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The one-dimensional matrix Schro¨dinger equation is considered when the matrix
potential is self-adjoint with entries that are integrable and have finite first mo-
ments. The small-energy asymptotics of the scattering coefficients are derived, and
the continuity of the scattering coefficients at zero energy is established. When the
entries of the potential have also finite second moments, some more detailed
asymptotic expansions are presented. ©2001 American Institute of Physics.
@DOI: 10.1063/1.1398059#

I. INTRODUCTION

Consider the matrix Schro¨dinger equation

c9~k,x!1k2c~k,x!5Q~x!c~k,x!, xPR, ~1.1!

wherexPR is the spatial coordinate, the prime denotes the derivative with respect tox, k2 is the
energy,Q(x) is ann3n self-adjoint matrix potential, i.e.,Q(x)†5Q(x) with the dagger standing
for the matrix conjugate transpose, andc(k,x) is either ann31 or ann3n matrix function. We
use i•i to denote the~Euclidean! norm of a vector or the operator norm of a matrix. L
Lm

1 (R;Cn3n) with m>0 denote the Banach space of all measurablen3n matrix functionsf for
which (11uxu)mi f (x)i is integrable onR. If n51, we denote this space byLm

1 (R). In this paper
we always assume thatQ is self-adjoint and belongs toL1

1(R;Cn3n). Certain results will be
obtained under the assumption thatQPL2

1(R;Cn3n), but we will clearly indicate when this
stronger assumption is needed. We useC1 to denote the upper-half complex plane and writeC1

for C1øR.
Among then3n solutions of~1.1! are the so-called Jost solution from the left,f 1(k,x), and

the Jost solution from the right,f r(k,x), satisfying the asymptotic boundary conditions

e2 ikxf 1~k,x!5I n1o~1! and e2 ikxf l8~k,x!5 ikI n1o~1!, x→1`, ~1.2!

eikxf r~k,x!5I n1o~1! and eikxf r8~k,x!52 ikI n1o~1!, x→2`, ~1.3!

where I n denotes the identity matrix of ordern. The existence of the Jost solutions can
established as in the scalar (n51) case1,2 by using the appropriate integral equations3,4 @cf. ~2.2!,
~2.3!, and Theorem 2.1 in our paper#.

For eachkPR\$0% we have

f l~k,x!5a1~k!eikx1bl~k!e2 ikx1o~1!, x→2`, ~1.4!

a!Electronic mail: aktosun@math.msstate.edu
b!Electronic mail: klaus@math.vt.edu
c!Electronic mail: cornelis@krein.sc.unica.it
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f r~k,x!5ar~k!e2 ikx1br~k!eikx1o~1!, x→1`, ~1.5!

whereal(k), bl(k), ar(k), andbr(k) are somen3n matrix functions ofk. These matrix functions
enter the scattering matrixS(k) defined in~2.22!, and our primary aim is the analysis of th
small-k behavior ofS(k).

The motivation for this paper comes from our interest in the inverse scattering proble
~1.1!, namely the recovery ofQ from an appropriate set of data involving the scattering matrix.
is known from the scalar case, it is important to have detailed information about the behav
S(k) for smallk. For example,1,2 this information is used to characterize the scattering data, s
to ensure that the potentialQ constructed from the data at hand belongs to a certain clas
functions such asL1

1(R) or L2
1(R). The inverse scattering problem for~1.1! whenn.1 has been

considered by several authors,4–10 but we are not aware of any in-depth study of the smak
behavior ofS(k). Not even the continuity of the scattering matrix atk50 seems to have bee
established whenQPL1

1(R;Cn3n); for example, in Ref. 6~p. 294!, the continuity atk50 of the
transmission coefficients isassumed. In the scalar case it is well known1,2,11,12that the continuity
of S(k) at k50 is easy to establish ifQPL2

1(R), but not if onlyQPL1
1(R). In the matrix case,

the situation is somewhat different. The decay ofQ(x) as x→6` plays an important role, bu
there are further complications due to the particular structure of the solution space of~1.1! at k
50. From the scalar case it is known1,2,11that the behavior of the solutions of~1.1! at k50 makes
it necessary to distinguish between two cases, thegeneric caseand theexceptional case, and that
the small-k behavior ofS(k) is different in each case. Ifn.1, the situation is more complicate
because the exceptional case gives rise to a variety of possibilities depending on the
structure of a certain matrix associated with the solution space of~1.1! at k50. In this paper we
clarify the connection between the solutions of~1.1! at k50 and the behavior ofS(k) neark
50. As a result, we are able to prove the continuity of the scattering matrix atk50 whenQ
PL1

1(R;Cn3n) and to obtain more detailed asymptotic expansions whenQPL2
1(R;Cn3n). The

inverse problem is not considered here; we may report on it elsewhere.
This paper is organized as follows. In Sec. II we establish our notations and review some

known results on the solutions of~1.1!. Since this material is standard, we refer the reader to
literature for proofs and more details. In Sec. II we also give various characterizations o
generic and exceptional cases. In Sec. III we prove the continuity of the scattering matrik
50 in the generic case, and we obtain some more detailed asymptotic results whQ
PL2

1(R;Cn3n). The exceptional case is treated in Sec. IV; the main results are contain
Theorem 4.6 whenQPL1

1(R;Cn3n) and in Theorem 4.7 whenQPL2
1(R;Cn3n), where we prove

the continuity and differentiability ofS(k) at k50, respectively. In Sec. V we discuss some spec
cases that illustrate the results of Sec. IV. Finally, the Appendix contains the proof of Propo
4.2, which is a key result needed to establish Theorems 4.6 and 4.7.

II. SCATTERING COEFFICIENTS AND A CASE DISTINCTION

In this section we review some basic results about those solutions of~1.1! that are relevant to
scattering theory, and we define the scattering coefficients and some related quantities. W
elaborate on the distinction between the generic case and the exceptional case which will
important role in the subsequent sections.

We define the Faddeev functionsml(k,x) andmr(k,x) by

ml~k,x!5e2 ikxf l~k,x!, mr~k,x!5eikxf r~k,x!. ~2.1!

From ~1.2!, ~1.3!, and~2.1! it follows that

ml~k,x!5I n1
1

2ik Ex

`

dy @e2ik~y2x!21#Q~y!ml~k,y!, ~2.2!
23 Jan 2002 to 192.167.144.227. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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mr~k,x!5I n1
1

2ik E2`

x

dy @e2ik~x2y!21#Q~y!mr~k,y!. ~2.3!

Some properties of the matrix functionsml(k,x) and mr(k,x) are summarized in the nex
theorem and its corollary. The proofs of these results can be obtained as in the scalar case
refer the reader to the literature;2–4,11in particular, see Theorem 1.4.1 in Ref. 3 and Theorem 1
Ref. 4. We denote differentiation with respect tok by an overdot and useC for suitable constants
that do not depend onx or k.

Theorem 2.1: If QPL1
1(R;Cn3n), then, for each xPR, the functions ml(k,x), mr(k,x),

ml8(k,x), and mr8(k,x) are analytic in kPC1 andcontinuous in kPC1; moreover

ml~k,x!5I n1o~1!, m18~k,x!5o~1/x!, x→1`, ~2.4!

mr~k,x!5I n1o~1!, mr8~k,x!5o~1/x!, x→2`,

iml~k,x!i<C@11max$0,2x%#, imr~k,x!i<C@11max$0,x%#, kPC1. ~2.5!

In addition, if QPL2
1(R;Cn3n), then ṁl(k,x) and ṁr(k,x) exist, are analytic inC1, continuous in

C1, and satisfy the estimates

iṁl~k,x!i<C~11x2!, iṁr~k,x!i<C~11x2!, kPC1.

In the following an asterisk will be used to denote complex conjugation. From~2.1! and
Theorem 2.1 we get the following.

Corollary 2.2: Assume QPL1
1(R;Cn3n). Then, for each fixed xPR, the four matrix functions

f l(2k* ,x)†, f r(2k* ,x)†, f 18(2k* ,x)†, and fr8(2k* ,x)† are analytic in kPC1 and continuous in
C1. Moreover, if QPL2

1(R;Cn3n), then these functions are differentiable with respect to
PC1.

The scattering coefficients will be defined in terms of certain Wronskians involving the
solutions. We first state a standard result about such Wronskians, which is a consequenc
selfadjointness ofQ. Let @F;G#5FG82F8G denote the Wronskian of two square matrix fun
tions F(x) andG(x).

Proposition 2.3: For kPC, let f(k,x) be any n3p solution andc(k,x) any n3q solution of
(1.1). Then the p3q Wronskian matrix@f(6k* ,x)†;c(k,x)# is independent of x.

As a result of Proposition 2.3 the matricesal(k), bl(k), ar(k), andbr(k) appearing in~1.4!
and ~1.5! can be expressed in terms of certain Wronskians of the Jost solutions as follows:

al~k!5
1

2ik
@ f r~2k* ,x!†; f l~k,x!#, kPC1\$0%, ~2.6!

ar~k!52
1

2ik
@ f 1~2k* ,x!†; f r~k,x!#, kPC1\$0%, ~2.7!

bl~k!52
1

2ik
@ f r~k,x!†; f l~k,x!#, kPR\$0%, ~2.8!

br~k!5
1

2ik
@ f 1~k,x!†; f r~k,x!#, kPR\$0%. ~2.9!

Alternatively, it is sometimes convenient to use the integral representations

al~k!5I n2
1

2ik E2`

`

dx Q~x!ml~k,x!, ~2.10!
23 Jan 2002 to 192.167.144.227. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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ar~k!5I n2
1

2ik E2`

`

dx Q~x!mr~k,x!, ~2.11!

bl~k!5
1

2ik E2`

`

dx e2ikx Q~x!m1~k,x!, ~2.12!

br~k!5
1

2ik E2`

`

dx e22ikx Q~x!mr~k,x!, ~2.13!

which follow from ~1.4!, ~1.5!, and~2.1!–~2.5!. Also, with the help of~1.2!–~1.5! and~2.6!–~2.9!,
we obtain

ar~2k* !†5al~k!, kPC1\$0%, ~2.14!

br~k!52bl~k!†, kPR\$0%, ~2.15!

al~k!†al~k!5bl~k!†bl~k!1I n , kPR\$0%, ~2.16!

ar~k!†ar~k!5br~k!†br~k!1I n , kPR\$0%, ~2.17!

al~2k!†bl~k!5bl~2k!†al~k!, kPR\$0%, ~2.18!

ar~2k!†br~k!5br~2k!†ar~k!, kPR\$0%. ~2.19!

We define the transmission coefficient from the left,Tl(k), and the transmission coefficien
from the right,Tr(k), by

Tl~k!5al~k!21, Tr~k!5ar~k!21, ~2.20!

provided the inverses on the right-hand sides exist, and we define the reflection coefficien
the left,L(k), and the reflection coefficient from the right,R(k), by

L~k!5bl~k!al~k!21, R~k!5br~k!ar~k!21. ~2.21!

From ~2.16! and ~2.17! we see thatal(k) andar(k) are nonsingular forkPR\$0%. In C1, al(k)
andar(k) are nonsingular except possibly at a finite number of points on the positive imag
axis where4 both detal(k)50 and detar(k)50; at these points,Tl(k) and Tr(k) have simple
poles8 corresponding to the bound states of~1.1!. For QPL2

1(R;Cn3n) the finiteness of the
number of bound states has already been established in Refs. 4 and 13. We note that
Q¹L2

1(R;Cn3n) but QPL1
1(R;Cn3n), the finiteness follows from the~operator! inequality

Q(x)>2iQ(x)i I n and the fact that in one dimension a scalar potential inL1
1(R) can support at

most a finite number of bound states. Alternatively, the finiteness of the number of bound
will follow from the results of this paper~cf. Theorems 3.1 and 4.6!, which show thatk50 cannot
be an accumulation point for poles of eitherTl(k) or Tr(k). Because of this latter property we wi
study the asymptotic behavior of the transmission coefficients ask→0 through values inC1. The
reflection coefficients, on the other hand, in general do not have analytic extensions off th
axis, so their asymptotics will be studied for realk only. Then3n matrix functionsTl(k), Tr(k),
R(k), andL(k) are referred to as scattering coefficients, and the 2n32n matrix

S~k!5FTl~k! R~k!

L~k! Tr~k!
G , ~2.22!

is called the scattering matrix.
From ~2.15!–~2.17!, we get
23 Jan 2002 to 192.167.144.227. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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Tl~k!†R~k!1L~k!†Tr~k!50, kPR\$0%,

Tl~k!†Tl~k!1L~k!†L~k!5I n , kPR\$0%, ~2.23!

Tr~k!†Tr~k!1R~k!†R~k!5I n , kPR\$0%, ~2.24!

and hence, forkPR\$0%, S(k) is unitary. Using~2.14! we obtain

Tr~k!5Tl~2k* !†, kPC1\$0%, ~2.25!

wheneverar(k) is nonsingular, and from~2.18! and ~2.19! we get

L~2k!†5L~k!, R~2k!†5R~k!, kPR\$0%.

In order to studyS(k) in the small-energy limit, we need to make an important case dist
tion which involves the solutions to~1.1! with k50, i.e., the solutions to

f9~x!5Q~x!f~x!, xPR. ~2.26!

We already know from~2.1! and Theorem 2.1 thatf l(0,x) is a solution of~2.26! satisfying
f l(0,x)5I n1o(1) and f l8(0,x)5o(1/x) as x→1`. According to basic asymptotic results fo
systems of linear differential equations~Theorem 1.5.1 of Ref. 3!, ~2.26! also has ann3n matrix
solution,f l(x), satisfying

f l~x!5xIn1o~x!, f l8~x!5I n1o~1!, x→1`.

Thus the columns off l(0,x) together with the columns off l(x) form a fundamental set of 2n
vector solutions for~2.26!. Any vector solutionf(x) of ~2.26! can be written as

f~x!5 f l~0,x!h11f l~x!h2 , ~2.27!

whereh1 ,h2PCn are uniquely determined byf(x). It follows from ~2.27! that a vector solution
of ~2.26! is bounded asx→1` if and only if h250, i.e., if and only iff(x)5 f l(0,x)h1 for some
h1PCn. Moreover, in this case limx→1` f(x)5h1 exists. This means that if a solution
bounded at1`, then it also has a limit asx→1`. Also, ~2.27! implies that any solution of~2.26!
that is o(x) as x→1` is necessarily bounded atx51` and any solution that iso(1) asx→
1` must be the zero solution. Similar results hold atx52`; in particular, any solution of~2.26!
that is o(x) as x→2` is necessarily bounded atx52` and has a limit asx→2`, and any
solution that iso(1) asx→2` must be the zero solution.

From ~2.1!–~2.3! we see thatf l(0,x) and f r(0,x) obey the integral equations

f l~0,x!5I n1E
x

`

dy ~y2x!Q~y! f l~0,y!, ~2.28!

f r~0,x!5I n2E
2`

x

dy ~y2x!Q~y! f r~0,y!. ~2.29!

In the subsequent analysis the two Wronskian matrices

D l5@ f r~0,x!†; f l~0,x!#, D r52@ f l~0,x!†; f r~0,x!#, ~2.30!

will play a key role. By Proposition 2.3,D l andD r are independent ofx, and from~2.30! it follows
that

D l5D r
† . ~2.31!
23 Jan 2002 to 192.167.144.227. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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The importance of these Wronskians lies in the fact that they are related to the transm
coefficients via~2.20! and

D l5 lim
k→0

2ikal~k!, D r5 lim
k→0

2ikar~k!, ~2.32!

where the limits are taken from withinC1; ~2.32! follows from ~2.6!, ~2.7!, and Corollary 2.2.
Evaluating the first Wronskian in~2.30! asx→2` and using~2.28! we obtain

D l5 lim
x→2`

f l8~0,x!52E
2`

`

dy Q~y! f l~0,y!. ~2.33!

Similarly, from ~2.29! and ~2.30!, letting x→1`, we get

D r52 lim
x→1`

f r8~0,x!52E
2`

`

dy Q~y! f r~0,y!. ~2.34!

From ~2.28! and ~2.29! we also infer that

f l~0,x!5xD l1o~x!, x→2`,

f r~0,x!52xD r1o~x!, x→1`. ~2.35!

Now we are ready to introduce the distinction between the exceptional case and the g
case. Let

N5$jPCn: f l~0,x!j is bounded onR%. ~2.36!

Then we say that the generic case occurs ifN5$0% and we say that the exceptional case occur
NÞ$0%. These two cases can be characterized in other ways. We choose the above defin
our starting point and will arrive at some other characterizations as we go along.

We observe that the generic case occurs if and only if~2.26! has no bounded nontrivia
solution. The exceptional case occurs if and only if there exists at least one nontrivial bo
solution. As the next theorem shows, we can alternatively characterize the two cases by m
the subspace

M5$xPCn: f r~0,x!x is bounded onR%. ~2.37!

Then the generic~exceptional! case occurs if and only ifM5$0% (MÞ$0%).
We mention that whenn51 the exceptional case occurs if and only iff l(0,x) and f r(0,x) are

linearly dependent, i.e., the Wronskian@ f r(0,x); f l(0,x)# is zero. In our paper we generalize th
characterization to the matrix case. In the scalar case it is also known that the generic~exceptional!
case occurs ifTl(0)50 (Tl(0)Þ0). This will also turn out be true in the matrix case, but we
not use this property as our primary characterization because it is implicitly based on the as
tion thatTl(k) is continuous atk50, something we first need to prove.

The next theorem further clarifies the relations among the two cases, the Wronskians in~2.31!,
and the subspacesN andM.

Theorem 2.4:Assume QPL1
1(R;Cn3n). Then we have

~i! The generic case occurs if and only ifD l , or equivalentlyD r , is nonsingular.
~ii ! N5Ker D l and M5Ker D r .
~iii ! dim N5dim M.

Proof: If D l is nonsingular, then~2.35! implies that every solution of~2.26! of the form
f l(0,x)h, with some nonzero vectorhPCn, becomes unbounded asx→2`. Hence, if D l is
nonsingular, then~2.26! has no bounded nontrivial solutions; so the generic case occurs.
23 Jan 2002 to 192.167.144.227. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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versely, suppose the generic case~i.e.,N5$0%! occurs andD l is singular. Then, by~2.35!, for any
nonzerojPKer D l , we havef l(0,x)j5o(x) asx→2`. Hence, by the remarks following~2.26!
and~2.27!, f l(0,x)j is bounded, i.e.,jPN and thusNÞ$0%. This is a contradiction. Therefore, i
the generic case,D l cannot be singular. This proves~i! for D l . In view of ~2.31!, the assertion also
holds if D l is replaced byD r . To prove~ii !, suppose thatjPKer D l . Then, by~2.35!, f l(0,x)j
5o(x) asx→2`. Hencef l(0,x)j is bounded and sojPN. Conversely, ifjPN, then f l(0,x)j
is bounded and, therefore, again by~2.35!, D lj50. This proves the first equality in~ii !. The
second equality is proved similarly. Finally,~iii ! follows immediately from~2.31!. j

III. SMALL- k BEHAVIOR IN THE GENERIC CASE

In this section we analyze the behavior of the scattering coefficients neark50 in the generic
case. In order to state the next theorem, which is the main result of this section, we introdu
matrices

El5E
2`

`

dx xQ~x!ml~0,x!, Er5E
2`

`

dx xQ~x!mr~0,x!, ~3.1!

Gl5E
2`

`

dx Q~x!ṁl~0,x!, Gr5E
2`

`

dx Q~x!ṁr~0,x!.

The quantitiesEl andEr will also play a role in Sec. IV.
Theorem 3.1: Assume Q is a generic potential in Lm

1 (R;Cn3n) for m51 or 2. Then the
scattering coefficients satisfy the following:

~i! If m51, then

Tl~k!52ikD l
211o~k!, Tr~k!52ikD r

211o~k!, k→0 in C1,

R~k!52I n1o~1!, L~k!52I n1o~1!, k→0 in R.
~ii ! If m52, then

Tl~k!52ikD l
211k2D l

21@4I n12iG l#D l
211o~k2!, k→0 in C1,

Tr~k!52ikD r
211k2D r

21@4I n12iG r#D r
211o~k2!, k→0 in C1,

L~k!52I n12ik@ I n1El#D l
211o~k!, k→0 in R,

R~k!52I n12ik@ I n2Er#D r
211o~k!, k→0 in R.

Proof: Using the fact that in the generic caseD l andD r are invertible,~i! is a consequence o
~2.6!–~2.9!, ~2.20!, ~2.21!, ~2.32!, and Corollary 2.2. WhenQPL2

1(R;Cn3n), expanding the inte-
grals in ~2.10!–~2.13! as

al~k!5
1

2ik
D l1I n1

i

2
Gl1o~1!, k→0 in C1, ~3.2!

bl~k!52
1

2ik
D l1El2

i

2
Gl1o~1!, k→0 in R, ~3.3!

ar~k!5
1

2ik
D r1I n1

i

2
Gr1o~1!, k→0 in C1, ~3.4!

br~k!52
1

2ik
D r2Er2

i

2
Gr1o~1!, k→0 in R, ~3.5!

and using~2.20! and ~2.21! we obtain~ii !. j
23 Jan 2002 to 192.167.144.227. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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For later use we remark that whenQPL2
1(R;Cn3n), El andEr can be expressed in terms o

certain Wronskians, namely

I n1El5 i @ ḟ r~0,x!†; f l~0,x!#, I n2Er52 i @ ḟ l~0,x!†; f r~0,x!#. ~3.6!

Note that the Wronskians in~3.6! are independent ofx becauseḟ l(0,x) and ḟ r(0,x) are also
solutions of~2.26!. The expressions in~3.6! follow easily from~2.28!, ~2.29!, and the correspond
ing integral equations forḟ l(0,x) and ḟ r(0,x) @cf. ~A.20!#. Moreover, we haveGr52Gl

† andEr

5El
†1 iG l

† , as can be seen by using~2.14!, ~2.15!, and~3.2!–~3.5!.
Theorem 3.1 shows that if the generic case occurs, thenTl(0)50. In the next section we will

see that the converse is also true.

IV. SMALL- k BEHAVIOR IN THE EXCEPTIONAL CASE

Recall that in the exceptional case~2.26! has at least one bounded nontrivial solution. In th
section we analyze how this affects the small-k properties ofS(k), and we prove in the exceptiona
case the continuity ofS(k) at k50 when QPL1

1(R;Cn3n) and its differentiability whenQ
PL2

1(R;Cn3n). It turns out that whenQPL1
1(R;Cn3n) the exceptional case gives rise to certa

technical complications that necessitate a careful study of certain asymptotic expansions. Si
proof of one result, namely Proposition 4.2, is especially long, that proof is given in the Appe

Recall the definitions of the subspacesN and M given in ~2.36! and ~2.37!, respectively.
There is a natural mapping fromN to M, which we denote byG, defined as follows. For every
jPN, let

x5 lim
x→2`

f l~0,x!j, ~4.1!

and put

x5Gj. ~4.2!

Note that, by~2.36!, f l(0,x)j is bounded and hence, by the discussion below~2.27!, the limit in
~4.1! exists. To see thatG mapsN into M, we note that~4.1! implies

lim
x→2`

@ f l~0,x!j2 f r~0,x!x#50.

Hencef l(0,x)j2 f r(0,x)x is a solution of~2.26! which approaches zero asx→2`; therefore, it
must be identically zero and we have

f l~0,x!j5 f r~0,x!x, xPR. ~4.3!

Hencef r(0,x)x is bounded, which impliesxPM.
Proposition 4.1: Assume QPL1

1(R;Cn3n). ThenG is a bijection betweenN and M.
Proof: We have already seen thatG mapsN into M. The mapG is injective, for if Gj50,

then, by~4.2! and~4.3!, f l(0,x)j50 for all xPR and hencej50. It is also onto, because for ever
xPM, lim

x→1`
f r(0,x)x5j exists, and hence~4.3! holds; thusx5Gj. j

The mappingG will make its appearance as a restriction toN of certain linear transformation
defined on all ofCn. One such representation immediately follows from~4.3!. We can pick anyx0

for which f r(0,x0) is invertible and write

G5@ f r~0,x0!21f l~0,x0!#uN , ~4.4!

where the symboluN denotes the restriction to the subspaceN. Recall that whenn51, G becomes
a constant, so that~4.4! expresses the fact that, in the exceptional case, the two Jost solutio
23 Jan 2002 to 192.167.144.227. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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kk50 are linearly dependent. Clearly,~4.4! is valid wheneverQPL1
1(R;Cn3n). Another repre-

sentation ofG that will play a role in this section is only valid whenQPL2
1(R;Cn3n). It follows

from ~2.28! which, for anyjPN, implies

x5 lim
x→2`

f l~0,x!j5j1E
2`

`

dy yQ~y!@ f l~0,y!j#, ~4.5!

where we have also used~2.33! and the fact thatD lj50. Note that the integral on the right-han
side of ~4.5! exists whenQPL1

1(R;Cn3n) becausef l(0,y)j is bounded. However, without th
vectorj in the integrand, the integral in general does not exist as a matrix-valued integral, be
some column vectors of the matrixf l(0,y) may grow linearly asy→2`. In fact, according to
~2.35!, this is always the case unlessD l50. On the other hand, ifQPL2

1(R;Cn3n), then the
integral in~4.5! without the vectorj in it exists as a matrix-valued integral and, in view of~3.1!,
we can writex5(I n1El)j. In other words, we have

G5~ I n1El!uN provided QPL2
1~R;Cn3n!. ~4.6!

We will also need representations forG21. To this end we assume, without loss of general
that f l(0,0) is invertible. If not, we can perform a shift of the origin and use the fact thatf l(0,x)
is invertible forx sufficiently large. We define

R5 f l~0,0!21f r~0,0!, ~4.7!

and note that, by~4.3!,

RuM5G21. ~4.8!

Another representation forG21 is obtained by using the integral relation forf r(0,x) given in
~2.29!. If QPL2

1(R;Cn3n), then, for anyxPM, by using~2.29!, ~2.34!, and the fact thatD rx
50, we obtain

j5 lim
x→1`

f r~0,x!x5x2F E
2`

`

dy yQ~y! f r~0,y!Gx,

and thus, by~3.1!, j5(I n2Er)x. Therefore,

G215~ I n2Er!uM provided QPL2
1~R;Cn3n!.

After these preparations we are ready to begin the analysis of the small-k asymptotics ofS(k)
in the exceptional case. We first consider the Wronskian

W~k!5@ f r~2k* ,x!†; f l~k,x!#, kPC1,

which appears in~2.6! and, as seen from~2.20!, is related to the transmission coefficientTl(k) by

Tl~k!52ikW~k!21. ~4.9!

The method employed here to studyW(k) is patterned after that used in Ref. 12 in the scalar ca
Unless otherwise stated, we will assume thatk is real. This suffices for all the auxiliary result
leading up to our main result given in Theorem 4.6. There we will extend the asymptotics fro
real axis toC1 with the help of a Phragme´n–Lindelöf theorem.

Using @ f l(0,x)†; f l(0,x)#50 we first writeW(k) in the form

W~k!5 f r~2k,0!†@ f l~0,0!†#21V11V2f l~0,0!21f l~k,0!,
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where we have defined

V15 f l~0,0!†f l8~k,0!2 f l8~0,0!†f l~k,0!,

V25 f r~2k,0!†f l8~0,0!2 f r8~2k,0!†f 1~0,0!.

The quantitiesV1 andV2 can be written as Wronskians by means of a new solution,w(k,x), of
~1.1!, which is defined by the initial conditions

w~k,0!5 f 1~0,0!, w8~k,0!5 f l8~0,0!, ~4.10!

so that

w~0,x!5 f 1~0,x!. ~4.11!

Then we have

W~k!5 f r~2k,0!†@ f l~0,0!†#21@w~k,x!†; f l~k,x!#1@ f r~2k,x!†;w~k,x!# f l~0,0!21f l~k,0!.
~4.12!

We mention that the particular choice of the solutionw(k,x) is motivated by the fact that there i
a crucial estimate, namely~A8! of the Appendix, for the difference@w(k,x)2w(0,x)#j with j
PN, which plays a key role in the proof of the next proposition. Since the proof of this pr
sition is lengthy, it is given in the Appendix.

Proposition 4.2: Assume QPLm
1 (R;Cn3n) for m51 or 2. Then, as k→0 in R we have

@w~k,x!†; f l~k,x!#5(
j 51

m

kjYj1o~km!, ~4.13!

where

Y15 i I n , Y25E
0

`

dz@ f l~0,z!†f l~0,z!2I n#,

and

@ f r~2k,x!†;w~k,x!#5 (
j 50

m21

kjXj1o~km21!, ~4.14!

with

X05D l , Xl5 i @ I n1El#.

For jPN we have

@ f r~2k,x!†;w~k,x!#j5(
j 51

m

kjX̌jj1o~km!, ~4.15!

X̌15 iG, X̌25E
2`

0

dz@ f r~0,z!†f r~0,z!2I n#G.

The notational differences between~4.14! and~4.15! are justified by the fact that in~4.15! the
coefficientX̌1 is used whenm51, while in ~4.14! the corresponding coefficientX1 is used only
whenm52. Of course, ifm52, thenX̌15X1uN , by ~4.6!.

Our first goal is to find the leading terms in the asymptotics ofW(k)21 as k→0. For this
purpose it is convenient to temporarily replace the factors multiplying the Wronskians in~4.12! by
their limits ask→0. That is, we consider the simpler expression
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Z~k!5R†@w~k,x!†; f l~k,x!#1@ f r~2k,x!†;w~k,x!#, ~4.16!

where we have used~4.7! via its adjoint. In order to further motivate the use ofZ(k), we note that
on account of~4.12! and ~4.16! we can write

W~k!215 f l~k,0!21f l~0,0!@Z~k!1Q1~k!1Q2~k!#21, ~4.17!

where

Q1~k!5R†@w~k,x!†; f l~k,x!#@ f l~k,0!21f l~0,0!2I n#, ~4.18!

Q2~k!5$ f r~2k,0!†@ f l~0,0!†#212R†%@w~k,x!†; f l~k,x!# f l~k,0!21f l~0,0!, ~4.19!

provided the second inverse on the right-hand side of~4.17! exists. The existence of this invers
will be established below, where we show thatZ(k)21 exists for sufficiently smallk and satisfies
Z(k)215O(1/k) ask→0. This, together with the fact that, in view of~4.13! and Corollary 2.2,
Q1(k) andQ2(k) are botho(k) ask→0, implies

W~k!215 f l~k,0!21f l~0,0!Z~k!21$I n1@Q1~k!1Q2~k!#Z~k!21%21, ~4.20!

where the inverse of the matrix inside the braces exists providedk is sufficiently small. This
explains why we focus onZ(k) in the next result, which is an immediate consequence of~4.16!
and Proposition 4.2.

Corollary 4.3: Suppose that QPLm
1 (R;Cn3n) for m51 or 2. Then, as k→0 in R

Z~k!5 (
j 50

m21

kjVj1o~km21!, ~4.21!

V05D l , V15 i @ I n1El1R†#.

Moreover, forjPN, we have

Z~k!j5(
j 51

m

kjV̌jj1o~km!, ~4.22!

V̌15 i @G1R†#,

V̌25R†E
0

`

dz@ f l~0,z!†f l~0,z!2I n#1E
2`

0

dz@ f r~0,z!†f r~0,z!2I n#G.

Now our task is to identify those matrix elements ofZ(k)21 that dominate ask→0. To do this
we choose a Jordan basis forD l as follows. We assume that there arek Jordan chains indexed b
a for a51,...,k, each consisting ofna vectorsua j , with j 51,...,na , satisfying the relations

H ~D l2la!ua150,

~D l2la!ua j5ua~ j 21! , j 52,...,na .
~4.23!

Herela is an eigenvalue ofD l ,ua1 is the corresponding eigenvector belonging to theath chain,
and the vectorsua j with j Þ1 are the generalized eigenvectors. We assume that the eigenva
of D l has geometric multiplicitym and algebraic multiplicityn; thus Sa51

m na5n and m
5dim N>1. We arrange the vectors of the Jordan basis in a list which is ordered according
rule thatua j comes beforeubs if and only if a,b or a5b and j ,s. In other words, this is the
‘‘dictionary order’’ of the two two-letter wordsa j andbs. It is necessary to specify an order o
the Jordan basis because later we will have to perform certain permutations on these basis
23 Jan 2002 to 192.167.144.227. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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We further assume that the firstm Jordan chains belong to the eigenvalue 0 ofD l so that
$u11,u21,...,um1% forms a basis for the kernel ofD l . We will also need the adjoint Jordan bas
$wa j% whose vectors, fora51,...,k, satisfywa j

† urt5dard j t , wheredab denotes the Kronecke
delta, and

H ~D r2la* !wana
50,

~D r2la* !wa j5wa~ j 11!, j 51,...,na21.

Thus the set$w1n1
,...,wmnm

% forms a basis for the kernel ofD r . The transition matrix from the
standard basis to the Jordan basis will be denoted byS. Given anyn3n matrix M in the standard
basis, we useM̃ , whereM̃5S21MS, to denote the matrix representation ofM in the Jordan basis

$ua j%. Then from~4.23! it follows that D̃ l has the appearance

D̃ l5 %
a51

k

Jna
~la!, ~4.24!

whereJna
(la) is the Jordan block withla appearing on the diagonal and 1 on the first supe

agonal.
In the notation introduced above we can view the paira j as a ‘‘block index’’ in the sense tha

a indicates the Jordan block~resp. the Jordan chain! to which the vectorua j belongs, andj
indicates the position within that block. Generalizing this notation, we will sometimes use b
indices to designate the matrix elements of matrices represented in the Jordan basis$ua j%. Then
the matrix elements ofM̃5S21MS in block index notation are given by

M̃bs;a j5wbs
† Mua j . ~4.25!

An important observation aboutZ̃(k) is that it hasm columns, namely those with ‘‘addresses’’a1
for a51,...,m which areO(k), and these are the only columns with this property. Any ot
column contains at least one element that tends to a nonzero limit ask→0. Now, as we shall see
below, the entries ofZ̃(k) which determine the leading asymptotic behavior ofZ̃(k)21 ask→0
form a submatrix ofZ̃(k) consisting of columnsa1 and rowsbnb , wherea andb both belong to
$1,...,m%. It is, therefore, convenient to perform suitable permutations of the columns and ro
Z̃(k) in order to collect these particular matrix elements in am3m diagonal block of a new
matrix, calledZ(k). The formal definition of these permutations and their implementation ar
follows. Let p1 be the permutation

p1 : ~1,...,n!°~q1 ,...,qn!,

where

qt5H n11¯1nt2111, t51,...,m,

t2m1a, t5m11,...,n,
~4.26!

andaP$1,...,m% is the unique integer such that, for givent andm,

n11n21¯1na212a1 j 5t2m,

for some j P$2,...,na%. Note that, sincena>1, the quantityn11n21¯1na212a is a nonde-
creasing function ofa. Similarly, let p2 be the permutation

p2 : ~1,...,n!°~s1 ,...,sn!,
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where

sa5H n11¯1na , a51,...,m,

a2m1r21, a5m11,...,n,
~4.27!

andrP$1,...,m% is the unique integer such that, for givena andm

n11n21¯1nr212r1s5a2m,

for somesP$2,...,nr%. To implement these permutations we letêj for j 51,...,n denote the column
vectors of the standard basis inCn and letP1 be then3n permutation matrix whosej th column
vector is êqj

, and letP2 be then3n permutation matrix whosekth row vector isêsk

† . Now

observe that, ifM is any n3n matrix, then the matrixP2MP1 can be thought of as bein
obtained fromM by a permutation of the columns according top1 and a permutation of the row
according top2 . In order to apply these operations toZ̃(k) we define

P15diag$P1 ,I n2n%, P25diag$P2 ,I n2n%,

Z~k!5P2Z̃~k!P15P2S21Z~k!SP1 , ~4.28!

and we partitionZ(k) as

Z~k!5FA~k! B~k!

C~k! D~k!
G , ~4.29!

where A(k) has sizem3m and, consequently,D(k) has size (n2m)3(n2m). Then A(k)
coincides with the submatrix ofZ̃(k) consisting of the elements in columnsa1 and rowssns ,
where 1<a<m and 1<s<m. As we have already indicated above, the matrixA(k) determines
the leading asymptotic behavior ofZ(k)21 as k→0. The next two propositions provide th
necessary information about the behavior of the four matrix blocks in~4.29!.

Proposition 4.4: Assume QPLm
1 (R;Cn3n) for m51 or 2. Then the matricesA(k), B(k),

C(k), and D(k) appearing in (4.29) behave near k50, with kPR, as

A~k!5(
j 51

m

kjAj1o~km!, B~k!5 (
j 51

m21

kjBj1o~km21!, ~4.30!

C~k!5(
j 51

m

kjCj1o~km!, D~k!5 (
j 50

m21

kjDj1o~km21!, ~4.31!

where in the expansion forB(k) the sum is absent when m51. Moreover, A1 and D0 are
invertible.

Proof: We give the proof only forB(k); the proofs for the other matrices are similar. Letej for
j 51,...,n denote the standard basis vectors inCn. Let sP$1,...,m% and first suppose thatp
P$1,...,n2m%. Then we have

B~k!sp5es
†Z~k!em1p5es

†P2Z̃~k!P1em1p5@ êss

† 0#Z̃~k!F êqm1p

0 G
5ess

† Z̃~k!eqm1p
5Z̃~k!ssqm1p

5Z̃~k!sns ;a j ,

wherea and j are determined by~4.26! with t5m1p<n; hence 2< j <na and 1<a<m. Thus
it follows from ~4.25! and Corollary 4.3 thatB(k)sp5o(1) if m51 andB(k)sp5kB1,sp1o(k) if
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m52. Specifically, we haveB1,sp5wsns

† V1ua j , whereV1 is given in~4.21!. It remains to consider

the matrix elements withpP$n2n11,...,n2m%. SinceP1em1p5em1p , we obtain

B~k!sp5Z̃~k!ss~m1p!5Z̃~k!sns ;a j5wsns

† Z~k!ua j ,

wherea and j are determined by the equationn11¯1na211 j 5m1p; note thatm1p.n and
thusa>m11. Sinces<m, by using Corollary 4.3, we conclude thatB(k)sp5o(1) if m51, and
B(k)sp5kB1,sp1o(k) with B1,sp5wsns

† V1ua j if m52.

To prove thatA1 is invertible we first note that fors and j P$1,...,m%, we have

A~k!s j5Z̃~k!ssqj
5Z̃~k!sns ; j 15wsns

† Z~k!uj 1 ,

and thus, by~4.21!

A1,s j5wsns

† V1uj 15 iwsns

† @G1R†#uj 1 . ~4.32!

We show that the kernel of the transformationA1 :Cm°Cm is trivial. Suppose there is a vecto
(c1 ,...,cm) such thatS j 51

m A1,s jcj50 for s51,...,m. Let j5S j 51
m cjuj 1 and x5Gj @cf. ~4.2!#.

SincexPM, it is a linear combination of the vectorsw1n1
,...,wmnm

and hencex†V1j50. On the
other hand, by using~4.7!, we obtain

x†V1j5 ix†@G1R†#j5 i ~ ixi21iji2!,

which is nonzero unlessc15¯5cm50. HenceA1 is invertible. Finally, from~4.28!, ~4.29!, and
Corollary 4.3, we get

D05diag$I n2m ,Jnm11
,...,Jnk

%, ~4.33!

whereJna
are the matrices appearing in~4.24!. Clearly,D0 is invertible. j

Next we study the behavior of the inverse of the matrix defined in~4.29! neark50.
Proposition 4.5: Assume QPLm

1 (R;Cn3n) for m51 or 2. Then as k→0 in R we have the
following:

~i! If m51, then

Z~k!215F ~1/k!A1
211o~1/k! o~1/k!

2D0
21C1A1

211o~1! D0
211o~1!

G . ~4.34!

~ii ! If m52, then

Z~k!215
1

k
Z211Z01o~1!, ~4.35!

where

Z215diag$A1
21,0%, ~4.36!

Z05F2A1
21A2A1

211A1
21B1D0

21C1A1
21 2A1

21B1D0
21

2D0
21C1A1

21 D0
21 G . ~4.37!

Proof: We exploit the fact that

F I m 2B~k!D~k!21

0 I n2m
GZ~k!F I m 0

2D~k!21C~k! I n2m
G5diag$U~k!,D~k!%, ~4.38!
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where

U~k!5A~k!2B~k!D~k!21C~k!.

By ~4.30!, ~4.31!, and Proposition 4.4, we have

B~k!D~k!21C~k!5o~k!, A~k!5kA11o~k!,

with det A1Þ0, and hence we conclude that, for small enough nonzerok, U(k) is invertible and

U~k!215H ~1/k!A1
211o~1/k!, m51,

~1/k!A1
212A1

21A2A1
211A1

21B1D0
21C1A1

211o~1!, m52.
~4.39!

As a result, from~4.38! we obtain

Z~k!215F U~k!21 2U~k!21B~k!D~k!21

2D~k!21C~k!U~k!21 D~k!21C~k!U~k!21B~k!D~k!211D~k!21G ,
and hence~4.34!–~4.37! follow by using ~4.30!, ~4.31!, and~4.39!. j

The primary conclusion of Proposition 4.5 is thatZ(k)21 has a 1/k-singularity atk50 if dim
N>1. Therefore,Z̃(k)21 andZ(k)21 have a similar behavior. Indeed, from~4.28! and~4.35! we
infer that

Z~k!215 (
j 50

m21

kj 21Zj 211o~km22!, k→0 in R, ~4.40!

where

Z215SP1Z21P2S21, Z05SP1Z0P2S21. ~4.41!

This leads us to the main result of this section. We will lift the restriction thatk be real and
allow kPC1 in the asymptotics of the transmission coefficients.

Theorem 4.6: Assume QPL1
1(R;Cn3n) and dim N>1. Then the scattering coefficients a

continuous at k50, and we have

Tl~k!52iZ211o~1!, Tr~k!522iZ21
† 1o~1!, k→0 in C1, ~4.42!

Im Tl~0!5Ker D1 , Ker Tl~0!5Im D1 , ~4.43!

Im Tr~0!5Ker D r , Ker Tr~0!5Im D r , ~4.44!

L~k!52I n1GTl~0!1o~1!, R~k!52I n1G21Tl~0!†1o~1!, k→0 in R, ~4.45!

Ker $I n1L~0!%5Ker Tl~0!, Ker Tr~0!5Ker $I n1R~0!%, ~4.46!

Im $I n1L~0!%5Im Tr~0!, Im$I n1R~0!%5Im Tl~0!. ~4.47!

Proof: For kPR, the continuity of the transmission coefficients and~4.42! follow immedi-
ately from ~2.25!, ~4.9!, ~4.20!, ~4.40!, and ~4.41!. To extend the asymptotic formulas in~4.42!
from kPR to kPC1 we first note that

detW~k!5@detZ~k!#@11o~1!#5@detZ~k!#@11o~1!#5C0km@11o~1!#, k→0 in R,

whereC05(21)n2m(detA1)(det D0)Þ0. This follows from~4.20!, ~4.28!, ~4.30!, ~4.36!, ~4.38!,
Proposition 4.4, and the fact that (detP1)(detP2)5(21)n2m. It follows that k2m detW(k)→C0 as
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k→0 along the real axis. Since detW(k) extends as an analytic function toC1, there is a constan

C such thatuk2m detW(k)u<Cuku2m for k near 0 inC1. Appealing to some theorems of Phragme´n–
Lindelöf ~e.g., Theorems 1.4.1–1.4.4 in Ref. 14! we conclude thatk2m detW(k)→C0 ask→0 in
C1. Thus there is a setSe5$kPC1: 0,uku,e%, with e sufficiently small, on whichudetW(k)u
>C1ukum for some constantC1 . Recalling the cofactor representation of the inverse of a matrix
conclude that

iW~k!21i<C2uku2m, kPSe ,

for some constantC2 . Since Tl(k)→Tl(0) as k→0 along the real axis, we can apply
Phragme´n–Lindelöf theorem to 2ikW(k)21 and conclude that, by~4.9!, Tl(k)→Tl(0) ask→0 in
C1. This, together with~2.25!, completes the proof of~4.42!.

To prove ~4.43! we note that~4.24! and ~4.26! imply Ker D̃ l5Span$eq1
,...,eqm

%. Thus, in
view of the form ofZ21 given in ~4.36!, we have

Im$P1Z21P2%5P1H Fu0G : uPCmJ 5P1Span$e1 ,...,em%5Ker D̃ l .

SinceD l5SD̃ lS21, the first equality in~4.43! follows from ~4.41! and~4.42!. To prove the second
equality we note that

Im D̃ l5Span$ek : k¹$s1 ,...,sm%%,

which follows from ~4.24! and ~4.25!. Therefore,

Ker$Z21P2%5 HwPCn: P2w5F0v G , vPCn2mJ
5$wPCn: ek

†P2w50, k51,...,m%

5$wPCn: esk

† w50, k51,...,m%

5Im D̃ l .

This implies Ker Tl(0)5Im Dl and thus the second equality in~4.43! is proved. The equalities in
~4.44! follow from ~4.43! by taking adjoints and using the fact that (KerM )'5Im M† for any
n3n matrix M.

To prove the remaining assertions we use

f l~k,x!Tl~k!5 f r~2k,x!1 f r~k,x!L~k!, kPR\$0%, ~4.48!

f r~k,x!Tr~k!5 f l~2k,x!1 f l~k,x!R~k!, kPR\$0%, ~4.49!

which can be derived with the help of~1.4! and ~1.5!. From ~4.48! and the continuity ofTl(k) it
immediately follows thatL(k) is continuous atk50 and we have

f r~0,x!@ I n1L~0!#5 f l~0,x!Tl~0!. ~4.50!

Now choosex such thatf r(0,x) is invertible and multiply~4.50! from the left byf r(0,x)21. Owing
to ~4.4! and the first equation in~4.43!, we can replacef r(0,x)21f l(0,x) by G. Hence the first
relation in~4.45! follows. Similarly, the second relation in~4.45! is obtained from~4.49!. The two
equalities in~4.46! are immediate consequences of~4.45!. Finally, ~4.47! follows from ~4.43!,
~4.45!, and Proposition 4.1. j
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From ~4.43!, ~4.44!, Proposition 2.4~i!, and Theorem 3.1 we infer that the exceptional ca
occurs if and only ifTl(0)Þ0. Moreover,~4.43!, ~4.46!, and Theorem 3.1 show thatL(0) and
R(0) each have eigenvalue21 if and only if D lÞ0. In view of ~2.23! and ~2.24! we also have
iL(0)i5iR(0)i51 if and only if D lÞ0. The caseD l50 can be called the purely exceptional ca
because then we haveN5M5Cn. This case is further analyzed in Example 5.4 of the n
section.

Theorem 4.7: Assume QPL2
1(R;Cn3n) and dimN>1. Then the scattering coefficients a

differentiable at k50 and

Tl~k!5Tl~0!1kṪl~0!1o~k!, k→0 in C1, ~4.51!

with

Ṫl~0!52i @Z02 f l
21~0,0! ḟ l~0,0!Z211 iH 11 iH 2#, ~4.52!

where Z21 and Z0 are given in (4.41) and

H15Z21R†f l
21~0,0! ḟ l~0,0!Z21 , H25Z21 ḟ r~0,0!†@ f l~0,0!†#21Z21 .

Moreover,

Tr~k!5Tl~0!†2k* Ṫl~0!†1o~k!, k→0 in C1,

L~k!52I n1~ I n1El!Tl~0!1kL̇~0!1o~k!, k→0 in R,

R~k!52I n1~ I n2Er!Tr~0!1kṘ~0!1o~k!, k→0 in R,

where El and Er are as in (3.1) and

L̇~0!5@ I n1El#Ṫl~0!1 i @ ḟ r~0,x!†; ḟ l~0,x!#Tl~0!,

Ṙ~0!5@ I n2Er#Ṫr~0!2 i @ ḟ l~0,x!†; ḟ r~0,x!#Tr~0!.

Proof: To prove~4.51! and ~4.52! for k→0 in R, we first note the expansions

f l~k,0!21f l~0,0!5I n2k f l~0,0!21 ḟ l~0,0!1o~k!,

f r~2k,0!†@ f l~0,0!†#215R†2k ḟ r~0,0!†@ f l~0,0!†#211o~k!,

Q1~k!52 ik2R†f l~0,0!21 ḟ l~0,0!1o~k2!,

Q2~k!52 ik2 ḟ r~0,0!†@ f l~0,0!†#211o~k2!,

which follow from ~4.18!, ~4.19!, together with~4.7! and Proposition 4.2. Inserting these expa
sions in ~4.20! and using~4.9! we obtain ~4.51! and ~4.52!. As with ~4.42! we can use a
Phragme´n–Lindelöf argument to extend the result toC1. To find the expansions forL(k) and
R(k) we first note that the existence ofṪl(0), together with~4.48! and ~4.49!, implies the exis-
tence ofL̇(0) andṘ(0). Differentiating~4.48! with respect tok and taking the Wronskian with
ḟ r(0,x)†, we obtain

@ ḟ r~0,x!†; f r~0,x!#L̇~0!5@ ḟ r~0,x!†; ḟ l~0,x!#Tl~0!1@ ḟ r~0,x!†; f l~0,x!#Ṫl~0!, ~4.53!
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where we have used@ ḟ r(0,x)†; ḟ r(0,x)#50. Using the integral relation~2.29! and that forḟ r(0,x)
@cf. ~A.20!# we obtain@ ḟ r(0,x)†; f r(0,x)#52 i I n . Inserting this together with~3.6! in ~4.53! and
using ~4.47! we get the expansion forL(k). The proof of the expansion forR(k) is similar. j

V. EXAMPLES

In this section we consider some special cases that illustrate various details of the ana
Sec. IV. With the exception of Example 5.4 we only considerTl(k).

Example 5.1:Let n51 with QPL2
1(R) and assume the exceptional case occurs. ThenZ(k)

5Z̃(k)5Z(k)5A(k), and these are all scalar functions. We choosej515w and putg5G
5 f l(0,0)/f r(0,0), where nowg is a real nonzero constant. SinceTl(k)5Tr(k), we denote the
transmission coefficient byT(k). By ~4.32! we haveA15 i (g211)/g,

A25g21E
0

`

dz@ f l~0,z!†f l~0,z!2I n#1gE
2`

0

dz@ f r~0,z!†f r~0,z!2I n#,

so that

T~k!5
2g

g211
1

2ikgJ

~g211!2 1o~k!, k→0 in C1, ~5.1!

where we have defined

J5g@ ḟ r~0,x!; ḟ l~0,x!#1E
0

`

dz@ f l~0,z!221#1g2E
2`

0

dz@ f r~0,z!221#.

In deriving ~5.1! we have used the identity

ḟ l~0,x!

f r~0,x!
1

ḟ r~0,x!

f l~0,x!
52 i @ ḟ r~0,x!; ḟ l~0,x!#, ~5.2!

which can be verified as follows. Sincef r(0,x) and ḟ r(0,x) are linearly independent solutions o
~2.26!, we can write

ḟ l~0,x!5c1f r~0,x!1c2 ḟ r~0,x!,

and evaluatec1 andc2 as

c152 i @ ḟ r~0,0!; ḟ l~0,0!#, c252
1

g
,

so that~5.2! follows. It seems that the expansion~5.1! is new under the assumptionQPL2
1(R).

Example 5.2:AssumeQPL1
1(R;Cn3n) and suppose thatD̃ l consists of one single Jorda

block of sizen>2 associated with the eigenvalue 0. Thusk51, m51, andn5n15n.
In this case we can simplify the notation by settingu1 j5uj , for j 51,...,n. Thenu1 is the

eigenvector for the eigenvalue 0 ofD l , that isN5Span$u1%. The adjoint basis is$w1 ,...,wn% and
we haveM5Span$wn%. The mappingG mapsu1 to a multiple ofwn , i.e., Gu15c3wn for some
c3Þ0. Moreover,A(k) is a scalar function and from~4.32! we obtain

A15
i

c3*
~ uc3u2iwni21iu1i2!,

where we have used~4.7! via Rwn5(1/c3)u1 . The permutation matrices appearing in~4.28! are
given by
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P15I n , P25F 0 0 ... 0 1

1 0 ... 0 0

] ] � ] ]

0 0 ... 0 0

0 0 ... 1 0

G .

Using ~4.41! and ~4.42! we obtain

T̃l~0!5F 0 0 ... 0 2/c4

0 0 ... 0 0

] ] � ] ]

0 0 ... 0 0

0 0 ... 0 0

G ,

where

c45
1

c3*
~ uc3u2iwni21iu1i2!, T̃l~0!5S21Tl~0!S.

Example 5.3:This example illustrates the situation whereD̃ l in ~4.24! consists of two Jordan
blocks. We assumeQPL1

1(R;Cn3n) and letn53, m52, n151, n252, n53, andk52, so thatD l

has the Jordan form

D̃ l5F 0 0 0

0 0 1

0 0 0
G .

The Jordan basis is$u11,u21,u22%, where $u11,u21% is a basis forN, and the adjoint basis is

$w11,w21,w22%, where $w11,w22% is a basis forM. In this case the rows ofZ̃(k) need to be
permuted according top2 : (1,2,3)°(1,3,2), whereas no permutation of the columns is requir
Thus we have

P15I 3 , P25F 1 0 0

0 0 1

0 1 0
G .

ThenA(k) is a 232 matrix and

A15Fw11
† V1u11 w11

† V1u21

w22
† V1u11 w22

† V1u21
G ,

whereV1 is given in ~4.21!. Hence we obtain

T̃1~0!5
1

detA1
F w22

† V1u21 0 2w11
† V1u21

2w22
† V1u11 0 w11

† V1u11

0 0 0
G .
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Example 5.4:This is the purely exceptional case mentioned above Theorem 4.7. We as
QPL1

1(R;Cn3n) with n.1. We haveD l50, which impliesm5n5k5n. ThenN5M5Cn, and
thus no restrictions are necessary in~4.4! and ~4.8!; that is, we haveR5G21. Moreover,P1

5P25I n . It follows that

A15 iS21@G1~G21!†#S,

and thus, sinceZ215A1
21, we obtain

Tl~0!52iS~SA1!2152G†~GG†1I n!21.

For the reflection coefficients, after some straightforward manipulations, we find

L~0!5~GG†2I n!~GG†1I n!21, R~0!5~ I n2G†G!~G†G1I n!21.

Example 5.5:SupposeQ(x) is even and belongs toL1
1(R;Cn3n). This implies thatf r(0,x)

5 f l(0,2x) and from~2.31!, ~2.33!, and ~2.34! we conclude thatD l is self-adjoint. HenceD l is
diagonalizable and there are no Jordan chains of length greater than 1. We havem5n, na51 for
1<a<k, andk5n. We also haveP15P25I n . It is possible thatD l has some nonzero eigen
values, som,n in general. IfjPN, then

f l~0,x!j5 f r~0,2x!j,

which implies thatf r(0,x)j is bounded. This meansjPM and henceN5M. Furthermore, using
~4.2! and ~4.3! we conclude that

f l~0,x!x5 f r~0,2x!x5 f l~0,2x!j, ~5.3!

wherejPN andx5Gj. Letting x→2`, we see thatGx5j, that is

G25I m . ~5.4!

It follows thatG is diagonalizable because (I m6G)p52p21(I m6G) for p>1 and has eigenvalue
61. Let e6 denote the corresponding multiplicities (e11e25m). Since na51, we put ua1

5ua for the vectors of the Jordan basis forD l and assume that they are normalized and arran
such that

Gua5ua , a51,...,e1,

Gua52ua , a5e111,...,m.

We also setwsns
5ws , so thatws

†ua5dsa for s51,...,n anda51,...,n. Note that as a consequenc
of ~5.3!, e1(e2) is the number of linearly independent bounded even~odd! solutions of~2.26!.
Then from~4.8! and ~5.4! we conclude that

ws
†R†ua5~G21ws!

†ua5~Gws!
†ua5ws

†G†ua , ~5.5!

where G† is the adjoint ofG as a mapping fromN to itself. Using ~5.5! in ~4.32! we obtain
A1,s j5 iws

†@G1G†#uj , and therefore

~A1
21!s j52 iws

†@G1G†#21uj .

As a result, from~4.36!, ~4.41!, and~4.42! we deduce that

Tl~0!5@2~G1G†!21# % 0,

where the direct sum refers to the direct decompositionCn5N% N 8 with
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N 85Span$um11 ,...,un%.
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APPENDIX: PROOF OF PROPOSITION 4.2

Proof: Since the assertions of Proposition 4.2 concern the small-k asymptotics, we assume tha
k lies in a fixed interval@2d, d# with d.0. In the followingC is used to denote various constan
that may depend on the choice ofd but not onk or x.

The solutionw(k,x) of ~1.1! defined by the initial conditions~4.10! satisfies the integra
equation

w~k,x!5 f l~0,0!coskx1 f l8~0,0!S sinkx

k D1
1

k E0

x

dy sin@k~x2y!#Q~y!w~k,y!, ~A1!

which can be solved by iteration. A standard Gronwall inequality shows that

iw~k,x!i<C~11uxu!, xPR. ~A2!

Therefore, by using~A1! and ~A2!, it follows that for eachkPR\$0% we have

w~k,x!5a6~k!eikx1b6~k!e2 ikx1e6~k,x!, ~A3!

wheree6(k,x) ande68 (k,x) are botho(1) asx→6`, and where

a6~k!5
1

2
f l~0,0!1

1

2ik
f l8~0,0!1

1

2ik E0

6`

dy e2 ikyQ~y!w~k,y!, ~A4!

b6~k!5
1

2
f l~0,0!2

1

2ik
f l8~0,0!2

1

2ik E0

6`

dy eikyQ~y!w~k,y!.

From ~A3! and ~A4!, together with~1.2! and ~1.3!, it follows that:

@w~k,x!†; f l~k,x!#52ika1~k!†5 ik f l~0,0!†2 f l8~0,0!†2E
0

`

dz eikzw~k,z!†Q~z!, ~A5!

@ f r~2k,x!†;w~k,x!#52ika2~k!5 ik f l~0,0!1 f l8~0,0!2E
2`

0

dz e2 ikzQ~z!w~k,z!. ~A6!

In order to control the remainder terms in the subsequent asymptotic expansions, we will ne
estimates

iw~k,x!2w~0,x!i<C~11max$0,2x%!S kx

11ukuuxu D
2

, ~A7!

i@w~k,x!2w~0,x!#ji<CS kx

11ukuuxu D
2

iji , jPN. ~A8!

The term max$0,2x% in ~A7! accounts for the fact thatw(0,x) is in general unbounded andO(x)
as x→2`. In ~A8!, this term is absent becausew(0,x)j is bounded whenjPN. We omit the
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proofs of ~A7! and ~A8! here because~A7! follows from ~A1! by some standard estimates a
~A8! can be proved by mimicking the proof in the scalar case~see Lemma 2.2 in Ref. 12!.

Now consider the integral on the right-hand side of~A5! and write it as

E
0

`

dz eikzw~k,z!†Q~z!5A1~k!1A2~k!, ~A9!

where

A1~k!5E
0

`

dz eikzw~0,z!†Q~z!, ~A10!

A2~k!5E
0

`

dz eikz@w~k,z!†2w~0,z!†#Q~z!. ~A11!

Whenm51, from ~A.10! we get

H A1~k!5E
0

`

dzw~0,z!†Q~z!1 ikE
0

`

dz zw~0,z!†Q~z!1F~k!,

52 f l8~0,0!†1 ik@ f l~0,0!†2I n#1F~k!,
~A12!

where

F~k!5E
0

`

dz~eikz212 ikz!w~0,z!†Q~z!. ~A13!

Note thatF(k) is o(k) by ~4.11!, the boundedness off l(0,z) on @0,1`), and the estimate

ueikz212 ikzu<
Cz2

11z
, z>0.

In deriving ~A12! we have also used the relations

H E
0

`

dzw~0,z!†Q~z!52 f l8~0,0!†,

E
0

`

dz zw~0,z!†Q~z!5 f l~0,0!†2I n,
~A14!

which follow from ~2.28!. Using ~A7! in ~A11! we see that

A2~k!5o~k!. ~A15!

Combining~A5!, ~A9!, ~A12!, and~A15! we obtain

@w~k,x!†; f l~k,x!#5 ikI n1o~k!,

which agrees with~4.13! for m51.
Now consider~A5! for m52, that is, QPL2

1(R;Cn3n). In this case we can expand th
remainderF(k) in ~A12! as

F~k!5E
0

`

dz
~ ikz!2

2
w~0,z!†Q~z!1o~k2!, ~A16!

where we have used~A7!, ~A13!, and the estimate
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Ueikz212 ikz1
k2z2

2 U< C~ ukuz!3

11ukuz
, z>0.

The integral in~A16! can be expressed in a form that does not involveQ explicitly. To see this,
substitutew9(0,z)† for w(0,z)†Q(z) and replace the upper limit of integration byN. Then inte-
grate by parts twice and letN→1`. This gives

2
k2

2 F E
0

`

dz z2w9~0,z!G†

52
k2

2
lim

N→1`

GN
† 52k2E

0

`

dz@ f l~0,z!†2I n#,

where we have defined

GN5N2w8~0,N!22N@w~0,N!2I n#12E
0

N

dz@w~0,z!2I n#.

Thus

F~k!52k2E
0

`

dz@ f l~0,z!†2I n#1o~k2!. ~A17!

In the derivation of~A17! we have also used

w8~0,N!5o~1/N2!, w~0,N!2I n5o~1/N!, w~0,N!2I nPL1~R1;Cn3n!. ~A18!

These properties follow directly from~2.28! and ~4.11!. The expression~A17! for F(k) has the
advantage that it allows us to combineF(k) with another term that arises from the expansion
A2(k). To see this we return to~A11!. In order to expand the differencew(k,x)2w(0,x), we use
the variation of parameters formula in the form

w~k,x!5w~0,x!1 ik2f l~0,x!E
0

x

dz ḟl~0,z!†w~k,z!1 ik2 ḟ l~0,x!E
0

x

dz fl~0,z!†w~k,z!.

~A19!

We briefly mention some details of the derivation of~A19! because there is a useful identity th
falls out in the process. We write~2.26! as a first-order system with 2n components and note tha
a fundamental matrixC(x) for this system and its inverseC(x)21 are given by

C~x!5F f l~0,x! ḟ l~0,x!

f l8~0,x! ḟ l8~0,x!
G , C~x!215 i F ḟ l8~0,x!† 2 ḟ l~0,x!†

f l8~0,x!† 2 f l~0,x!†G .

By takingx→1` and using~2.4!, one can prove that detC(x)5i. For this and also later we nee
to use certain asymptotic information about the functionsḟ l(0,x) and ḟ l8(0,x). It suffices to men-
tion that ḟ l(0,x) is the unique solution of the integral equation

ḟ l~0,x!5 ixI n1E
x

`

dy ~y2x!Q~y! ḟ l~0,y!, ~A20!

which, incidentally, shows thatḟ l(0,x) is also a matrix solution of~2.26!. Moreover, a Gronwall
inequality gives

i ḟ l~0,x!i<C~11uxu!, xPR. ~A21!

The identityC(x)21C(x)5I 2n is easily verified by using the Wronskian relations
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@ f l~0,x!†; f l~0,x!#5@ ḟ l~0,x!†; ḟ l~0,x!#50,

@ f l~0,x!†; ḟ l~0,x!#5@ ḟ l~0,x!†; f l~0,x!#5 i I n ,

which follow from ~2.28!, ~A20!, and the first formula in~A18! which indicates thatf l8(0,x)
5o(1/x2) asx→1`. Then~A19! is an easy consequence of the variation of parameters form
for first-order systems. The useful identity alluded to above appears when we write out the id
C(x)C(x)215I 2n ~in this order!! in terms of the entries of the matrices involved. Among t
resulting identities we find

f l8~0,x! ḟ l~0,x!†1 ḟ l8~0,x! f l~0,x!†5 i I n ,

which will be useful later.
By iterating ~A19! once and using~4.11! we obtain

w~k,x!5w~0,x!1 ik2f l~0,x!E
0

x

dz ḟl~0,z!†f l~0,z!1 ik2 ḟ l~0,x!E
0

x

dz fl~0,z!†f l~0,z!1r~k,x!,

~A22!

wherer(k,x) obeys

ir~k,x!i<Ck2~11uxu!2S kx

11ukuxu D
2

. ~A23!

This estimate follows by using~A7! and ~A21!. Taking the adjoint ofA2(k) given in ~A11! and
expanding the exponential function there we get

A2~k!†5E
0

`

dz Q~z!@w~k,z!2w~0,z!#1o~k2!, ~A24!

where we have used~A7! to determine the order of the error term. Now we insert~A22! into ~A24!

and proceed as in the derivation of~A17!, using ḟ l9(0,x)5Q(x) ḟ l(0,x) and two integrations
by parts. We also use~A21!, ~A23!, and the propertyḟ l8(0,N)2 i I n5o(1/N) asN→1`, which
follows from ~A20!. The result is

E
0

`

dz Q~z!@w~k,z!2w~0,z!#5k2E
0

`

dz@ f l~0,z!2I n#2k2E
0

`

dz@ f l~0,z!†f l~0,z!2I n#1o~k2!.

~A25!

Combining~A9!, ~A12!, ~A17!, ~A24!, and~A25! we obtain

@w~k,x!†; f l~k,x!#5 ikI n1k2E
0

`

dz@ f l~0,z!†f l~0,z!2I n#1o~k2!,

which is the desired result in~4.13! for m52.
To prove~4.14! we return to the Wronskian in~A6!. If m51, we have

H E2`

0

dz e2 ikzQ~z!w~k,z!5E
2`

0

dz Q~z!w~0,z!1o~1!,

52D l1 f l8~0,0!1o~1!,
~A26!

where we have used~2.28! and~A14!. The order of the error term is again a consequence of~A7!.
Substituting~A26! in ~A6! we get~4.14! for m51. If m52, we have
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Downloaded 
E
2`

0

dz e2 ikzQ~z!w~k,z!52D l1 f l8~0,0!2 ikE
2`

0

dz zQ~z!w~0,z!1o~k!, ~A27!

and, using~3.1!, ~A14!, and~A27! we obtain

E
2`

0

dz zQ~z!w~0,z!5I n1El2 f l~0,0!. ~A28!

Substituting this in~A6! we get

@ f r~2k,x!†;w~k,x!#5D l1 ik~ I n1El!1o~k!,

proving ~4.14! whenm52.
It remains to prove~4.15!. So pickjPN and assumem51. Thenw(0,x)j stays bounded as

x→2`, which has the same effect on the integral in~A6!, when it acts onj, as if m were 2. In
particular,~A28! now becomes

E
2`

0

dz zQ~z!@w~0,z!j#5Gj2 f l~0,0!j,

where we have used~2.28! and ~4.5!. SinceD lj50, from ~A27! we obtain

E
2`

0

dz e2 ikzQ~z!@w~k,z!j#5 f l8~0,0!j2 ikGj1 ik f l~0,0!j1o~k!.

Substituting this expression in~A6! we get

@ f r~2k,x!†;w~k,x!#j5 ikGj1o~k!,

which agrees with~4.15! for m51. If m52 andjPN, then we can carry the expansion in~A27!
further as in the case of~A9! and~A11!. To obtain the corresponding coefficients in the expans
we could proceed by using variation of parameters in terms of the solutionsf r(0,x) and ḟ l(0,x).
However, there is a simpler approach that exploits the connection between the left and rig
solutions for~1.1! under the substitutionx°2x, that is, under the transformationQ(x)°Q#(x),
whereQ#(x)5Q(2x). We use the superscript # to indicate that a given quantity pertains to~1.1!
with potentialQ#. It is straightforward to show that

f r~k,x!5 f l
#~k,2x!, f l~k,x!5 f r

#~k,2x!. ~A29!

We now introduce a solutionv(k,x) of ~1.1! satisfying the initial conditions

v~k,0!5 f r~0,0!, v8~k,0!5 f r8~0,0!.

Then it follows from~4.3! and ~4.10! that for jPN we have

w~k,x!j5v~k,x!x, ~A30!

wherex5Gj. Since, by~4.10! and ~A29!

w#~k,0!5 f 1
#~k,0!5 f r~k,0!, w#8~k,0!5 f 1

#8~k,0!52 f r8~k,0!,

we get w#(k,x)5v(k,2x), which, together with~A30!, yields w#(k,2x)x5w(k,x)j. In the
following argument we use the more elaborate notation.@G(k,x);H(k,x)# (x0) to denote the
Wronskian of two matrix functionsG(k,x) andH(k,x) evaluated atx5x0 . Then we have
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Downloaded 
H @ f r~2k,x!†;w~k,x!#~x!j5@ f 1
#~2k,2x!†;w#~k,2x!#~x!x

52@ f 1
#~2k,x!†;w#~k,x!#~2x!x

5@w#~k,x!†; f 1
#~2k,x!#~2x!

† x

5@w#~2k,x!†; f 1
#~2k,x!#~x!

† x,

~A31!

where in the the last step we have used the fact that the Wronskian is constant and thatw(k,x) is
an even function ofk. The latter follows from the fact that the initial conditions in~4.10! are
independent ofk. Now the Wronskian on the right-hand side of~A31! is of the same form as tha
in ~4.13!. We can, therefore, apply the expansion given there. Then the integrand ofY2 involves
f 1

#(0,z) which can be rewritten in terms off r(0,z) by means of~A29!. Using also~4.2!, we obtain
~4.15!. The proof of Proposition 4.2 is now complete. j
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