €K, thereby proving that R is e-bounded
above,

Take 0 # £ & Kc’ and choose € » 0 and (a,b) € (0,1) such that
t(x) = ¢ on (a,b). Because {x £ (0,7):c{x) = 0} has measure zero,
there exist Ec(a,b) with positive measure and & > 0 such that c(x) 2 ¢
almost everywhere on E. 5o c(x)g{x) 2 § & > 0 almost everywhere on E.

Thus

(R;)(x);r% 8 e_[ Ei (x-y)dy = %—s s‘[~ Ei(z)dz > M > 0,
E F—x
which for finite 1 implies that R is e-bounded below.
If there were an interval (a,b) in (0,t) on which c(x} = 0,
then Rz = 0 for all ¢ which have their support on [a,b]. So in

this case R cannot be e-positive.

Proof of Theorem 1. Define N by (ND)(x) = Ve(x) t(x). Then
Nz =M and R = CNQ, The compact operators R on BC(0,7), R on L3{(0,t) and

NCN on Ly(0,t) have the same non-zero eigenvalues.22 As NCN is self-adjoint
and non-zero, the spectral radius of NCN must be positive. Thus
r(R) > 0. By Proposition 2, there exist A > 0 and 0 # n ¢ K, such
that Rn = An.

Because R is e-positive, Proposition 3 implies that X is a
simple eigenvalue of R and that R does not have any other eigen-
vectors in K than positive scalar multiples of n. Further,
A=) = r(NON) = BNCH [l Given r, put £yt = A

First let O<E<Ey(r) (v fixed). Then {£|<c(R)™', and thus
Eq. {16) has a unique solution L for every ©. Proposirion 4 implies
that ¢ & Kc whenever il € Kc' However, if in the boundary value
problem {5a)-{5b} the incoming fiux ¢ = K and the internasl sourca
term f(x) & K(0<x<t), then (11) implies that the right-hand side
w(x) of the equivalent integral equatiomn (10) assumes its values

+1
in K. By virtue of (12), &(.) = <w(.), & > = jrq wl.,uidp ¢ KC,
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and therefore z ¢ KC. Now (13) implies that § assumes its values
in K. BSo we have established Part {a) of the theorenm.

Let & > EO(T), and take ¢ & K and £{x) £ K{0<x<t). Then, by
{11}, w assumes its values in K. If there would be a solution
#:(0,7) > K of (5a)-(5b), thent () = <¢(), e>=f T ¢(.,u)du e K.
Now Proposition 4 fmplies thet £ = 0, &4 = <@w(.), eﬁé = 0. Egq. {13)
implies ¢ = w, Because of {11) and the fact thet f and & assume

their values in X, one has
T It _ +1
f e/ ¢{wdy = 0, f T/ $(uw)du = 0, f Fx,u)dy = §;
0 -1 -1

from this one easily derives ¢ = O and f = 0. Then w = 0, and thaus
Y = 0. This proves Part (c¢) of the theoram.
Tet £ = EO(T). Then 7 satisfies Eq. (12) with zero right-~hand

side. Therefore, according to {13),
1 T
V&) =35 4w J/(; c{yIn{y)ti{x~yledy (O<x<t)

is a nom-trivial solution of Eq. (10) with right-hand side o = 0,

which assumes its values in K. However, Theorem 3 implies that

L]

¥:{0,1) >~ K is a non~trivial solution of Egs. {5a)-(5b} with ¢ = 0
and £ = 0, How suppose, there is another non-trivial solution i
of Egs., {5a)-(5b){with ¢ = 0, £ = 0); then this solution ¥ also
satisfies Egs. (30)(with w 2 0), and therefore, after proper mualti-
plication by a positive copstant, n{x) = <ji{x), e > =.[+1 Plx,w)du
{0<z<t), Thus (13) implies that § = . Henece, w:{O,T5 + K is
unique up to multiplication by a positive constant; Further, for
9 € K and £{x) £ X {(0<x<t) there cammot be a solutiocn P {0,1) = K
of (5a)-{(5b),unless § =D, £ = O and ¢ = 0. The latter is proved
in exactly the same way as ﬁor £ > gﬂ(r). Thus Part (b) has been
proved,

It remaipns to prove the monotonicity and continuity of the map
TJ+'EG(T), and the existence of 1lim ED(T) for 1! 0 and T > =, Fix
O<r<w, Let $:(0,¢} » K be a non-trivial solution of the vector-

valued integral equation

T
Px) - £h(0) f c(F)H{x~y) By {y}dy = 0, O<x<z. (18)
0 :
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If ¢(x0) = 0 for some 0O<x.<t, then c(y)H(xO—y)Bw(Y) ¢ E implies

0
that c(y)H(xG—y)Bw(y) = { for O<y<t. As c(y) > 0, except on a set
of measure zero, one gets <P{y), e > = 0 for O<y<t (see (4b) for
the form of B). Then (13) implies that § = 0, which is a contradic-~

tion. Thus #(x)>0, O<x<t. For 0<x<r ome gets from (18):

P (x)- EO(T)f c(yIH(x-y)B(y)dy = Eo(T)f C(F)H(X ¥)Bu(y)dy,
(19)
where the right-hand side is non-zero for every O<x<o. As
w{x) € K for O<x<g, the eritical and supercritical cases are ex—

cluded, and thus
£(1) < Eg(®)

(non~critical case). This establishes the monotonicity of Tlé—Eo(t}.
If this funetion would not be continuous, there would be a jump dis-

Put E = lim EO(T), = lim EO(T) Either
TLT TTT

continunity at T
E_BEO(T)>E+ or E_>Eo(rlzg+. in the former case take E“;;O(T}>E>E+,
in the latter case E_>E>EO(T)3E+- In both cases an argument as
applied to prove monotonicity would lead to a contradiction.  Thus
T E {t) is contimuous.

Flnally, let us prove that lim EO(T) = ®» and lim E {(z) = E (=}>0.
T} T ®

By virtue of (15), tne norm of R, and thus its snectral radius r(R)
too, vanishes for 1} 0, which shows that EO(T) = r(R) > ® as Tl 0.
The same estimate {15) and the integrability of Ei on (-=, w) show

that for all finite T

r@<lRI<glell, [ Btz = llell, <=

By the monotonieity of EO(T) = r(R) as a function of T, the exis-
tence of the limit lim EO('r)de=f' EO(W) is clear, and Eﬁ(w) =fle ]|m"l>
T3

Procf of Theorem 2, The non—consetrvative case E<Eo(m) is

immediate from Eo(w) = r(R) . The supercritical case §>50(m) can
be dealt with as follows: Comsider Eq. (10) with t = =,

wix) & K(0<x<=) and ¥(x) e K(0<x<w), and fix finite 7 with
E>EO(T)>£0(w). Writing
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. T
x) - afo C(YIH(x-y)BU(y)dy = w(x) (0<x<1),

Theorem 1 implies that w = O and $=0on (0,7). As this is the

case for every finmite T with E>EG(T)>EO(m),'0ne has @ 2 0 and ¥ = 0

on {(0,=), which establishes the theorem in the supercritical case.
The only situation mot covered by Theorem 2 is the "conservative"

half-space problem (52)-(5¢), where £ = Eo(w). This problem can be

reduced to the integral equation
r(x) ~ -;— £y (=) f c(MELE-Y)o(y)dy = 6(x), O<x<w, 20y
0

where w, £ & BC{0,»), 1In homogeneous media (e(y) = 1, Eo(w) = 1) and
for § =0 the above equation 1s the Schwarzschild-Milne integral

25,17 which does not have non-trivial bounded solutions.

equation,

For inhomogeneous media Eq. (20) with & = O has a solution

0 # ¢ g BC(D,») if and only if ED(W) is an eigenvalue of R.
Tezcan7 reduced a criticality problem containing an anisotropy

parameter B to a transport equation of the form

+1

L}
u—gi, TP, ut) =%C' f Vi(=',n")dn", -bex'<h,

with boundary conditions
Pl=b,1) =0 (0<p<l), (b,n) = 0 (-l<p<0);

transforming ¥ = x' + b and T = 2b one gets the boundary value
problem (5a)~(5b) with £ = c', e(x) 1, £30, ¢ = 0. Tezeans’
parameters are related to the original collision ratio ¢, anisotropy

parameter B, position (in units of neutron mean free path) x by
e’ = c(1-B)/(1-cB), x' = qx, q = V1-¢"g° ,

7
Tezcans finding, which he explained physically and backed up numeri-
cally, is that the critical thickness vanishes for BT(1/e). In our

notation,

1im Té(c‘)/ Vl—c282 =0, (21)

81y
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where EO(TO(C)) = ¢ for fixed ¢ > 1. TFor homogeneous media

(e(x) = 1) one has to prove that
lim t_zr(RT)z6 = lim(TZEO(T))—]'= w, (22
740 i

because this would imply lim 'y To(y) = 0, and thus (21). A4s

RT is a self-adjoint operator on LZ(O,T) and the spectra of the

. 21
convelution operator RT on LZ(O,T) and BC(0,t) ceincide, one has

i
= ] = —
r(RT) = |ERT”L2(0,T) = 2 Rreﬂz, where e(x) = 1 has L2 norm VT .

One easily computes that (RTe)(x) = %—{i—Eiz(x)} + %—{i-Eiz(T—x)}27
9%{ i-Eiz(t)}, O<x<T, and thus

: 1-Ei, {7} °
T—zr(RT) . .73/2 ”RTQHZ ;__32_ =% 1 g do.
27 T o

However, since the right-hand side tends to infinity as T{0, Eq. (22}

is elear. Herewith we have established (21).
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