SOLUTION METHODS FOR SEMI-INFINITE LINEAR SYSTEMS OF BLOCK
TOEPLITZ TYPE AND THEIR PERTURBATIONS

CORNELIS V.M. VAN DER MEETE, SEBASTIANO SEATZUS, AND GIUSEFPPE RODRIGUEZ:E

Abstract. We discuss two methods to obtain the speciral factorizations of the inverse of a bi-infinite real block
Toeplitz matrix, one for arbitrary banded and one for positive definite and possibly nonbanded block Toeplitz matrices.
The results are then applied to salve semi-infinite linear systems of hlock Toeplitz type. Furthermore we propose a
new method for solving semi-infinite linear systems whose matrices are “perturbations” of block Toeplitz matrices.

Some applications are also considered.

1. Introduction. Let Z be the set of all integers and Z.. the set of non-negative-integers. By
2 seri-infinite (resp., bi-infinite) matrix of order % we mean a matrix 4 = (A4;;), indexed by Zy
(resp., by Z), whose elements are real k x k matrices, where k — 1,2,... does not depend on (z,7).
It is a block Toeplitz matrix with blocks of order k if its diagonals are constant, ie.,

Aij - Ai—j:

where 4,7 € Zy (resp., 1,7 € Z). Farther, let 4 = {4;)jez be a bi-infinite sequence of either reai
k x k matrices or real column vectors of length k, where k € N does not depend on j. In either
case we call it a bi-infinite sequence of order k. Teking a bi-infinite sequence of positive mumbers
B = (B)jez satisfying Bir; < BifS;forall i,7 ¢ Z, by fiﬁ (Z) we mean the space of all bi-infinite
sequences 4 of order k for which

I4lle = > Bil 4l < oo, (11)

JEE '

where the fixed k x ¥ matrix norm |1l is arbitrary. The most commeon choices of Bare 8; = (1+]5])”

forp > 0and B; = 2% for g > 1, which correspond to algebraic and exponential weights, respectively.

We write £5(Z)if B;=1for alli € Z. Analogous defnitions hold for semi-infinite sequences.
Given a weight sequence 3, we study semi-infinite block Toeplitz linear systems

Z T;j_j$j = bz’; ie Z+, (12)
JEEL . ’

with H{Th)rez Ml1,8 < co and || (budrez. 1,5 < 00. We provide two Wiener-Hopf factorization meth-
ods, one based on the theory of matrix polynomials [4, 5, 6, 13] and one based on band completion
2], for their solution with the help of Krein’s method {10]. Furthermore, we study sen-infinite

linear systems of the type

Z Aijmj =, i€ Z+, _ - (13)
Je€,

-that are perturbations of the aforementioned block Toeplitz systems in the sense that | Ay — Ty <
eAi*7 i § € 7, for certain ¢ > 0 and A € {0,1), ie., the semi-infinite matrices 4 — {4;;) and
T = (T;-;) are equivalent in thé sense of {7, 12]. For systems of the form (1.3) we provide a
mumerical method for their solution. o

The paper is organized as follows. In §2 we review some results pertaining to the spectral
factorization of bi-infinite block Toeplitz matrices, which is the focal point in the solution of Toeplitz
systems. In §3, after recalling Krein’s method for solving syster (1.2), we prove some new results
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on the behaviour of its solution. In §4 we discuss two methods to obtain the spectral factorization of
the inverse of a block Toeplitz matrix. The first method, based on the theory of matrix polynomials,
applies to banded block Toeplitz matrices, while the second, based on the extension of banded block
Toeplitz matrices, applies to positive definite block Toeplitz matrices. In §5 we propose a new
method for solving semi-infinite linear systems that are perturbations of block Toeplitz systems.
Finally, in order to assess the effectiveness of the proposed methods, we consider some numerical
applications in §6. _ '

2. Spectral factorization: theoretical results. By a spectral faclorization of T' (with re-
spect to the weight sequence 5} we mean a representation of T' in any of the two forms

T=LDMT and T=UDVT, . : (2.1)

where the superscript T denotes matrix transposition and L, M, D, I/ and V are bi-infinite Toeplitz
matrices of order k having the following properties:

1. Ly =My = Uy = Vo = I (the k x k identity matrix);

2. D,=0fors#0and Ly=M;=0for s<0and U; =V, =0for s> 0;

3. the inverses L™, M~, Ut and V™1 of L, M, U and V are bi-infinite Toeplitz matrices
of order k satisfying [L Y, = [M™Ys =0for s <O0and U, ={V" ), =01fr s> 0

4. the matrix sequences with entries L,, M, US, Vi, L7, [M7Ys, [U7Y]s and [V~3s belong
to £ 2(Z). :

If such & factorization e:usts, it is unique.

If T is positive definite, setting £, = L DS/ *or U; = USDI/ 2, we obtain the block Cholesky
factorization T = LLT or the block Wiener-Hopf factorization T = UUT, where L = (Li—j}ijez
and U = (Ui—;)ijez are invertible on £ 5(Z) with inverses L1 and U™, the sequences {Ls)sez,
(I£7Y.)sez: Us)ecz and (4 ~]s)sez belong to £ 4(Z), and Lo and Ly are positive definite hermitian.
. Several results on block Cholesky factorization of real bi-infinite and semi-infinite Toeplitz ma-

trices were obtained in [11], where a method for its computation in the bi-infinite block tridiagonal
case was established. For banded Toeplitz matrices of order & this method has been applied in [12]
For k = 1, &n analysis of existing factorization algorithms has been given in [8].’
Tt is known [2 i2] that the class of matrix functions

T(z) = Z 2Ty
' JEE
on the unit circle 7, where the coefficients T satisfy (1.1),is a Banach algebra with respect to the’

norm .
ﬂTfll g = ”(Th)hEZIu B

denoted as Wk We write W¥* if 8; = 1 for all i ¢ Z. As usual we call f{z) the symbol of the block

Toeplitz ma,trlx T={(Ti i) e
Passing to the symbols L(z), D{z) = Dg and M(z) of L, D and M, [resp., U(z) D(z ) Dg

and V{z) of U, D and V], we have
T(z) = T(z)Do M ()T, [T(z) = f}(z)poi}(z)ﬂ‘] 2l =1, (2.2)

where T(z) and M (z) [I7(z) and V{2)] extend to matrix functions that are continuous on the closed

unit disk {z € € : |z| £ 1} and analytic on the open unit disk. Further, L(z) and M M(z) [resp., U (z)

and V{z)] are nonsingular matrices for |2 < 1 and L(0) = (0) I [resp., ) =V(0) = I
Defining . = ; iuinm ,6;7/ I3l ([2], Ch. ¥XX), we can prove the factorization problems (2.1) and

{(2.2), for Toeplitz matrices T with symbols in Wg, to be equivalent. In fact, when T{z) is invertible
for all z with (1/8.) < |2| < By and the factorization (2.2) exists in W*, the factors L(z) and M(z)
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end their inverses L(z)~! and M {z)* belong to VV"c In particular, if 8; = gl for some g > 1, we
have g = g and hence the condition for equlvalence is that T{z) is invertible for {1/g) < |2| < g.
Positive definite k % k matrix functions in W* and k x k matrix functions T(z) in W¥ such that
I — T(2)[| < 1 for all 2 € T (the norm representing the largest singular value of I — T T(z)) have
factorizations of the type (2.2). When the Toeplitz matrix T of order & Is banded {(ie,, f T3 ;=0
whenever [i — 7| > m for some integer m), necessary and sufiicient corditions for the existence of
the spectral factorization (2.2} as well as a numerical procedure for its calculation have been given

{cf. [12]}, based on matrix polynomial theory (e.g., [13]).
3. Semi-infinite block Toeplitz systems. Let us now recall Krein’s method 110] for solving
system (1.2). Deroting by T(z) the symbol associated to the Toeplitz matrix T, the system (1.2)
_ has a unique solution in f’f’ﬁ(Z) if and only if T{z} # 0 for all =z with {1/8.) < |z| < F; and By as

~ above. Under such a hypothesis f(z)“l has the factorization
T =T al-(2) | JtaY

in WE , where

Ti{z)= Z zjf§1), F_(z)= Z z_jfgz); . {3.2)

JEZy . JEL

with [[T()1 5 < co and [T®]]1,5 < 00. One then has the resolvent formuta

ze= Y Tpabs, €L, (3.3)
SEL.,.
where
min(#,s)
3 .
ST, (3.4)
h=0

The factorization (3.1), which is equivalent to the spectral factorization LDMY of T, is generally
quite hard to obtain. However, if T" is banded, the factors in (2.1) can be computed using a method
based on matrix polynomial theory [13], whereas & band extension method [2] can be used if T is
_positive definife.

_ THEOREM 3.1. Consider the semi—_inﬁnite Toeplitz system (1.2} of order k, where, for some
fized weight sequence B, ||(Th)nez, ll1p < o0 and ”(bi)ié@rnl,a < co. Suppose T(z) is invertible
for every = with (1/8-) < la| £ By. Then each solution (x;)icz, of (1.2) with “(%‘)iem “ < 00
satisfies ”(L";)zgzmill PR

Proof. Under the above assumptions on the mvert1b1]1t3 of the symbol, the linear operator
representing the lefi-hand side of (1.2) is Fredholm on both £%(Z) and £% 1 a(Z) (see 110, 2]). Since

"the latter space is contimously and densely imbedded in the former, its kernel, null index and defect
index are the same on either space, which implies the theorem. O

Let us now examine the behaviour of the coefficient sequence {L'ss} with respect to T. Todo s0,
we recall a definition, already introduced in {12] and previously, in an essentially equivalent form,
in [9]. Let A be a semi-infinite matrix of order k Tt'is called exponentrally decaylng if there exist

c>0eand A€ (0,1) such that
gl < ¥, 4,5 €2y

THEOREM 3.2. Let A be a semi-infinite nonsingular Toeplilz matriz of order k which decays

-ezponentially. Then A1 also decoys exponentially.
Proof Let us first assume that 4 is positive definite. Since there exist constants ¢ > 0 and

AE (G 1) with || 4;] < AV, the symbol A(2) associated to A belongs to the Banach algebra W}
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with @; = gi U for every g € (1,1/A) and is posmve for z € 7. Following the reasoning of the final
paragraph of §2, the Wiener-Hopf factors of A(z) and their inverses exist and belong to Wﬁ with
By = Rl for some h € (1,g]. Thus, the Cholesky factors of A and A~! are exponentially decaying
and hence s0 is A~1. Now suppose A is not positive definite. As the product of two exponentially
" decaying block matrices also decays ponentlally [12], recalling that 4~* = AT(AAT)~?, we have

that A~! decays exponentially. 18]
We note that, as a result of the proof of Theorem 3.2, the semi-infinite lower triangular matrices

7Y and T@ of order k in (3.2) decay exponentially if the semi-infinite matrix 7" in (3.1} decays
exponentially. In that case, the semi-infinite matrix I’ defined in (3.4) also decays exponentially,
which implies that the partial sums of the series (3.3) converge exponentially to the solution of
system {1.2). More specifically, this result holds for any banded system.

4. Spectral factorization: numerical methods. In this section we present two methods to
compute the Wiener-Hopf factors of a given bi-infinite matrix of order k and their inverses. The
first method applies only to banded bi-infinite matrices and relies on matrix polynomial theory. The
second method apphes only to positive definite bi-infinite matrices, but these need not be banded.

4.1. A method based on matrix polynomial theory. Let 4 = (4; ;)i ez be a bi- infinite
banded block Toeplitz matrix, where the square matrices A_m; A—ms1, .. -, An bave order k and
A, =0 for s < —m and 5 > n. ‘We shall assume that 4, is nonsingular. Simila.r' results hold if
one assumes the invertibility of A-.,. Apart from the expressions for the inverses of the factors, the

analogous results for LZDU factorization were given in [12].
We are interested in obtaining a U DL factonzation of A, that i is a factorization of the form

A=I"DR, | (4.1)

where L = (Li—j)ijez, B = (Ri—j)ijez and D = (D;. )i jez are banded block Toeplitz matrices
with Lg = By = I (the k x k identity matrix), L = ~L; (s = 1,...,m} and Bs = R, (s =
1,2,...,n), Do =D, D, =0for s £0, Ly =0 for s #0,1,... ,m, and By = 0 for s#0,1,...,n
Tn other words, I and R are lower block triangular matrices and D is a block diagonal matrix.
Now let the matrix function : '
. 7
3z = Z 214,

j=—m

be the symbol associated to the matrix A. Then P(z) = 2™ A, 15(z) is a monic matrix polynomial
of degree m + n, that is & matrix polynomial whose leading coefficient is the identity matrix I.
Let us consider a simple closed positively oriented rectifiable Jordan curve I, with 0 ¢ T', dividing
the complex plane into an interior bounded domain 24 with 0 € Q4 and an exterior domain £2_,
and assume that det(z™¥({z)) does not vanish for z € I'. Then [13] the matrix factorization (4.1) is

equivalent to the factorization

m T I o
(z) = (Ik - Eﬁ'zi) D{L-> #R;|, zel, (4.2)
i=1 F=1 o ’
of the symbol of A. The nonsingularity of A, implies that both R, and D are nonsingular.
We recall some basic properties of matrix polynomials [4, 6, 13]. Consider the monic matrix
polynomial '

P2) = 2L + 25 Y Ap s+ -+ 2A1 + Ao,

of degree £ and order k, meening that its coeflicients are & < k matrices.

We call z; € C an eigenvalue of P if det P(z;) = 0. The corresponding eigenvector xj1 is a
non-null vector in CF satisfying P(z;)x;1 = 0. It is immediate to observe that P has a specirum of
exactly kf eigenvalues, taking into account their muliiplicities as zeros of det P(z), which we consider
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ordered by decreasing modulus. The complex vectors {X;3,%;2,... ,X;r } constitute a Jordan chain
at z; of length r, if x;; # 0 and the lower triangular linear system of equations

U (u—v)(., . .
Z?—@xjuzﬂ, u=12 ...,
= (u-o)!

+ is valid. The lengths of the Jordan chains at the eigenvalue z; in a system of maxdmal Jordan chaing
are called partial multiplicities of P at z;. The sum of the partial mltiplicities at z; coincides with
the order of 2; as a zero of det P(z), that is to its algebraic multiplicity; the dimension of the kernel
of P(z;) is called its geometric multiplicity, and is equal to the number of linearly independent
maximal Jordan chains at z;.

A pair of matrices (X,T), where X is of size & x k€ and T is of size k€ x kf, is called & right
spectral pair for the polynomial P(z) if the matrix :

X
. 1 XT-
ol XTI)S23 =
| e
1s invertible and the following equality holds
' -1
XT3 A4 XTI = 0.
F=0

By a left spectral pair for the polynomial P(z) we mean a right spectral pair for P(z)7. The right
canonical form for P(z) is given by

Plz) = 2L, - XTHV; + 2V + SRR e )

where 11, .. |V, are the kf x k matrices defined by -
I v V)= (eollxmh) T R
A similar definition holds for the loft canonical form. .
Denoting by 2y, .. ., 2, the distinct eigenvalues of P(z), each of algebraic multiplicity m;, it can
be shown {13} that a right spectral pair (X, T) for P(z} is given by :
X=[X1 X2 - X,], T=TioTha e, S ey

where the matrices X j» of size & x m;, and T}, of size my Xty , are given by

e A A R RO N |

177' = 'jfjl (z) e Jrsa (z}8--o J’"a’qj (25).
Here xg), xg) U, ng%g 78 =1,... 4y, are the maximal Jordan chains for P(z) corresponding to zi,
Jr,(27) is the 7, x r, upper triangular Jordan block with eigenvalue z;, and rj: +rja - 41y, =my.

To obtain the factorization the following theorem is crucial. :

THEOREM 4.1. Let z1,..., 2, be the distinct zeros of det(2™3(z)) in Q- and let zo41, ...,
Ze+y be ils distinct zeros in Q.. Moreover, let (X, T) be a right spectral pair of the monic mairi
polynomial P(zy = 2™ AZ5Hz). Then there exists o Jactorization of T{z) of the iype (4.2) where
det(lx — }:?—}:1 z7L) #0 for 2 € Q.. and det(T — E;;l 2IR;) # 0 for z € Q, if and only if

My e =k, M gy — Mk,

and the restriction of col[X Tj}?;é to the linear span of the eigenvectors and generalized eigenvectors

- of T in Q4. is invertible. This factorization is unique and is called the spectral factorization of A.
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The proof of this result can be easily adapted from Theorem 2.1 of [12], where a result essentially

equivalent to Theorem 4.1 was proved. -
Following the proof of Theorem 2.1 of [12} we can give the explicit construction of the factor-
ization (4.2). We frst rewrite (4.2) as the factorization of a monic matrix polynomial

CP(z) = 2mATIE(2) = L{z)T D R{z),
where
Liz) = (z’“Ik - izm‘iﬁi) (AT)?
=1

and
R(Z) =1 — szRj.
=1

Then, as specified in (4.4), we construct the right spectral pair (Xgz, Tr) of P(z} by using its Jordan
chains, which coincide with the Jordan chains of :™X(z), and its left spectral pair (X7, 7L) in a
similar fashion. Partitioning the & x (m+n)k matrices X, and Xg info a k x nk block and a k x mk
block, we have

Xp=({7? V], XR;[W 7],

T, =Tg = EB;:: (jrjl{zj) @D Jr-qu' (Zj)) !

 where the matrices at the question marks are irrelevant and rjy +- -+ 1, =m; (f=1,...,5+%).
We now set .
54
A= P (T e e, ),
F=s+1
Ar =P (I z) @ @ Ty, (2)
S
and construct the mk x k matrices Wy, ..., W,, and the nk x k matrices 4,..., 1, by putting
) . . _1 .0
(W Wy o Wa ] = {collvAng)
) -1
(i Vi - V= (eol{WAfQ]?;g)

Using the spectral pairs of P(z) it is possible to comiaute directly the inverses of its spectral
factors, obtaining a DDLU factorization of A~! without actually computing the factors themselves.
Indeed, for a right spectral pair (X, T) there holds the inversion formula

Plz)"t = X(zhe — TV,

where V; is given by (4.3) [5].
This formula allows one to state the following equalities for the inverses of the spectral factors
of P(z) = M A E(z):

f==1

™ -1
AT (szk -3 z’"*"zg—) (AD)™ = V{2 — AL) Wiy,
' -1

=Y 2Ry | Ru=W(e—Ag) " Va
i=1 )
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Now suppose U= {2 € C: |z]=p}, Q, = {z € C: 2] < p} and 2_ = {z€C:|z| > p}. Then
%(z) has the factorization {4.2) for z € T, and the inverses of its factors are given by

" -1 . .
(Ik - Z z*iﬁi) = 2™MAD W el = ALY W, AT

=1 - (4.5)
=L+ Y AL TVAETY W, AT
p=1
for z€ 2 and
-1
? .
L =Y &Ry | = Wl — zA5Y) T AZ VLR
= . - (4.6)
=T+ > AWARFTIVLWARY, |
=1

for z € Q. To obtain (4.5) we make use of the biorthogonality conditions {5]

VAR, = {0, g=01. . m-2,
Ly, p=m-1
We note that the series expansion in (4.6) impiies that
| R = WALV,
while (4.2) implies that '
D- —An'_fzgi._ '

Hence, the inverse of the diagonal factor D can be effectively computed as follows
Dl = WAV, 470
For its intrinsic }_nterest we remark that the coefficients £;, 72; and D of the spectral factors of
P(z) are given by - :

Ei = (AE:)_J VA?Wm_i+1 Az, 1= 1, N 11

Rj = —WA;ZJ'V,—,, WAEI’Z’.{{, _'f = 1, L, — 1,
R =WAZ'V,,
and .
= - CT -t —n — _ 7. 71 / T -1 —m
D (Cm) A An (VAL W) AT A . (4

= — ARy = A, WAL VL.

This corresponds to taking right spectral pau-s {V, AL) and (W, Ag) for the matrix polynomials
L(z)(AT)™! and R(z), respectively, and recovering the spectral factors from their canonical forms

In writing these formulae we make use of the identity
= (WARW) ™' = WAL V..
Finally, formula (4.7) implies that
u . e
D= AL A (VATW)T AT,
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for the inverse of the block diagonal spectral factor. _

view, it is useful to remark that, once the spectral pairs are
and efficiently computed as z~tAp and zAEl are block
dly when the eigenvalues of P(z) are well separated from

which gives an alternative expression

From the computational point of
obtained, (4.5) and (4.6) can be readily
diagonal matrices whose powers decay rapi

When T(z) is the symbol corresponding to a real matrix A which is symmetric (rm =n, A—; =
A'f), positive definite, block Toeplitz and banded, we can assume the curve I" to be the unit circle,
so that Theorem 4.1 assures that there exists only one factorization of A of the form

A=UU7,
iener-Iopf factorization of A. In this case the

where I7 = LTD/2. This is often referred to as the Wi
4.1) is real positive definite, as well as Ag and . Moreover, £; =Ry and the symbol

m

U(z) = Zz‘ﬁuj

. =0
of the matrix U has coefficients defined by

Uy =DV2, |
’ (4.8
Uy = _R;*Dllz = _5?91/2’ G=1,.. <y TR )

ntially depends on the evaluation of the eigenvalues of

We note that the precision of the results esse
fuenced both by the dimension of the blocks and by -

P(z). The accuracy of this computation is in
the bandwidth of A.

4.2. A method based on band extension. The
the disadvantage that it can onty be used for banded

factorization method discussed above has
block Toeplitz matrices, where either the
ly small. We now present a method based

“on band extension (cf. Section XXXV.3 of [2]) which applies to positive definite bi-infinite block

Toeplitz mafrices, not necessarily banded. .
. Let A= (Ai—;)ijez be a bi-infinite block Toeplitz matrix of order k. Fixing a positive integer

p, which we call the extension parameter, we associate fo the matrix 4 the bi-infinite banded matrix
T = (‘I’i—j)i,jez defined by

Ay lilse |
W=7 = (4.9
! {0= lil > ». )

Given the real k x k matrices A p, A-pr1,--- , Ap, and fixing a sequence of positive numbers

B, i€, with £:58; < Bitj. 2 Carathéodory-Toeplitz extension of ¥ is a bhi-infinite block Toeplitz

matrix © = (®;_j)s,jez Which is positive definite, satisfies ®; = A; for 7] < p, and has the so-called

_ Wiener property ez B;l1@4]| < 4oc. In other words, we seek, in f’f,ﬁ{Z), a positive definite band
extension ® of the banded bi-infinite block Toeplitz matrix . _

The following theorem indicates when such a Carathéodory-T veplitz extension exists [2}. Fur-

thermore, it gives an algorithm for constricting one particular such extension as well as all such

~ extensions. .
THEOREM 4.2.  Given the real k x k matrices Ap,

dory-Toeplitz extension € of the banded bi-infinite block Toepl
k(p+1) x k(p+1) matriz

A_prty s Aps there ezists @ Carathéo-
itz mairiz U (4.9) if and only i the

Ao A o A
— ’ Al AU e Aﬁlp{—l . ) .
0 _ _ (4.10)
A, Ay - Ao
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18 positive definite. In that case there e;czsts a unigue solution Oy with the addztzonal property that
its inverse is banded. Deﬁmng the k(p + 1) x k matrices

Xo LY (Y] o

X]_ _ -,A.,_l G E _ =4 :- .
E E : Y—l .' 0

Xp 0 Yo LAk

mzd using XJ =0forj<0andj>pand¥;=0forj < —pandj>0, the bz—mﬁmte block Toephtz
matrices .

L= (Xii Xy Phigeays U= (Yig¥s gz,
satﬁsfy the follow%ng Jactorization relations
o o, = —LIT = puT. (4.11)
Moreover, each real salution ® of the Caratheodory—’foephtz extension probiem has the fom
| ol = UG+ L) - GT)"HGTUT + 1),

where G = (G, ﬂ,)g jeEy 8 - bi-infinite reel block Toeplitz matriz satisfying G; = 0 for § < p which
is a strict contraction on f2{Z.). This formula yields a 1,1- correspondence between real solutions
& and such matrices G. . :

The sbove theorem leads to the following factorization of a posﬂ:lve definite bi-infinite block
Toeplitz matrix A. For p € Z; large enough, the bi-infinite block Toeplitz matrix with symbol (4.9)
has a positive definite banded extension @ such that the bi-infinite inverse 1 is banded. The
factors of the inverse ®, as given by (4.11), are approximations of the factors of the inverse of the
original positive definite block Toeplitz matrix. This follows from well-known convergence results.

- on the bilateral projection method (cf. [1], Theorern 3.4; [3], Theorems 2.1 and 3.1).

5. Perturbed semi-infinite block Toeplitz systems. As in [7] and [12];, we say that two
semi-infinite block matrices 4 = (Aij)ijez, and B = (Byj)ijez, of order k are called equwalent
(A~ B) if there exist ¢ > 0 and A € (0, 1) such that

l4s; — Byl < eX¥, i,j ez,

THEOREM 5.1. Let A and B be nonsingular semi-infinite matrices of order k that decay ex-
ponentmliy, with A ~ B and A of Toeplitz type. ‘I?zen A7 and B also deéa'y exponentially and
Al BT

Proof. Let us first assume that A and B ‘are positive definite. Further let I and M be the
Cholesky factors of A and B, respectively. As A is of Toeplitz type, as explained in the proof of
Theorem 3.2, L and L~ decay exponentially. Furthermore M and M ™! also decay exponentially
and M ~ L and M~ ~ L! ({12], Theorem 3.10). Therefore, as the product of two exponentially
decaying matrices also decays exponentially ({12], Lemma 3.3) and A;B; ~ 4282 if A3 ~ 45 and
By ~ By ([12], Lemma 3.5), A™! and B! decay exponentially and 4= ~ B!, Hence, in view of
Theorem 3.2, this result holds true even if A and B are not pos1t1ve definite. ]

Let us now consider a semi-infinite linear system

Ax =D,

 where A is nonsingular and bounded on £5(Z.) W1th be Ek(Z+) Further, let 4 ~ T, where Tisa
nonsingular semi-infinite Toeplitz matrix of order %.
- The method we propose cqnsmts of two steps. First, choose N & N and let

| TRy = (T Ny and (AR = (A7) e 61
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fori=N-=1,N+2,... and j € Z,. Then take
% =Ty'b

as an approxi.‘[na,nﬁ of xi¥ = A} b, We call ¥ the projection parameter. Note-that T_lb can be
obtained by omitting the frst N + 1 components from the sotution of systern T % = b, whlch could

be solved as explained in §3. ) _
Next, take the subsystem Alx = b{v consisting of the first N + 1 equations of the system

Ax = b and partition it as follows

[ ax Af;]{ ;,]=bf,

X2
where (An)” = Ayj for 3 =0,1,...,N and (A});; = A for i =0, 1,. Nand j= N-{—i N+
2, .... Then, assuming AN to be nonsmgular, the second step c0n51sts of appro:umat:mg J-c1 by
R = (a2 (of — 4351).

As regards the error estimate, we have the following resuit.
THuzoREM 5.2. Let A and T be semi-infinite matrices of order k that decay exponenticlly, with

A ~T. Then for any € >0 and for large enough N we have

max {8 — R, g~ %7 s} <«

Proof. By Theorem 5.1 we can say that A~1 ~ T—1 so that there exist constants ¢ > 0 and
A€ (0,1) such that '

(A7 = T3y < ¥, iGey.
As a consequence | ) 7 o
(s = T798) e < AT DA, £ €
N _ o

where [[bll1a < ]]b.lll, since A; = M for j € Z; and A € (0,1). Therefore, letting oxl == — %]
(AF' = Tx')b, we have '

M

ll6x7 iy < ellbflaa(t =2)7IAN,

which can be made arbltrarzl} small bv adequately increasing N.
Given x% and X xz , the vectors x and X %V are the respective solutions of -

Allxl —b1 —Auxz

NoN _ NoN
AfET = - AjpXy

both being systems of order NV - 1. Setting x7' = x{v — X} and noting that

”(A §x3 i < eV ioxy ”1)\, i=0,1,... N,
where ||6x8 i[l » < [16x3']1, it is immediate to derive the result from the estimate

)\N

Hexdl < CAT“;— i) ol

which completes the proof. G
6. Applications.
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6.1, Semi-infinite block Toeplitz systems. As an spplication of the previous method, let
us consider the numerical solution of the Poisson equation on a semi-infinite strip. More precisely,
sefting Q = {(z,y) : 0 < z < 00, 0 <y < 1} and denoting by 8Q the boundary of (), we consider
the numerical solution, by a finite differences method, of the differential boundary value problem

u(z,y) =0, (z,v) €09, '
where A is the Laplace operator.
To be specific, take
flz) = [271' cosmz + (207 — 1) sinmz] ™" siny,
so that the exact solution of (6.1) is
u(z,y) = e “sinmw sinwy. . - {8.2)

~Discretizing the differential prablem (6.1) by a 5-points scheme on the mesh points
(mﬂyj)z(zh)jh)) j=0,1,...,n+1, i:011)"'

with the stepsize h = ;—1 by choosing the usual order for the unknowns u;; we obtain  semi-infinite
linear systera of block Toeplitz type, whose matrix is of the form

T 1

I TQ .
T = R (6.3)

- where I is the identity matrix of order n and T is the n x n tridiagonal .Toeplitz mabrix
-1 4
-1
-1 4
The symbol associated to the matrix T is the Laurent matrix polynomial

Tz) = -z~ + Ty - 21.

In this case the eigenvalues {};} of the corresponding monic matrix polynomial P{z) = —27(z) can
" be obtained analytically. Indeed, it is straightforward to prove that

1 - ) .
-2-(1"’,7-*_ ,U.?—ét y J=1...,n
A 1

B — '=n+1,'....,2n
A271.—_;1'-1‘-1 J

where

Jr .
=442 =1,...
JLLJ + COSn+1, 3 1.1 y 7T

The first n eigenvalues lie outside the unit circle and the last n inside, as shown in Figure 1 for
1 = 20. As a consequence, a very accurate spectral factonzatlon of P(z)~* can be obtained usmcr
the ﬁrst method, even for moderately high nalues of n. :
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Denoting by u;;, fori =0,1,... and 5 =0,1,... ,n+ 1, the solution of the discretized problem,
we assess the accuracy of the results, with respect to n, by the two following error estimates:

| (s, 5) — ul ' |
BE) = max{ —Z—— i € Tign, § € Tn, sy}l > 1077 o
1S |u{zi, u5)] 10. ’  peles) | | 7

where Z, = {1,...,n} ané k = 1,2 specifies if the spectral factorization has been carried out by
the Frst or the second method, respectively. Figure 2 shows E,(zl), EP,Z and 1/n% in the range
5 < n < 40. Note that; as we expect solving the Poisson equation by the 5-points discretization

“method [14], ESY = O(n~2).

~1

107 ; . . - :
0~
16
10-4 1 : 3 ' 1 f
5 10 15 20 25 30 a5 40
Fig. 2

The high level of accuracy of the results essentislly depends on the exact knowledge of the eigen-
values of the matrix polynomial P(z) = —zT(z). Indeed, our experience suggests that the precision
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attainable by the first method primarily depends on the accurate evaluation of the eigenvalues, on
their separation and on their distance from the mentioned curve I

-1

t0F
107 ‘ , : . " .
5 10 15 20 25 a0 35 40
Fig. 3
Figure 3 reports the error E,(Lk}, k = 1,2, for several values of n and for two values of the

extension parameter p. It shows, in partlcular that for small values of n both methods are equally
effective. Furthermore, it hlghlzﬂhts that the extension parameter depends on the size of the blocks
n. In fact, as n gets larger it is necessary to increase the value of p to obtain, by the band extension
method, the same accuracy as in the first factorization method. For example, when n = 25 and
p = 60 we need to solve a block Toeplitz linear system of dimension n{p+1) = 1525. This fact poses
- no particular problem from the point of view of computatlonai complexity, the matrix being banded,

 but implies a larger propagation of roundoff efrors, with respect to the first method. However, as
we will see in the next example, the first algorithm is not always more accurate than the second one.

Now, consider the foﬂowmg two B-splines, already introduced in [12]:

Bl(m) ;; (o) -3 (-m)i + 5 (1-a)°

| i (2—'m)i+f§(3—m)i,
Ba(z} =31§ B-2) -2(2- z)% + g (2-2)%
La-mt-2a-a)- L

Moreover, assummg Bpi{z) == Bplz - z) k = 1,2, let T be the bi-infinite block Toephtz matrix
defined by

(Blz Blg} (Bl': BQ )J .. ’ )
Ty = |5 0% Z 6.
[(BZM Bl;)) (BZz;B.‘ZJJ hIE ( 6)

where the symbol (-, -) denotes the usual inner product in L3(R).

The matrix T'is a 5-diagonal block Toeeplitz matrix of order 2, whose nonzero blocks (1) = T;
|2~ 3] <2, are : :

o l[ 18176 10179} 174634 6573 oo 1[12¢ 111
0= 10179 11304 T o] 1275 1688 o] 6 4

—j’

with & = 362880, 7.3 = 7§ and T; = T7.
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~ Now consider the semi-infinite matrix T given'.by (Ty)ij = Tiy, 1.5 € Zy, et b =T4x, with
zn = (§)", n € Z4, and solve the semi-infinite block Toeplitz linear system

T+X=b

by the two spectral factorization methods illustrated above. .
Denoting by z(*) and @ the solution vectors obtained by using the two spectral factorization

methods, let

: (k)
) o T 67
= (6.7)

with & = 1,2 and n € Z, be the corresponding componentwise relative error. Figure 4 gives the

~11

10 . ; . . ; . ;

1 0_15 - L . 1 b ] 1, 1 1 L : 1. 1 . J
0 00 200 300 400 506G 600 70C  BOO 800 1000
Fig. 4

- values of eSf“) in the range 0 < n < 1000. Note that the thick black ljne.representing e,{zl} isducto a

small oscillation hetween even and odd components of the error. _
Figure 4 clearly shows that in both cases the results are very accurate ‘and that the second
method gives better results than the first one for all values of n. We note that in this example the
application of the band extension method is computationally less expensive than in the previous
one. Indeed, for p = 60, whichis a good extension parameter value, we have to solve a linear system
of dimension 240. On the contrary, using the first method we must estimate the 8 eigenvalues of
the matrix polynomial 22T(z), a task which requires a greater computational effort and does not
guarantee the same precision of the results. : ' :
6.2. Perturbed semi-infinite block Toeplitz systems. As an application of the method
proposed in §5 for the solution of perturbed block Toeplitz linear systems, let us consider the
nurmmerical solution of the following partial differential equation :

Aufe,) 110 xop(a) wlz 1) = —F@y), @y 8)
u(z,y) =0, (z,y) € 65, ’

where 2 and 89 are defined as in (6.1) and xpo2){z) is the characteristic function of the interval
10,2]. Equation (6.8) can then be considered as a perturbation of (6.1). As dn example we take

fay) = —Ddau(z,y) — 10xp ) (w)ulz y),

where u(z,y) is defined in (6.2).
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~* Discretizing equation (6.8} as in §6.1, we obtain a semi-infinite linear system whose matrix 4 is

a perturbation of the block Toeplitz matrix T given by (6.3}. More precisely, A agrees with T off
its first n(/N + 1) rows, where n is the dimension of each block. _

As to be expected, the results are effectively influenced by the parameter n, which characterizes

the discretization stepsize, and by the projection parameter N. To highlight their relevance for the

accuracy of the results, the absolute and relative errors, already defined in (6.4) and in (6.5), are

now denoted by Ef(tk;)\; and EEE,N '

g
1.3l
10—3‘ n =, —, i
1/n?
10-4 . X . . N : 10-4‘ N . N s N
5 10 15 20 25 30 35 4c 5 10 15 20 25 30 35 40
Fig. 5 Fig. 6

In Figure 5 the values of ES}V and Eflqz w are depicted for n = 5,10,...,40 and N = 5n. This
graph shows that the method of §5 is very effective if the spectral factorization of the associated
- block Toeplitz matrix is accurate, and if the value of the projection parameter N is large enough.

The effect -of an insufficient value of N is illustrated in Figure 6; where the errors are plotted
with the same range of variation of n, but with N = 3n. This loss of accuracy for moderately large
values of n depends on the fact that in this case the matrices Ty and Ax defined in {5.1) are not
cluse enough to guarantee the approximation result stated in Theorem 5.2. ' .

T T AT otk s Senerarssas s WONHEMUNIG
S R g e L ¢ L2 LFEL 5.0
2 P R S s L
LTRSS A it SN o
L i‘sf?;ua?fa" AT

S T I s
e e g e e el

0.5

Fig. 7

A graph of the difference u(¥ (z,7) — u(z, y) between the apﬁroximate solution of problem (6.8)
obtained by the first factorization method and the exact solution, is reported in Figures 7 and 8.
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In both figures n = 18, while we fixed N = 73 in Figure 7 and N = 45 in Figure 8. Again, these
graphs show the effect of an under-estimation of the projection parameter that is a sharp incresse
of the error at the a-value corresponding to this under-estimation (z = N&). |

Now, as a second example, we consider the system

Ax = b,

where

Ag =Ty + E ﬂ e, ey, (6.9)
Ty is the 2 x 2 matrix defined in (6.6), 7, = (&)™, n € Z;, and b := Ax.
Let &™), as’in (6.7), where N specifies the value of the projection parameter. Figure 8 clearly

n,N
1ot . 167 . . .
(2}
a .
1075 L E—— 1
107 107" 1
- 1
€
,50
1™ ' 1074 P .
M e
1575 J “\F | 10—143! wmfmwh.\[\fwf%«,fﬁ'\hﬂn'ﬁmﬂ\ o~ "'Lﬁ\“'\,‘g
o
107 ~i6] ai

D 100 200 300 400 500 600 700 800 90D 00D 0 100 200 300 400 500 600 700 8OO 900 1000

Fig. 9 : Fig. 10

exhibits that, for large enough N, the results obtained by the second spectral factorization method
~are very accurate. Similar results, even if not o accurate, are obtained using the first factorization
method. Figure 10 shows the same error curves for ¥ = 50. In both figures the extension pararmeter

T
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was fixed at p = 60. Finally, we note that, as our numerical experiments suggest, substituting the
2 x 2 perturbation matrix in (6.9) by any other non singular matrix does not change the accuracy
of the results. Furthermore, using the damping factor A=+ with 1 < A < e, we can still get good
results, provided that we increase the prOJectlon parameter N

Acknowledgments. The authors are greatly indebted to Prof. Israel Gohberg for suggestmg
using the band extension method.
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