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SPECTRAL FACTORIZATION OF BIL-INFINITE BLOCK TOEPLITZ
MATRICES WITH APPLICATIONS

CORNELIS V.M. VAN DER MEE!S, GIUSEPPE RODRIGUEZ!S, AND SEBASTIANO SEATZUS

Abstract. In this paper we review some numerical methods for the computation of the spectral
factorization of bi-infinite Toeplitz matrices with both scalar and block symhbols. We also discuss the
spectral factorization of the inverse of bi-infinite block Toeplitz matrices with a finite norm with respect
to suitable weight sequences. The results on the spectral factors and their inverses are then applied to the
solution of semi-infinite black Toeplitz linear systems and to the identification of the limiting profile in the

Gram-Schmidt orthonormalization precess, applied to increasing intervals, of a sequence of function vectors -

generated by integer translates of & giver function vector. As applications of the methods proposed, the
.. mumerical solution of the Poisson equation on an infinite strip and the identification of the limiting profile
'int the asymptotic orthonormalization of & vector of B-splines are then illustrated. Finally we discuss the

- extension of the theory to the spectral factorization of bi-infnite block Toeplitz matrices.

o 1. Introduction. In this article we give a review of numerical methods for the spectral
"~ factorization for bi-infinite block Toeplitz matrices and some of its applications. As a start

2 we Hst some definitions.

Let Z be the set of all integers and Z, the set of non-negative integers. By a semi-

- infinite (resp., bi-infinite) block Toeplitz matrix of order £ we mean a matrix 4 = {4;_;),
indexed by Z (resp., by Z), whose elements are real k x & matrices where k = 1,2,... does
not depend on (3, 7). Block Toeplitz matrices of order 1 are called Toeplitz matrices. Next,

- let A= (4;)jez be a sequence of real k x & matrices, where k£ € N does not depend on j.
Taking a sequence of positive numbers 8 = (B;);ez satisfying Bip; < G535 for all4,j € Z,
by Eff, 5{Z) we mean the space of all bi-infinite sequences A = (Aj)jez of real k x k matrices
for which '

AllLe =D Billdill <oo, o -y
CjeR '
" where || - || denotes an arbitrary & x k matrix norm. The most common choices of B are

B; = (1+|5])* for p > 0 and B; = gV for g > 1, which correspond to algebraic and
exponential weights, respectively. We write £5(Z)if f; =1 forallie Z. . '

Spectral factorizations play a crucial role in the solution of semi-infinite ‘Toeplitz systems
of the type : ' :

S Tjai=b, i€Zy. ' - (1.2)
Jeky :

‘Given a weight sequence 3 and a sequence of k x k matrices (T} )lnez, with finite norm

: _H(Th)hez+ ll1,5, We seck solutions (z4)aez of (1.2) satisfying fi{za)nez, l1,8 < oo for right-
" hand sides (bs)nez satisfying l(Br)nez, 1,8 < co. Here by, and 2, are real column vectors

of length % for every h € Z.
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The paper is organized as follows. In Section 2 we define the spectral factorization of
bi-infinite block Toeplitz matrices. In Section 3 we discuss various numerical factorization
methods for Toeplitz and block Toeplitz matrices. In Section 4 we recall Krein’s method
for solving the linear system (1.2}, emphasizing the crucial role played by the spectral
factorization of the inverse of a bi-infinite block Toeplitz matrix. In Section 5 we show that
the identification of the limiting profile in the Gram-Schmidt orthonormalization process,
applied to the uniform translates of a vector of functions defined on increasing intervals,
essentially depends on the spectral factorization of a bi-infinite block Toeplitz matrix. In
Section 6 we illustrate the application of the spectral factorization methods to the numerical
solution of some semi-infinite block Toeplitz systems. In Section 7 we discuss generahzatlons
to multi-index Toeplitz and block Toeplitz matrices. .

2. Preliminaries. In this section we first introduce the Banach algebra W* and in-
dicate its invertible elements, We then go on to define spectral factorizations of bi-infinite
block Toeplitz matrices and relate them to factorization properties in W¥. Finally, we dis-

" cuss factorization results for certain classes of bi-infinite and semi-infinite block Toeplitz

matrices. o
‘The class of matrix functions

Fz)= 3 29T 2.1)
_ JEZ : )
on the unit circle T for which .

||T”1,ﬂ = Il(Th)hezl Lo =D Bl Tl < oo,
. JEZ

is a Bana.ch algebra [10] d enoted as W’“ Th1s means that its norm satisfies the mequahty

1Tlhe < 1TOhslT®ls  T=Y, T(l) 3, ez
jez

We write WF if ﬁg =1 for alI i€ Z this particular algebra iz called the Wiener algebra (of

* order k). We call T(z) the symbol of the block Toeplitz matrix T = (T;—;)ijez. - .
h For k =1 the invertible elements of Wk are completely described by the Gelfand theory -
of commutative Banach algebras {20, 10]. These results extend to matrix functiors [10}. We
have the following result.

THEOREM 2.1. LetT'(z) belong to Wﬂ and have the form (2.1). Put B = limj_xc0 B; .
Then if T(2) is a nonsmgular k x k matriz for all z satisfying (1/8-) <1zl < B4, T(z)"1 S
belongs to Wﬁ L

In particular, if §; = ¢Vl for some g > 1, then T'(z) is an invertible element of Wﬁ i
' and only if T(z) is'a nonsmgular matrix for 1/g £ |2 < g. Analogously, if §; = (1+ A
for some o > 0, then T'(2) is an invertible element of W¥ if and only if T'(z) is & nonsingular "=

matrix for |z] = 1. .
By a spectral factorization of T (with respect to the weight sequence 8) we mean a
representation of 7' in any of the two forms - . :

T=LDMT and T=UDVT, - '}(2_2’

/0

where the superscrlpt T denotes matrix transposition and L, M DU and V are b1—1nﬁ]ﬂlt
© Toeplitz matrices of order & having the following properties:
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1. Ly= Mo = Uy = Vo = I, (the k x k identity matrix);

2. D3=0for33é0andL3=M3=0fors<0andU3=K;0f0r3>0;

3. the inverses L1, M~Y, U~! and V~! of L, M, I and V are bi-infinite block
Toeplitz matrices satisfying [L~'], = [M~2), = 0 for s < 0 and [U~1], = [V~ = 0 for
s> 0; :

4. the matrix sequences with entries L, M, Us, Vi, (L7, [M~Y,, [U~Y, and
[V~1]s belong to £5 ,(Z). .

A given bi-infinite block Toeplitz matrix has at most one spectral factorization of the type
T = LDMT and at most one spectral factorization of the type T =UDVT asin (2.2).

Given a positive definite bi-infinite block Toeplitz matrix, setting £, = LSDCI,/ 2 or

Uy = UsDé/ 2, we obtain the block Cholesky factorization T = L£L£7T or the block Wiener- _
Hopf factorization T = UUT, where £ = (L;;)ijez and U = (Us—j)i,jez are invertible
on £§ 4(Z) with inverses £~! and 2/~ the sequences (Ls)sez, ([£7s)sez, Us)sez and
{11475 )sez belong to & 5(Z), and Lo and Uy are positive definite hermitian.

Passing to the symbols Z(z), D{z) = Dy and M(z) of L, D and M , [resp., U(z),
ﬁ(z) = Dy and V(z) of U, D and V], we have '

T(z) = L(z) Do M(2)7, [:F(z) =f}(z)pc,1‘/(z)T], el =1, o (2.3)

where i(z) and M| (z) {ff (z) and T?’(z)} extend to matrix funetions that are continuous on
the closed unit disk {2 € C:|2] < 1} and analytic on the open unit disk. Further, L{z) and
M(z) resp., U(2) and V(2)] are nonsingular matrices for |z| < 1 and L(0) = M(0) = I,
[resp., U(0) = V(0) = L), ) )

Positive definite matrix functions in W¥*, matrix functions 7'(z) in W* such that T(z)+
T(2)* is positive definite for all z € T {where the asterisk denotes the conjugate transpose),
--. and matrix functions f{z) in W* such that [IJ — f(z)ﬂ < 1 for all z € 7 (the norm
representing the largest singular value of I — ’f(z)) have factorizations of the type {2.3) (cf.
[7]). When the Toeplitz matrix T of order k is banded (ie., if T;—; = O whenever [i— 7| > m
for some integer m), necessary and sufficient conditions for the existence of the spectral
factorization (2.3} as well as a numerical procedure for its calculation have been given [24],
based on matrix polynomial theory (e.g., [29]).

We have the following result. :

THEOREM 2.2. Suppose the bi-infinite block Toeplitz matriz T = {T3)iez with symbel
in W* has a spectral factorization of the type (2.1) and T(z) 18 a nonsingular matriz for
(1/8-) <2| < By. Then the factors and their inverses have symbols belonging to Wg.

The above theorem is most relevant to banded matrices T where T, = 0 for 7] > m.
Suppose one can find an annulus 1/¢ < |2{ < g with ¢ > 1 on which det T(z) # 0. Then if
T has a spectral factorization, the factors and their inverses have symbols belonging to Wg

for 3; = glil. ' '

3. Numerical factorization methods. In this section we discuss five well-known nu- -
Merical factorization methods for bi-infinite banded Toeplitz matrices with positive definite -
symbol., We then go on to describe the corresponding methods for block Toeplitz matri-
ces. Finally, we illustrate two factorization methods for computing the inverses of block

E - Toeplitz matrices that we will use later to solve & differential boundary value problem on a

: semi-infinite strip and to find the limiting profile in the Gram-Schmidt orthonormalization
. brocess applied to a semi-infinite sequence of function vectors. ' '
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3.1. The scalar Toeplitz case. Let us review five methods for the spectra,i factor-
ization of banded and real symmetric Toeplitz matrices [18, 23].
Let Abea bi-infinite, real symmetric and bhanded Toeplitz matrix

A = Toeplitz{A_nn, ... A0, ... ; Am ),

where A; = A; = A_;,7=0,1,2,...,m. When its symbol A(z) > 0 for z € T, the probiem '
is to find real numbers Tg,T1,. .., I'y such that

' f‘{z) = EI‘jz"
j=0

has all of its roots outside the unit disk and such that _
i z)f‘ )= fl(z), ze7. (3.1)

To guarantee the uniqueness of the factorization we impose the normalization I'(0) > 0
. on the polynomial I’(z). The existence of such a factorization is well-known and generally

attributed to Fejér [cf. [27], Sec. 53].
The first method we wish to describe is due to F. Bauer [2, 3]. As A(z) > 0 for z€ 7,

the matrix A is positive definite on £3(Z). Moreover, the factorization (3.1) corresponds to
the factorization ' '

"A=TTT, TI'= (Ti-f)igez.
Let A+ ‘be the semi-i.nﬁnjt.e compression of A g';ve'n by
_ Ay = (Aij)ijen,
and A,, n € Zy, be the sequencé of finite compressions of A giﬁen by
n = (Ais)ij=0,1,..m» 7=0,12,.

Then each A,, has a unique Cholesky factorization L,LL = A,,, where L, is a lower trian-
gular matrix with positive diagonal elements. As we replace n by n + 1, the matrix Ans1
agrees with A4, on its first n + 1 rows and columns. Likewise L1 has its first n + 1 rows
and columns equal to those of L,. Thus we may consider L, as the n-th finite section of
a semi-infinite matrix L which is the unique Cholesky factorization of Ay, f.e. Ay = LI7.
Bauer proved that (Ly);; — T'i; as n — oo, and in [17] it has been proved that these
elements approach those of I' exponentially, Le., there exist ¢ >0 and p € (0,1) such that '
for allé,j € Z+ :

|Li; — Tisl < g

Based on this observation, it is straightforward to justify the corresponding algorithm.
The second method we consider is due to Wilson [31] (cf. [18]). His idea is to wrlﬁe
equation (3.1) as the equivalent system of quadratic equatmns '

m—i ' nER
T rm A, i=0,1,...,m, (3..2)

F=0
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and to use a Newton-Raphson method for solving the system (3.2). Wilson proved that, if
A(2) has no zeres on the unit circle, for a suitable and essily made choice of the starting
values I‘éo), FEO), . ,I”,(,?), the iteration is self-correcting and converges quadratically to the
i required solution. For details on the algorithm we refer to [18].

' The third method is based on the computation of the zeros of the Laurent polynomial

A(z). To improve the effectiveness of the method, in view of the symmetry of its coefficients,
we write A(z) in the form

. fi(z) = Ay + i A; (zj + z"j)

F=1

and make the change of variable w = 2z 4+ 2~ to obtain the polynomial

Clw) = Az(w)) = Z Cyuw!

§=0

whose coefficients Cp, C,..., ), can be expressed recursively in the original coefficients
Ap; Ay 1., Ay The zeros wy, i = 1,2,...,p, of the polynomial C'(w) can then be evaluated
by computing the eigenvalues of its companion matrix by a QR method [16]. Next, we solve
the m quadratic equations

z+z t=wy, i=1,2,...,m,

and then, taking into account their multiplicity, we obtain the 2m roots z,t=1,2,...,2m,
of A(z) ordered by decreasing modulus. The polynomial I'(z) we are looking for can then
be constructed by multiplying the linear factors corresponding to all the roots z; (including
Z;} outside the unit circle. : : _ o

The fourth method tested in {18] is the minimum phase factorization. The basic idea
of the algorithm is based on the following observation. Let A(2) have no zeros cn the unit
circle.. We consider the minimization problem

T i8y(2
min / ’—Ci—(ifidﬁ,
—r A(ezé’)

" where & runs through all bolynomials of degree < m and it is normalized by G(0) = 1.
Then the solution of this minimization problem is given by

where I is the polynomial in (3.1) we seek. _

The final method we review is very popularin signal processing and goes by the name of
the cepstral algorithm [4, 26]. It is based on some results on the factorization of an absolute
convergent Fourier series on the unit circle, discovered independently by M.G. Krein [22]
and by A, Calderén et al. [6]. Let us discuss the basic idea underlying this method.

As the Laurent polynomial A(z) is strictly positive on the unit circle, by the Wiener-
Lévy theorem on trigonometric series, the function log A(z) can be written as an absolutely
convergent Laurent series : :

B(z) :=log A(z) = Zszj.
' =
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Moreover, as those of A(z), the coefficients of B(z) are even in j ‘and decay exponentlally,
since log A(z) has an extension as an analytic function in some annulus r=1 < |z| < r, r > 1.

Splitting the Laurent series in the form
B(z) = B_(2) + B (2),

“where

Bﬂ@=§30_§%03ﬂﬁﬂ ] <1,

=0
we obtain the factorization (3.1) of the required type, where
P(z) = exp(By(2)) ,

s analytlc and zero free in the disk {z : |2| < r} and normalized so that I'(0) > 0. Note
“that I above is indeed a polynomial of degree at most m. A Matlab lmplementa.tlon of this
method has been proposed in [1]. '

In [18] it was found that there is a huge disparity between the methods, and that all
of them except for the Wilson method are significantly affected by the variation of the
coefficients of the Laurent polynomial in magnitude, by the vicinity of the zeros of this
polynomial to the unit circle and by their spacing. :

3.2, The block Toeplitz case. Among the spectral factorization methods for scalar
positive definite symbols, only Bauer’s method allows for a straightforward generalization
“to bi-infinite block Toeplitz matrices with positive definite symbols. The genéralization of"
Wilson’s method to the block Toeplitz case, as formulated in {32], cannot be implemented
in a straightforward way, since the algebraic equations for symbols appearing in [32] cannot
be easily converted {o linear matrix equations for their coefficients. Further, no extension of -
the fourth method above to the block Toeplitz case has ever been numerieslly implemented.
Finally, the cepstral method cannot be generalized to the block Toeplitz case either, since

it is ultimately based on the additivity property of the logarithm.
Let us now discuss the UDL factorzzatlon of the banded bz—mﬁmte block Toeplitz matrix

A of the form

_ A=LYDR, ' - {33
where L = (Li-j)ijen, R = (Ri—j)ijez and D = (Dj_;); ,Jez are banded block Toeplitz -
matrices with Ly = Ro' = I (the k x k identity matrix), L, = —£, (s = 1,...,m) and

"Re=-Rs (5=1,2,...,0n), Do =D, D, =0for s£ 0, Ls—Ofors;éOl mand
Ry=0fors#£0,1,... ,n In cther words, L and R are lower block-tuanguiar matnces and L
D is a block- dlagonal matrix. Further let the matrix function

5(z) = Zn:zjfl,- | R (3-4).':_

j=—m

be the symbol associated to the matrix A, and let us assume A,, to be nonsingylar. Then :
P(z) = 2™ A712(2) is a matrix polynomial of degree m + n whose leading coefficient is th
"identity matrix .

' Let us consider a simple closed positively oriented rectifiable Jordan curve T, with 0 ¢ T
dividing the complex plane into an interior bounded domain Q.. with 0 € 2, and an exterio!
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domain ., and assume that det(2™%(z)) does not vanish for z € T'. Then [29] the matrix

factorization (3.3) is equivalent to the factorization

Cm T n | '
S(e)=(L—=> 27L;) D|L- Y 2Ry, zel, _ (3.5)
i=1

. 3=1

of the symbol of 4. The nonsingularity of A, implies that botk R,, and D are. nonsingular,
Before describing the algorithm to factorize A, we recall some basic properties of matrix
polynomials [13, 14, 29]. Consider the matrix polynomial

P(z) = Ze.fk -+ Zz_lAf_]_' + ...+ ZAI + ACH

of degree £ whose coefficients are k x k matrices. We call z; € C an eigenvalue of P if
det P(2;) = 0. The corresponding eigenvector x;; s a nontrivial vector in C¥ satisfying
P(zi)xj1 = 0. Then, obviously, P has a spectrum of exactly & eigenvalues, taking into
account their multiplicities as zeros of det P(z). The complex vectors {X;1,Xja,... ,X;r}

constitute a Jordan chain at z; of length r, if x;1 7 0 and the lower triangular linear system
of equations : o

§5 P

('EL—-’U)' X =0, 'LL=—'_1,..2,.-.,7",

v=1

is valid. The lengths of the Jordan chains at the eigenvalue 2; in a system of maximal Jordan
chains are called the partial multiplicities of P at #zj. The sum of the partial multiplicities at
#; coincides with the order of 2; s a zero of det P(2) and is called its algebraic multiplicity;
the dimension of the kernel of P(z;) is called its geometric multiplicity and is equal to the
number of linearly independent maximal Jordan chains at i o

A pair of matrices (X, T), where X is of size k x k€ and T is of size k¢ x Ef, is called a
right spectral pair for the polynomial P(z) if the matrix

X
S X7
col[ X7V ]_f-;}) =

XT:E—l
is invertible and the following eqz_lality.hojds
£-1

XT+ > 4;XT9 = 0.
§=0

By a left spectral pair for the polynomial P(z) we mean a right spectral pair for P(z)7.
The right canonical form for P(z) is given by '

Pl2) = 2" — XT* (Vi 4 2Va + ...+ 2571V)),
where V4,...,V; are the k€ x .k matrices defined by

v % .. W]:(COI[XTj]f;g"I_
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For a right spectral pair we have the inversion formula
P = X(z - T)'Ve. (3.6)

A similar deﬁnition bolds for the Ilsft cancnical form.

Denoting by zi1,...,2, the distinct eigenvalues of P(z), each of algebraic multiplicity
my, it can be shown [29] that a right spectral pair (X, T) for P{z) is given by '
X=[X1 X ... X,], T=Theho.. 6T, (3.7)

where the matrices Xy, of size k X my, and T}, of size m; x my, are given by

=[x = <P xg«;)r”? ],
T‘j = ']le (Zj) @ JTjZ (zj) G...0 J?'jqj -(z.f)' .
Here xg) X SQ, . xg%s, s=1,..., ¢y, are the maximal Jordan chains for P(z) correspond-

ing to z;, Jn (%) is the r; X r, upper triangular Jordan block w1th eigenvalue z;, and
riit T2t g =m; (f=1,...,p). '

To obtain the factorization the following theorem is crucial.

THEOREM 3.1. Let z,...,2, be the distinct zeros of det( mZ(z)) in 0— and let
Zeglse-. s Zoys be its d’istz'nct zeros in §1y. Moreover, let (X, T) be a right spectral pair
of the matriz polynomial P(z) = z™ A 5(z). Then there ezists a factorization of T(z) of
the type (3.5) where det(Iy — 311, #7°L;) # 0 for z € QO and det(lr — 37, 2'R;) # 0 for
z € Q. if and only if '

m1+ +m3—nk Mg+l + -+ +ms+t mL

and the restmctwn of col[XTJ]“ to the linear span of the ezgenvectors and generalized
eigenvectors of T in Q4 is mvemble This factorization is umque ami is called the spectral
factorization of A.

Following the proof of Theorem 2.1 of [24], the exphc:t construction of the factorization
(3.5) has been given in [25] and will be presented here in abbreviated form. Indeed, as
specified in (3.7), we construct the right spectral pair (X, Tg) of the matrix polynomial
P(z) = 2™A;'2(z) by using its Jordan chains, which coincide with the Jordan chains of
2™ 5(z), and its left spectral pair (X7, 7. ) in a similar fashion. Partitioning the & x (m-+n)k
matrices X7, and Xg into a k x nk block and a k x mk block, we have '

Xp=[? V], Xg=[W 7],
s+t

T, =Tg = @(J"ﬂ(z.‘f)@”'@‘]rﬂj (zj)) !

=1

where the matrices at the question marks are irrelevant and rj1 + ... + gy, = m; (F =
1,...,5+1). We now set ' L

% (Jm(zj)@ -9 rjq,-(zj)),

j=s+1

Agp= é (Jf‘n (zj)._GB -8 J"J"?;i (zj)) ?

=1
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and construct the mk X k matzices Wy,...,W,, and the nk x & matrices V,... s Vo by
putting '
' ' -l
(W W o Wa ] = (collvadligt)
[V % o V)= (colwagyizd)”

The coefficients of the factorization in (33) are then giﬁren by

Li= (A VAP Wi AT, i=1,...,m,
Rj=—(WAR) ™ WARV;, j=1,...,n—1,
Ru= (WARW) ™,

—(LLy 1AL, = —ART,

l

which corresponds to taking right spectral pairs (V, Az) and (W, Ag) for the matrix poly-
nomials £(2)(AZ)~! and R{z), respectively, and recovering the spectral factors from their
canonical forms. _
Assuming ' = {2z € C: |z| =p}, Oy = {z € tC 2] < p} and §).. = {zeC: |zl > p},
Z{z) has the factorization (3.5) for z € T, where = s

-1

m
L= 270 ) =2"(AD) Wz~ Ar) T W, AT
[>2] .
= Y RN AT IV AR, AT
p=0
for z € Q.. and
~1 . _ : .
k£ . o0
T _'Z 2Ry = W(I — ZA?)AAEIVRR? — Z ZMWA}_%(M'FI)%RT—LI
Jj=t p=0

for z € 0, :
- When Z{z) is the symbol correspondmg to a real matrix 4 which is symmetric (m = n,
A= A ), positive definite, block Toephtz and banded, we can assume the curve I to be

the unit c:rcle go that Theorem 3.1 assures that there exists only one fac:tonzatlon ofdof © . o -
. the form : . SR

AzUUT

where I/ = LTDI/ 2, This is often referred to as the Wiener-Hopf factorization of A. In this

‘case the matrix D in (3.3) is real positive definite, as well as Ag and D. Moreover, L; = R;
and the symboi :

H(Z) = Z Z_jf,(j
. pourd
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of the matrix U has coefficients defined by

MU — Dle’
Uj = —R?'Dl/z = _['?Dl/za . .? =1,... ' 1

The factorization method just discussed has the disadvantage that it can only be used
for banded block Toeplitz matrices. We now present a method based on band extension (cf.
Section XXXV.3 of [10]) which applies only to positive definite semi-infinite block Toeplitz
matrices.

Given the real k X k matrices A—p, A_p41,... , Ay, we seck a bi-infinite block "Toeplitz

“property 3 ..z |5 < +oc. In other words, we seck a posmve deﬁmte band extension &
of the banded bi-infinite block Toeplitz matrix with symbol -

P

> A4y | (3.8)

j==p

The following result indicates when such a so-called Carathéodory-Toeplitz extension
exists. Moreover, in the theorem we present an algorithm [10] for constructlng one partlcuiar
‘such extension as well as all such extensions.

THEOREM 3.2. Given the realk x k matrices A_p, A_p1y, .. there exisis a Care-
théodory- Toeplitz extension of the banded bi-infinite block Toeplztz matmz with symbol (3.8)
af and only if the k(p+ 1) x k(p+ 1) matriz :

Ao Ay ... A,
) Ay Ag .0 AL 1 . ) .
r=|"" 7 i 69
Ap Ap.._]_ . Ag'

_ the inverse of the corresponding bi-infinite block Toeplitz matriz is banded Defining the
k(p+1) x k matrices

X I Y,1 o

ol o

the bi-infinite block Toeplitz matrices U = (X,,_J ),,Je;g , and V=

. matrices Dx a:n,d Dy wzth respective dm_gonal entmes Xo and Yy, we have

0,1 =UDxUT = VDy VT, . (‘3.1_’1)

Moreover, each real solution  of the Carathéodory-Toeplitz extension problem has the prop-

=(VG+UYI - GTGHGTVT +UTY,

matrix © = (®;_;); jez which is positive definite, satxsﬁes ®; = A; for |l < p, and has the

s positive definite. In that case there ezists a unique solution @, with the property that

=7t | Pol=p1) i, o (3.10)

(Yz.ﬂ-J )z JEE+ using -XJ - 0
forj<Oandj>pandY; =0 for j < —p and j > 0, and the block- diagonal block Taeplztz‘ _
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where G = (G;_;);i jez, is o bi-infinite real block Toeplitz matriz satisfying G; = 0 for j <p
which is a strict contraction on 63(Z,). There is a 1, 1~-correspondence between real soluiions
® ond such matrices G. ' _

The above theorem leads to the following factorization of positive definite bi-infinite
block Toeplitz matrices. Let A be a positive definite bi-infinite block Toeplitz matrix. For
P € Zy large enough, the bi-infinite block Toeplitz matrix with symbol (3.8) has a positive
definite banded extension @ such that the bi-infinite inverse &~ is banded. The factors of
the inverse 7%, as given by (3.11), are approximations of the factors of the inverse of the
original positive definite block Toeplitz matrix,

4. Spectral factorization and the solution of semi-infinite block Toeplitz sys-
tems. Let us now recall Krein's method [22] for solving the semi-infinite block Toeplitz
system (1.2). Denoting by f(z) the symbol associated to the Toeplitz matrix T, the system
(1.2) has a unique solution with discrete Fourier transform in WE if and only if T(z) 0 |

for all z with (1/8-) <lz| < A, and B+ as-above. Then ’f(z)‘l has the factorization
T(z) ™! =Ty ()T_(2) @y

© in WE, where

Pu(e)= > 2I¥,  T_(5)= S e, (4.2)

JeZy FEZ.

with [[T®]];,5 < 00 and JT®)|}; 3 < 0. One then has the solution formula

Ty = Z Teshs, L€ Zy, . o {4.3)

SEZ+
for the system of equations (1.2), where

min{é,s) - ' ‘
CTe= Y @, : 44y
: h=0 )

Note that the mentioned properties of the sequences {I‘;l} } and {I*gvz)} allows us to approx-
imate properly z; by equation (4.3). If T is block banded, for example, then T(1), (@)
and I' are exponentially decaying and, as a result, we can obtain a good approximation by
considering a small number of terms in the series representation.

We now have the following result. : . :

THEOREM 4.1. Consider the semi-infinite block Toeplitz systern (1.2), where, for some
fized weight sequence B, [{(Th)nex, lh,s < oo and ”(bi)iGZ+“1,ﬁ < co. Suppose T(z) is
mnvertible for every z with (1/8-) < |2| < fy. Then each solution (z1)iez, of (1.2) with
”(mz‘)iez+”1 < oo satisfies ”(mz')iez.;.lll’ﬁ <00, . o .

Let us now illustrate some asymptotic properties of the factors of a sequence of increasing -
compressions of an infinite block Toeplitz matrix. Consider the bi-infinite banded block
Toeplitz matrix A with symbol given by (3.8), where each A; is a k X k matrix. We define
.. the semi-infinite block Toeplitz matrices Ay and A_ as follows:

Ay = (Ai—jhijer,, A_= (Aj-i)ijem, s (4.5)
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where A;; = 0if [ — 7| > p. Then A4 (resp. 4_) are boundedly invertible on the Hilbert

space £y of square summable complex sequences {2;)icz. if and only if the symbol X(z) =
oy P A (resp., Dz} = 37T o 70 A_;) bas a spectral factorization. Now we define on

&5 the progectlons B, of rank nk as follorws Pz = (0, 14 .+ y Tak, 0,0,0,...). Define

-the (nk) x (nk) matrices A, and A,_ as the corresponding left upper blocks of .4+ and A_,

respectively. Then, according to Theorem 2.1 of [11] (also [9, 28]}, the matrices An_r and A,
are nonsingular for sufficiently large n and for every y € 3 the vector (A n+y,0 0,6,...)
converges to A_Ily in the norm of £3. Similarly, for every y € £; the vector (4 1y,0,0,0,...)
converges to AZ'y in the norm of £p. In fact, these two convergence properties together are
equivalent to the bounded invertibility of both Ay and A_ on £5.

The semi-infinite matrices A given by (4.5) have the LDU- factonzatmns Ay =LyDyiMf

if and omly if they are boundedly invertible on 3. Then, for n large enough, the matrices

Anz eorrespondmcT to their (nk) x (nk) left upper corners have LDU-factorizations of the

form . o
Apy = Lni Doy MY, An— = Lo Do M2,

where Dy, and D,,_ are block diagonal matrices and Lp4, Ly, Mny and M, are lower
block triangular matrices having I as their diagonal blocks. Moreover, writing J,[T] as
the semi-infinite matrix obtained from the (nk) x (nk) matrix T' by adding zero entries,
the extended (nk) x (nk) matrices JnlZnt), Tnllmtls TnlMnsl, TnlM L], TnlDns} and

' jn{ ~1] converge to the respective semi-infinite matrices L., L1, My, M3', Dy and

Di in the strong operator topology as n — 00. To prove these convergence properties,
one applies the theory of multiplicative LI/-decompasitions {10] with respect to the chain of

. .orthogonal projections {0, Py, P1,. .. , I, } to the semi-infinite matrices A, where Iz, is the
identity operator on £3. Using the same multiplicative LU-decompositions with respect to

the same chain of prQ]ECthﬂS in the Hilbert space of complex sequences (z;)icz, endowed

1/2
with the weighted norm |} ;5. 7 N 28z, ] for a suitable r > 1, one proves that the above

- convergence properties also hold with respect to the weighted norm.

Similar results hold for the LDM7T-factorization of a bi-infinite banded block Toephtz

matrix A. Indeed, let £3(Z) stend for the Hilbert space of square summable sequences

indexed by the integers and let us define on £2(Z) the projection Py of rank (2n + 1)k a8
follows: P (22 oo = -+ 50,0,%p,...,25,0,0,...}. Next, define the (2n+ 1}k x (2n+

. 1)k matrices A, as the correspondmg central blocks of A. Then, according to [11], Theorem

4.1, applied for R = §, A, is nonsingular for sufliciently large n and for every y € £2 (Z)

: the vector.(...,0,0, A71y,0,0,...) converges to A~y in the norm of £3(Z). Actually, this

convergence property is equivalent to'the invertibility of both A4 and A_ on £;. Moreover,
for suﬂi(:lently large n the ‘matrices A, have an LDU-factorization of the form

A LDn-ﬂ,'

where D, is a block diagonal matrix and L, and M, are lower triangular banded bloek = .
Toeplitz matrices having I as their diagonal blocks. Moreover, writing J;[T] as the b -
infinite matrix obtained from the (2n+ 1)k x {(2n+ l)k matrix T by adding zero entries, the -~
extended matrices J;[La], Jo (L7, T2 (M), T 1M1, g, “‘[Dn] and 7, [ D 1] converge
to the respective bi-infinite matrices L, L—1 M, M 1 D and D! in the strong operator

topology as n — oco. The proof of these convergence properties follows from the theory

of multiplicative LU-decompositions [10] with respect to a sultabIe chain of orthogonal :

proj ectmns
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When A is real positive definite and hence Ag is real positive definite and AT = A_;;
A and A.. are both boundedly invertible on {3, since their LDU-factorizations both exist. -
In this case the unique solution of the equation Az = y can be approximated as indicated
in the previous two paragraphs.

5. Spectral factorization and lmiting profile. The properties of the Cholesky

factorization of positive definite bi-infinite block matrices, that we use here, are a general-
. ization of analogous results for scalar matrices obtained in [19], where they were applied to

studying the asymptotic behavior of shifts of an exponentially decaying function. In this
section we summarize the results from [24] on the asymptotic behavior of shifts of a vector
of exponentially decaying functions. :

Let (z) = (p1(2), 02(z), ..., ve(z))T, 2 € R, be a vector of real functions defined on
R. We say that ¢ is an exponentially decaying vector function if there exist constants & > 0
and A € (0,1) such that

lp(@)lloo = max jeifa)] s A, zeR. - (5.1)
Now consider the integer translates of ¢, i.e., the function vectors

wy=p(—14), i€Z,

where ¢, 1= . Furthermore, for r,s € Z, let the symbol (@) ©s) (a8} denote the £ x £
matrix .

((‘Pz‘+r, on+s)[a,b])i,j;-1,-.- g
where (-,-)ja,3) is the usual scalar product in L?[a,B]. According to this 'deﬁniti_an, p,. is
orthonormal to ¢, on the interval [a, 8] if and only if {0 sdlap) = L2 Brs- :
B For any such furiction vector ¢, the bi-infinite block matrix sequence

Ty = (5901 rir, hEZ,

is even in the sense that T}, and 7.}, are each other's transposes, i € Z, and it is exponen_ti_ally
decaying since :

. _ .
_— . 293 |h]| _
”Th”oo : i#nllﬁ{,f_;ml: i[Th]zJ, SKEEA (fhi + _log()\"l)) :

Hence ([24], Lemma 3.1) the bi-infinite block Toeplitz matrix of order £

= (Trs)r,sez = (Trms)r,_r‘,-ez,

is a bounded operator on £»(Z). :
Now consider the semi-infinite block Gram matrix .

G= (GTS)T-SEE: GTS = (Sar’ ‘Ps)R-;-! 8 € Z‘%—#

generated by .

LEMMA 5.1, If @ is exponentially decaying, then there exist ¢ > 0 and ) € {0,1) such
that _ : : : o

Gy — Tyl <X, 4 5eZy.




Q. V.M. Van der Mee, G. Rodriguez, 8. Seatzu

Now consider the finite block Gram matrices

[@nlrs =P Polionp TE=01...,n, n€Zy,

whose b]ock entries for large enough n,r and s are very close to the correspondlng entries
of (3, as specified by the following lemma.

LeEMMA 5.2. Take p € (0,1) and consider the truncation G, = (Gw)z =0 0f G. Then
there exist C > 0 and p € (0,1) such that

”[ nIrs - [ 'n]_rsn < O#T-’_s: 0g<rs< [P”}
[pm

~ ]
Moreover, the sequence of inverses to the matrices ([Gn]rs) . is bounded.
T, 8=
Now suppose that the matrices T and G are positive definite on £3(Z) and %(Z,),
respectively. As specified in Theorem 3.11 of [24], under this hypothesis there exist the -

block Cholesky factorizations
T=LLT and G=MMT

of ' and G where L and L‘1 are bi-infinite lower triangular block Toeplitz matrices with
blocks of order £, M and M~ are semi-infinite lower triangular block matrices, and L, L1,
M and M1 decay exponentlally Consider the block Cholesky factorlzation

It is straightforward to prove that for all ¢ = 0, 1,...,n and z € R the function vectors 9
defined by : _ .

«/ﬂ(m)—z[ 1];_%;(3,) | 6

are the ones generated by the block Gram-Schmidt ozthonormahzatlon process apphed to
{@5}5=0,1,...,n on [0, n}.
Under the above hypothesis on the Toeplitz matrix T, the function vector

‘d)(x) = Z [L—I].’f"lo—.j(x): i E R, o (53)

jeiy-

decays exponentially. Furthermore, its integer translates are orthonormal on R, ie,

hbrs 'ilb.g)IR : 1y 57"3, rsc Z,

Vﬂth"th =a(-—h), h € Z

The main result of Subsection 5, which is a generalization of Theorem 2.1 of [19 is
that, under the conditions claimed in Theorem 5.3, the function vector % defined in (5.3)
supplies the limiting profile of the block Gram-Schmidt orthonormalization process applied
to the interval [0, n], with large enough n. -

Using formulae (5 1) and (5.2)-(5. 3) we easily obtain that, for + € R and all d
0,1,... 7

| ©d -1
NP (@) = @) < 6D N [L*l}wum Z L 51.

J==0 : L=
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Since [L‘l];-_,- = [L~%];—; and the sequence [L™%}, h € Z, decays exponentially as i — co,
there are constants ¢ > 0 and « € (0,1) such that

NEs) < et 45=0,1,...,n.
This inequality implies that, for z € R, '

ot ]
— 4 z

65 (@) = $al) < 0 3 g ~ (27 4
| L

=0,1,...,:r_1.

THEOREM 5.3. Suppose @ is a real function vector on R which satisfies the inequolity
(5.1) and has the property that the corresponding block Toeplitz matriz T and the Gram
matriz G are positive definite. Then for every constant p € (0,1} there are constants C >0,
p€(0,1) and N € Zy such that for alli,n € Z., with0 <i < on ondn > N we have

_ 147 (2) - s}l < ', zeR,
where ¥ is defined by (5.3). _ .
Let us now give a practical illustration of the procedure for the identification of the

~ limiting profile proposed above. To this end we consider the following two B-splines, already
_introduced in [24]: ' ' : :

11 i 1 '
Bile) =3¢ (-2); — 5 (-a)i + 5 (1-a)}

Tocspslpogy

—4(2 x)++18(3 Ty,

Bw)= o B-o)i-2@~2+5 @-a)

.—g A-z)i-2(01-2)%— % (~z)i .

Now, take @(z) = (Bi{z), Ba(z))¥, = € R, and consider its integer translates @, () =
Cp(r—i),i€ Z. o

Further, let T, with entries T3; = {1;, ®;): 4,5 € Z, be the Gram matrix associated to

them. It is a 5-diagonal block Toeplitz matrix of order 2, whose nonzero blocks T =T,

g, = L[ 18176 101797 . 14634 6573 ) . 1[124 111
°T o | 10179 11304 |* 71T 5| 1275 1688 ' 2T 6 4

& o
with o = 362880, T..; = T{ and T = TT.
Hence, the symbol corresponding to 7T is

1 : : -
Ez) = = (T2z2+le+T0 + 7Tt +T2Tz_2) ,

where the superscript T° denotes the matrix transpose. It is positive for |z} = 1 and further
det(22%.(z)} has four zeros inside the unit circle and four outside of it, so that T is positive
definite. Since in this case G = T, the hypotheses of Theorem 5.3 are satisfied.

Now let 97 (z), i = 0,1,...,7n, be the function vectors (5.2) generated by the Gram-
Schmidt process applied to the translates of the function w(z) on the interval [0,7m]. Then
. Figure 5.1 depicts the behavior of the two components of 42°(z) for some values of # and

* Figure 5.2 shows the graph of the lmiting profile {z) arising from the asymptotic ortho-
normalization process applied to the aforementioned vector functions ¢;, i € Z..
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Fie. 5.2. Limiting profile (x)

6. Applications. As a first application of the previous method, let us consider the
numencai solution of the Poisson equation on a semi-infinite strip. More precisely, setting
Q ={(z,y) : 0 <z < 0o, 0 < y <1} and denoting by 682 the boundary of {2, we consider
the numerical solutlon, by a finite differences method of the differential boundary value -
problem _ i B ;

Au(m,y) = _'f(I:y)a (:E, y) € {, | ’ | . (61)
u(:c,y) =0, (m,y) € 04, ' R

where A is the Laplace operator.
Discretizing the differential problem (6.1) by a 5-points scheme on the mesh points

(x1,y;) = (Ghogh), F=0,1,...,n+1, i=0,1,...

" with the stepsize & = 1/{n - 1) and choosing the usual order for the unknowns Uu: .
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obtain a semi-infinite linear system of block Toeplitz type whose matrix is of the form
TO "‘“In
-I. 1 . )
T = ) 1, : {6.2)

where I, is the identity matrix of order n and Tj is the n x n tridiagonal Toeplitz matrix
L : :
-1 4
-1
-1 4
The syinbol assoclated to the matﬂx T is the Laurent matrix polynomial
T(2) = =27\ L, + Ty — 21, |

In this case the eigenvalues {);} of the corresponding monic matrix polynomial Plz) =
—2T'(z) can be obtained analytically. Indeed, it is straightforward to prove that

1 /——)2 ,
/\j= "2'(#.?_;_ #j_q‘ ’ 3—1,...,71

1/ Aznmjt1s i=n+1,...,2n,

where

‘7+1,_j=1,...,n.

13 _=4+2cosn

The first n eigenvalues lie outside the unit circle and the last n inside, as shown in Figure
6.1 for n = 20. As a consequence, a very accurate spectral factorization of P(2)™! can be
obtained using the first method, even for moderately high values of n. _

Denoting by g, for ¢ =0,1,... and § =0,1,...,n+ 1, the solution of the discretized i
problem, we assess the accuracy of the results, with respect to n, by the following two error _ I

egtimates: N . :
B = max {lu(%yj) ~ D], i € Taon, EL,} S @3 . L
(e, 35) — ) | | :
E,Ek) = Max { ———’ § € Ty, 1€ T, |1 zi, 7)) > 10716 6.4
where Z, = {1,...,n} and k = 1,2 specifies if the spectral factorization has been carried

out by the first or the second method, respectively.
© As a first example, take -

. flz,9) = {27 cosmz + (202 — 1) sin mz] e”* sinmy,
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Fig. 6.1

- 8o that the exact solution of (61) is
uz,y) = e""sinmz sinmy.

Figure 6.2 shows T(LI), Eﬁﬂ and 1/n? in the range 5 < n < 40. Note that, as we expect
solving the Poisson equation by the 5-points discretization method [30], Eﬁ.l) =0mn"%).
The high level of accuracy of the results essentially depends on the exact knowledge
of the eigenvalues of the matrix polynomial P(2} = —2zT'(z). Indeed, our experience sug- - :
gests that the precision attainable by the first method primarily depends on the accurate
evaluation of the eigenvalues, on their separation and on their distance from the curve 1"

mentioned in Section 3. o
Figure 6.3 reports the error E,{q,k}, k = 1,2, for several values of n and for two values
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Fig. 6.3

of the extension parameter p. It shows, in particular, that for small values of n the two
methods are equally effective. Furthermore, it highlights that the value of the extension
parameter depends on the size of the blocks n. In fact, as n gets larger it is necessary to
increase the value of p to obtain, by the band extension method, the same accuracy as in-
the first factorization method. For example, when n = 25 and p = 60 we need to solve a
linear block Toeplitz system of dimension n{p + 1)} = 1525. This fact poses ho particular
problem from the point of view of computational complexity, the matrix being banded, but
implies a larger propagation of roundoff errors with respect to the first method. However,
as we will see soon, the first algorithm is not always more accurate than the second one.

As a second example on the solution of the same boundary value problem, let us consider

—z/2

u(z,y) = e 2ay(1 — ¢)

80 that

fle) = /2 (1= )1 — 5/a)y + 20].

To show the accuracy of the results, we depict in Figures 6.4 and 6.5 the errors (s, i) —w;
-corresponding to the first and the second example, respectively. In both cases, the results
are obtained via the first spectral factorization method. ' ' :

Now, as a'second application, let T be the 5-diagonal block Toeplitz matrix of order
2 introduced in the previous section, and let 77 ‘be the semi-infinite block Toeplitz matrix
given by (T4 );; = T4, 4,5 € Z4. Furthermore, set b = Tyx, with z,; = (-g)rf, n € Z,, and
solve the semi-infinite block Toeplitz linear systern : -

T+X: b

by the two spectral factorization methods illustrated above,

Denoting by 21 and 2(® the solution vectors obtained by using the two spectral fac-
torization methods, let o ' '

o
k) _ [2n ~ i)
™ lzal

, e
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sati_sfyinkg Birs < Bif; for all 4,5 € Z™, by Efﬂ(Zm) we mean the space of all bi-infinite

‘sequences A = (4;}jez= of real k x k matrices for which :

Mlhs = Y sl <o, BCE)

jezm™
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where || - {| denotes an arbitrary k X & matrix norm. The most common chcuces of 3 are
= (1+[4])? for p > O and §; = gl¥! for g > 1, which correspond to algebraic and
exponential weights, respectively. We write £§(Z™) 1f B; = 1 for all § € Z™. Further, for
k,m € N, let ££(Z™) be the Hilbert space of aH square summable functions z : Z™ — R¥
with norm

lef? = > lzsl? == (ms)see,

and scalar product

(Ify) = Z (:Ejyj>, = (:Gj)jezmﬁ o= (yj>j€Zma
jgim

where ” | and {-,-) denote the Euclidean norm and the usuel scalar product in R, respec-
tively. ' '

For any m-index block Toeplitz matrix (A;_;); jezm with k X k matrix entries for which
the expression in (7.1) is finite for a suitable weight sequence (5;);ez, we define the symbol
by :

Alz) = Z A5, z=(z:,,2m) €TM, (7.2)
jezm .
where 2/ = 2f* ... zfr for § = (j1,... ,dm) and T™ = {2 = (z1,... ,2m) EC™ : 71| = ... =

|zm| = 1} is the m-dimensional torus. Clearly, since necessarily §; > 1 for any § € Z™,
the symbo! of such a bi-infinite block Toeplitz matrix is a continuous & x & matrix function
deﬁned on T™. The symbois of the bi—mﬁmte block Toeplitz matrices (A ;)i ezm such
‘that

> BillAsl < +oo,

.?'GZ"" )

form a Banach algebra with respect to the pointwise ma,tnx product, denoted as WE; here we

- note that A{z)B(z) is the symbol of the bi-infinite Toeplitz matrix given by the convolution
product

(A*B)J = Z Aj_,!Bz.'

lezZm

This Banach algebra is commutative if and only if k= 1. : _
~ In the Banach algebra W§ the multiplicative linear projections (in the sense of [15]) [or, . -

for & = 1, the multiplicative linear functzonals] are exactly the maps A — A{z) for which z
belongs to the set

. ' i
C’g“—:{zezm:sup k2 <-1~oo}
: JEE™ ﬁJ

:{(zl,...,%)ezm: sup MI—<+O@},
- Ftrerim€2 Bt i)

*The addition in Z™ is defined componentwise. For j = (j1,... ,4m) € Z™ we put [§| = |71]+. . <ALl .
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Note that Cﬁ.contains T™ (as a result of B; = 1 for each j € Z™), does not contain
{0,...,0) € C™, is compact, and is closed with respect to the operation z — (crz,..., CmZm )}
for any (c1,...,cn) € T™. When '

i
ﬂ(ji,...,jm) = J(‘:) .. !3(:1:)

for m weight sequences ,65” of positive numbers satiéfying ﬁi{i)j = ﬁf} ,BJ(E) for ,j € Z and
I{=1,...,m, we have _—

Ce =ﬁ {z €C: (/g < I?J < gﬁf)},
i=1 .

where gg} = limj_, o (ﬁg})” i In particular, if 8; = (1 + |#))* for some ¢ 2 0, we have
Cp =T™, and if 8; = gl for some g > 1, we have Cs={z=1(21,...,2n) € C™ : (1/g) <
,ZJISQJ:L---,W}- ) . : .. .
For k =1 the following result follows using standard Banach algebra theory {10}, Chap-
ter XXX. When k > 2, it follows instead from the main result of [13]. A
THEOREM 7.1. Let A(2) belong to Wg and have the form (7.1). Then if T(z) is a
nonsinguler k x k matriz for all z € Cs, f‘(z)‘l belongs to Wg '
To define the spectral factorization of an m-index bi-infinite block Toeplitz matrix with
m > 2 one needs a linear order = on Z™ which allows one to call a Toeplitz matrix A lower
(resp. upper) triangular if A; = 0 for all JE€Z™ with § < (0,--.,0) (resp. j > (0,---,0)).
This linear order must have the following properties:
() i<j==i+1=<7+1for alll € Z™. and
(it} (1 <Jand > 0)= ¢i < ¢j. . _
The main problem is that for m = 2 such a so-called term ordering is by no means unigue.
In fact; the lexicographical order on Z™ with respect o any order of the “letters” 1,. .- 1
within the “alphabet” {1,-..,m) will do. With respect to X, we call A = (a;_;); jezm
lower triangulor if a; = 0 for all j € Z™ with j < {0,--,0), upper iriangular if a; = 0
for all j € Z™ with j » (0, ... »0); and diagonal if a; = 0 for all § € Z™ different from
{O: T 0)° ' .
Consider the linear order < of Z™ as specified above. Let us study representations of
A in the form

A=1Lpy, A (7.3)

where I = (Li-j)ijezm is lower triangular with o,.00 =1, U = (Uiej)s jezm is block
upper triangular with Vo,-0) = I, and D = Di_)ijezm is & block diagonal matrix.
This factorization, which can be proven to exist under very general conditions on A, is not
unique. To make it unique, we also require I to be invertible (i.e., Dy to be nonsingular)
and L and U to be boundedly invertible on £5(Z™) with inverses Z! and U/~ that are block
lower and block upper triangular matrices, respectively. A representation of A in the form
(7.3) where L, D and U have the above broperties, is called an LDU-factorization of A, In
that case, A has to be boundedly invertible on 2% (Z™), but in general this is not sufficient
for the existence of an LDU-factorization, It is now easily seen that LDU-factorization of

A with the symbols of its factors and inverses in the Banach algebra WE amomunts to the
factorization ' '

AR =D, zec, (r.a)
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in terms of the corresponding symbols, where Dy is a nonsingular % x k matrix, L(z) ~ 1
and L(z)~* — 1 belong to Wj and have Fourier series where all terms proportional to 27

with 5 < (0, --,0) vanish, and U(z) - 1 and U(z)™? —_1 belong to W and have Fourier

" series where all terms proportional to 27 with j > (0,---,0) vanish.
If A is a bi-infinite Toeplitz matrix with symbel in the so-called Wiener class (i.e., in
Wﬁ for f; = 1) and its symbol A(z) is positive definite selfadjoint for all z € T™, i.e., 1f A

is positive definite selfadjoint on v S{Z™), the factorization (7.4) exists. In that case, Dg is
positive deﬁmte selfadjoint, U(z) L(2)*, and therefore :

A9 =L@, Ua) = L0l
~leads to a Cholesky factorlzatlon of 4. Here DI/ ? is the (unique) positive definite selfadjoint
square root of Dy. It is easily seen that if A(z) is positive definite selfadjolnt for all z € T™
and belongs to W’“ for some weight sequence {f; )Jezm then its LDU factors and. the1r
inverses belong to }/Vjc
In fact, we have the following result. _
_ THEOREM 7.2. Suppose the bi-infinite block Toeplitz matriz A = {(Ai)iczm with symbol
in W* has a spectral factorization of the type (7.4) and A(2) s a nonsingular matriz for all
z € Cg for some weight sequence (B )gezm Then the factors and their inverses hove symbols
-belonging to W
Generahzmg the existence theory for LDU-factorizations by using the Wiener-Hopf
factorization theory for their symbols is not obvious if m > 2. First of all, there is no obvious
geometrical criterion for the existence of the factorization (7.4) and the construction of the
R _ factors as in the case m = 1 where the winding number turned out to be the key to the
= =+ solution of the problem. Secondly, the factorization (7.4) depends in an essential way on
: the choice of the linear order < on Z™.

The generahzatmn of the prevmus results for m = 1 can be based on the closely related
theories of chains of projections in a Hilbert space [12, 10] and of nest algebras [8], which
have the additional advantage of yielding an LDU factorization theory for arbitrary bounded
linear operators on £5(Z™) or on general separable Hilbert spaces. For % = 1 these concepts
have been mtroduced in [23], where the main results have been discussed. The definitions

- and results generalize in a stra1ghtforward way to the case k > 2.

- Finally, when the term ordering < is lexicographical, m-index block Toeplitz matrices
“can be identified in & natural way with one index block Toeplitz matrices, where the entries
themselves are (m — 1)-index block Toeplitz matrices, as observed in [33] for finite m-
index Toeplitz matrices. Indeed, let us consider m = 2 for simplicity and let < be the
" lexicographical order defined by - : '

iy < d1, or
if 43 = j1, then'iz < ja.

(i1,42) = {J1, o) =

Now consider the two-index bi-infinite block Toeplitz matrix A = (A;j—;); jezz where the
eniries are real ¥ x &k matrices. Then A can be identified in a natural way with the one-
index block Toeplitz matrix B = (B;—;)s jez, where B, Is the one-index block Toeplitz matrix
defined by (Bi)i—j = Aq,i—j), i.e.; the blocks of B have infinite order. An LDU-factorization
. of A corresponds exactly to an LDU—factonzatmn of B, where the “central” block By itself
(Whlch is defined by (Bo)z_J = A, ,,_3)) undergoes an LDU-factonzatmn Hopefuliy, this
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_observation can be used to obtain numerical spectral factorizations of multi-index block
Toeplitz matrices with respect to a lexicographical order in the near future.
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