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I. INTRODUCTION

As discussed in Chapters 1 and 2, polarization of light (electromagnetic ra-
diation) plays an important role in studies of light scattering by small particles.
A convenient way to treat the polarization of a beam of light is to use the four
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Stokes parameters and to make these the elements of a column vector, called
the Stokes vector. Scattering by a particle in a fixed orientation can then be de-
scribed by means of a real 4 x 4 matrix that transforms the Stokes vector of the
incident beam into that of the scattered beam. Such a matrix is a pure phase (or
scattering) matrix (Hovenier, 1994), because its elements follow directly from the
corresponding 2 x 2 amplitude matrix that transforms the two electric field compo-
nents. A large number of scalar and matrix properties of pure phase matrices has
been reported and the same is true for sums of such matrices, which are needed to
describe independent single scattering by collections of particles.

An important goal of this chapter is to present in a systematic way the main
properties of matrices describing single scattering by small particles in atmo-
spheres and water bodies (Sections II and III). The emphasis is on the basic
relationships from which others can be derived and on simple relationships. In
principle, all relationships can be used for theoretical purposes or to test whether
an experimentally or numerically determined matrix can be a pure phase matrix
or a sum of pure phase matrices. Some strong and convenient tests are presented
in Section IV. Our analysis provides the most general and objective criteria for
testing phase and scattering matrices. Section V is devoted to a discussion and
outlook.

II. RELATIONSHIPS FOR SCATTERING BY ONE
PARTICLE IN A FIXED ORIENTATION

A. RELATIONSHIPS BETWEEN AMPLITUDE MATRIX AND
PURE PHASE MATRIX

Consider the laboratory reference frame used in Chapter 1 with its origin in-
side an arbitrary particle in a fixed orientation. Scattering of electromagnetic
radiation by this particle is fully characterized by the 2 x 2 amplitude matrix
S(ns“?; ni"; B, ), which linearly transforms the electric field vector compo-
nents of the incident wave into the electric field vector components of the scattered
wave (see Section IV of Chapter 1). The four elements of the amplitude matrix
are, in general, four different complex functions. The element in the ith row and
the jth column will be denoted as ;.

Using Stokes parameters, as defined in Section V of Chapter 1, the scattering
by one particle in a fixed orientation can also be described by means of a 4 x 4
phase matrix Z (195, p3?, ginc, (pi“C; a, B, v), which in the most general case has
16 different real nonvanishing elements [see Eq. (13) of Chapter 1]. Each ele-
ment of such a phase matrix can be completely expressed in the elements of the
amplitude matrix pertaining to the same scattering problem. We will call such a
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phase matrix a pure phase matrix, because this is merely a special case of the gen-
eral concept of a pure Mueller matrix (Hovenier, 1994). Explicit expressions for
the elements of a pure phase matrix were first given by van de Hulst (1957). In
our terminology and notation they were presented in Chapter 1 as Egs. (14)—(29).
However, the relationship between S and Z can also be expressed by the matrix
relation (see, e.g., O’Neill, 1963)

Z=T,S®S)r, !, 1)
where
1 0 0 1
1|1 -1
rs_ﬁ 0 -1 -1 0 @
0 —i i 0

is a unitary matrix with inverse

1 1 0 O
_ I |o -1 i
1 _——

=710 1 i | )

1 -1 0 0

while the Kronecker product is defined by
«_ [ SuS* SpS*

SeS = ( ISt SegF )

and an asterisk denotes the complex conjugate. Both recipes for obtaining a pure
phase matrix from the corresponding amplitude matrix have their specific advan-
tages and disadvantages. Equation (1) is particularly useful for formula manipula-
tions if one is familiar with the properties of Kronecker products (see, e.g., Horn
and Johnson, 1991).

Employing one of the preceding recipes, one can readily verify the following
relations between a pure phase matrix Z and its corresponding amplitude ma-
trix S.

a. If
d = |det S|, (5)
where det stands for the determinant, we have
d* = Z%l - Z%l - Z%l - Zﬁl- (©)

The right-hand side of this equation may be replaced by similar four-term
expressions, as will be explained later (see Section IL.B).
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ITrS|? = Tr Z, @)

where Tr stands for the trace, that is, the sum of the diagonal elements.
Apparently, Tr Z is always nonnegative.

d* = detZ, )

which implies that det Z can never be negative.
d. If d # 0, the inverse matrix

St~z 9)

where the symbol ~ stands for “corresponds to” in the sense of
Egs. (14)—(29) of Chapter 1.

e. The product S;S; of two amplitude matrices corresponds to the product
7.7, of the corresponding pure phase matrices; that is, ZZ, is a pure
phase matrix and

SiS2 ~ Z4Z,. (10)

Another type of relationship can be obtained by investigating the changes expe-
rienced by a pure phase matrix if the corresponding amplitude matrix is subjected
to an elementary algebraic operation. Suppose

S=<§; §Z>~Z (11)
Then
i.

aS ~ |a|’Z, (12)

where « is an arbitrary real or complex constant;
ii.

S ~ A4ZAy, (13)

where a tilde above a matrix means its transpose and
A4 = diag(1, 1,1, —1);
iii.

S* ~ Z; (14)
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iv.
S =Sz
~ A3 4ZA3 4, 15
(—S21 522) 3,4ZA3 4 (15)
where Az 4 = diag(1, 1, —1, —1);
V.
S Si2 -

~ ArZ A5, 16
(521 S“) 2ZA; (16)

where A, = diag(1, —1, 1, 1).

Several of the previous relations are directly clear for physical reasons. For
instance, Eq. (15) originates from mirror symmetry (see van de Hulst, 1957; Hov-
enier, 1969). Other relations may be obtained by successive application of two or
more relations. For instance, Eqgs. (13) and (15) yield the reciprocity relation

St =52 5
~ A3Z A3, 17
<—S12 522> 3Z A3 (I7)

where A3 = diag(1, 1, —1, 1) is the same matrix as Q in Eq. (47) of Chapter 1.
Furthermore, the relation

S* ~ A4ZA, (18)

may be obtained by combining Eqs. (13) and (14).

It should be noted that Eq. (12) is especially useful when dealing with an am-
plitude matrix with a different normalization than that of S. It also shows that
multiplication of S by a factor e’¢ with i = /—1 and arbitrary real & does not af-
fect Z. Conversely, if Z is known then S can be reconstructed up to a factor e’¢, as
follows from Eqs. (1) and (4). As another corollary of the preceding expressions,
we observe that in view of Eqgs. (12), (15), and (16) we have, for d # 0,

- 1 S —Si2 1 5
Sh=— ~ —GIZG, 19
detS (—S21 St d? (19)
with G = G~! = diag(1, —1, —1, —1). Employing Eq. (9), we thus find a simple
expression for the inverse of Z, namely,

1
d2
Taking determinants on both sides corroborates Eq. (8). When we premultiply
both sides of Eq. (20) by Z we find

7' = —GZG. (20)

7ZGZ = d*G, (21
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whereas postmultiplication of both sides of Eq. (20) by Z gives
ZGZ = d*G. (22)
By taking the trace on both sides of Egs. (21) and (22) we obtain
Tr(ZGZ) = —2d* (23)
and
Tr(ZGZ) = —2d°. (24)

Equations (22) and (24) were first reported by Barakat (1981) and Simon (1982).

As noted in Chapter 1, a variety of conventions are used in publications on light
scattering. In this connection Egs. (12)—(18) as well as the following observation
are useful. All relations in this chapter remain valid when S is replaced by

§:( cos 72 smn2>s( cos 1) smm) 25)
—sinny  cosm —sinn;  cosny

for arbitrary angles 11 and 7 and simultaneously Z is replaced by [cf. Eq. (10) of
Chapter 1]

Z = L(n)ZL(n). (26)

This follows directly from Eq. (10). Consequently, no essential difference occurs
when instead of S and Z use is made of a 2 x 2 amplitude matrix, which describes
the transformation of the electric field components defined with respect to the
scattering plane, and the corresponding 4 x 4 scattering matrix (see Section XI of
Chapter 1 and van de Hulst, 1957). This should be kept in mind when consulting
the literature, in particular when using published relationships for the scattering
matrix.

B. INTERNAL STRUCTURE OF A PURE PHASE MATRIX

The phase matrix of a particle in a fixed orientation may contain 16 real, dif-
ferent, nonvanishing elements. On the other hand, the corresponding amplitude
matrix is essentially determined by no more than seven real numbers, because
only phase differences occur in Egs. (14)—(29) of Chapter 1. Consequently, inter-
relations for the elements of a pure phase matrix must exist or, in other words,
a pure phase matrix has a certain internal structure. As mentioned in Section I,
many investigators have studied such interrelations. Using simple trigonometric
relations, Hovenier et al. (1986) first derived equations that involve the real and
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imaginary parts of products of the type S;; S}, and then translated these into rela-
tions for the elements of the corresponding pure phase matrix. This approach is
very simple and yields a plethora of properties.

On seeking the internal structure of a pure phase matrix we are, of course,
interested in simple relations that involve its elements. From the work of Hovenier
et al. (1986) one obtains the following two sets of simple interrelations for the
elements of an arbitrary pure phase matrix Z.

1. Seven relations for the squares of the elements of Z. These equations can
be written in the form

Zh =75 =73 — 24 = T+ Zn+ 25 + Zi
= —Zh+ 725+ 75+ 75
= —Z3 + Z5, + Z5, + Z3,
= Zh-Zh-Zh-7}
= —Z5\+ Z5H+ 255+ 75,
= —Z3+Zh+ 25+ 25
= -ZL+ZhH+ 2+ 7, (27

In view of Eq. (6) each four-term expression in Eq. (27) equals d2. A convenient
way to describe the relations for the squares of the elements of Z is to consider
the matrix

2 2 2 2

Y Ly, —Zy —Zy

2 2 2 2
75 — —Z3 Zy Z33 Zn 28
- 2 7 72 72 (28)

=73 32 33 34

2 2 2 2

—Zy Zp 23 Ziy

and require that all sums of the four elements of a row or column of Z* are the
same.

2. Thirty relations that involve products of different elements of Z. A conven-
ient overview of these equations may be obtained by means of a graphical code.
Let a 4 x 4 array of dots in a pictogram represent the elements of a pure phase
matrix, a solid curve or line connecting two elements represent a positive product,
and a dotted curve or line represent a negative product. Let us further adopt the
convention that all positive and negative products must be added to get zero. The
result is shown in parts a and b of Fig. 1. For example, the pictogram in the upper
left corner of Fig. 1a means

Z11Z12 — Zy1Zyy — 231230 — Z41Z4p =0, (29)
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Figure 1 The 16 dots in each pictogram represent the elements of a pure phase matrix. A solid
line or curve connecting two elements stands for a positive product and a dotted curve or line for a
negative product. In each pictogram the sum of all positive and negative products vanishes. (a) Twelve
pictograms that represent equations that carry corresponding products of any two chosen rows and
columns. (b) Eighteen pictograms that demonstrate that the sum or difference of any chosen pair of
complementary subdeterminants vanishes.

and the pictogram in the upper left corner of Fig. 1b stands for
Z11Zy — Z12Z21 — Z33Z44 + Z34Z43 = 0. (30)

Together all 120 possible products of two distinct elements appear in the 30 re-
lations, and each such product occurs only once. The 30 relations subdivide into
the following two types. The 12 equations shown in Fig. 1a carry corresponding
products of any two chosen rows and columns. The 18 equations shown in Fig. 1b
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demonstrate that the sum or difference of any chosen pair of complementary sub-
determinants vanishes. Here, the term “complementary” refers to the remaining
rows and columns. Sums and differences of subdeterminants alternate in each col-
umn and row of the logical arrangement of pictograms shown in Fig. 1b. Keeping
the signs in mind for the first pictograms in parts a and b of Fig. 1, one should
have little trouble reproducing all pictograms, and thus all 30 equations, from
memory.

We have thus shown that every pure phase matrix has a simple and ele-
gant internal structure that is embodied by interrelations that involve either only
squares of the elements or only products of different elements. These interrela-
tions may be clearly visualized by means of Eq. (28) and Fig. 1. It is readily
verified that all interrelations remain true if the rows and columns of Z are in-
terchanged. This reflects the fact that if Z is a pure phase matrix, then Z can
also be a pure phase matrix [cf. Eq. (14)]. Similarly, if we first switch the signs
of the elements in the second row and then those in the second column (so that
Z»> is unaltered), all interrelations remain true [cf. Eqs. (14) and (16)], and this
also holds if we apply such operations on the third or fourth row and column
[cf. Egs. (13), (14), and (17)] or even if we combine a number of those sign-
switching operations. Consequently, by considering not merely one pure phase
matrix but also related ones, several features of the internal structure can eas-
ily be explained. An important corollary is that all interrelations are invariant on
using Eq. (13) of Chapter 1 with polarization parameters that differ from our
Stokes parameters in having a different sign for Q, U, or V, or any combination
of them.

Evidently, each interrelation for the elements of Z also holds for the elements
of the scattering matrix (as used in Section XI of Chapter 1 and by van de Hulst,
1957) and for those of cZ, where c is an arbitrary real scalar. In particular, the
normalization of Z does not influence its internal structure. It should be noted,
however, that if Z is a pure phase matrix, cZ cannot be a pure phase matrix for
¢ < 0, as, according to Eq. (14) of Chapter 1,

Z1 =20 (31)

for every pure phase matrix. Clearly the case where Z;; vanishes is very excep-
tional and implies that S and Z are null matrices. We may call this the trivial
case.

The internal structure described previously is not only simple and elegant, but
also fundamental, because all interrelations for the elements of Z can be derived
from this structure. To prove this theorem, we first make the assumption

Zin+Zyn—Z12—Zy #0. (32)
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As shown by Hovenier et al. (1986) there are in this case nine relations, each
involving products and squares of sums and differences of elements, from which
all interrelations can be derived. These relations are

(Z11 + Z22)* — (Z12+ Z01)* = (Z33 + Zaa)* + (Z3a — Za3)?,  (33)
(Z11 — Z12)* — (Zo1 — Z22)* = (Z31 — Z32)* + (Za1 — Za2)*,  (34)
(Z11 — Z01)* — (Z12 — Zm)* = (Z13 — Z03)* + (Z1a — Zoa)®,  (35)
(Zi1+Zyy — Z12 — Z01)(Z13 + Z23)

= (Z31 — Z32)(Z33 + Z44) — (Za1 — Zap)(Z34 — Z43), (36)
(Z11+ Zop — Z12 — Z21)(Z34 + Z43)

= (Z31 — Z32)(Z14 — Z24) + (Zar — Zap)(Z13 — Z23), (37
(Z11+Zxp — Z12 — Z21)(Z33 — Z44)

= (Z31 — Z3)(Z13 — Z23) — (Za1 — Zap)(Z14 — Z24), (38)
(Z11+ Zop — Z12 — Z21)(Z14 + Z24)

= (Z31 — Z32)(Z34 — Z43) + (Za1 — Zap)(Z33 + Z44), (39)
(Z11+ Zx — Z12 — Z21)(Z31 + Z32)

= (Z33+ Z44)(Z13 — Z23) + (Z34 — Z43)(Z14 — Z24), (40)
(Z11+Zxp — Z12 — Z21)(Z41 + Z42)

= (Z33 + Z44)(Z14 — Z24) — (Z34 — Z43)(Z13 — Z23). 41)

By rewriting these nine relations so that only the squares and products of elements
appear, we can readily verify that they follow from Eq. (27) and Fig. 1. If Eq. (32)
does not hold, then we either have the trivial case or at least one of the following
inequalities must hold:

Zn+Zun+Zin+2Zy #0, (42)
Zin—Zn—Zin+ 27y #0, (43)
Ziu—Zn+Zip—2Zx #0. (44)

If one of Egs. (42)—(44) holds, we have a set of nine relations with which to
deal that differs from Egs. (33)—(41), but we can follow a similar procedure. This
completes the proof of our theorem.

To illustrate the preceding theorem, let us give three examples. First, the well-
known relation

4 4
Y >z} =4z} (45)
i=1 j=1

given by Fry and Kattawar (1981) is easily obtained from Eq. (27) by successive
application of the following operations on Z* [cf. Eq. (28)]:
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1. Add the elements of the second, third, and fourth columns.
2. Subtract the elements of the first column.
3. Equate the result to twice the sum of the elements of the first row.

Thus, Eq. (45) is a composite of five simple interrelations. Note that it is obeyed
by the elements of diag(1, 1, 1, —1), for example, though this is not a pure phase
matrix [cf. Eq. (30)].

Second, as shown by Barakat (1981) and Simon (1982), we have the matrix
equation [cf. Egs. (22) and (24)]

ZGZ = —% [Tr (2GZ)]G. (46)

Evidently, a matrix equation of the type given by Eq. (46) is equivalent to a set
of 16 scalar equations for the elements of Z. The nondiagonal elements yield
12 equations, but the elements (i, j) and (j, i) yield the same equation if i # j.
Thus six equations arise for products of different elements of Z. These are exactly
the same equations as shown by the top six pictograms of Fig. 1a. Equating the
diagonal elements on both sides of Eq. (46) yields four equations. If one of these is
used to eliminate Tr(ZGZ), we obtain three equations that involve only squares of
elements of Z. These are precisely the first three equations contained in Eq. (27).
However, not all interrelations for the elements of Z follow from Eq. (46). Indeed,
if this were the case Eq. (30), for example, should follow from Eq. (46). However,
the matrix diag(1, 1, 1, —1) obeys Eq. (46) but does not satisfy Eq. (30).

Third, using the internal structure of Z and Eq. (6), it can be shown (Hovenier
et al., 1986) that

. d? )
(1) (1 = pL) = (1 = ph) (1™, 47

R4
where pgca and pinc are the degrees of polarization of the scattered and incident
light, respectively, as defined in Section V of Chapter 1 and R is the distance to the
origin located inside the particle [see Eq. (13) of Chapter 1]. Consequently, if the
incident light is fully polarized, so is the scattered light and if d = 0 the scattered
light is always completely polarized. However, when the incident light is only
partially polarized, psco may be either larger or smaller than pjn (see Hovenier
and van der Mee, 1995), which shows that adjectives such as “nondepolarizing”
and “totally polarizing” instead of “pure” are less desirable.

C. SYMMETRY
The elements of the amplitude matrix of a single particle in a fixed orienta-

tion are, in general, four different complex functions, or, in other words, they are
specified by eight real functions of n*“® and n'*°. Symmetry properties may re-
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duce this number. Particles can have a large variety of symmetry shapes, as is
well known from crystallography and molecular physics. Group theory is help-
ful for a systematic treatment of these symmetry shapes (see, e.g., Hamermesh,
1962; Heine, 1960). Hu et al. (1987) presented a comprehensive study of strict
forward (® = 0) and strict backward (® = 1) scattering by an individual particle
in a fixed orientation. For strict forward scattering they distinguished 16 different
symmetry shapes, which were classified into five symmetry classes, and for back-
ward scattering four different symmetry shapes, which were classified into two
symmetry classes. A large number of relations for the amplitude matrix and the
corresponding pure phase matrix were derived in this way.

A comprehensive treatment of all symmetry properties of the amplitude matrix
and the corresponding pure phase matrix for arbitrary n* and n™™ is beyond the
scope of this chapter. An important case, however, is the following. Consider a
particle located in the origin of the coordinate system shown in Fig. 1 of Chapter 1.
The particle has a plane of symmetry coinciding with the x—z plane. Suppose
the incident light propagates along the positive z axis and let us consider light
scattering in a direction in the x—z plane. Because the particle is its own mirror
image we must have (see van de Hulst, 1957)

S]] S12 Sll _SIZ
- , 48
<Szl 522) <—521 Szz) “8)

S12 = 81 =0. (49

so that

Using Egs. (14)—(29) of Chapter 1, we find that the corresponding phase matrix
in this case obtains the simple form

VATERVAY 0 0
Zin Zn 0 0

Z= 0 0 733 Zz |’ (50)
0 0 —Zzy Zs3
with
_[72 2 2 71/2
Zn=[Zh+Zy+ 23] G

A simple example of this case occurs for a spherically symmetric particle com-
posed of an isotropic substance. Another example is a homogeneous body of rev-
olution with its rotation axis in the x—z plane. This was numerically established by
Hovenier et al. (1996) for scattering of light by four homogeneous bodies of rev-
olution, namely, an oblate spheroid, a prolate spheroid, a finite circular cylinder,
and a bisphere with equal touching components, where in each case the incident
light propagated along the positive z axis and the scattered light in the x—z plane.
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The second kind of symmetry we wish to consider is reciprocity. This was
already mentioned in Section IX of Chapter 1. The main results for arbitrary di-
rections of incidence and scattering are embodied by Eqs. (44) and (45) of that
section. When time inversion yields the same scattering problem, we have

$1 =-S5 (52)
and the corresponding pure phase matrix has the form

Z1 Z12 Z13 Z1a
Zyy Iy Iy Z4

7 = , 53
—Z13 —Zx Z33 Z34 (53)
Z14 Zyy —Z3y Zaa
with
Z1y —Zop+ 733 — Z44 =0, (54)

as follows from Eq. (52) together with Eqgs. (14)—(29) of Chapter 1. This case
occurs, for example, for strict backscattering by an arbitrary particle [cf. Eq. (49)
of Chapter 1].

D. INEQUALITIES

Many inequalities may be derived from the internal structure of a pure phase
matrix. We do not aim here at a comprehensive list of inequalities, but in addition
to Eq. (31) we mention the following:

|Zij| < Z11, i,j=1,2,3,4, (55)
Zn+Zn+Zin+Zn >0, (56)
Zin+Zn—Zin—2Zn =0, (57)
Zn—Zn+Zin—Zn >0, (58)
Zn—Zn—Zin+Zn =0, (59)
Zin+Zn+ Z3z+ Zss = 0, (60)
Zin+Zn—2Z33— Zss = 0, (61)
211 —Zn+ 733 — Z44 = 0, (62)
Z11 — Zyy— Z33+ Zyg > 0. (63)

We refer to Hovenier et al. (1986) for proofs of these and other inequalities.
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ITII. RELATIONSHIPS FOR SINGLE SCATTERING
BY A COLLECTION OF PARTICLES

A. THE GENERAL CASE

In this section we discuss relationships for the phase matrix of a collection of
independently scattering particles, each of them characterized by an individual
amplitude matrix. Because the waves scattered by each particle are essentially
incoherent, the Stokes vectors of the scattered waves of the constituent particles
are to be added to get the Stokes vector of the wave scattered by the collection. If
we indicate the individual particles in the collection by a superscript g, then the
phase matrix Z¢ of the collection is the sum of the pure phase matrices Z$ of the
individual particles, that is,

Z¢ = Z 78 = no(Z) dv, (64)
8

where ng is the particle number density, (Z) is the collection-averaged phase ma-
trix per particle, and dv is a small volume element containing all particles of the
collection [cf. Eq. (30) of Chapter 1]. Instead of a sum of pure phase matrices we
may have an integral of a pure phase matrix with respect to size or orientation.
The properties of such matrices are the same as for a sum of pure phase matrices.
A special case of this occurs in light-scattering experiments for one particle that
involve averaging over orientations.

Linear inequalities for the elements of a pure phase matrix are also valid for
the phase matrix of a collection of particles, because these are obtained by adding
the corresponding elements of the phase matrices of the constituent particles. In
particular, we find the following linear inequalities:

Z{, =0, (65)

HATIEATE (66)
nWtZn+Zh+235 =0, (67)
nWtZyn—2Z-25 =0, (68)
ZY —Zp+ 2, — 75 =0, (69)
2y, —Z5 —Z{,+ Z5 = 0. (70)

Quadratic relations between the elements of a pure phase matrix such as
Eqgs. (33)—(41) are generally lost when the phase matrix of a collection of particles
is formed by adding the pure phase matrices of the individual particles. However,
the following six quadratic inequalities, first obtained by Fry and Kattawar (1981),
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are always valid:
(Z5,+ 25,)" = (25, + 25)" = (25 + 29)" + (25, + Z5)", @D
(Zu Z6) = (25— 25)" = (25 - 25) + (25, - 25)". ()
(25, + 751)" - (le + 222)2 > (254 255) + (Z54+ 25)", (73)
(25, = 25))" = (25, - 75)" = (25— 25)" + (Z5a - 28)". (74
(Z1) +Zzz)2 (zi, + 221)2 > (25 + 24)" + (25 thé)z (75)
(25, = 25,)" = (25, - 25)" = (25— Z42) + (254 + Z5)". (76)

Indeed, to derive Eq. (72), we start from Eq. (34), where each term carries the
superscript g to denote the individual particles. Because Egs. (68) and (70) also
hold for the elements of each Z8, we can find nonnegative quantities N ig and Nf
and angles 6¢ such that
g _ g
Ny = \/ Zy

8 _ 8
NZ _\/le
N{N5 cos08 = Z§,
NEN3 sing$ =

+ 2227

8
- ZZZ’

3 g
—Z+2Zy
~ 75,

Z4l - Z42'

(77)

Consequently,
(75, - 25,)° - — (25 - Z5,)°
Z3)

2 2
(251 = 25)" — (25, - Z5,)
= (2§, — Zi, — Z5, + Z5,)(Z§, — Z§, + Z5, —
, 2 . 2
— (25 — 25)" — (24, — %)

- Z (Nig)zz (Nél)z - Z N{N§NJNY cos(6¢ —
z Z (Nig)zz (Vy)” —

> N{NSNINy
g.h

_Z{Ng (N8)? = NENS NN

g#h

=>_ (N{Ny

g<h

o")

— NINE)? =0, (78)

which implies Eq. (72). Equations (71) and (73)—(76) are proved analogously.
It is clear from the preceding discussion that for a collection of particles with
proportional amplitude matrices (with real or complex proportionality constants)
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the inequalities (71)—(76) reduce to equalities, as is the case for a pure phase
matrix. This occurs, in particular, for a collection of identical particles with the
same orientation in space or for a collection of identical spherically symmetric
particles.

Many other inequalities can be found from Eqs. (65)—(76). For instance, by
adding Egs. (71)—(76), observing that the double products cancel each other, and
rearranging terms, one obtains the inequality [cf. Fry and Kattawar (1981)]

)

i=1j

4
(25)" = 4(z0)" a9

=1

Note that Eq. (79) becomes an equality for a pure phase matrix [cf. Eq. (45)].
Evidently, all interrelations for Zl.cj keep their validity for a sum of matrices of

the type given by Eq. (26) and in particular for a sum of pure scattering matrices

as considered by van de Hulst (1957).

B. SYMMETRY

The description of light scattering by a cloud of particles simplifies when the
particles themselves or their orientations in space possess certain symmetry prop-
erties. For an extensive treatment of this subject we must refer to the literature
(see, e.g., Perrin, 1942; van de Hulst, 1957), but a few remarks here are in order.

As shown by Eq. (64), the phase matrix of a collection of identical particles all
having the same orientation is a pure phase matrix [cf. Eq. (12)] with the internal
structure discussed in Section II. Another extreme situation is rendered by a col-
lection of particles in (three-dimensional) random orientation. Then the scattered
light depends on the scattering angle, but there is rotational symmetry about the
direction of incidence. Assuming reciprocity (see Section IX of Chapter 1), we
find that a collection of particles in random orientation has a scattering matrix
(see Section XI of Chapter 1) of the form

ai(®)  bi1(®)  Db3(®) bs5(O)
F(O) = b1(©)  ax(®)  ba(®) be(O) 80)
| B30 —ba(©)  a3(®) ba(O) |

bs(®)  be(®) —b2(O) as(©)

If we also assume that all particles have a plane of symmetry or, equivalently, that
particles and their mirror particles are present in equal numbers, we obtain the
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block-diagonal structure [cf. Eq. (61) of Chapter 1]

aj(®) b(®) 0 0

| 21(®)  ax(0) 0 0
F®) = 0 0 a3(®) by(©) |’ 61)

0 0 —b2(®) a4(®)

Equations (67)—(76) now reduce to the four simple inequalities [cf. Egs. (65) and
(66)]

(a3 +as)® +4b3 < (a1 +ap)” — 4b3, (82)
laz —a4] < a1 — aa, (83)
laz — b1| < a1 — by, (34)
laz + b1| < a1 + by. (85)

Consequently, all available information is contained in Egs. (82) and (83) plus
the fact that no element of F(®) in Eq. (81) is larger in absolute value than a;.
The properties of the corresponding (normalized) phase matrix were studied by
Hovenier and van der Mee (1988).

Special cases arise for strict forward (® = 0) and backward (® = ) scattering
(see Sections IX and XI of Chapter 1 and Hovenier and Mackowski, 1998). Some
important results are summarized in Tables I and II. In the case of backscattering,
consequences for the linear and circular depolarization ratios have been reported
by Mishchenko and Hovenier (1995), whereas bounds for pgc, in terms of pinc
have been derived by Hovenier and van der Mee (1995).

IV. TESTING MATRICES DESCRIBING
SCATTERING BY SMALL PARTICLES

This section is devoted to the following problem. Suppose we have a real 4 x 4
matrix M with elements M;;, which may have been obtained from experiments
or numerical calculations. If we wish to know if M can be a pure phase matrix
or a phase matrix of a collection of particles, what tests can be applied? In either
case, there exist tests providing necessary and sufficient conditions for a real 4 x 4
matrix to have all of the mathematical requirements of a pure phase matrix or of
the phase matrix of a collection of particles. These tests can only be performed if
one knows all 16 elements of the matrix M, which is not always the case. There
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Table I

Properties of the Scattering Matrix for Exact Forward Scattering by a Collection of
Randomly Oriented Identical Particles Each Having a Plane of Symmetry or by a
Mixture of Such Collections

Scattering matrix

ag 0 0 O
0 aa 0 O
F =
0 0 a O
0 0 0 ag
e In general:
laa| < a
lag| < a
ag > 2laz| —ay

e Special case, each particle is rotationally symmetric:
0<a=a
ay = 2ay —a
e Special case, each particle is homogeneous, optically inactive, and spherical:
ap >0

ay = ay =as

also exist tests providing only necessary conditions. These tests are particularly
useful if not all 16 elements of the given matrix M are available or if M has a
property that allows one to exclude it directly on the basis of a simple test. Once a
given matrix has been shown to have the mathematical properties of a pure phase
matrix or the phase matrix of a collection of particles, the matrix can, in principle,
describe certain scattering situations but not necessarily the scattering problem
intended. This is particularly true if scaling or symmetry errors have been made.
Thus the tests are useful to verify if a given matrix can describe certain scattering
events, but they are not sufficient to be certain of its “physical correctness.” We
refer the reader to Hovenier and van der Mee (1996) for a systematic study of
tests for scattering matrices, which are completely analogous to those for phase
matrices.

To test if a given real 4 x 4 matrix can be a pure phase matrix, one can distin-
guish between five types of tests:

a. Visual tests, where one checks a simple property of the given matrix. For
instance, one checks if the sum of the rows and the columns of the matrix
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Table I1

79

Properties of the Scattering Matrix for Exact Backward Scattering by a Collection

of Randomly Oriented Identical Particles or by a Mixture of Such Collections

Scattering matrix

ap 0 0 b5
0 a O 0
F= 0 0 —a O
bs 0 0 ag

o In general:

0<a=a
ay = a; —2ap

ay—a; < bs<a;—ap

e Special case, each particle has a plane of symmetry:

0<a=a
ay = a; —2ap
bs =0

e Special case, each particle is homogeneous, optically inactive, and spherical:

ap >0
ap = ay=—ay
bs =0

in Eq. (28) are all equal to the same nonnegative number. Other examples
of visual tests are to verify Eq. (45), some of the identities represented by
the pictograms in Fig. 1, or some of the inequalities (55)—(63).

. Tests consisting of nine relations. For instance, when Eq. (32) holds,

Egs. (33)—(41) form one such set. Other sets can be pointed out if one of
Eqgs. (42)-(44) is fulfilled. The advantage of such a test is that the nine
relations are complete in the sense that M can be written in the form of
Eq. (1) for a suitable amplitude matrix S that is unique apart from a phase
factor of the form e‘® (cf. Hovenier et al., 1986).

. Tests based on analogy with the Lorentz group, such as verifying Eq. (46).
However, this test is incomplete, because the matrix diag(1, 1, 1, —1), for
example, satisfies Eq. (46) but is not a pure phase matrix.

. Tests based on reconstructing the underlying amplitude matrix. Starting
from M, one computes I';” IMT,, where I and ry Lare given by Eqs. (2)
and (3), and checks if it has the form of the right-hand side of Eq. (4)

(cf. November, 1993; Anderson and Barakat, 1994).
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e. Tests based on the coherency matrix. In this test one computes from the
given real 4 x 4 matrix M, a complex Hermitian 4 x 4 matrix T (i.e.,
T = T]?“l-) in a linear one-to-one way. Then M can be a pure nontrivial
phase matrix if and only if T has one positive and three zero eigenvalues. If
so desired, the underlying amplitude matrix can then be computed from the
eigenvector corresponding to the positive eigenvalue. Tests of this type,
with different coherency matrices that are unitarily equivalent, have been
developed by Cloude (1986) and Simon (1982, 1987).

We now discuss the coherency matrix in more detail. This matrix T is easily
derived from a given 4 x 4 matrix M and is defined as follows:

Tii = $(Mi1 + Moy + M3z + Mus)

Ty = 5(My1 + Moy — M33 — Mus)

, (86)
Ts3 = 5(Mi1 — Moy + M3z — Mus)
Ty = %(Mn — M — M33 + Mys)
T4 = %(M14—iM23 + M3y + May)
Tys = 3(iMig + Ma3 + M3y — iMy))
; (87)
T3y = 5(—iMis+ Mps + M3y +iMy)
Ty = 5(Mis +iMaz — iM3y + May)
Ty = 5(Mi2 + Moy — i M34 + i My3)
To1 = (M2 + Moy + iMsg — i Ma3)
; (88)
T34 = %(iMlz — iM>1 + M3a + My3)
Ty3 = 3(—iMia+iMa1 + M3s + My3)
Ti3 = (M3 + M3y + i Moy — i My3)
T3 = %(M13+M31 — Moy +iMyo)
(39)
Toy = 3(—iMi3 +iM3) + Moy + My)
Ty = %(iM13 — iM31 4+ Moy + Myo)
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e = 0 © e ® o O
= e 0o O = e o O
<~
o o e = o0 o e =
o o m e o o m e
M T

Figure 2 Transformation of the 4 x 4 matrix M to the coherency matrix T. Four basic groups of
elements are distinguished by four different symbols.

In fact, T depends linearly on M and the linear relation between them is given by
four sets of linear transformations between corresponding elements of M and T
(see Fig. 2). Moreover, T is always Hermitian, so that it has four real eigenvalues.
If three of the eigenvalues vanish and one is positive, M can be a pure nontrivial
phase matrix. This is a simple and complete test. It was discovered in the theory

of radar polarization [see Cloude (1986), where T is defined with factors % in

Eqgs. (86)—(89) instead of factors %]. Another complete test using the coherency
matrix, namely, verifying

TrT > 0, T?> = (Tr DT, (90)

is mostly due to Simon (1982, 1987), where, instead of T, a Hermitian matrix N
was used that is unitarily equivalent to the coherency matrix, namely,

N=T"'Tr, 91)

where I' = diag(1, 1, —1, —1)Iy and I’ is given by Eq. (2). The transformation
from M to N is displayed in Fig. 3.

To test if a given real 4 x 4 matrix M can be the phase matrix of a collection
of particles, one may employ two types of tests, specifically visual tests and tests
based on the coherency matrix. The comparatively simple visual tests can often

e o = & e w O ©
e o a & = e 0 O
==
oo o o oo e =
o o o o o o m e
M N

Figure 3 Asin Fig. 2, but for the transformation from M to N.
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be applied if one has incomplete knowledge of the matrix M. Examples abound.
For instance, one can verify any of the inequalities of Egs. (65)—(76) and (79).
The inequalities of Egs. (65)—(70) are useful eyeball tests that often allow one to
quickly dismiss a given matrix as a phase matrix of a collection of particles. The
six inequalities of Eqs. (71)—(76) are commonly used to test matrices, especially
in the form of Eqs. (82)—(85) for matrices M of the form of the right-hand side of
Eq. (81).

Using the coherency matrix, one obtains a most effective method to verify if a
given real 4 x4 matrix M can be the phase matrix of a collection of particles. It was
developed in radar polarimetry by Huynen (1970) for matrices with one special
symmetry and by Cloude (1986) for general real 4 x 4 matrices. As before, one
constructs the complex Hermitian matrix T from the given matrix M by using
Eqgs. (86)—(89) and computes the four eigenvalues of T, which must necessarily
be real. Then M can only be a nontrivial phase matrix of a collection of particles
if and only if all four eigenvalues of T are nonnegative and at least one of them is
positive.

The coherency matrix test allows some fine tuning. First of all, recalling that
M can be a pure nontrivial phase matrix whenever T has one positive and three
zero eigenvalues, the ratio of the second largest to the largest positive eigenvalue
of T may be viewed as a measure of the degree to which a phase matrix is pure
(Cloude, 1989, 1992a, b; Anderson and Barakat, 1994). Second, because a com-
plex Hermitian matrix can always be diagonalized by a unitary matrix whose
columns form an orthonormal basis of its eigenvectors, one can write any phase
matrix as a sum of four pure phase matrices. This result may come as a big sur-
prise in the light-scattering community, but it is well known in radar polarimetry
where it is called target decomposition (cf. Cloude, 1989).

In the coherency matrix test described previously, the matrix T may be replaced
by the matrix N. This is obvious, because T and N are unitarily equivalent and
therefore have the same eigenvalues. As a test for phase matrices of a collection of
particles, this was clearly understood by Cloude (1992a, b) and by Anderson and
Barakat (1994). The details of the “target decomposition,” but not its principle,
are different but can easily be transformed into each other. The testing procedures
described in this section have been used in practice in a number of publications,
including Kuik et al. (1991), Mishchenko ef al. (1996a), Lumme et al. (1997),
and Hess er al. (1998).

V. DISCUSSION AND OUTLOOK

The phase matrices studied so far all transform a beam of light with degree
of polarization not exceeding 1 into a beam of light having the same property;
that is, they satisfy the Stokes criterion. The latter is defined as follows. If a real
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four-vector I'" whose components /1", Qi"® /"¢ and V"¢ satisfy the inequality
Jinc > [(Qinc)2 + (Uinc)2 + (Vinc)2]1/2 (92)

is transformed by M into the vector I¥¢* = MII™ with components /5, Q34
U, and V5, and the latter satisfy the inequality

P = () (U + (V)] o3

then M is said to satisfy the Stokes criterion. The real 4 x 4 matrices satisfy-
ing the Stokes criterion have been studied in detail. Konovalov (1985), van der
Mee and Hovenier (1992), and Nagirner (1993) have indicated which matrices
M of the form of the right-hand side of Eq. (81) satisfy the Stokes criterion.
Givens and Kostinski (1993) and van der Mee (1993) have given necessary and
sufficient conditions for a general real 4 x 4 matrix M to satisfy the Stokes cri-
terion. These conditions involve the eigenvalues and eigenvectors of the matrix
GMGM, where G = diag(1, —1, —1, —1). Givens and Kostinski (1993) assumed
diagonalizability of the matrix GMGM, whereas no such constraint appeared in
van der Mee (1993). Unfortunately, all of these studies are of limited value for
describing scattering by particles, because the class of matrices satisfying the
Stokes criterion is too large, as exemplified by the matrices diag(1, 1, 1, —1) and
G = diag(1, —1, —1, —1), which satisfy the Stokes criterion but fail to satisfy
the coherency matrix test discussed in Section IV [see also Eqs. (82) and (83)].
Moreover, the coherency matrix test is more easily implemented than any known
general test to verify the Stokes criterion.

Hitherto we have given tests to verify if a given real 4 x 4 matrix M can be a
pure phase matrix or the phase matrix of a collection of particles, as if this matrix
consisted of exact data. However, if M has been numerically or experimentally
determined, a test might cause one to reject M as a (pure) phase matrix, whereas
there exists a small perturbation of M within the numerical or experimental error
that leads to a positive test result. In such a case, M should not have been rejected.

One way of dealing with experimental or numerical error is to treat a deviation
from a positive test result as an indication of numerical or experimental errors.
Assuming that the given matrix M is the sum of a perturbation AM and an “ex-
act” matrix M®, which can be a (pure) phase matrix, an error bound formula is
derived in terms of the given matrix M such that M passes the test whenever the
error bound is less than a given threshold value. Such a procedure has been im-
plemented for the coherency matrix test by Anderson and Barakat (1994) and by
Hovenier and van der Mee (1996). In either paper, a “corrected” (pure) phase ma-
trix is sought that minimizes the error bound. Procedures to correct given matrices
go back as far as Konovalov (1985), who formulated such a method for the Stokes
criterion.



84 Joop W. Hovenier and Cornelis V. M. van der Mee

Table I1I

Eigenvalues ); of the Coherency Matrix T if M Is One of the Three
Matrices Given in Table II of Cariou ef al. (1990). These Matrices Describe
Underwater Scattering for Different Scatterer Amounts and Therefore
Different Approximate Values of the Optical Extinction Coefficient kex¢

kexe (m™1) A Y 23 Ay

0.5 1.9878 0.0444 —0.0273 —0.0048
1.0 1.5333 0.0776 0.2166 0.1725
2.0 1.2395 0.3795 0.1571 0.2239

The application of error bound tests to a given real 4 x 4 matrix can lead
to conclusions that primarily depend on the choice of the error bound formula.
Moreover, no information on known numerical or experimental errors is taken
into account. One possible way out is to test three matrices M°, M*, and M~
such that M? is the given real 4 x 4 matrix and

Sij =My — My =My =M}, i j=1234, (94)
are the errors in the elements of MC. Then the matrix M? is accepted as a (pure)
phase matrix if all of these three matrices satisfy the appropriate “exact” test.

By way of example we will now apply the coherency matrix test to three real
4 x 4 matrices describing forward scattering by kaolinite particles suspended in
water as measured using pulsed laser radiation (see Table II of Cariou et al., 1990).
The corresponding eigenvalues of the coherency matrix T are then given by Ta-
ble IIT and are all nonnegative, except for the two smallest eigenvalues pertaining
to the first matrix. Hence the second and third matrices can be scattering matrices
of a collection of particles. The first matrix has one large positive eigenvalue and
three eigenvalues that are very small in absolute value. One may expect that this
matrix coincides with a pure scattering matrix within experimental errors.

When the scattering matrix of a collection of particles has the form of the right-
hand side of Eq. (81), its six different nontrivial elements can be expanded into
a series involving generalized spherical functions [see Eqs. (72)—-(77) of Chap-
ter 1]. With the help of Egs. (82)-(85) and the orthogonality property given by
Eq. (78) of Chapter 1, a plethora of equalities and inequalities for the expansion
coefficients can be derived (see van der Mee and Hovenier, 1990). Some of these
relations are very convenient for testing purposes, because sometimes the expan-
sion coefficients rather than the elements of the scattering matrix are given (see,
e.g., Mishchenko and Mackowski, 1994; Mishchenko and Travis, 1998). Unfor-
tunately, the problem of finding necessary and sufficient conditions on the matrix



Chapter 3 Relationships for Matrices Describing Scattering by Small Particles 85

in Eq. (81) to be a scattering matrix of a collection of particles in terms of the
expansion coefficients has not yet been solved.

Multiple scattering of polarized light by small particles in atmospheres and
oceans can also be described by matrices that transform the Stokes parameters.
Examples are provided by the reflection and transmission matrices for plane-
parallel media. For macroscopically isotropic and symmetric scattering media
(Section XI of Chapter 1) above a Lambert or Fresnel reflecting surface, the el-
ements of such multiple-scattering matrices obey the same relationships as the
elements of a sum of pure phase (scattering) matrices considered in preceding sec-
tions (Hovenier and van der Mee, 1997). Further work in this field is in progress.



