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A direct and inverse scattering theory on the full line is developed for a class of first- 
order selfadjoint 2n • 2n systems of differential equations with integrable potential matri- 
ces. Various properties of the corresponding scattering matrices including unitarity and 
canonical Wiener-Hopf factorization are established. The Marchenko integral equations 
are derived and their unique solvability is proved. The unique recovery of the potential 
from the solutions of the Marchenko equations is shown. In the case of rational scatter- 
ing matrices, state space methods are employed to construct the scattering matrix from a 
reflection coefficient and to recover the potential explicitly. 

i. INTRODUCTION 

Consider the selfadjoint Hamiltonian system of differential equations 

_{ j~ ,  dX,~,r ~,) _ V ( x ) X ( x ,  :,) : ~,X(~,  ~,), 
dx 

x e R, (i l) 

where 

~ ~ J2~ = - I ~  ' k ( x ) t  0 ' 

with In the  ident i ty  mat r ix  of order n, the n x n ma t r ix  function k has complex-valued 

entries belonging to L I ( R ) ,  A E R is an eigenvalue parameter ,  and  t denotes the  ma- 

t r ix  conjugate  t ranspose.  We call the  function k the  poten t ia l  and the  pa rame te r  A the 

wavenumber.  Note tha t  V(x) is a selfadjoint 2n x 2n ma t r i x  and satisfies 

J2,~ V(x )  = - V ( x )  J2,,. 

We can th ink  of X(x,  A) in (1.1) as ei ther a column vector  of 2n entries or as a 2n x 2n 

matr ix .  For A E R ,  we define the  Jost  solut ion from the  left, F l (x ,  A), and the Jost  solut ion 
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from the right, FT(x, ~), as the 2n x 2n matrix solutions of (1.1) satisfying the boundary 

conditions 

F~ (x, ~) = e ~ J ~  [f2n + o(1)], x -~ +oo,  (1.3) 

FT(x, ,k) = e i~:2"~ [I2,~ + o(1)], x --+ - o c .  (1.4) 

Using (1.1), (1.3), and (1.4), we obtain 

l 
oo 

Fz(x,  ),) = e ~xJ~o~ - ig2,~ dy  e -~xJ,~ (~-~) V'(y)  f z  (y,  ;~), 
Jg2 

(1.5) 

i 
x 

FT(x, )~) = e ~)'y2~:~ + iJ2n dye i;~J~(x-y) V(y) Fr(y, A). (1.6) 

For a given square matrix function E(x), let us use I IEII1 to denote f-~oo dx t lE(x)ll, where 

]1" I] stands for the matrix norm defined by ]JAil = sup{llAv[12 : Ilvll2 = 1} and I1" 112 is the 

Euclidean vector norm. Since the entries of k(x) belong to L~(R),  for each fixed A E R 

it follows by iteration that  (1.5) and (1.6) are uniquely solvable and that  IIFl(x, A)l ] and 

lIFT(z, A)II are bounded above by e Ilkll~. From (1.3)-(1.6) we get 

E l ( x ,  .~) : e i A J 2 n x  [al (,~) -[- o(1)]  , x ---+ - o o ,  (1.7) 

where 

sT(x ,  ~) = e ~ J ~ x  [aT(A) + o(1)] ,  ~ -~  + o o ,  (1.8) 

F az(A) = I2~ - iJ2~ dye -')'J~'~y V(y) Fz(y, A), 
oo 

F aT(),) = h n  + iJ2,~ aye -~J~oy V(y)  FT(y, ),). 
oo 

The term "canonical differential equations" for the system (1.1) has been used by Melik- 

Adamyan [32-34], L. A. Sakhnovieh [39,40], and A. L. Sakhnovich [38], who have studied 

the direct and inverse scattering problems for (1.1) on the half line. Under minor restric- 

tions on the given so-called reflection function, a characterization of the scattering data  

corresponding to an Ll-potential  on the half line was given by Melik-Adamyan [34], who 

also supplied a method to reduce the inverse spectral problem on the full line for a canon- 

ical equation of order 2n to an inverse spectral problem on the half line for a canonical 

equation of order 4n [32] (see also [41]). We will comment on that  characterization result 

at the end of Section 6. More recently, Alpay and Gohberg [3-6] have applied state space 

methods to derive explicit expressions for the solution of the inverse scattering problem for 
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(i.i) on the half line from the general theory in [34] when the scattering data are rational 

functions and consist of either the spectral function of the differential operator 

�9 g - V ( x ) ,  (1 .9)  H = - ~ J 2 ~  ~ x  x 

or a reflection function. A more self-contained treatment of these results was given by 

Alpay et al. [7]. Gohberg et al. have solved a similar inverse problem when the scattering 

data consist of the spectral function of H and this function is rational, both on the half 

line [24,25] and on the full line [26]. 

Let us mention that there are other, more general first-order systems for which the 

direct and inverse scattering problems have been analyzed. Shabat [42] and Beals and Coif- 

man [I0,ii] considered the n• system d~/dx -- AJ~&q(x) 9% where J -- diag {~I,. �9 an} 

with distinct complex ~j and q(x) an n • n off-diagonal matrix with entries belonging to 

L I (R) or more restrictive classes, without requiring q(x) to be selfadjoint. As indicated in 

[16], the distinctness of c~j is not an essential restriction�9 It has been proved that the inverse 

problem has a unique solution within a certain class of potentials for an open and dense set 

of scattering data. The solution of the inverse scattering problem for such linear systems is 

useful in solving the Cauchy problem for various nonlinear evolution equations; for details 

and further references, we refer the interested reader to [2,12,16] and the references therein. 
1 

Note that by putting Z(x, A) = ~ [I2n + iq2n] X(x, A), where 

q2n = In 0 ' 

we can convert (1.1) into the massless Dirac equation of order 2n given by 

dZ(x,A) [ p(x) AI~ - v(X) l z (x ,A)  ' 
dx -;,Z,~ - v(x) -p(x)  

p(x) = l [k (x )  + k(x) t] and v(x) = -1 i lk (x)  - k(x) t] are the real and imaginary where 

parts of k(x), respectively. The direct and inverse scattering problems for the Dirac system 

on the half line were studied in [22]. The interested reader is referred to [22,28,29] and the 

references therein for more information on the Dirac system. 

The direct scattering problem for (i.I) consists of the determination of the scattering 

matrix S(A) defined in (3.11) when the potential k(x) is given, whereas the inverse scat- 
tering problem is the determination of k(x) from S(A) or, equivalently, from either of the 
reflection coefficients R(A) and L(A), which are defined in (3.?) in terms of the matrices 
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at(A) and ar(~). In this article we develop a direct and inverse scattering theory for (1.1) 

when k(x) has entries belonging to L 1 (R). Working within the framework established by 

Faddeev [21] and Delft and Trubowitz [20] for the SchrSdinger equation on the line, we 

derive the analyticity and asymptotic properties of the Faddeev matrices and the scatter- 

ing coefficients, employ them to derive a Riemann-Hilbert problem and various Marchenko 

integral equations, and recover the potential in terms of the solutions of the Marchenko 

equations. We prove the unitarity of the scattering matrix and exploit this property to 

prove the unique solvability of the Marchenko equations. We also establish the unique 

canonical Wiener-Hopf factorization of the (unitarily dilated) scattering matrix and show 

how the potential is obtained once the factors in the factorization are known. We then 

give a rather general sufficient condition on the reflection coefficient to lead to a potential 

whose entries belong to LI(R) .  After that, for rational reflection coefllcients we present a 

procedure to compute explicitly the scattering matrix from a reflection coefficient. This 

is no longer as elementary as in the case of the (scalar) SchrSdinger equation [20,21] and 

involves a suitable extension of a contractive n x n matrix function to a unitary 2n x 2n ma- 

trix function (cf. [8,27]). When the reflection coefficients are rational, we apply state space 

methods [13] to solve the Marchenko equations and the inverse problem explicitly. For ra- 

tional reflection coefficients, this approach provides us with a systematic inversion method 

for inverse scattering problems on the line, which is different from previous methods such 

as those used in [9]. 

This article is organized as follows. In Section 2 we introduce the Faddeev matri- 

ces, obtain their analyticity properties, and analyze some other properties of the Faddeev 

matrices and the Jost solutions of (i.i). In Section 3 we define the scattering matrix 

S(A) in terms of the spatial asymptotics of the Jost solutions, prove the unitarity of S(A), 

and obtain various properties of the scattering coefficients. In Section 4 we analyze the 

Fourier transforms of the Faddeev matrices and the scattering coefficients. We then go 

on, in Section 5, to derive a Riemann-Hilbert problem for the Faddeev matrices and show 

that the (unitarily dilated) scattering matrix has a canonical Wiener-Hopf factorization. 

We also show that this factorization can be used to solve the inverse scattering problem. 

In Section 6, we convert the Riemann-Hilbert problem into both coupled and uncoupled 

Marchenko integral equations, prove their unique solvability by a contraction mapping 

argument, and give a partial characterization of the scattering data corresponding to po- 

tentials with entries in L I(R). In Section 7 we show how the scattering matrix can be 

constructed from a reflection coefficient, and we also construct S(A) explicitly when one 

of the reflection coefficients is a rational function. Finally, in Section 8 we give an explicit 

solution of the inverse scattering problem with rational reflection coefficients; this is done 
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by using the minimal  realization of the reflection coefficients as the input to the Marchenko 

equations. 

2. SCATTERING SOLUTIONS 

In this section we introduce the Faddeev matr ices and s tudy some of their  properties. 

The  results obtained here will be used later to establish various propert ies  of the scattering 

mat r ix  and to solve the inverse scattering problem by the Marchenko method.  

PROPOSITION 2.1. Let X(x,)~) and Y(x,)~) be any two solutions of (1.1). Then, for 

real A, X(x ,  )~)tJ2~Y(x, )~) is independent of x. 

PROOF. The  result follows by differentiating X(x,)QtJ2nY(x,  A) and using (1.1) 

together  with the selfadjointness of V(x) and J2~- | 

PROPOSITION 2.2. For )~ E R,  either of the Jose solutions Ft ( x, )~ ) and F~( x, )~ ) forms 

a fundamental matrix of (1.1) and has determinant equal to one, and the matrices at(A) 

and a~()Q appearing in (1.7) and (1.8), respectively, satisfy 

detaz(A) = det a~(;~) = 1. (2.1) 

Moreover, for ;~ E R,  the Jost solutions satisfy 

Fz(x,~) =F~(x ,~ )~z (~ ) ,  (2.2) 

and hence 

Ft(x, ~)t &,,  Fz(x, :~) = ~t(~)tJ~n at(;~) = &,~, 

a~(~) ~ ( ~ )  = a~(;~) at(;~) : & ~ ,  

at (A)  -1  = J2,~ at(A) t J2~, a~(.k) -1  = J2~ a~(,~) t J2~. 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

PaOOF. From (i.i) it follows [35] that 

d [det Fl (x, A)] _ (tr  {iJ2,~ V(x) + iAJ2n}) (dee Fz (x,/~)) 
dx 

where tr denotes the mat r ix  trace. By (1.2), iJ2n V(x) + i)~J2n has zero trace, and hence 

de tF t (x ,A)  is independent of x and its value can be evaluated as x --~ + ~ .  Thus, we 

get detFz(x,/k) = 1, f rom which we also conclude tha t  Ft(x, )~) is a fundamenta l  matr ix  
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of (1.1). Similarly, we find that  d e t F r ( x , k )  = 1 and Fr(x, I)  is a fundamental  matrix 

of (1.1). Then, from (1.2), (1.7), and (1.8) we obtain (2.1). Since either of Fl(x,A) 

and F,(x,  A) is a fundamental matrix of (1.1), with the help of (1.3) and (1.7), we get 

(2.2). Using Proposit ion 2.1, we obtain (2.3)-(2.5) by evaluating F,(x,  A)tY.~ Fz(x, I),  

Fz(x,A)tJ2n Fz(x, l ) ,  and F,(x, l ) tY2nF,(x ,  A) as x ~ -boo. Then  (2.6) and (2.7) readily 

follow. | 

as 

In terms of the Jost solutions, we define the Faddeev matrices Mz(x, A) and M,(x ,  A) 

Mz(x, I)  = Fz(x, A) e -ia&~=, M~(x, A) = F~(x, A) e -ix&n~. (2.8) 

From (1.3) and (1.4) we get 

M l ( x  , A) : [2n -}- o(1) ,  x --+ + o o ,  

M~(x, A) = I2~ + o(1), x -* - oo .  

Let us part i t ion the Jost solutions and Faddeev matrices into n x n blocks as follows: 

[Fz3 (x, A) 
F~(x, a)] F~(., A) : 
~4(; ,  ~) ' 

-S.~(x, A) F~2(~, ~)] (2.9) 
F~a(x, ~) S.4(~,a) ' 

M,a(~,~) m4(~,~) ' Mr(~,~)= LMra(x, ~) M~4<x,A) 

By C + and C -  we denote the open upper half and lower half complex planes, respectively. 

We also define 
4-00 

~:t:(x) = •  dy[Ik(Y)II" (2.11) 
d X  

PROPOSITION 2.3. Assume that the entries of k(x) belon9 to LI(R) .  Then: 

(i) r o t  each fixed x e R, FM'l(x'~)] L3/Im(x, A) can be extended to a matrix function that is 

continuous in A E C+ and analytic in A E C+ and tends to [ IOn ] as A --~ oo in C +. 

(ii) For all A ~ C +, Ma(x,  A) and Mza(x, A) are bounded by e ~+(x) in the norm. 

(iii) For each fixed x e R, [ Ml2 (x, i )  ] LMz4(x,,~) c a n  be extended to a matrix function that is 

I~ continuous in t E C -  and analytic in A 6 C -  and tends to Is as A + oo in C - .  

(iv) For all A e C - ,  Mz2(x, A) and Mza(x, I)  are bounded by e ~'+(=) in the norm. 
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PROOF. Using (2.8) in (1.5), we obtain 

# Mz(x,)`) = I 2 ~ -  iJ2~ dye-i) 'J2~(Y-~)V(y)Mz(y,)`)e  ia#2"(y-~). (2.12) 

I terat ing (2.12) once, we get the uncoupled systems 

# F  Mll (X  , )`) = Z n -~ dy dz r ]~(y) ]~(z)t A/ill(Z, )`), (2.13) 

/? /?F M~2(x, )`) = - i  dy e -2~(~-~) k(y) + dy dz ~-~x(~-~) k(V) k(z)* M~(z, )`), 

(2.14) 

/? # /?  Mm(x, )`) = i dye  zi~'(y-x) k(y) t + dy dz e 2iz(v-~) k(y) t k(z) Mm(z, )`), (2.15) 

# F  Mz4(x, )`) = i~ + dy dz e -2~(~-~) k(y)t k(z) M~(z, )`). (2.16) 

Iterating the Volterra integral equations (2.13) and (2.15), we prove that the series of 

iterates converge absolutely and uniformly in )` E C +, and we also get the estimate in 

(ii). Similarly, we prove that the series of iterates of (2.14) and (2.16) converge absolutely 

and uniformly in )` E C- and that the estimate in (iv) holds. To prove the assertions 

concerning the large-), limit we first consider Ml3(x, )`). To deal with the first term on the 

right-hand side of (2.15) we define 

Z ~ k(y)t w()`) = sup dye 2c~(y-x) . 
xcR 

By approximat ing k(y) by infinitely differentiable matr ix  functions of compact  support  (as 

in the proof  of the Riemann-Lebesgue lemma) it follows tha t  w()`) ~ 0 as )` --* oo in C +. 

I tera t ing (2.15) we get IIMz3(x, )`)11 -< ~()`) ~+(~), which implies tha t  IIM~3(~, )`)11 -~ 0 as 
)` -~ oo in C +. Next we consider Mzl (x,)`). Let Gll (x,)`) = 7Vl11 (x,)`) -- In and consider 

the following integral equation for Gtl (x,)`) which follows from (2.13): 

/ ?#  Gll(X, )`) = Hll(X, )`) + dy dze  2i)~(z-y) ]c(y) ]c(z) t G/1 (z,)`), 

where 

Hzl (x,)`) = dy dz e 2i)'(z-y) k(y) k(z) t. 

Since IIHll(x, )`)ll -< " ( ) ` )~+(x) ,  we conclude tha t  IIgn(x, )`)H ~ 0 as )` --~ oo in C +. This 

proves the assertion of (i) regarding the limit )` ~ oc. The  proof  of the corresponding 

s ta tement  in (iii) is similar. | 
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As in Proposition 2.3, we have a similar result for the Faddeev matrix Mr(x, A) : 

PROPOSITION 2.4. Assume that the entries of k(x) belong to L~(R). Then: 

(i) For each fixed x e R, [ Mrl(X, A) 1 LMra(x,A ) can be extended to a matrix function that is 

c o n t i n u o u s i n A E C - a n d a n a l y t i c i n A E C - a n d t e n d s t o  [ I~] a s A - - ~ o o i n C - .  

(ii) For all A E C - ,  Mrl (x, A) and Mr3 (x, A) are bounded by e ~- (:Q in the norm. [Mr~(x,~)] 
(iii) For each fixed x e R,  [Mr4(x,A) can be extended to a matrix function that is 

[0] 
continuous in A E C+ and analytic in A E C + and tends to In as A ~ oo in C +. 

(iv) For all A E C +, M~(x ,  A) and M~a(x, A) are bounded by e ~-(~) in the norm. 

PROOF. Using (2.8) in (1.6), we obtain 

F Mr(x, A) = I2n + iJ2n dye i:~'7~'~(':-y) V(y) Mr(y, A) e -i:~z2~(~-y). 
o o  

(2.17) 

Iterating (2.17) once, we obtain the four systems given by 

i F  Mr~(x, ~) = & + ~ dv ~ dz e -~'(~-~) k(y) k(z)t Mrz(z, A), (2.z8) 

Mr2(=, ~,) = i dye 2~:'(~-~) k(y) + dz S '(~-~) k(y) k(z) t lVS~2(z, A), 
o o  d - - o o  J - - o o  

(2.19) 

f Mr3(x, A) = - i  d~ e - ~ ( ~ - ~ )  k(V) t + dz e -~ (~ -~ )  ~(y)t k(z) Mr~(z, A), 

(2.20) 

2 / /  M~(x, a) = & + dv dz e ~(~-~) k(y)* k(z) M~(~, x). (2.2z) 
O 0  OO 

Iterating (2.18)-(2.21) as in the proof of Proposition 2.3, we complete the proof. | 

Let us write 

all(A) 
at(A) = Laz3(A) 

,222, 

From (1.7), (1.8), and (2.8) we see that  

al2(A) [ Mtl(x,A) e -2'~x M,~(x,A)] 
[atl(A) = lim (2.23) 
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~ arl  ~ ~ = [ J ~ f r l ( X ,  )k) e-2iAXMr2(X,)k)] 
a~2(A) 1 lim . (2.24) 

a~3(A) a~4(~)J =-~+~ Le~=M~3(x,A) Mr4(x,A) 

Using (2.12), (2.17), (2.23), and (2.24) we find the integral representations 

/? a~l(a) = zn - i dy k(y) Mza(V, ~), (2.25) 
oo 

/? a~(),) = - i  dy ~-~ '~  k(y) Mt4(y, ~,), (2.26) 
oo 

/? at3(A) = i dye  2ixy k(y)* Mzl (y, a), (2.27) 
oo 

/? at4(a) = In + i dyk(y)*  Mt2(y ,A) ,  (2.28) 
oo 

/? a~l(a) = z~ + i dy k(y) M~a(y, a), (2.29) 
oo 

/? a~2(A) = i d y e  -2i@ k(y)  M~4(y, A), (2.30) 
oo 

/? ar3(A) = - i  dye  2~@ k(y)  t M~I(y,  A), (2.31) 

/? a~(a)  = • - i dy k(y)t M~2(y, a). (2.32) 
oo 

PROPOSITION 2.5. Assume that the entries of  k (x)  belong to LI(R).  Then: 

(i) The matrices azl(A) and a~4(A) are continuous in A E C + and analytic in A E C + 
and tend to In as A -~ cx~ in C +. 

(ii) The matrices az4(A) and a~l(A) are continuous in A E C -  and analytic in A E C -  

and tend to In as A ~ cx~ in C - .  

(iii) The matrices at2(A), az3(A), a~2(A), and a~3(A) are continuous in A E R and vanish 

as A ~ -4-exp. 

(iv) The matrices at2(A), az3(A), a~2(A), and a~3(A) satisfy 

~ ( ~ )  = _~(~) , ,  ~ ( ~ )  = _ ~ ( ~ ) t  ~ e R. (2.33) 

PROOF. Using Propositions 2.3 and 2.4 in (2.25)-(2.32), we get (i), (ii), and (iii). We 
obtain (iv) from (2.3). | 
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Using the notations of (2.9), let us form the following matrices: 

f + ( x , ) , ) = - F n ( x , ) ~ )  F~2(x,),)] F~l(X,),)  Fz2(x,A) l (2.3,1) 
FI3(x,A) Fr4(x,A) ' f _ ( x , A ) =  Fr3(x,A) Fz4(x,)~) " 

Let an asterisk denote complex conjugation. From Propositions 2.3 and 2.4, it follows 

that  f+(x, A) is a solution of (1.1) that  is continuous in A E C + and analytic in A C C+; 

similarly, f_(x, ..k) is a solution of (1.1) that  is continuous in ~ c C -  and analytic in 

AEC-. 

PROPOSITION 2.6. The 2n x 2n matrix f_(x, A*)t J2n f + (x, A) is independent ofx for 

all A E C +. Similarly, f+(x,  )r J2n f_(x, ;~) is independent of x for all )~ E C-.  We have 

f_(x ,A.) t j2 ,~f+(x,)~)[at~)~)  0 ] = , A E C +. (2.35) 
-a~4(;9 

Further, all(,k)t and a~.4(A)t have analytic extensions to C - ,  a~.l(A) t and al4(A) t have 

analytic extensions to C +, and 

a~(;  9 = a~l(;V) t, a~4(A) = a~i(A*)t, ' :~ e C +, (2.36) 

a~l(A) = all(A*) t, az4()~) = ar4()C) t, )~ e C - .  (2.37) 

PROOF. Using (1.1), one can show that  fc_(x, l*) t J2n f• A) is independent of x 

for A E C +. Evaluating it as x -~ 4-o0 and using (1.7) and (1.8) we get (2.35)-(2.37). | 

PROPOSITION 2.7. For A E R, either of f+(x, A) and f_(x, A) is nonsinguIar and 

hence is a fundamental matrix for (1.1). 

PROOF. As in the proof of Proposition 2.2 we find that  det f+(z, ;~) is independent 

of x, and evaluating that  determinant as x --* 4-o0 we obtain 

det f+  (x, A) = det azl (A) = det a~4(A). (2.38) 

From (2.4) it follows that  

azl()~)* atl()~) = In + az3(A) t az3(A), A e R,  (2.39) 

and hence all(A) is invertible for all A e R. Thus, f+(x,A) is nonsingular and forms a 

fundamental matrix for (1.1). Similarly, we get 

det Z_(x, A) = det a~l(A) = det a~4(),), (2.40) 
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and hence with the help of (2.36) and (2.39), we conclude tha t  f_  (x, 7~) is nonsingular and 

forms a fundamental  matrix for (1.1). I 

Next we will prove that  f+  (x, A) is nonsingular for A E C + and f_  (x, A) is nonsingular 

for A C C - .  First, using (2.10) and (2.34), let us define 

= 1 [Mza(x, A) M~4(x,A) : f+(z,A) e -ix&n~, (2.41) 

[ Mrl (z,/~) M/2(X, ~) ] /~) e_iAj2~z. 
m_(z ,~)  = LM~a(x, ~) M,4(x,~) = y_(z, (2.42) 

PaOPOSITION 2.8. For each ;~ E C +, f+(z, ),) is a fundamental matrix for (1.1). 

Similarly, for each A E C- ,  f_(x ,  A) is a fundamental matrix for (1.1). 

P a o o F .  The proof for f_(x,  A) is similar to the proof for f+(x, A), and hence we 

will only present the latter. From Proposit ion 2.7, we already know that  f+(x, ;~) is a 

fundamental  matrix for (1.1) when A E R.  Thus, we need only prove that  the columns of 

f+(x, A) are linearly independent for A E C +. From (2.34) and Proposit ion 2.3 it follows 

that,  for each fixed x E R,  f+(x, ;~) has an analytic extension to A E C +. Because of (1.3), 

(1.4) and (2.8), the first n columns of f+(x, A) are linearly independent for a E C +, and 

also the last n columns of f+(x, A) are linearly independent for A C C +. It is sufficient 

to prove that  an arbitrary nontrivial linear combination of the first n columns cannot be 

written as a linear combination of the last n columns of f+(z, ~). Otherwise, we would 

have 

(2.43) 
s:l q:r~-}-I 

where Cj(x, A) represents the j t h  column of the matrix m+(x ,  A) defined in (2.41), and 

cj(A) are independent of x. From (2.8), Proposition 2.3 (ii), and Proposit ion 2.4 (ii), it 

follows that  each entry of Cj (x, A) is uniformly bounded in x E R for each A E C +. The left- 

hand side in (2.43) decreases exponentially as x ~ +oo while the r ight-hand side decreases 

exponentially as x --+ - o  o; this would turn  either side into a nontrivial L2-solution of (1.1), 

which is a contradiction because the selfadjoint differential operator of (1.1) cannot have 

nonreal eigenvalues. | 

When Im A r 0, a result similar to the one in Proposit ion 2.8 was proved in [30]. 

From Propositions 2.3, 2.4, and 2.8 we obtain the following result. 

COROLLARY 2.9. For each x E R,  the 2n x 2n matrix m+(z,A) and its inverse 

m+(x,A) -1 are continuous in A E C +, are analytic in A E C +, and converge to I2~ as 
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I -~ oo in C +. Similarly, for  each x E R ,  the 2n x 2n matrix  m _  (x, A) and its inverse 

m_(x,A) -1 are continuous in A C C - ,  are analytic in A E C - ,  and converge to I2n as 

)~---~ cxD in C - .  

Next we present certain properties of the matrices at (A) and a~ (A) appearing in (2.22). 

PROPOSITION 2.10. Assume that the entries of  k (x)  belong to L~(R). Then: 

(i) The matrices atl(A) and a~4(A) are invertible for  each A e C +, and at4(A) and a~l(A) 

are invertible for  each A E C - .  

(ii) The matrix  funct ions all(A) -1 and a~4(A) -1 are continuous in C + and analytic in 

C + and tend to In as A --+ cxD in C +. 

(iii) The matrix  funct ions ata(A) -1 and a~l(A) -1 are continuous in C -  and analytic in 

C -  and tend to I~ as A --~ co in C - .  

PROOF. From Proposition 2.8 it follows that f+ (x, A) and f_ (x, A*) t are nonsingular 

for A E C +. Hence, (2.35) implies that a~l(A) and a~4(i) are invertible for each A E C +. 

Then, using (2.36), we can conclude that ata(A) and a~(A) are invertible for each A E C- .  

The proof of (ii) and (iii) follows from (i) and Proposition 2.5. | 

3. THE SCATTERING MATRIX 

In this section we define and analyze the properties of the scattering coefficients of 

(1.1) when the entries of the potential k(x) belong to LI(R). 

We can write (2.6) as 

all(~)arl(~ ) +at2(~)ar3(~) =In= arl(~)atl(~ ) +ar2(~)al3(~),  (3.i) 

aa(A) a~2(1) + az2(A) a<4(A) = 0 = a~l(A) at2(A) + ar2(A) at4(A), (3.2) 

at3(A) a<1(A) + ata(A) a~3(A) = 0 : a~3(A) at,(A) + a~4(A) at3(A), (3.3) 

at3(A) ar + ata(A) a<4(A) = A = a~3(),) at2(/) + a~4(A) at4(A). (3.4) 

Let us define the transmission coefficients Tt(A) from the left and T~(A) from the right, 

and the reflection coefficients R(t)  from the right and L(A) from the left, as follows: 

T~(X)=~I(~) -1, 

R(~) = ~ 2 ( A ) ~ ( ~ )  -1, 

From(3.2), (3.3), and (3.6) we get 

Tr(~)=a~(~) -1, (3.S) 

L(~) = al3(~)~/l(~) -1. (3.6) 

= (3.7) 
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Note that using (2.3) and (3.1)-(3.7), we can express the matrices in (2.22) in terms 

of the scattering coefficients as 

[ T~(A) -~ 

a,(;~) = If(;9 T,(A) -1 

[ [T,(A)t] -I 

a<(A) = L-Tr()0 -1L(A)  

-Tt (;9-1R(;~) ] 
[Tr (A)t] -1 ] '  

R(~) T~(~) -1- 
T~(~)-I ' 

( 3 . 8 )  

(3.9) 

where the off-diagonal entries can be expressed in terms of L(A) or R(A) by using 

L(A) TL(A) -1 : -[R(A) Tr(A)-I] t, (3.10) 

which is immediate from (2.33). 

The scattering matrix S(A) associated with (i.i) is defined as 

s(~):  [T,(A) ~(~)]. (3.11) 
L L(~) Tr(~)J 

THEOREM 3.1. The scattering matrix S(A) is continuous for A C R and converges to 

I2~ as A --+ • It is unitary for each A E R, and hence the scattering coej~ficients satisfy 

~(A) Tz(A) t + R(A) R(A) t = In = T~(A) t T<(A) + R(A) t R()0, (3.12) 

Tz(,k) t Tl(,k) + L(A) t L(A) = I~ = T~(A) T<(A) t + L(A) L( t )  t, (3.13) 

T~(A) R(A) t + L(A)Tz(A) t = 0 = T~(A) t L(A) + R(A) t Tz (l). (3.14) 

Moreover, for A C R we have 

det Tl(A) = get T~(A), (3.15) 

det R(A) t I~ J = det L(),)* I~ J = I detTz()')12' (3.16) 

det TI(A) 
det S (A) - [det Tt (A)]* (3.17) 

PROOF. The continuity and the large-A asymptotics follow from Propositions 2.5 and 

2.10. Using (3.5)-(3.7) in (2.7), we get S(A) S(A) t = hn, from which (3.12)-(3.14) follow. 

Furthermore, from (2.38), (3.8), and (3.9) we obtain (3.15). Using (3.10), we can write 

(3.8) and (3.9) as 

0 [T~(A)t] -1 -R(,k)t I~ ' 
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ar()t)=[[Tl()~J~]-] Tr (/~) -10 ][ In_L(A) -Z(A)t ]In ' (3.19) 

and hence, using (2.1), (3.15), (3.18), (3.19), and det J2n = ( - 1 )  n, we get (3.16). Using 

(2.2), (2.34), (3.5), and (3.6) it follows that  

f _ ( x ,  A) = f+(x,  A) J2n S(A) J2n, ~ E R .  (3.20) 

Thus, from (3.5), (2.38), (2.40), (3.20), and det J2n = ( - 1 )  n, we obtain (3.17). | 

In Proposi t ion 2.10 we have seen tha t  a~l(A) and ar~(A) have invertible, continuous, 

and analytic extensions from the real axis to C +. Thus, from (3.5) and Proposi t ion 2.10, 

we obtain the following result. 

COROLLARY 3.2. The transmission coefficients Tz(A) and Tr(A) and their inverses 

Tz(A) -1 and T~(A) -1 are continuous in A E C + and analytic in A E C+; these four matrices 

all converge to In as A --~ oo in C +. Similarly, the matrices Tz(A*) r and T~(A*) t and their 

inverses [~()k*)~] -1  and [Tr()~*)t] -1  are continuous in )~ ~ C -  and analytic in ~ ~ C - ;  

these four matrices all converge to In as A --~ co in C - .  

In general, R(A) and L(A) do not have analytic continuations off the real axis. In the 

special case when k(x)  vanishes on a half line, we have the following. 

PROPOSITION 3.3. I f  k(x)  is supported in the right half line R +, then L(A) extends 

to a function that is continuous on C +, is analytic on C +, and vanishes as A ~ co in C +. 

Similarly, i l k ( x )  is supported in the left half line R - ,  then R(A) extends to a function that 

is continuous on C +, is analytic on C +, and vanishes as A --* oo in C +. 

Pt~OOF. If k has support  in R +, then from (2.27) and Proposi t ion 2.3 we see tha t  

al3(A) has an extension tha t  is continuous in A E C+,  is analytic in A C C +, and converges 

to 0 as A --+ oo in C +. Thus, using (3.6) and Corollary 3.2, we can conclude tha t  L(A) 

extends to a function tha t  is continuous on C+, is analytic on C +, and vanishes as A ~ oo 

in C +. In a similar manner,  if k is supported in R - ,  using (2.30), (3.6), Proposi t ion 2.3, 

and Corollary 3.2, we obtain tha t  R(A) extends to a function tha t  is continuous on C +, is 

analytic on C +, and vanishes as A ~ oo in C+. II 

In the sequel we will use the notat ion LJ(I; C vxq) to denote the Banach space of all 

complex p x q matr ix  functions z(c~) whose entries belong to LJ (I), endowed with the norm 

fz dc~ IIz(~)llJ; if q = 1, we simply write LJ(I; CP). 

Considering the operator  H defined in (1.9) and H0 = - iY2n (d/dx)  as the per turbed 

and free Hamiltonians,  respectively, one can prove the existence of the M~ller wave oper- 
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ators 

W• = lim e~tHe -~tH~ 
t---~+oo 

as (partial) isometries and construct [1,37] the scattering operator S = W~W_. Using the 

integral transform 

(7r - ~ oo d~ ~ - ~ ; ' J ~  r r ~ L ~(R; C~D, 

one can prove that  (.TSSC-ir = S( t ) r  where S(A) is given by (3.11). In other 

words, S(A) coincides with the scattering matrix obtained from Nine-dependent scattering 

theory. 

4. FOURIER TRANSFORMS 

Let W q denote the Wiener algebra of all q x q matrix functions of the form 

/; z(x) : zoo + d~ z(~) e ~, (4.1) 
oo 

where z(o 0 is a q x q matrix function whose entries belong to LI(R) and Zoo -- Z(=koo). 

Then W q is a Banach algebra with a unit element and endowed with the norm 

/? llZllw~ = IlZooll + d~ 114~)ll, 
o o  

and its invertible elements are those Z(A) as in (4.1) for which Zoo and Z(A) are nonsingular 

matrices for all A E R (see e.g. [23]). We will use W~: to denote the subalgebra of those 

functions Z(A) for which z(c 0 has support in R i and )4) q %o to denote the subalgebra 

of those functions Z(A) for which Zoo : 0 and z(a) has support in R +. Then, }32q : 

w~ �9 wi,0 : W~,o �9 w i .  
In this section we prove that the matrix functions Mz(x, .), M,(x,  .), and S(.) belong 

to W 2n, and that m•162 belongs to W2, ~. 

Let us construct the LLmatr ix  functions b• .), Bz(x,-), and B,(x,  .) such that  

/7 re-(x, ),) = h,, + da b• a) e •  (4.2) 

/7 /7 Mt(~, x) = &~ + d~ B~(x, ~) e ~xJ~o~, M~(~, a) = hn  + d~ re(x ,  ~) e - ~ x J ~ .  

(4.3) 
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Indeed, partitioning the matrix functions St(x, a) and St(x,  a) in (4.3) into n x n blocks 
as  

S,(x, ~) = [ 
Bzl (~, O/) 

[_ St3 (x, a) 

so that 

b+(~,~) = [m~(~,~) 
[ B,a (x, 0,) 

J%4(x, a) J ' 
B~(x ,a )=  [B~l(x,a)  S<2(x,a)] 

kS~(x,  ~) s ~ ( ~ , ~ ) j  ' 

Sr4(X, 0, 
b _ r  : 

s ~ ( ~ ,  ~) B ~ r  ~) ] 
] (4.4) 

we apply (4.3) to (2.12) and (2.17), and derive the coupled integral equations for a > 0 

S l~ll (X, 0 0 = --i dy ]g(y) BI3(y, ct), (4 .5)  

. f~+~/2 s,~(x,  ~) = - k(x + 0,/2) - ~  ]x dy k(~) B,~(y, ~ + 2x - 2y), (4.6) 

f:~+~/2 
i k ~/2)t + i s~3(x,~) = ~ ( x +  ]~ a y k ( y ) t s ,  l ( > ~ + 2 o ~ - 2 y )  (4.7) 

/7 Bl4(X , 0 0 :- i dy [~(y)~[ Sl2(Y , 0,), (4 .8)  

s~l(~, ~ ) = i  dyk(y) S~3(y,~), (4.9) 
oo 

�9 f [  2 dyk(y) B ~ 4 ( y , a + 2 y - 2 x ) ,  (4.10) S ~ ( x ,  ~) = k ( ~ -  ~/2)  + i -~/~ 

�9 f [  S~3(x, a) = - 2 k ( x  - 0`/2) t - i dy k(y) t Sn  (y, a + 2y - 2x), (4.11) 

S~4(x, ~) = - i  dy ~(y), S~:(y, ~). (4.12) 
oo 

We first prove that, for each x C R, the four systems of integral equations (4.5) and (4.7), 

(4.6) and (4.8), (4.9) and (4.11), (4.10) and (4.12) have unique solutions with entries in 

LI(R+). Then for the matrix functions m-~(x, t), Ml(x, A), and M~(x, 1) defined in (4.2) 

and (4.3), we derive the integral relations (2.13)-(2.16) and (2.18)-(2.21). In this way we 

will have proved that Mr(x, .) and M~(x, .) belong to ]4; 2~ and m• .) belongs to YY~. 

Let us introduce the following mixed norm on the 2n x 2n matrix functions S(x,  a) 
depending on (x, a) C R x R+: 

IIS(.,-)11~,~ = sup IIBr (4.13) 
xER, 
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THEOREM 4.1. Assume that the entries of k(x) belong to LI(R).  Then, for each 

x �9 R,  the four pairs of integral equations (4.5) and (4.7), (4.6) and (4.8), (4.9) and 

(4.11), (4.10) and (4.12) have unique solutions with finite mixed norm as defined in (4.13). 

Consequently, .~+(x, .) belongs to ~ ,  .~_(x, .) belongs to W~_ ~, and Mz(x, .) and M~(x, .) 
belong to )IV 2~. 

PROOF. Consider (4.5) and (4.7). We can solve this system by iteration as follows. 

Define 

B~ ~ ~) = 0, 

/7 ~}~) (x, ~) = - i  dy k(y) s[g)(> ~), j > o, (4.14) 

�9 /x+c~12 s[~+')(.,~)=�89 ay k(y)* s}~)(y, ~ + 2 x -  2y), j > 0 .  (4.15) 
4 X  

Taking operator norms we obtain from (4.14) and (4.15) 

/7 IlB}J)(x,a)N < dyllk(y)] ] I]B}J)(y, a)H, 

B(J+I) ~ 2 fx+~/2 ,3 ~x,~)ll-< IIk(x+~/2)ll+]~ d~llk(y)llllB}~)(>~+2x-2y)ll. 

Then the norms of B}~)(x, .) and B}Ja ) (x, .) in LI (R +) satisfy 

/7 tlB}~)(x,.)HI < dy]]k(y)][ ]lB[~)(y,.)lll, (4.16) 

fzo fx+c~/2 

(4.17) 

= ~+(x)  + dy IIk(y)ll IIB}~)(> ')1f~, 

where a+(x) is the quantity defined in (2.11), the order of integration has been changed, 

and the change of variable 7 = c~ + 2x - 2y has been applied. From (4.16) and (4.17) we 

obtain by induction 

~+(x)2~ IIB~)(x,-)111 < IIB}~)(~,)II~ < (2~)! ' - ~ 7 7 ~  J -> 1. 
s=l s=l 

Consequently, 

o o  

IIB,,(~, ')ll~ + IIs,3(x, )11~ < Z ~+(*)* - ~-+(~) _ 1. 
- -  s [  



146 Aktosun, Klaus, van der Mee 

At the same time we have proved that, for each x E R, the system of equations (4.5) and 

(4.7) has a unique solution with entries belonging to L I(R+). 

The proofs for the three other systems of equations, namely (4.6) and (4.8), (4.9) and 

(4.11), (4.10) and (4.12) are analogous. We are led to the estimates 

IIB~j(x, ' ) h  ~< c ~'+(~) - 1, I l m j ( x ,  ')111 ~< e ~ ' - (~ )  - 1, (4.18) 

where j = 1, 2, 3, 4. I 

The integral equations (4.5)-(4.12) allow us to derive the following relations for the 

potential k(x)  : 

k(x)  = 2iBl2(x,O +) = - 2 i B , 2 ( x , O  +) = 2iBl3(x,O+) t = - 2 i B ~ s ( x , O + )  t. (4.19) 

To justify (4.19), let us fix a > 0 and integrate the norm of the left-hand side in (4.7) with 

respect to x C R. We obtain 

/? s liszt(., ~)111 -< ~ll~ + ds ax ll~(v)ll liB**(> ~ + 2 m -  2y)l I 
oo -a/2 

1 k t l l +  dzll~:(y)ll l lBn(y ,z ) l l  
2 

_< E Ilkll~ + dyllk(y)ll I I B I I ( y , . ) I I 1  _< ~ e IIklJ* - 1 , 
C O  

where we have used (4.18). Hence, for each a > 0, Bza(., a) is a matrix function with 

entries in L1 (R). We now easily derive the estimate 

BLs(', a ) 2  a /2) t  1 1 / _  -~ fo e - k ( . +  <_ -~ dylll~(y)ll  dzllml(y,~)l;  : o ( 1 ) ,  a - , 0  +, 
0<3 

which justifies the identity k(x)  = 2iBza(z,O+) t. In an analogous way one proves the 

similar result for Bt2 (-, a), B,2 (-, a), and B~s (., a). 

THEOREM 4.2. The reflection coefficients R(;~) and L(A) belong to W ~, and R ( •  = 

L( • = O. The transmission coefficients Tz (),) and 2", ( I ) belong to ]422, and they converge 

to I~ as k ---* oc in C +. 

PROOF. Using (2.3) and (2.6)-(2.8) we get 

a~(;,) : e - i ~ & x  & M ~ ( x ,  A)* & Mz(x, ~) ~{~'J~~ (4.20) 
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a~(A) = ~-{AJ~ J~n M~(x, A)* J~n M~(~, A) c~ '~ .  (4.21) 

From Theorem 4.1 we see tha t  Ml(x, A) and M.~(x, A) belong to ]W 2~. Using (4.20) and 

(4.21) at x = O, we can show tha t  at(A) and a~(A) are products  of elements of W 2~ and 

hence belong to ]422~. Using (3.5)-(3.7) and Proposi t ion 2.10, we complete the proof  of the 

theorem. | 

5. WIENER-HOPF FACTORIZATION 

Using (2.41), (2.42), and (3.20), we obtain the Riemann-Hilbert problem 

~_(x, A) = ~+(x,A) G(x, A), A ~ R, (5.1) 

where G(x, A) is the unitarily dilated scattering matrix given by 

G(~,A)=c~j2oxj2nS(A)j ' e_i~j2~x [ T~(A) -R(A)~ 2i~] (5.2) 
2~ = -L(A) e -2{~ T<(A) J " 

Equation (5.1) can in principle be used to compute the potential from a reflection 

matrix. To do so, we first construct the scattering matrix S(A) in terms of L(A) or/~(A) 

alone. Given R(A) for A 6 R, we can obtain Tz(A) by performing the factorization 

Tt(A) Tl(A) t : In - R(A) R(A)*, A 6 R,  (5.3) 

which follows from (3.12). Here Tl(A) is continuous in C +, is analytic in C +, and converges 

to In as A -~ oo in C+;  similarly, TI(A*) t is continuous for A E C - ,  is analytic for A C C - ,  

and converges to In as A -~ ce in C - .  In a similar way, T~(A) can be constructed by 

performing the factorization 

T<(A)t T~(A) = I~ - R(A) t R(A), A e R,  (5.4) 

which is found from (3.12). Wi th  the help of Proposi t ion 2.6 we then get 

L(A) : -T<(A) R(A) t [/](A)t] -1,  A �9 R.  (5.5) 

Note tha t  from Theorem 4.2, it follows tha t  the n x n matrices on the r ight-hand sides in 

(5.3) and (5.4) bo th  belong to the Wiener algebra ]W ~. Furthermore,  from Corollary 3.2 and 

Theorem 4.2, it follows tha t  Tz (A) and T< (A) belong to the subalgebra  ]/Y_~, and Tz (A*)t and 

T~(A*) t belong to W_ ~. Hence, (5.3) and (5.4) lead to a left and a right canonical Wiener- 

Hopf factorization in ]d; n, respectively. One now builds the matrix function G(x, A) as in 

(5.2). 
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We have the following result. 

THEOREM 5.1. Suppose that k E LI(R; C n) and that the reflection coefficient R(A) 

of (1.1) belongs to W ~ and satisfies supxcR [[R(A)[ I < 1. Then, for each x C R, the matrix 

function G(x, .) given by (5.2) has a unique left canonical Wiener-Hopf factorization 

G(x, ~) = .~+(~, ~)-1.~_(~, A), ~ ~ R, (5.6) 

whepe T~+(X, .) and ~.b(x, .)-1 belong to ]/~32n, ~_(X,  ") and TI~_(X, .)-1 bdong to ]/V 2n, 

m+(x,A)  and m+(x,A)  -1 tend to I2~ as A - ~  ~ in C +, and m_(x ,A )  and m_(x ,A )  -1 

tend to I2n as )~ --~ ~ in C - .  

PROOF. From (3.8), (3.9), and (5.2), we get 

[ T~ (0~) 0 ] I~ az2(~) e 2 ~  ] 
G(x, A) = Tr( l )  ar3(/~) e -2i~'x .in ' 

where the right factor is easily seen to have a positive selfadjoint real part when I E R. 

The left factor and its inverse belong to ]/Y~_~ and tend to I2~ as A --+ oo in C +. Thus the 

right factor has [19] a unique left canonical Wiener-Hopf factorization of the form 

In az2 (~) e 2i~ ] 
a~(~) e - ~  ~rn ] = w+(;~) w_(;~), ~ e R, 

where W• and W• -I are continuous in A E ~, are analytic in ,k E C • and tend 

to 12~ as A --+ oc in C +. Putting 

m + ( x , ) ~ ) = W + ( ) ~ ) - l [ T t ( ~  )-1 

completes the proof. | 

0] 
T~(A)-I ' 

~_(~, ~) = w_(~) ,  

The matrix V(x)  appearing in (1.1) can be recovered from the scattering matrix 

S(A) as follows. First, construct the matrix function G(x, A) as in (5.2) and compute the 

Wiener-gopf factors of G(x, A) as in (5.6). Then V(x) is given by 

v(x) = -iJ2n ~', (x, 0) ~• 0) -1. (5.7) 

Indeed, from (1.1) using (2.41) and (2.42) we easily derive 
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which implies (5.7). To make (5.7) a viable way of comput ing the potent ial  ]~(x) from 

the Wiener- 'Hopf factors of (5.2), one still needs to prove tha t  m+(x,  0) are absolutely 

continuous and tha t  the entries of the 2n • 2n mat r ix  on the r ight-hand side in (5.7) 

belong to L 1 (R).  

6. THE MARCHENKO METHOD 

In order to establish the connection between the Riemann-Hilbert problem (5.1) and 

the Marchenko integral equations we first express the scattering coefficients in terms of 

their Fourier transforms as 

F O o  

F Td,X) = & + d~ a (c~)e ~ ,  
O 0  

F L(A) = d a L ( a )  e - ' u~ ,  (6.1) 
O C  

F Tr(~) = & + d~ ~ ( ~ )  d ~''~. (6.2) 
OO 

Note tha t  by Theorem 4.3, ~l(a) and ~r(c~) vanish for c~ < 0 and their entries belong to 

L I ( R + ) ,  while the entries of R(.)  and ],(-) belong to L 1 (R).  Let us define 

g(x,~)  = o -_~(2x + ~) ] ,  ~ > o. (6.3) 
- Z ( - 2 x  + ~) 0 J 

THEOREM 6.1. 

satisfy the 2n x 2n systems of coupled Marchenko equations 

For each x e R the matrices b_(x, .) and b+(x, .) defined in (4.4) 

j~0 ~176 
b _ ( x , a )  = g ( x , a ) +  d /~b+(x ,~)g(x ,a+~) ,  c~ > 0, (6.4) 

// b+(x,o~) = g(x ,a)  t + dflb_(x, fl) g(x,c~ + /3)*, c~ > 0. (6.5) 

PROOF~ Using (4.2), (5.1), and the fact tha t  b+(x,a) = b _ ( x , a )  = 0 for a < 0, we 

get 

// .~+ (z, ~) [G(z, ~) - h~] = d~ [b_ (z, ~) - b+ (z, -~) ]  e - ~ ,  
OO 

Furthermore,  from (5.2) and Theorem 4.2 we conclude tha t  

/? G(x, A) - I2n = da H ( a )  e i ~ ,  a E R,  
O 0  

)~ C R .  (6.6) 

(6.7) 
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where 

Upon writing 

F /]l (Oz) 
H ( ~ )  : / 

- L ( - ~ x  - ~) L ~',(~) J 
c~ E R. (6.8) 

by using (6.6) on the left-hand side, (4.2), (6.1)-(6.3), (6.7), and (6.8) on the right-hand 

side, together with the convolution theorem, we obtain (6.4). Similarly, using 

we obtain (6.5). | 

Using (6.4) in (6.5) and vice versa, we can uncouple these 2n • 2n systems. Using 

the notations in (4.4), this leads to the uncoupled n x n Marchenko equations for a > 0 

given by 

/0~// sz2(x,~) = - ~ ( ~  + 2x) + a9 a~Bt2(x,~) ~(9 + ~ + 2 x / k ( ~  + 9 + 2~), (6.9) 

/o~/7 B~3(x,~) = - ~ ( ~ +  2x)* + d9 d~S~s(x,~) k(9 + ~  + 2x)k(a  + 9 + 2~)t, (6.10) 

/7/o ~ 
C / /  

C 
(6.13) 

C / 7  
C Bza(Z, a) = d~k(/~ + 2z)t ~(c~ + 9 + ~z) 

(6.~4) 

/o~/o ~ + d~ d . ~ 4 ~ , . ~ ) k ( ~ + . ~ + 2 x ) f k ( ~ + ~ + ~ x ) ,  

// 
(6.~) 

/ /C + ~ d~ .~ (x ,~ )  ; (9  + ~ - ~)~ L(~ + ; ; -  ~ ) ,  
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Z 
o o  

B~4(z,a) = d p L ( # - 2 z ) L ( a + # - 2 z ) *  

(6.16) 

/o'# + d#  do' t ( #  + o' - + # - 

THEOREM 6.2. The coupled system of Marchenko integral equations (6.4) and (6.5) is 

uniquely solvable in LI(R+;  C2~• The integral operator in each of the eight uncoupled 

Marchenko equations (6.9)-(6.16) is selfadjoint, and each of these eight equations is uniquely 
solvable in L I(R+; C'~• 

PROOF. The selfadjointness of the integral operators in (6.9)-(6.16) is clear. From 

(3.12), (3.13), and Corollary 3.2 it follows that 

sup IIL(A)]] < 1, sup ]]R(I)]] < 1. (6.17) 
AER 1619. 

Now observe that, for fixed x 6 R, the action of the integral operators with kernels 

~ ( a  + # + 2z), f~(cx + # + 2x) t, L (a  + # - 2x), and L(a  + # - 2z) t on L2(R+; C =) can 

be interpreted as follows: one imbeds L2(R+; C n) into L2(R; C '~) isometrically, applies 

the sign flip h(/3) ~ h(-/3), implements a convolution with an L/-matr ix  function, and 

then projects orthogonally onto LZ(R+; C~). Since the Fourier transforms of these matrix 

functions have norms strictly less than one, this is also the case for the norms of these 

integral operators. Hence, the system of equations (6.4) and (6.5) as well as each of the 

eight equations (6.9)-(6.16) are uniquely solvable on the direct sum of a suitable number 

of copies of L2(R+). Since, as a result of the integrability of/~(.) and /{(.), the integral 

operators are compact on both L 2 and L 1 (cf. Lemma XII 2.4 of [23], the proof for the 

LZ-case there can easily be adapted to cover the Ll-case; also p. 401 of [18]), the system 

of equations (6.4) and (6.5) as well as each of the eight equations (6.9)-(6.16) are uniquely 

solvable on the direct sum of a suitable number of copies of LI (R+) .  | 

From (4.19), we see that we can recover the potential k(x) by solving any one of the 

four Marchenko equations (6.9)-(6.12). 

The unique solvability of the Marchenko equations (6.9)-(6.16) has a number of other 

consequences. For example, if R(A) is analytic on C +, then/~(cJ  is supported on R -  and 

hence the right-hand sides in (6.9), (6.10), (6.13), and (6.14) vanish for x > 0. Since these 

equations are uniquely solvable, their solutions vanish as well and therefore k(x) = 0 for 

z > 0. On the other hand, if L(A) is analytic on C +, then L(c~) is supported on R - ,  and 

hence the right-hand sides in (6.11), (6.12), (6.15), and (6.16) vanish for x < 0. Since these 

equations are uniquely solvable, their solutions vanish as well, and therefore k(x) = 0 for 

x < 0. We have thus proved the converse of Proposition 3.3. 
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It remains to prove that the potential k(x) obtained by the Marchenko method has 

entries in L I (R). To do so, we modify the inversion procedure as follows. We solve one of 

the Marchenko equations (6.9) and (6.10) for x > 0 and then employ (4.19) to compute 

k(x) for x > 0. By the same token, we solve one of (6.11) and (6.12) for x < 0 and then 

use (4.19) to find k(x) for x < 0. In fact, this procedure will be implemented in the case 

of rational reflection coefficients in Section 8. 

We first derive the following partial characterization result. 

THEOREM 6.3. Let R(A) be a matrix function in W ~ such that 

sup l lR(~,) l l<Z, do< II_~(~)ll+o<l]S~(o<)ll 2 < §  (6.18) 

where ?Z(o<) is defned in (6.1). Then, for= > O, the unique solutions B~2(=, ~) and Bz3(=, o<) 
of (6.9) and (6.10), respectively, satisfy 

L ~d=llB~j(x,0+)l l  § j = 2 , 3 .  < 

In particular, the entries of k(x) = 2iBz2(x,O +) and k(x) -- 2iBt3(x, 0+) t belong to 

LI(R+) .  Similarly, let L(A) be a matrix function in W n such that 

[ (i, ) sup IIL(~,)II < 1, do< Z , (~ ) l l -  o~llZ(o<)ll 2 < § (6.19) 
AER oo 

where L(a) is defined in (6.1). Then for x < 0 the unique solutions B~2 (x, a) and B~3 (x, a) 

of (6.11) and (6.12), respectiveZy, satisfy 

f~ dxllB~j(=,O+)ll < +oo, j = 2 , 3 .  
O O  

sn pa~icular, the entries of k(~) = -2 i  B~(~,  0+) and ~(~) = - 2 i  B~(~,  O+ )t belong to 
L I ( R - ) .  

PROOF. We only prove the theorem for x > O, as the proof for x < 0 is similar. Put 

2, ,  (od = 

and consider the integral equation 

0 -2(o<) ]  

-2(o<)t  0 ' 

L 
O o  

s~(x, o<) - d/~ Zh(x,/~) 2A(2= + ~ + Z ) =  2A(2= + ~), o~ > o. (6.20) 
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This integral equation, which follows directly from (4.4) and (6.3)-(6.5), has a unique 

solution in L I(R+; C 2n• which coincides with the matrix function Bz(x, a) in (4.3). 

Moreover, the integral operator with kernel ]~zx(2x + a + fl) is selfadjoint and a strict 

contraction on L2(R+; C2~X2~). Iterating the equation obtained by taldng the adjoint of 

the matrices on either side of (6.20) we obtain 

Bz(x, c~) t = ~ B}J)(x, c~) T, 
j=0 

where B}~ a) =/~zx(2x + a) and 

/7 B}J~(x, ~ / =  e~_~(2x + ~ + ~) B}J-I/(~,~)*, j >_ 1. (6.21) 

Now let p E [0, 1) be the spectral radius of the integral operator appearing in (6.21). Then, 

by the selfadjointness of this operator on L2(R+; C 2~x2~) and the Schwarz inequality, we 

get 

[/j+ 
< / - 1  d~ II~zx(;~)ll 2, j > 1, 

95 

and therefore 

/j 1/? /j ] 
& IIB,(x,~)ll < U d~ 11~(9)ll + ~ dy d/3 I[Rzx(/3)l[ 2 

+a 

-<~1 an I[~(/~)ll + 1_--27 d/3 (/~- c~)II_~(~)]l 2 

which is finite. | 

We note that the finiteness of f o  da a [[/~(a)][ 2, which is implied by (6.18), is equiv- 

alent to /~(a  + fl)t being Hilbert-Schmidt on L2(R+; C~). In fact we have 

Ilkllhs. = da&3tr{f~(a +/3)* R(a +/3)}. 

Thus, because II;~ll 2 _< tr{/~* ~} _< ~ II~ll 2 and 

/7 /7 Z /7/7 d ~  tl_~(~)[I ~ = d~ & II.~(~)ll 2 = d~d~  II_~(~ + ~)ll ~, 
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the asserted equivalence follows. In a similar manner, from (6.19) it follows that Z , ( -a - /3 )  

is Hilbert-Schmidt on L2(R+; Cn). 

Note also that the assumptions of Theorem 6.3 are satisfied when /~(A) and L(A) 

are rational matrix functions without real poles that vanish at infinity. This follows easily 

from the partial fraction decompositions for R(A) and L(I) ,  respectively. 

The natural conditions under which one would expect to be able to reconstruct a 

potential with Ll-entries for x > 0 are R E W n and 

sup IIR(~)II < ~, i i ~  117e(~)ll = o. (6,22) 
A C R  A-~• 

However, evaluating the first iterate of (6.20) as a --+ 0 +, we get 

Z 
oo 

B}*)(., o +) = d#_~A(#) ~ = 
O2 

d# 7~(#) _~(#) t 0 
x 

oo  

o Z~ d# ~(#)* 2(#) 

which strongly suggests that condition (6.18) is probably indispensable if the integral 

f o  & lIB}l/( x, ~ is to be finite. 

Assuming only the finiteness of f o  do II/~(~)[I and using the method of the proof of 

Theorem 2 in [34], one easily obtains the estimate 

# '(# &lib 2Y)(z,0§ < ~ d# lrR(#  , 
:go x o  

j > 0 ,  

for each fixed x0 E R. Unfortunately, this estimate does not extend to the odd iterates of 

(6.20). However, since/~zx belongs to the class Ka introduced in [34], it follows from this 

theorem that the potential ]~(x) obtained has an 51-tail in the sense that 

3 x o > 0 :  (/7/7) + dx IIk(x)ll < +oo. 
o 

Moreover, for every A E R the Jost solution Fz(x, I) is differentiable with respect to z 

if x > x0 and F,(x, %) is differentiable with respect to x for x < -z0 .  In other words, 

neither in the work of Melik-Adamyan [34] for the half line nor in the present work for the 

full line, a complete characterization is given of the scattering data leading to a unique 

Li-potential. One does not obtain such a characterization either if one combines Melik- 

Adamyan's reduction of the inverse problem on the full line to that on the half line [32] 

with his solution of the inverse problem on the half line [34]. 
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7. CONSTRUCTION OF THE SCATTERING MATRIX 
Throughout this section we assume that R(A) is a rational matrix function satisfying 

(6.22). We recall that  then R E IW '~ by the comments following the proof of Theorem 6.3. 

From the theory of transfer functions [13], since R(A) -+ 0 as t --+ ~oo, it follows that 

R(A) can be represented in the form 

/~(,'~) ---- i C(,~ - i , A ) - I ~ ,  ,~ ff C ,  (7.1) 

where .4, B, and C are independent of I and belong to C pxp, C pxn, and C rzxp, respectively, 

for some positive integer p. Here it is assumed that the order p of A is minimal, i.e. the 

realization (7.1) is minimal and hence unique up to similarity (cf. Theorems 6.1.4 and 

6.1.5 in [31]). 

Our goal is to construct S(A) in terms of the matrices A, /3, and C given in (7.1). 

Since R(A) is continuous for A E R, from the minimality of the realization given in (7.1) 

it follows that  A does not have any eigenvalues on the imaginary axis (of. Theorem 6.2.2 

of [31]). Using (7.1) in (5.3) and (5.4), we obtain 

Tz(A)T~(A*)* In iEC 0](A ' _1 |0/F q 
- -  - - " q )  L J e t  ' 

(7.2) 

where 

(7.3) 

& = - A t  ' tc~ = . ( 7 . 4 )  gig -At 
Note that  the inverses of the right-hand sides in (7.2) and (7.3) can be written as 

[Tl(~*)*]-I Tl(~)-i :[n-Or-i[C 0](/~-iE)-I I 0 ] 
ct  ' 

(7.5) 

Tr(A)-I [Tr(A*)t]-l=In-iEO Bt](A-iE)-I [~], 
where E is the "state characteristic matrix" given by 

C= F A -B~t 1 
L CtC - A t  j ' 

(7.6) 

(7.7) 



156 Aktosun, Klaus, van der Mee 

which, apart  from some factors i : x/L~, has been used in [27]. We note tha t  ]Ct, ]Cr, 

and s do not have eigenvalues on the imaginary axis. This follows from the invertibility of 

I~ - R ( A )  R(),) t and Corollary 2.7 in [13]; for /Q and Er  this also follows immediately from 

the special form of the matrices ]Q and ]C~ in (7.4) and the fact tha t  A has no eigenvalues 

on the imaginary axis. Hence the matrices (~ - i]Cl) -1, (A - iK:~) -1, and (A - ig) -1 in 

(7.2), (7.3), (7.5), and (7.6) all exist for A e R. 

The contractivity of R(A) and R(ik) t for )~ C R given in (6.17) implies the following 

result (Theorems 3.2 and 3.4 of [27]): 

PROPOSITION 7.1. Let A, 13, and C be the matrices in the minimal realization given 

by (7.1) and consider the quadratic matrix equations 

A X  + X A  t = BB t + X C C X ,  

Aty + YA = c tc  + F/3BtY. 

(7.8) 

(7.9) 

Then all hermitian solutions X of (7.8) are nonsingular, and the number of positive (resp. 

negative) eigenvalues of X coincides with the number of poles of R( A ) in C + (resp. in C - ) .  

There is at least one such solution X. An analogous result holds for hermitian solutions of 

(7.9). 

The nonlinear equations (7.8) and (7.9) are called state characteristic equations in 

[27] and (continuous algebraic) Pdccati equations elsewhere in the l i terature (e.g. [31]). 

Since in the l i terature the term "hermitian" (instead of "selfadjoint ')  seems to have some 

tradit ion when referring to solutions of Riccati equations, we will use this terminology 

here. We also remark that  in counting the number of poles and eigenvalues, (algebraic) 

multiplicities have been taken into account. The following result is essential for obtaining 

explicit expressions for the factors Tt (A) and Tr(A) and their inverses. 

PROPOSITION 7.2. Let A, 13, and C be the matrices in the minimal realization given by 

(7.1). Then the spectrum of the matrix s given in (7.7) is symmetric about the imaginary 

axis. Moreover, the spectral subspace A4 of $ corresponding to its eigenvalues in the right 

half plane is of the form 

{['1 } A J =  u :  u C C  p , (7.10) 
i .  

where X is a hermitian solution of (7.8), and the spectral subspace ~ of $ corresponding to 

its eigenvalues in the left half plane is of the form 
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where y is a hermitian solution of (7.9). The hermitian matrices X and y are unique. 

PROOF. The symmetry of the spectrum of $ about the imaginary axis follows from the 

similarity J2pq2pEq2pJ2p = - E  t, where q2p is defined by (1.10). The remaining assertions 

follow from Theorem 7.6.1 in [31] applied to the matrix J2pgJ2p (to comply with the 

condition D > 0 there) and the E-neutrality, where E = iJ2pq2p, of the spectral subspaces 

f14 and s Note that  the spectral subspaces YPl and l: both have dimension p, which is the 

order of ~4, because E has no eigenvalues on the imaginary axis. | 

We remark that  the subspace A//can be written in the same form as ~ by setting 3 ) = 

X -1, since the hermitian solutions of (7.8) are related to those of (7.9) via the substitution 

3~ = X -1. The subspaces A/I and/2 are called graph subspaces in the terminology of [31]. 

The matrices 2( and 3) used in Proposition 7.2 allow us to block diagonalize the 

matrix g. Since the subspaces L; and JM have dimension p and /M C? L; = {0}, the matrix 

E defined by 

E = (7.12) 
g 

is nonsingular. Hence, both Ip - XN and Ip - 3~X are nonsingular, and 

~ - - 1  = [ ( I p  - -  X y )  - 1  - - (~p --  X y ) - - l X  " 
(rla) 

L - ( g  yx)-*y ( # -  yz )  -1 

THEOREM 7.3. Let .4, 13, and C be the matrices in the minimal realization given by 

(7.1) and let 2( and y be as in Proposition 7.2. Then 

where 

2-Is = _E} ' (7.t4) 

& = A - sStY, & = A - x c t c .  (7.15) 

Moreover, the matrices C~ and $l have all their eigenvalues in the left half complex plane 

and are related via the similarity transformation 

& = (zp - x y )  - l &  (Ip - z y ) .  (7.16) 

PROOF. The relations (7.14)-(7.16) follow by direct computation using (7.7)-(7.9), 

(7.12), and (7.13). The assertions about the spectra of E~ and & follow from (7.14) and 
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Proposition 7.2 which imply that g [ Z; is similar to g, and $ [ 34 is similar to - g [ .  Here 

the symbol t denotes the restriction of g to the subspace E (resp. 34). | 

In the following we also need representations of the form (7.10) and (7.11) for certain 

invariant subspaces of K;z and/G,. 

PROPOSITION 7.4. Let A, 13, andC be the matrices in the minimal realization given by 

(7.1). Then the spectrum of lGz (IGr) is symmetric about the imaginary axis and the invari- 

ant spectral subspaces corresponding to the left and right half planes both have dimension 

p. In the case of 1~, both invariant subspaces are of the form 

} ~: ~ E C  p 

where S is a solution of the Riceati equation 

A S  + S A t  = S c t c 2 .  

In the case of Kz both invariant subspaces are of the form 

~2 u: u E C  p , 

where ~ is a hermitian solution of the Riccati equation 

A t Y  + 2.4 = Y13BtY. 

(7.17) 

(7.18) 

(7.19) 

(7.20) 

PROOF. Apply Theorem 7.2.4 of [31] to J2pIGiJ2p and q2p~q2p. The symmetry of 

the spectrum about the imaginary axis follows as in the proof of Proposition 7.2 for $. | 

Let us mention that unlike in Proposition 7.1 the matrices S and ~ in (7.17) and 

(7.19), respectively, may be singular. 

Before we can apply the main factorization result from [13] to (7.2) and (7.3), we 

need the following proposition ([36], Theorem 6.5.3 of [31]). 

PROPOSITION 7.5. Let s (rasp. M )  be the invariant subspace of the matrix g 9ivan in 

(7.7) corresponding to the eigenvalues in the left (rasp. right) half plane, and let Af (rasp. 

F) be the invariant subspace of ]C, (rasp. ]G~) corresponding to its eigenvaIues in the ~ight 

(rasp. left) half plane. Then L @ Af = C 2p and 2t4 | )2 = C 2p. 

PROOF. First, it follows from Theorem 19.3.1 of [31] (together with the rotation 

A ~-~ i) 0 that the matrix functions on the right-hand sides of (7.2) and (7.3) admit canonical 
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factorizations with respect to the real line. Then Theorem 19.1.2 of [31] (or Theorem 6.1 

of [23]) implies that the pairs {s and {A4, ~} each form a direct decomposition of 

C 2;. | 

Now let II be the projection such that 

Im II = Z], Ker II  = AY, (7.21) 

and let Q be the  pro jec t ion  such tha t  

Im Q = 13, Ker Q = A4. (7.22) 

Apply ing  Theorem 1.5 of [13] we can express the  t ransmiss ion coefficients in terms of the  

matr ices  appear ing  in (7.1) and  the project ions  II  and Q as follows: 

- ~ )  Q (7.27) 
c t  ' 

a(; ;=~- i Ic  ~ ' [ ~ ]c, (72s) 

[~ 1 (7.291 [T,(A*)*] -1 = & + i [ C  0 ] (~ - ig ) -x ( •  e) C* ' 

~,(~)-' = io +~[~ o] e(~-~x)-' [~,~ ]. (7.30) 

"With the expressions (7.23)-(7.30) we have accomplished the desired canonical factoriza- 

tions of the matrix functions on the right-hand sides of (7.2), (7.3), (7.5), and (7.6). Our 



160 Aktosun, Klaus, van der Mee 

next goal is to find more explicit representations for the projections II and Q and for the 

invariant subspaces Af and l). 

PROPOSITION 7.6. Let X and ~ be as in Proposition 7.2 and let X = ~+ and ~ = ~)_ 

be as in Proposition 7.4, where the subscript + ( - )  indicates that the spectral subspaces given 

in (7.17) and (7.19) are those associated with the right (left) half plane. Then the invariant 

subspaces AY and 12 and the projections H and Q can be expressed as 

[ ( I p  - 2 + y ) - '  

n = L s ( •  - 2+y) -1 

[ (I~ - x ~ _ )  - ~  

Q = L:~-(Ip - xY_) -~ 

_(• _ 2 + y 1 - 1 2 §  ] 
-y (Zp  - 2 + y ) - 1 2 +  ' (7.32) 

-(• x~_)-lx ] 
- ~ _ ( I p  - X ~ _ ) - l X J  " (7.33) 

Furthermore, if A has all its eigenvalues in the left half plane, then X+ = 9 -  = 0 and 

Af = {0} �9 C p, ]7 = C p �9 {0), (7.34) 

I I =  ' Q =  0 " 

PROOF. First, (7.31) is an immediate  consequence of (7.17), (7.19), (7.21), and 

(7.22i~ Then (7.32) and (7.33) follow from (7.21), (7.22), and Proposi t ion 7.2. If A has 

all its eigenvalues in the right half plane, then 2~+ = ~_ = O, by the particular form of K]~ 

and/C~ in (7.4), and so (7.34) and (7.35) follow from (7.31)-(7.33). | 

In order to find more explicit expressions for H m~d Q when Jl has at least one 

eigenvalue in the right half plane, we employ suitable similarity t ransformat ions  which 

bring the images o f /Q  and/Cr in a form amenable to the same t rea tment  as if A had only 

eigenvalues in the left half plane. To set up these similarity t ransformat ions  it is convenient 

to choose a basis such tha t  A, B, and C are part i t ioned as 

A =  , / 3 =  , s 1 6 3  s  (7.36) 
0 A+ B+ 

Here ~4_ (J[+) has all its eigenvalues in the left (right) half plane and we denote its order 

by p_ (p+), so tha t  p_ + p +  = p. Moreover, B4- and C• are p• x n and n x p•  matrices, 
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respectively. Now put 

o o,i, 1 i,o o o o 
0 0 -P2 0 Ip+ 

0 ; =  [ 0 0 Ip_ ' ~ =  / 0 0 Ip_ 0 

ko -Ip+ 0 P1 J L o - ip+ o o 

(7.37) 

where PI and P2 are the unique solutions of the equations (cf. Theorem 14.1 of [23], 

Theorem VII 2.4 of [17]) 

A+pl + P~A*+ = ~+B*+, 

P2A+ + A*+ e2 = c*+c+. 

In fact, we have 

/o P1 = dte-tA+B+]3 e -t'a*+, 

(7.38) 

(7.39) 

f0 ~ 
P2 = dr, e-tA*+CTC+e -tA+ 

so that P1 and/>2 are positive selfadjoint. Then, we easily compute 

a~ = < 1 c , <  -~ = -a~* J '  a*~ao - a l  ' 

where 

(7.40) 

~ a =  _.at+ , ~ 4 =  d+c_ -At+ , ~ =  , f ~ o = [ c _  o]. 

Note that all the eigenvalues of ~I and ~2 lie in the open left half plane. Therefore, in 

analogy to (7.34), (7.35), and Proposition 7.2, the projection operators Q and II are such 

that 

Im Q = ~i -1 [C p | {0}], Ker Q = Im , (7.42) 

K e r I I = ~ - l [ { 0 } @ C V ] ,  I m I I = I m  I ~  1 . (7.43) 

Let us partition the inverses of qh and ~r defined in (7.37) into p x p blocks as 

~F~ L&3 &4J' ~-~  LAra At4 ' 
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Note that 

~[-i = q2p~2zq2p, ~-1 = q2p~q2; ,  (7.45) 

so that the entries of ~-1 and ~j1  are readily available from (7.37). 

PROPOSITION 7.7. Suppose a basis is chosen such that the matrices ~4, ~, and C in 

the realization (7.1) have the form indicated in (7.36). Then the matrices X+, y_,  II, and 

Q in Proposition 7.6 can be expressed as 

I: ~ ~_ = AIaA~ 1 = 
p - 1  ' 

1 

Azl - X&8) - i  

Q =  L&a(An X&a) - i  

I 
- A l l  (All  -- ~VAls)-I ,V 1 (7.47) 

-At3(Ati A 'Am)- lxJ  ' 

[ l I2p -- 1I ---- - A r 4 ( A r 4  YA~2)-iY Ar4(Ar4 YA~2) - i  " 

P a o o r .  It follows from (7.87), (7.42), (7.44), and (7.45) that 

l ; = I m Q =  [ A z a j u :  u E C  p . 

Now (7.81), (7.87), (7.44), and (7.45)imply (7.46) for 9 - .  Similarly, by (7.81), (7.87), and 

(7 .4a)- (7 .45) ,  we  have  

A / ' = K e r 1 1 =  [A~4 u :  u E C  p , 

and so, by comparison with (7.31), we obtain (7.46) for 2C+. Then (7.47) and (7.48) follow 

on using (7.46) in (7.82) and (7.88). In the derivation of (7.48) we have also used the 

identity (Ip - ~ + y ) - i  ~+ = A'+(Ip - YPC+) - i .  I 

Note that in (7.48) we have stated the result for I2p - FI rather than 1I because we 

will only need the former. By using (7.86) and (7.87) one easily verifies that 2C+ and y _  

given in (7.46) satisfy (7.18) and (7.20), respectively. 

In order to use the results of Proposition 7.7 in (7.28)-(7.80) we need some additional 

notation. We decompose the solution 32 of (7.8) as 

Xi 2(2 ] 
& & 
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so that  2gl and ~g4 are selfadjoint and have orders p_ and p+, respectively, and k2 t = 2(3. 

We denote by P3 the unique solution of the equation 

f'/4 ]~ q- P3 C: = -At4/3  ~], (7.49) 

which is given by 

j~0 ~176 
Pa = dt eta4A~4/3Bte tg~, (7.50) 

and we define P4 to be the unique (and generally nonsquare matrix) solution of the equation 

f~4 J94 + P4 A t _ = At4/3/3t_, 

given by 

/7 P4 = - d~ e t a 4 A ~ 4 / 3 / 3 ~  e t'4L . (7.5i)  

Note that in contrast to the solutions P1 and P~ of (7.38) and (7.39), respectively, the 

matrices P3 and P4 are in general not selfadjoint. Furthermore, we let 

Y~ = ( & l  - & a Z ) - l a n ,  J~  = Y (A~4 - A ~ y ) - I ,  (7.52) 

and introduce the matrices 
N N 

l, (7.53) 

where 

0 -At- ' [Ar4BBt+ ~4 ' 

~+ : , ~ -  : - (7.55) 
p a ~  gt 

& =  [ B * ( g + j ~ P 3 )  B t j ~ P 4 - s * _ ] ,  6 _ :  [-/3*+ - / 3 * j ~ ] .  (7.56) 

We mention that .A, B, and C are 3p • 3p, 3p • n, and n • 3p matrices, respectively. 

Moreover, ~4~:, B~=, and Ci are (P=F § • (P=F +P), (P=F +P) • n, and n • (P=F +P) matrices, 
respectively. 

Next we present the main result of this section, expressing the scattering matrix in 

terms of the quantities defined above in connection with the similarity transformations 

induced by @z and ~r. 
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THEOREM 7.8. 

the remainin 9 entries of the scatterin 9 matrix (3.11) are given by 

TI()O : In § iCAII(A - i~3)- : (A/ :  - ,~'A/s)-:AfC f, 

T=(A) = In + i Btff,(A - i ~ ' ~ 4 ) - 1 A r 4  Z~, 

L(A) = i ~ (~  - i ~ ) - * @ .  

Let R(A) be a rational reflection eoefficien~ satisfying (6.22). Then 

(7.57) 

(7 .58)  

(7 .59)  

In the special case when A has all its eigenvaIues in the left half plane, these expressions 

simplify to 

Tt(A) = f~ + iC(A - i A ) - ' 2 ( C i ,  (7.60) 

T , (A )  = I,, + i B t y ( A  - i .A)-zB, (7.61) 

L(A) = i B t y ( l  - i A ) - I X C  t + i f~f(Ip - y W ) ( l  + i s  t. (7.62) 

PROOF. Using (7.27), (7.37), (7.41), (7.44), (7.45), (7.47), and the equality 

�9 =[;I 
we obtain (7.57). From (7.23), (7.37), (7.41), (7.44), (7.45), (7.48), as well as the identity 

[:1 [~ <I)r ( h p  - I I )  ---- -- (At4  - YA , , 2 ) - :YZ3 ,  
Zp 

it follows that  

Tr(A*) ) --- In - i BfAr4(A + i~ : )  -1 (At4 - YA.2)-:Y]2. 

Now (7.58) follows by taking the adjoint and using (7.52). Note that  A,2, A.4, and 32 are 

hermitian. 

With  the help of (7.14), (7.26), (7.47), and (7.52), we derive 

[ T t ( A . ) f  ] -1  : _/_ + iCX()~ + is  C f. (7.63) 

From (7.1), (7.63), and using 

Ip - Jt = -Az3(At: - XAza) -1X, 

i c t cx  = (~, + / . a t )  - (~, + iE~), 
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we get 

- - R ( ; * ) t  [T/(/~*)t] -1  = --i]3t (/~ q- i,,4t)-lAza (Aa - XAza)-lXC * -+- iBt(A + ig/)-lZT) C ?. 

(7.~4) 

Using (5.5), (7.57), (7.64), and some standard results on realizations (Chapter 1 of [13]), 

we obtain 

L(A) = i as(;~ - i a r ) < a g ,  (7.65) 

where 
f~! -Ar4]3~t Ar4B]~ t [  

-A* 0 , 

0 -g~ 

a8 = u* [Jr -• zv], I ~ 1 f~9 = Aza(Aa -- ,-1:'A/a)-1,-]: ' C t. 

In order to bring L(),) into the form (7.59) we use a similarity transformation. Let 

l I 9 =  ~v- 0 , ~ - 1 =  Iv_ 0 

0 Ip+ 0 Iv+ ' 

- I p  P4 0 Pa L I  v 0 0 

where P3 and P4 have been defined in (7.50) and (7.51). Then it is straightforward to 
verify that 

= ~ a T ~  -~, c =  as~  -1, u = ~ 9 ,  (7.G6) 

where A,/3, and flare the matrices defined in (7.53). Using (7,66) in (7.65), together with 
the fact that for one of the blocks of f~9 we can write 

0 --,3~'2 - i  

i 0 0 l 
(P1 - & ) - l &  (P1 - & ) < &  

we obtain (7.59) with the matrices (7.54)-(7.56). The expressions (7.60)-(7.62) can be 

obtained from (5.5) and (7.23)-(7.3O) by using the special forms (7.35) for II and Q, or by 
obvious reductions from (7.57)-(7.59). The details are omitted, l 
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8. INVERSE PROBLEM WITH RATIONAL SCATTERING MATRICES 

Let R(;~) have the form (7.1) for certain matrices A,/3, and d, where A has minimal 

order and hence does not have zero or purely imaginary eigenvaiues. Then 

/ :  R(1) -~ iC(A - iAA)-IB = - d t e - i X t d E ( t ; - A ) B ,  (8.1) 

where 
e_tAp(+) 1 : 27ri ~ d z e - ~ Z ( z - A )  -1, f.>O, 

d F  + 

E(t; - A )  (S.2) 
-~-~Pl-) =-~/~2~ _dz~-~z(z-A)-I ~ < o, 

is the bisemJgroup generated by A (cf. [14,15]). Here F+ and F_ are the positively oriented 

simple Jordan contours in the right and left half planes enclosing all of the eigenvaiues 

of A in the open right and left half planes, respectively, and P I  +) and P(-) are the 

spectral projections of A corresponding to its eigenvalues in the right and left half planes, 

respectively. 

Our strategy for reconstructing h(97) from R(A) is as follows. When x > 0 we will 

solve the Marchenko equation (6.10) by using R(A) as the input, and when z < 0 we wiI] 

solve the Marchenko equation (6.1I) by using L(A) as given in (7.59). Then we use (4.19) 

to determine/~(97). First consider (6.10) with 

!~(~) : -C E ( t ; - A )  B, /{(t) t = - B  t E(t; - A  t) C ~, 

which are obtained from (6.1) and (8.1). Introducing the positive selfadjoint p x p matrices 

/o /o 1)~ = dt E(t; - A )  13 BtE(t; -A t ) ,  2)2 : dt E(t; - A  t) C t C E(t; - A ) ,  

and assuming ~: > 0, we obtain for the hermitian integral kernel in (6.10) 

+ 2x) + + E(7 E(a  

The unique solution of the separable integral equation (6.10) is then given by 

S~a (~, ~) = Bt [• _ Z(2x; - A  t) 7:)2 E(2~; - ,4) Z~] -~ Z(~ + 297; - A b  C t, (8.3) 

where the inverse exists because of the unique solvability of (6.10). For later use we note 

that, by (7.36) and (7.40), we have 

[: 01 [: 01 = , D ~  = . ( 8 . 4 )  

Z)I P1 P~ 
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When z < 0 we s tar t  from L(A) as given in (7.59), so tha t  

f-~(t) : - 6 E ( t ;  -~4) B, L(t) t  : _/~t E(t; _~t) ~t. 

Proceeding as in the derivation of (8.3), we obtain 

Sr2(X,O~) = ~ t [ Z 3 p -  S ( - 2 x ; - A t ) ~ [ ~ 4 E ( - 2 x ; - A ) ~ 3 ] - 1 E ( c ~ -  2 2 g ; - ~ t ) C  t, (8.5) 

where the inverse exists because of the unique solvability of (6.11). Here 773 and 7)4 are 

the positive selfadjoint matrices given by 

/o /o Da = dt E(t; - ~ )  %ffi E(t; - j r ) ,  7)4 = dt E(t; -~*)  6 t 6E(t;  -,A), 

which, by means of (7.53)-(7.56), can be wri t ten as  !0000 
~Da 0 0 ' 0 0 

0 0 0 0 

where 

P5 = Z ~ dte tE~ ~ c t c j l t  e tg, , P~ = dte~'(z,  + P ~ J J ) ~ t ( z ,  + J~p~)S, , (8.6) 

and P7, Ps, and P9 are irrelevant because they will not contr ibute to k(x), as we will see. 

Now we are ready to prove the main result of this section. Again we first s ta te  the 

general result and then specialize it to the part icular  case when ~4 has all its eigenvalues 

in the left half plane or, equivalently, when R(A) is analytic in C +. 

THEOREM 8.1. Suppose that R(A) satisfies (6.22) and is given by the minimal rep- 

resentation (7.1) in a basis where (7.36) holds. Then the matrix potential k(x) in (1.2) is 
given by 

2iC.1- e -2az'4+ [fp+ -- P1 e-2z'At+ /)2 e-2a:"4+]-1]~_]_, X > 0, 

k ( x )  = r 1 -1  ( s .7 )  
= < o .  

/ fR(A)  is analytic in C +, then 

0, z > 0, 
~(~)  = ' ( 8 . 8 )  

12 i  C [Ip -- e -2zg` X e -2zg~ y] -le_2azg l (Ip - X y )  ]3, z < O, 
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where 2( and y are the unique solutions o]'(7.8) and (7.9), respectively. Moreover, if R(A) 

is analytic in C +, then the jump in the potential at x = 0 is given by 

k(o +)  - k ( o - )  = - k ( o - )  = 2 i c  ~. (8.9) 

PROOF. The  representation (8.7) for k(x) is a direct consequence of (4.19) and (8.3)- 

(8.6). Thus we need only establish the simplifications tha t  occur when R(A) is analytic 

in C +. In this case A has ali its eigenvalues in the left half plane so tha t  from (8.2) we 

get E ( t ; - A )  = 0 for t > 0. Thus k(x) = 0 for x > 0. For x < 0, s tar t ing with (7.36), we 

can simplify the expression in (8.7) by deleting the blocks associated with the spect rum 

of .A in the right half plane. This reduction is implemented by the following substitutions: 

Aa  ~ IF, At3 ~ 0, and hence 

,Jl + ~-> Ip, (8.10) 

by (7.52). Similarly, A~2 ~-~ 0, A~4 ~-~ IF, and hence J ~  H y .  Since ~4 H A, the solution 

to (7.49) becomes Pa = - X  and thus 

Ip + PatY t ~-~ Ip - Xy.  (8.11) 

Furthermore we can compute  P5 and P6 in (8.6). We observe tha t  Ps and P6 are solutions 

to the following Riccati equations: 

First note the identity 

PoEt + St~ P5 = -CtC, 

P6E~ + rzP6 = - ( z p  - x y ) s B t ( •  - y z ) .  

(8.12) 

(8.13) 

e2y  + yE~ = ctcUp - z y ) ,  (8.14) 

which follows from (7.9) and (7.15). On multiplying (8.14) from the right by (Ip - X y )  -1, 

using (7.16), and comparing the result with (8.12), we find tha t  

ps = - y ( i p  - x y )  -1 = -(_rp - y x ) - l y .  (8.15) 

Similarly, on multiplying the identity 

E~X + XC~ = z~Bt(Ip - NZ) ,  

which follows from (7.8) and (7.15), from the left by Ip - , g y ,  using (7.16), and comparing 

the result with (8.13), we obtain 

P6 = - Z ( I ~  - y Z ) .  (8.16) 
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Since, by (7.t6) and its adjoint, 

(Ip - y x ) e - 2 ~ E /  = e-SXE~ (Ip - y x ) ,  

the result (8.8) for z < 0 follows from inserting (8.10), (8.11), (8.15), (8.16) in (8.7). 

Finally, letting z -~ 0 from below gives k(0-) = - 2 i  C/3, and hence (8.9) follows. | 

REFERENCES 

[1] Adamyan, V. M. and Arov, D. Z.: On scattering operators and contraction semi- 
groups in Hilbert space. Soviet Math. Dokl. 6, 1377-1380 (1965); also: DokI. Akad. 
Nauk SSSR 165, 9-12 (1965) [Russian]. 

[2] Ablowitz, M. J. and Clarkson, P. A.: Solitons, nonlinear evolution equations and 
inverse scattering. London Math. Soc. Lecture Note Series 149, Cambridge Univ. 
Press, Cambridge, 1991. 

[3] AIpay, D. and Gohberg, I.: Inverse spectral problems for differential operators with 
rational scattering matrix functions. Y. Differential Equations 118, 1-19 (1995). 

[4] AIpay, D. and Gohberg, I.: Inverse scattering problem for differential operators with 
rational scattering matrix functions. In: Bbttcher, A. and Gohberg, I. (Eds.): Singu- 
lar integral operators and 7"elated topics (Tel Aviv, 1995), 1-18. Birkh~user OT 90, 
Basel, 1996. 

[5] Alpay, D. and Gohberg, I.: Potential associated with rational weights. In: Gohberg, 
I. and Lyubich, Yu. (Eds.): New results in operator theory and its applications, 23-40. 
Birkh~user OT 98, Basel, 1997. 

[6] Alpay, D. and Gohberg, I.: State space method for inverse spectral problems. Progr. 
Systems Control Theory 22, 1-16 (1997). 

[7] Alpay, D., Gohberg, I., and Sakhnovich, L.: Inverse scattering problem for continu- 
ous transmission lines with rational reflection coefficient function. In: Gohberg, I., 
Lancaster, P., and Shivakumar, P. N. (Eds.): Recent developments in operator theory 
and its applications (Winnipeg, MB, 199~), 1-16. Birkh~user OT 87, Basel, 1996. 

[8 t Arov, D. Z.: Darlington realization of matrix-valued functions. Math. USSR Izv. 7, 
1295-1326 (1973); also: Izv. Akad. Nauk SSSR Ser. Mat. 37, 1299-1331 (1973) 
[Russian]. 

[9] Barn, G. P., Ghione, G., and Maio, I.: Fast exact inversion of the generalized 
Zakharov-Shabat problem for rational scattering data: Application to the synthe- 
sis of optical couplers. SIAM J. Appl. Math. 48, 689-702 (1988). 

[10] Beals, R. and Coifman, R. R.: Scattering and inverse scattering for first order systems. 
Comm. Pure Appl. Math. 37, 39-90 (1984). 

[11] Beals, R. and Coifman, R. R.: Scattering and inverse scattering for first-order sys- 
terns: II. Inverse Problems 3, 577-593 (1987). 

[12] Beals, R., Deift, P., and Tomei, C.: Direct and inverse scattering on the line. Math. 
Surveys and Monographs, 28, Amer. Math. Soc., Providence, 1988. 

[13 t Bart, H., Gohberg, I., and Kaashoek, M. A.: Minimal factorization of matriz and 
operator functions. Birkhguser OT 1, Basel, 1979. 

[14] Bart, H., Gohberg, I., and Kaashoek, M. A.: &xponentialIy dichotomous operators 
and inverse Fourier transforms. Report 8511/M, Econometric Institute, Erasmus 
University of Rotterdam, The Netherlands, 1985. 



170 Aktosun, Klaus, van der Mee 

[15] Bart, H., Gohberg, I., and Kaashoek, M. A.: Wiener-Hopf factorization, inverse Fou- 
rier transforms and exponentially dichotomous operators. J. Funct. Anal. 68, 1-42 
(1986). 

[16] Beals, R., Delft, P., and Zhou, X.: The inverse scattering transform on the line. In: 
Fokas, A. S. and Zakharov, V. E. (Eds.): Important developments in soIiton theory, 
7-32. Springer, Berlin, 1993. 

[17] Bhatia, R.: Matrix analysis. Graduate Texts in Mathematics 169, Springer, New 
York, 1997. 

[18] BSttcher, A. and Silbermann, B.: Analysis of Toeplitz operators. Springer, New York, 
1990. 

[19] Clancey, K. and Gohberg, I.: Factorization of matrix functions and singular integral 
operators. Birkhguser OT 3, Basel, 1981. 

[20] Deift, P. and Trubowitz, E.: Inverse scattering on the line. Comm. Pure Appl. Math. 
32, 121-251 (1979). 

[21] Faddeev, L. D.: Properties of the S-matrix of the one-dimensional SchrSdinger equa- 
tion. Amer. Math. Soc. Transl. (Ser. 2), 65, 139-166 (1967); also: Trudy Mat. Znst. 
Steklova 73, 314-336 (1964) [Russian]. 

[22] Gasymov, M. G.: The inverse scattering problem for a system of Dirac equations of 
order 2n. Trans. Moscow Math. Soc. 19, 41-119 (1968); also: Trudy Moscov. Mat. 
Obg& 19, 41-112 (1968) [Russian]. 

[23] Gohberg, I., Goldberg, S., and Kaashoek, M. A.: Classes of linear operators. Vol. I. 
Birkhguser OT 49, Basel, 1990. 

[24] Gohberg, I., Kaashoek, M. A., and Sakhnovich, A. L.: Canonical systems with ratio- 
nal spectral densities: Explicit formulas and applications. Math. Nachr. 149, 93-125 
(1998). 

[25] Gohberg, I., Kaashoek, M. A., and Sakhnovieh, A. L.: Pseudo-canonical systems with 
rational Weyl functions: Explicit formulas and applications. J. Differential Equations 
146, 375-398 (1998). 

[26] Gohberg, I., Kaashoek, M. A., and Sakhnovich, A. L.: Canonical systems on the line 
with rational spectral densities: Explicit formulas. To appear in: Proceedings of the 
Mark Krein International Conference on Operator Theory and Applications, Odessa, 
August 18-22, Birkhguser OT series. 

[27] Gohberg, I. and Rubinstein, S.: Proper contractions and their unitary minimal com- 
pletions. In: Gohberg, I. (Ed.): Topics in interpolation theory of rational matrix- 
valued functions, 223-247. Birkh~Luser OT 33, Basel, 1988. 

[28] Gr6bert, B.: Inverse scattering for the Dirac operator on the real line, Inverse Prob- 
lems 8, 787-807 (1992). 

[29] Hinton, D. B., Jordan, A. K., Klaus, M., and Shaw, J. K.: Inverse scattering on the 
line for a Dirac system, d. Math. Phys. 32, 3015-3030 (1991). 

[30] Hinton, D. B. and Shaw, J. K.: Hamiltonian systems of limit point or limit circle 
type with both endpoints singular. J. Differential Equations 50, 444-464 (1983). 

[31] Lancaster, P. and Rodman, L.: Algebraic Riccati equations. Oxford University Press, 
New York, 1995. 

[32] Melik-Adamyan, F. 1~.: On the properties of the S-matrix of canonical differential 
equations on the whole axis. Akad. Nauk Armjan. SSR Dokl. 58, 199-205 (1974) 
[Russian]. 

[33] Melik-Adamyan, F. 1~.: Canonical differential operators in a Hilbert space. Izv. Akad. 
Nauk Armjan. SSR Set. Mat. 12, 10-31, 85 (1977) [Russian]. 



Aktosun, Klaus, van der Mee 171 

[34] Melik-Adamyan, F. E.: On a class of canonicaldifferential operators. Soviet Y. 
Contemporary Math. Anal. 24, 48-69 (1989); also: Izv. Akad. Nauk Armyan. SSR 
Ser. Mat. 24, 570-592, 620 (1989) [Russian]. 

[35] Petrovski, I. G.: Ordinary differential equations. Prentice-Hall, Englewood Cliffs, 
1966. 

[36] Ran, A. C. M.: Minimal factorization of selfadjoint rational matrix functions. Integral 
Equations Operator Theory 5, 850-869 (1982). 

[37] Reed, M. and Simon, B.: Methods of modern mathematical physics. HL Seatterin9 
theory. Academic Press, New York, 1979. 

[38] Sakhnovich, A. L.: Nonlinear SchrSdinger equation on a semi-axis and an inverse 
problem associated with it. Ukr. Math. J. 42, 316-323 (1990); also: Ukrain. Mat. 
Zh. 42, 356-363 (1990) [Russian]. 

[39] Sakhnovich, L. A.: Factorization problems and operator identities. Russ. Math. 
Surv. 41, 1-64 (1986); also: Usp. Mat. Nauk 41, 4-55, 240 (1986) [Russian]. 

[40] Sakhnovich, L. A.: The method of operator identities and problems in analysis. St. 
Petersbur9 Math. J. 5, 1-69 (1994); also: Algebra i AnaIiz 5, 3-80 (1993) [Russian]. 

[41] Sakhnovich, L. A.: Spectral problems for canonical systems of equations on the axis. 
Russian J. Math. Phys. 2, 517-526 (1995). 

[42] Shabat, A. B.: An inverse scattering problem. Differential Equations 15, 1299-1307 
(1980); also: Differ. Urav. 15, 1824-1834, 1918 (1979) [Russian]. 

ACKNOWLEDGMENTS. This material is based on work supported by the National Sci- 
ence Foundation under grants DMS-9501053 and DMS-9803219, and by C.N.R., MURST, 
and a University of Cagliari Coordinated Research Project. The authors are greatly in- 
debted to And% Ran for the similarity transformations r and r  in Section 7 allowing 
them to deal with rational reflection coefficients R(~) having poles in C +. One of us (M.K.) 
is indebted to Joe Ball for a stimulating discussion. 

Tuncay Aktosun Martin Klaus 
Dept. of Mathematics Dept. of Mathematics 
North Dakota State Univ. Virginia Tech 
Fargo, ND 58105 Blacksburg, VA 24061 
aktosun@plains.nodak.edu klausQmath.vt.edu 

Cornelis van der Mee 
Dipartimento di Matematica 
Universit~ di Cagliari 
Via Ospedale 72 
09124 Cagliari, Italy 
cornelisQkrein.unica.it 

MSC Primary 34A55, 81U40, Secondary 73D50 

Submitted: December 12, 1998 
Revised: February 8, 2000 


