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Abstract

Parameterized matrices are discussed that may be used as (single) scattering matrices for interpretations of
the brightness and polarization of planetary atmospheres containing randomly oriented small particles.
A number of guidelines are developed for the construction of such matrices. These guidelines are based on (i)
physical conditions for the elements of a natural scattering matrix, some holding for arbitrary scattering
angles and some for the exact forward and backward scattering directions only, as well as (ii) theorems for the
asymptotic behavior of coe$cients in expansions of the matrix elements in generalized spherical functions of
the scattering angle. A set of parameterizedmatrices is introduced and assessed according to these guidelines.
These particular parameterizations are especially useful for scattering by particles that are not large
compared to the wavelength, particles in the Rayleigh}Gans domain and for a variety of irregularly shaped
particles in the visible part of the spectrum. The use of parameterized matrices as scattering matrices is
illustrated by deriving their elements as functions of the scattering angle from simulated measurements of the
brightness and polarization of light re#ected by plane}parallel atmospheres containing aggregated or
spheroidal particles. In both cases, the scattering angle dependences of the original elements are retrieved in
fair approximation. � 2001 Elsevier Science Ltd. All rights reserved.
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Fig. 1. Scheme showing di!erent approaches for analyzing photopolarimetric data of a multi-layered atmosphere
bounded below by a surface in a trial-and-error formalism. (a) Analysis using single-scattering algorithms. (b) Analysis
using parameterized matrices instead. Particle properties are properties describing shape, size, and refractive index;
atmosphere properties are properties such as optical thickness, mixing ratio, and number of layers; surface properties
refer to the re#ection properties of the surface.

1. Introduction

Comparing the results of measurements of the brightness and the state of polarization of light
scattered by an atmosphere with the results of multiple-scattering calculations is very useful for
obtaining information about that atmosphere, such as abundances of its constituents, vertical
cloud structure, and the physical and chemical properties of cloud or aerosol particles [1}4]. Often,
assumptions are made about the particle size, shape, and composition for which the 4�4 scattering
matrix, F(�), of a collection of such particles can be calculated. The scattering matrix transforms
Stokes parameters of an incident beam into those of the scattered beam [5,6]. Such matrices then
serve as input in a trial-and-error formulation including multiple scattering. In this case, measure-
ments of brightness and polarization are interpreted in terms of physical properties of the particles
such as size, refractive index, and parameters describing the exact shape (e.g., the aspect ratio in the
case of spheroidal particles). Fig. 1a shows a scheme of this approach for analyzing brightness and
polarization of a multi-layered atmosphere with identical or di!erent scattering matrices in
di!erent layers. In case the particles can be assumed to be spherical, Mie theory can be applied.
This approach has been very successful [2,7}10].
However, particles in nature may have many other shapes (needles, hexagonal crystals, aggreg-

ates, etc.). If no reliable a priori knowledge about the size, shape, or composition of the particles is
available, or if the calculations of scattering matrices as functions of the scattering angle, �, are
prohibitively time-consuming in a trial-and-error formulation, one might use parameterized
matrices as scattering matrices. This may be considered as an extension of the well-known
parameterization of the phase function (the 1,1-element of the scattering matrix) as a one-term [11]
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or two-term Henyey}Greenstein function [12]. Fig. 1b shows how photopolarimetric data of
a multi-layered atmosphere can be used to determine parameter values of parameterized matrices.
Using parameterized matrices, measured quantities are interpreted in terms of the single-

scattering behavior of the particles rather than their size, shape, and composition. Often, one can
infer important physical constraints from derived parameterized matrices without knowing the
precise shapes of the particles. For instance, the shape of F

��
(�) as a function of scattering angle

gives an indication of the size of the particles, and the ratios F
��
(�)/F

��
(�) and F

��
(�)/F

��
(�)

may provide information about the sphericity of the particles. Also, one may use single-scattering
algorithms or measurements to try to interpret derived parameterized matrices in terms of particle
properties.
Employing terms like generalized single-scattering properties [13], synthetic phase matrix [14],

and synthetic scattering matrix [15], investigators have previously adopted similar approaches for
interpreting polarization measurements of the planet Saturn and its satellite Titan, without taking
into account physical constraints that were later published. These approaches are brie#y reviewed
in Section 3. In Section 4, necessary physical constraints are described that must be imposed on
parameterized matrices. We de"ne a parameterized scattering matrix (PSM) as a parameterized
matrix that meets all these constraints. In Section 5, the convergence of the expansion of
parameterized matrices in generalized spherical functions is discussed. A particular parameteriz-
ation that is applicable to particles that are not large compared to the wavelength, particles in the
Rayleigh}Gans domain, and a variety of irregularly shaped particles in the visible part of the
spectrum is discussed in Section 6. In order to illustrate the applicability of PSMs, two case studies
are described in Section 7 in which PSMs are derived from simulated measurements of the
brightness and polarization of sunlight scattered by atmospheres containing aggregated or sphe-
roidal particles. We will, however, begin with a general description of scattering matrices.

2. Structure of scattering matrices

In its most general form, the scattering matrix of a volume element of particles at a certain
wavelength and with respect to a certain reference plane consists of 16 nonzero elements that are
functions of scattering and azimuthal angles [5]. However, for several important cases, its structure
is much simpler. One such special case occurs when the particles are randomly oriented and occur
in equal numbers as their mirror particles. Then, the scattering matrix can be written as

F(�)"�
a
�
(�) b

�
(�) 0 0

b
�
(�) a

�
(�) 0 0

0 0 a
�
(�) b

�
(�)

0 0 !b
�
(�) a

�
(�)�, (1)

when the scattering plane acts as the reference plane. Since this special case will generally be a good
approximation for an arbitrary collection of randomly oriented particles, we will use this matrix
structure throughout this paper. For a collection of optically inactive homogeneous spherical
particles, a

�
(�)"a

�
(�) and a

�
(�)"a

�
(�).
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Inequalities for arbitrary scattering angles as given in Refs. [16,17] imply that the absolute value
of any of the elements of F cannot exceed the value of a

�
, which is nonnegative. In this paper, we

normalize all scattering matrices so that the average of a
�
(�) over all directions is unity, i.e.,

1
2�

�

��

a
�
(�) d cos�"1. (2)

In this description, a
�
(�) is usually called the scattering or phase function. In this paper, we use

P"

�Q�#;�

I
(3)

and when the Stokes parameter ;"0, we use in addition

P
�
"!

Q
I
, (4)

which is positive when the vibrations perpendicular to the reference plane dominate the vibrations
parallel to this plane. Both P and P

�
will be called the degree of linear polarization. For single

scattering by particles with a scattering matrix like Eq. (1) and incident unpolarized light, the
degree of linear polarization is given by

P
�
(�)"!

b
�
(�)

a
�
(�)
. (5)

3. Brief review of parameterized matrices for scattering in planetary atmospheres

The 1,1-element of a scattering matrix as a function of scattering angle is often parameterized as
a one-term Henyey}Greenstein function

a
�
(�)"P

��
(g,�)"

1!g�

(1#g�!2g cos�)�	�
. (6)

Here, !1(g(1 is called the asymmetry parameter, and is equal to �cos��"

�
�
��
��

a
�
(�) cos�d cos�. This function was introduced by Henyey and Greenstein [18] in a study

of di!use interstellar radiation. Van de Hulst [11] gives a review of its use in multiple light
scattering studies. A common alternative parameterization employs a two-term Henyey}
Greenstein function:

a
�
(�)"f

�
P
��
(g

�
,�)#(1!f

�
)P

��
(g

�
,�) (7)

with !1(g
�
(1, !1(g

�
(1, and 04f

�
41. In the wake of Irvine [12], this function has

been used extensively in multiple-scattering problems, especially when polarization was neglected.
In theoretical work on multiple scattering, Hovenier [19] used parameterized matrices as

scattering matrices to test the adding/doubling method for polarized light. He used a two-term
Henyey}Greenstein function for a

�
(�), and further employed a

�
(�)"a

�
(�), b

�
(�)"

m�sin(n�),a
�
(�)"�a�

�
(�)!b�

�
(�), and b

�
(�),0 for certain values of the parameters g

�
, g

�
, f

�
,

588 C.J. Braak et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 69 (2001) 585}604



m, and n. This choice for b
�
(�) may be justi"ed because this element a!ects scattering calculations

only for second- and higher-order scattering if the incident light is unpolarized. Indeed, in a case
study by Hansen [20] it was shown that neglecting the fourth row and column * the so-called
3�3 approximation * causes only marginal di!erences in the calculated brightness and linear
polarization of atmospheres. If b

�
(�),0, the Stokes parameter < is decoupled from the Stokes

parameters I, Q, and ;, and the 3�3 approximation is exact for these three Stokes parameters.
In analyzing Pioneer 11 and Voyager 2 photopolarimetry of Saturn and its satellite Titan,

various authors chose a parameterized matrix approach, sometimes combined with Mie theory.
We will now give a brief review of the parameterized matrices used in these investigations. In all
cases, the parameterized matrix had the structure given by Eq. (1) with b

�
(�),0. Unless otherwise

noted, a
�
(�) was parameterized by a one- or two-term Henyey}Greenstein function.

As the degree of linear polarization as a function of phase angle for Titan hinted at particles with
Rayleigh-like polarizing properties, Tomasko and Smith [13] and West et al. [14] chose to use
a `factor times Rayleigha approach for the 2,1-element, i.e.,

!

b
�
(�)

a
�
(�)

"p
sin� �

1#cos��
(8)

or, in other words, P
�
(�) is some parameter p times the expression for P

�
(�) for Rayleigh scattering

without depolarization (cf. Ref. [21]).
For the planet Saturn, Tomasko and Doose [22] chose!b

�
(�)/a

�
(�) to be a piecewise linear

function of �, speci"ed at 103 increments of the scattering angle from 03 to 1803. West et al. [23]
used a similar formulation, but speci"ed!b

�
(�)/a

�
(�) at scattering angles corresponding to the

phase angles at which Saturn was observed during the #yby of Voyager 2.
All studies discussed above except that of Hovenier [19] employed a

�
(�)"a

�
(�)"a

�
(�). This

choice is sometimes motivated by noting that, for spheres, a
�
(�)"a

�
(�) and a

�
(�) resembles

a
�
(�) for a large part of the scattering angle range [13,22]. For his studies of Titan's polarization,

Stammes [15] also used a
�
(�)"a

�
(�), but proposed an alternative description for a

�
(�):

a
�
(�)

a
�
(�)

"

2 cos�
1#cos��

, (9)

inspired by Rayleigh scattering without depolarization, for which this equation holds (cf. Ref. [21]).
Two other parameterizations are worth noting. First, Smith and Tomasko [24] used two-term

Henyey}Greenstein phase functions for a
�
(�) that were modi"ed between the scattering angles of

80 and 1403, to inspect the Pioneer photometric data of Jupiter for evidence of spherical particles
(which they did not "nd). Second, West et al. [23] used for Saturn, in addition to their approach
outlined above, scattering matrices from Mie theory (pertaining to spherical particles), but they
replaced the 1,2- and 2,1-elements with an expression based on Eq. (8).

4. Requirements for parameterized scattering matrices

This section describes requirements that a 4�4 real matrix should meet so that it cannot be
physically excluded for not being a scattering matrix. A parameterized matrix that obeys all of
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these requirements will be referred to as a parameterized scattering matrix (PSM). Note that for
a PSM it cannot be conclusively proven that a particle or collection of particles exists that has this
PSM as its scattering matrix.

4.1. Requirements at 0 and 1803 scattering angle

In the exact forward and backward scattering directions, Eq. (1), which holds for randomly
oriented particles that occur in equal numbers as their mirror particles, becomes even simpler
[25,26]. In the exact forward direction (�"03), the following properties hold:

a
�
50, (10)

�a
�
�4a

�
, (11)

a
�
"a

�
, (12)

�a
�
�4a

�
, (13)

a
�
52�a

�
�!a

�
, (14)

b
�
"b

�
"0. (15)

In the exact backscattering direction (�"1803), we have

a
�
50, (16)

04a
�
4a

�
, (17)

a
�
"!a

�
, (18)

a
�
"a

�
!2a

�
, (19)

b
�
"b

�
"0. (20)

It should be noted that most of the parameterizations described in Section 3 violate Eq. (18).

4.2. The Cloude test

The sharpest requirement for arbitrary scattering angles is based on the Cloude coherency
matrix T of a given matrix F [27]. If all eigenvalues of T are nonnegative for a particular scattering
angle, F can be a scattering matrix for that scattering angle. We refer to this requirement as the
Cloude test. Note that for �"0 and 1803, Eqs. (10)}(20) must still be satis"ed.
For matrices satisfying Eq. (1), the Cloude coherency matrix is given by

¹
��

"�
�
(a

�
#a

�
#a

�
#a

�
), (21)

¹
��

"�
�
(a

�
#a

�
!a

�
!a

�
), (22)

¹
��

"�
�
(a

�
!a

�
#a

�
!a

�
), (23)

¹
��

"�
�
(a

�
!a

�
!a

�
#a

�
), (24)

¹
��

"b
�
!ib

�
, (25)
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¹
��

"b
�
#ib

�
, (26)

¹
��

"0 otherwise, (27)

where i"�!1 and the argument � is omitted for brevity. We readily compute the eigenvalues
of T. The requirement that these eigenvalues must all be nonnegative then reduces to

�a
�
!a

�
�4a

�
!a

�
, (28)

�(a
�
#a

�
)�#4b�

�
#4b�

�
4a

�
#a

�
, (29)

which agrees with Eq. (10) of Ref. [16]. A candidate PSM will be called a PSM if it passes the
Cloude test for all scattering angles and satis"es the requirements at the scattering angles of 0 and
1803 as speci"ed by Eqs. (10)}(20). Thus not every parameterized matrix is a PSM.
Even if b

�
(�),0 is chosen, a

�
(�) cannot just be ignored on constructing a PSM. Indeed, for

any given a
�
(�), a

�
(�), a

�
(�), and b

�
(�), we should require for a PSM that there exists at least

one function a
�
(�) so that Eqs. (28) and (29) are satis"ed for all scattering angles, as well as

Eqs. (10)}(15) and (16)}(20) at �"0 and 1803, respectively.
We note that a matrix that passes the Cloude test automatically satis"es

a
�
(�)50 (30)

and

a
�
(�)5�a

�
(�)�, i"2,3,4, (31)

a
�
(�)5�b

�
(�)�, j"1,2. (32)

As an example of what may happen if the Cloude test is not ful"lled we consider the following
matrix, where we used Eq. (8) and a

�
(�)"a

�
(�)"a

�
(�),

F(903)"a
�
(903)�

1 !p 0 0

!p 1 0 0

0 0 1 0

0 0 0 �� 
��3
�� 
��3

� (33)

with pO0. This matrix does not pass the Cloude test, regardless of the value of the 4,4-element.
Now consider a scattering event where the Stokes vector of the incident light is given by [1, 0, 1, 0].
Then the Stokes vector of the scattered light is [1,!p, 1, 0] which is not allowed since it does not
satisfy �Q�#;�#<�4I.

5. Expansion of scattering matrices in generalized spherical functions

It is often convenient to expand the elements of a scattering matrix in series of generalized
spherical functions of the scattering angle. Such an expansion is especially handy in multiple-
scattering calculations (see, e.g., Ref. [28]). Also, from a table of expansion coe$cients it is easy to
retrieve the scattering matrix at arbitrary scattering angles, with an accuracy determined by the
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truncation of the series and the accuracy of the expansion coe$cients. It stands to reason that an
expansion is especially useful if the expansion coe$cients fall o! quickly with increasing degree.
The generalized spherical functions P�

���
(x) are related to the Jacobi polynomials P���

�
(x) as

follows (cf. Ref. [6]):

P�
���
(x)"

(!i)�
2
���	��

s!(s#�#�)!
(s#�)!(s#�)!

(1!x)�	�(1#x)�	�P���
�
(x), (34)

where �"�n!m�, �"�n#m�, and s"l!max(�m�,�n�).
The expansion of the scattering matrix in generalized spherical functions is given by [29]

a
�
(�)"

�
�
���

��
�
P�

���
(cos�), (35)

a
�
(�)#a

�
(�)"

�
�
���

(��
�
#��

�
)P�

���
(cos�), (36)

a
�
(�)!a

�
(�)"

�
�
���

(��
�
!��

�
)P�

����
(cos�), (37)

a
�
(�)"

�
�
���

��
�
P�

���
(cos�), (38)

b
�
(�)"

�
�
���

��
�
P�
���
(cos�), (39)

b
�
(�)"

�
�
���

��
�
P�
���
(cos�). (40)

The expansion coe$cient ��
�
is given by [29]

��
�
"�l#

1
2��

��

��

P�
���
(cos�)a

�
(�) d cos�. (41)

The other expansion coe$cients, ��
�
$��

�
, ��

�
, ��

�
, and ��

�
are obtained from similar integrals.

Now, combining Eq. (34) and an expansion theorem for Jacobi polynomials due to Szego�
(Theorem 9.1.1 of Ref. [30]), it can be shown that any of the expansions given in Eqs. (35)}(40)
converges pointwise for every value of cos� on the closed interval [!1,#1] and has exponenti-
ally decreasing expansion coe$cients if the corresponding function from the set

a
�
(�),

a
�
(�)#a

�
(�)

(1#cos�)�
,

a
�
(�)!a

�
(�)

(1!cos�)�
, a

�
(�),

b
�
(�)

1!cos��
and

b
�
(�)

1!cos��
(42)

is analytic in cos� in the interior of an ellipse in the complex plane with foci at $1. Here,
`��

�
decreases exponentiallya means that ��

�
decreases with increasing l in the sense that

lim inf
�	�

���
�
���	�"R (43)

for some constant R exceeding 1, and similarly for the expansion coe$cients ��
�
$��

�
, ��

�
, ��

�
, and

��
�
. Szego� 's theorem further states that R is equal to the sum of the semi-axes of the largest ellipse of
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convergence with foci at $1. It should be noted that if both ��
�
#��

�
and ��

�
!��

�
decrease

exponentially, the same is true for ��
�
and ��

�
separately, and vice versa.

6. Parameterization for common types of particles

In this section we present parameterizations that can mimic a broad range of scattering matrices
as functions of scattering angle using a few parameters. As an example, this section will give
a parameterization that may be used to simulate the single-scattering behavior of particles that are
not large compared to the wavelength, particles in the Rayleigh}Gans domain, or a variety of
irregularly shaped particles at visible wavelengths. A particle is considered to be in the
Rayleigh}Gans domain if its refractive index is such that both �m!1�;1 and �d�m!1�;	,
wherem and d are the complex refractive index and a characteristic linear dimension of the particle,
respectively, and 	 is the wavelength [5]. In Sections 6.2 and 6.3 these parameterizations are judged
in light of Sections 4 and 5.

6.1. Sample parameterizations

Mishchenko et al. [31] give a comprehensive overview of measurements and calculations of light
scattering by particles covering a great variety of sizes, shapes, and compositions. This book
chapter provides many useful references to papers dealing with scattering by randomly oriented
mineral particles in the visible part of the spectrum. The scattering matrices reported in these
papers exhibit many common features:

� Phase functions a
�
(�) with pronounced maxima at �"03.

� Ratios a
�
(�)/a

�
(�) that generally decrease from approximately 1 at �"03 to a value between

0 and 1 at �"1803.
� Ratios a

�
(�)/a

�
(�) that decrease from approximately 1 at �"03 to !a

�
(�)/a

�
(�) at

�"1803, and have zeros near or beyond �"903.
� Ratios a

�
(�)/a

�
(�) that decrease from approximately 1 at �"03 to approximately

1!2a
�
(�)/a

�
(�) at �"1803, and have zeros near or beyond �"903.

� Ratios !b
�
(�)/a

�
(�) that are zero at �"03 and �"1803, and have a maximum near or

beyond �"903. This holds especially for particles that are not large compared to the
wavelength, for particles in the Rayleigh}Gans domain, and for a variety of irregularly shaped
particles.

� Ratios b
�
(�)/a

�
(�) that are often small.

On the basis of these papers we now de"ne the following class of candidate PSM's:

a
�
(�)"f

�
P
��
(g

�
,�)#(1!f

�
)P

��
(g

�
,�), (44)

a
�
(�)

a
�
(�)

"h#(1!h) cos�, (45)

a
�
(�)

a
�
(�)

"

2 cos�
1#cos��

, (46)
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!

b
�
(�)

a
�
(�)

"p
sin� �

1#cos��
, (47)

b
�
(�)

a
�
(�)

,0, (48)

a
�
(�) is not speci"ed, (49)

with the "ve dimensionless parameters g
�
, g

�
, f

�
, h, and p.

Eq. (45) provides a generalization of the parameterizations that assume a
�
(�)"a

�
(�) (cf.

Section 3). The choice for a
�
(�) given in Eq. (46) is similar to the choice that Stammes [15] made,

but with a
�
(�) replaced by a

�
(�), in order to assure a

�
(1803)"!a

�
(1803) (cf. Eq. (18)). Eq. (46)

holds exactly for Rayleigh scattering. Parameters h and p equal a
�
(903)/a

�
(903) and

!b
�
(903)/a

�
(903), respectively.

6.2. Constraints for the parameter values

For the parameters g
�
, g

�
, and f

�
, we use the conventional constraints for the two-term

Henyey}Greenstein function, i.e., !1(g
�
(1, !1(g

�
(1, and 04f

�
41 (cf. Section 3).

The parameterization given in Eqs. (44)}(49) then obeys the forward- and backward-scattering
requirements as expressed by Eqs. (10)}(12), (15)}(16), (18) and (20). In addition, Eq. (17) is satis"ed
if 0.54h41 and then a function a

�
(�) can be constructed so that Eqs. (13), (14), and (19) are also

satis"ed.
Limits on the "fth parameter, p, may be obtained from the Cloude test in the following way. We

will "rst consider the case h"1. Regardless of the choice for a
�
(�), we get from Eq. (28) a

�
(�)"

a
�
(�), and from Eq. (29) b�

�
(�)4a�

�
(�)!a�

�
(�). Using Eq. (46), this yields after some algebra

p�41. (50)

In other words, this candidate PSM passes the Cloude test for all scattering angles if �p�41.
When h(1, the algebra gets overly complicated, but we will consider the special cases �"0,

90, and 1803. For�"03, we have a
�
"a

�
"a

�
, and b

�
"0. This satis"es Eqs. (28) and (29) if also

a
�
"a

�
, which is allowed by Eqs. (13) and (14). For �"1803, we have a

�
(a

�
, a

�
"!a

�
, and

b
�
"0. This matrix satis"es Eqs. (28) and (29) for a set of a

�
's, including a

�
"a

�
!2a

�
, as required

by Eq. (19). However, for �"903, a
�
/a

�
"h, a

�
/a

�
"0, and b

�
/a

�
"!p, yielding from Eq. (29),

4p�4(1#h)�!�
a
�

a
�
�

�
. (51)

Since, according to Eq. (28), a
�
is allowed to be zero, this sets a constraint, �p�4(1#h)/2. Thus, for

h(1, the interval of valid values for p is smaller than for h"1. Further inspection shows that
when the upper limit is taken for �p�, the test is passed for all scattering angles up to 903, and most of
the scattering angles larger than that, but not for scattering angles slightly larger than 903.
However, if �p� is taken a little smaller, the candidate PSM passes the Cloude test for any �. For
instance, when h"0.95, p"$0.97 still works.
Whenever parameterized matrices are used as scattering matrices, (a) the requirements in the

forward- and backward-scattering directions (Eqs. (10)}(20)) should be checked, and (b) the Cloude
test, (Eqs. (28) and (29)) should be performed analytically for all scattering angles, or numerically for
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Fig. 2. Dots: the elements of the scattering matrix as functions of scattering angle of randomly oriented aerosols
measured in the laboratory by Volten et al. [34], averaged over seven types of mineral aerosols and two wavelengths
(441.6 and 632.8 nm). The upright bars indicate the domains covered by all measurements, i.e., the area between the best
minimum and maximum values measured for each angle. Thick solid lines: a PSM with g

�
"0.8, g

�
"!0.15,

f
�
"0.8, p"0.13, h"0.625, and a

�
(�)/a

�
(�)"2 cos�/(1#cos��). Thick dashed line: another PSM with the same

parameters, but with a
�
(�)/a

�
(�)"cos�. Note that the parameterized functions b

�
(�)/a

�
(�) coincide with the �-axis,

and that the parameterized functions a
�
(�)/a

�
(�) are absent (cf. Eqs. (48) and (49)).

a large set of distinct scattering angles. One should be aware that the ranges derived here are
theoretical. For instance, particles are generally forward scattering and often positively polarizing
for most of the scattering angle range, unless extraordinary conditions are imposed [32,33]. So, one
should be wary of negative values of f

�
g
�
#(1!f

�
)g

�
and p.

Fig. 2 shows results of laboratory measurements by Volten et al. [34], compared with a particu-
lar realization of Eqs. (44)}(49) that gives a fair representation. Also shown is an alternative
parameterization for the 3,3-element,

a
�
(�)

a
�
(�)

"cos�, (52)

that follows more closely the behavior that is sometimes observed in measurements. Note that in
either case a

�
(903)"0. We have veri"ed that both parameterized matrices are PSMs.

6.3. Expansions in generalized spherical functions

We will consider here three parameterized matrices, labeled P1, P2, and P3. P1 is characterized
by Eqs. (44)}(49) with g

�
"0.8, g

�
"!0.7, f

�
"0.938, and p"0.9, which are values found for
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Fig. 3. The elements of the three parameterized matrices described in Section 6.3, as functions of scattering angle. The
corresponding coe$cients for the expansions in generalized spherical functions are shown in Fig. 4.

a portion of Jupiter's atmosphere in red wavelengths [24]. Also, we chose h"0.96 arbitrarily. For
P2, the same parameter values were used, but with the 3,3-element given by Eq. (52). The third
parameterization is a more crude one that has the same a

�
(�) and b

�
(�) as P1 and P2, but has

a
�
(�)"a

�
(�)"a

�
(�). P1 and P2 are PSMs since for either of these matrices, a function a

�
(�)

exists so that the Cloude test is passed for all scattering angles and Eqs. (10)}(20) are satis"ed. P3 is
not a PSM (cf. Eq. (33)). The elements of the parameterized matrices as functions of scattering angle
are shown in Fig. 3.
Fig. 4 shows the behavior of the expansion coe$cients ��

�
, ��

�
, ��

�
, and ��

�
for these parameterized

matrices. To compute the integrals like Eq. (41), we have used Gauss}Legendre integration with 3000
Gaussian points in cos�. Since a

�
(�) and b

�
(�) are the same for these parameterizations, there is

only one curve labeled ��
�
and one labeled ��

�
. Both tend to straight lines in this logarithmic plot,

signifying an exponential decrease of the expansion coe$cients with l for both elements. For P1,
��
�
and ��

�
are always positive and within a line thickness equal to ��

�
. For P2, ��

�
is negative for

l543 but for larger l, its absolute value tends to that of ��
�
. For P3, ��

�
"��

�
for all l. Here, ��

�
and ��

�
are negative for odd l, l527. For P2 and P3, ���

�
� and ���

�
� do not decrease exponentially

in Fig. 4.
Using the expansion theorem discussed in Section 5, we can explain the way in which the

coe$cients decrease with l as follows. Starting with ��
�
, the Henyey}Greenstein function P

��
(g,�)

(Eq. (6)) is analytic in cos� on the entire complex plane, except for the pole cos�"�
�
(g#g��).

Therefore, for �g�(1, an ellipse with foci at cos�"$1 exists in the interior of which P
��
(g,�) is

analytic in cos�, so that the expansion of P
��
(g,�) in generalized spherical functions converges

with exponentially decreasing coe$cients. Further, for decreasing g, the ellipse of convergence
increases in size, since R"�g���, and the coe$cients ��

�
fall o! more rapidly. This is a well-known
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Fig. 4. Expansion coe$cients ��
�
, ���

�
�, ���

�
�, and ��

�
as functions of l for the parameterized matrices that are shown in Fig.

3. The right panel is a continuation of the left one, but with a di!erent scale. Solid line: ��
�
for all models. Dot}dashed:

��
�
for all models. Dashed: ���

�
� and ���

�
� for P2. Dotted: ���

�
� and ���

�
� for P3. For P1, the curves for ���

�
� and ���

�
� coincide

within the line thickness with the curve for ��
�
.

Table 1
Poles (values of cos� in the complex plane) for the expressions in Eq. (42) relevant to parameterizedmatrices P1, P2, and
P3. R is the sum of the semi-axes of the largest ellipse of convergence with foci at $1 for an expansion in generalized
spherical functions

Coe$cient Expression in Eq. (42) Poles R

��
�

a
�
(�) 1#g�

�
2g

�

,
1#g�

�
2g

�

min�
1

g
�

,
1

g
�
�

��
�
$��

�

a
�
(�)$a

�
(�)

(1$cos�)�
for P1:

1#g�
�

2g
�

,
1#g�

�
2g

�

,$i min�
1

g
�

,
1

g
�

,1#�2�
for P2:

1#g�
�

2g
�

,
1#g�

�
2g

�

,G1 No ellipse

for P3:
1#g�

�
2g

�

,
1#g�

�
2g

�

,G1
No ellipse

��
�

b
�
(�)

1!cos��
1#g�

�
2g

�

,
1#g�

�
2g

�

,$i min�
1

g
�

,
1

g
�

,1#�2�
result, as for gO0

��
�
"(2l#1)g� (53)

and for g"0, P
��
(0,�),1 [11]. For a two-term Henyey}Greenstein phase function, the rate at

which ��
�
decreases is determined by the larger of �g

�
� and �g

�
�.

Table 1 lists the poles (values of cos� in the complex plane) and the values of R for all expansion
coe$cients relevant to our parameterizations. For P2 and P3, there is no ellipse of convergence for
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��
�
$��

�
with foci in cos�"$1. The rate at which ��

�
and ��

�
(for P1) and ��

�
(for all parameteriz-

ations) decrease is determined by the poles of a
�
(�), since for this function, both �g

�
� and �g

�
� are

larger than 1/(�2#1).
The results in Fig. 4 do not imply that only PSMs with a

�
(�)/a

�
(�)"2 cos�/(1#cos��) are

practical. When only a modest accuracy is required (e.g. due to measurement errors), other shapes
for the scattering angle dependence of the scattering matrix elements may work well enough even
though the expansion coe$cients may not fall o! exponentially.

7. Parameterized scattering matrices in atmospheric analysis

7.1. Models and method

This section aims to illustrate the applicability of PSMs for interpreting observations of the
brightness and polarization of a planetary atmosphere. In a "rst case study, the scattering matrix of
a collection of aggregated particles was computed. By performing multiple-scattering calculations
using this matrix, we simulated measurements of the brightness and state of polarization of the
light re#ected by a model atmosphere. Subsequently, a PSM was derived that reproduced these
measurements as closely as possible. This PSM was then compared with the original scattering
matrix. In a second case study, this process was repeated for a collection of spheroidal particles.
The properties (especially the size) of the particles in the two case studies were chosen so that

!b
�
(�)/a

�
(�) is Rayleigh-like, that is, showing a large maximum at a scattering angle near 903.

Both cases involve nonspherical particles, giving rise to an a
�
(�) that is di!erent from a

�
(�).

Step 1. For the "rst case study, we considered four nonabsorbing aggregated particles each
consisting of eight touching identical spherical monomers. Each of the monomers had a size
parameter (ratio of circumference to wavelength) of 1.5. The size parameter of the sphere that has
the same volume as each aggregate is 3. The refractive index was chosen to be 1.33#0i. A ballistic
particle-cluster aggregation procedure, as described in Ref. [35], was used to form the aggregates.
Although this aggregation formalism does not take restructuring of the growing aggregate into
account, the resulting particles resemble aggregates observed in the laboratory [36,37]. The
scattering matrices for these particles were calculated using the versatile discrete-dipole approxi-
mation as implemented in version 5a9 of the computer program DDSCAT [38,39]. Here, we
averaged over 9� orientations. Fig. 5 shows the four aggregates in the discrete-dipole representa-
tion used. The four scattering matrices were subsequently averaged using the respective scattering
cross sections as weights, assuming that each of the four con"gurations occurs in equal numbers.
The resulting matrix was normalized so that Eq. (2) holds. Since we know that repeating this
procedure for the mirror particles would yield a similar scattering matrix, but with the signs of the
1,3-, 1,4-, 2,3-, 2,4-, 3,1-, 3,2-, 4,1-, and 4,2-elements reversed, we chose these elements to be zero.
Therefore, we could treat this matrix as the scattering matrix of a mixture of randomly
oriented particles and their mirror particles in equal numbers. The elements of the resulting
scattering matrix as functions of scattering angle are shown as solid curves in Fig. 6. Within
the numerical accuracy, this matrix satis"es Eqs. (10)}(20) and passes the Cloude test for all
scattering angles.
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Fig. 5. Visualization of the four aggregates used in the "rst case study. Each aggregate was generated according to
a ballistic particle-cluster aggregation procedure and consists of eight monomers that each had a size parameter of 1.5.
The midpoints of the cubes correspond to the locations of the dipoles in the discrete-dipole approximation. The
inter-dipole distance, d, was chosen so that 2��m�d/	"0.5, where m is the refractive index (1.33#0i) and 	 is the
wavelength.

For the second case study, we considered a collection of oblate spheroidal particles with
a refractive index of 1.33#0i and an aspect ratio of 3. The size distribution of the equal-volume
spheres was chosen to be a gamma-distribution [21] corresponding to an e!ective size parameter
of 3 and an e!ective variance of 0.1. The scattering matrix was calculated with the highly e$cient
¹-matrix method as implemented in the double-precision ¹-matrix code of M.I. Mishchenko
(version 14 April 1997) [40,41], using analytical averaging over particle orientations. The elements
of the calculated scattering matrix as functions of scattering angle are shown as solid curves in
Fig. 7. This matrix satis"es Eqs. (10)}(20), passes the Cloude test for all scattering angles, and is
normalized so that Eq. (2) holds.
We will refer to these calculated scattering matrices and their elements as the original scattering

matrices and elements.
Step 2. Next, for each case study, we considered a homogeneous, plane}parallel atmosphere with

an optical thickness of 1, and bounded below by a completely absorbing surface. The scattering
matrices for volume elements of these atmospheres are the original matrices calculated during the
previous step. Note that the albedo for single scattering equaled 1, since the imaginary parts of the
refractive indices of the particles equaled zero.
Assuming a distant light source above the atmospheres, we employed the full vectorial descrip-

tion of the adding/doubling method [19,28,42], using expansions of the scattering matrices in
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Fig. 6. Solid: the elements of the original scattering matrix used in the "rst case study as functions of scattering angle.
This matrix is the average (weighted with the scattering cross sections) of the scattering matrices of the four particles
shown in Fig. 5. Each of these four matrices itself is the average over 9� orientations. Dashed: the elements of the
parameterized scattering matrix that were retrieved from simulated measurements based on the original matrix.

Fig. 7. Solid: the elements of the original scattering matrix used in the second case study as functions of scattering angle.
These were calculated for an ensemble of randomly oriented oblate spheroids with a refractive index of 1.33#0i and an
aspect ratio of 3. The volume-equivalent size distribution corresponded to a gamma-distribution with an e!ective size
parameter of 3 and an e!ective variance of 0.1. Dashed: the elements of the parameterized scattering matrix that were
retrieved from simulated measurements based on the original matrix.

generalized spherical functions. In this manner, all four Stokes parameters of the light emerging
from the top of the atmospheres were calculated for a number of viewing geometries. These
geometries are characterized by 


�
"!cos �

�
, 
"cos �, and �!�

�
, where �

�
and � are the

zenith angles of the incident and scattered light, respectively, and �
�
and � are the corresponding
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azimuthal angles, measured clockwise when looking up. For both case studies, values of 0.2}1.0
were considered for both 
 and 


�
, with steps of 0.1; for �!�

�
, values of 0}1803 with steps of 303

were considered. This adds up to a total of 567 geometries. The incident light was unpolarized, and
its #ux per unit area perpendicular to the incident beam equaled �. The calculated brightness and
degree of linear polarization were treated as simulated measurements.
Step 3. We subsequently reproduced these simulated measurements as closely as possible using

the parameterization given by Eqs. (44)}(49). We restricted ourselves to a one-term Henyey}
Greenstein function for the 1,1-element. The homogeneous, plane}parallel model atmosphere
again had an optical thickness of 1, was bounded below by a completely absorbing surface, and was
illuminated from above by the same light source as in Step 2. The albedo for single scattering
equaled 1.
Initial values were chosen for the free parameters g

�
, p, and h to obtain a PSM to start with. We

chose to "t the brightness and the degree of linear polarization alternately. First, "xing p and h, the
remaining parameter g

�
was varied so that it minimized the function

�I(g
�
)"�

����
���
[I

���
(g

�
)/I

���
!1]�, 0.34g

�
40.95,

�I
���	


otherwise,
(54)

where i numbers the geometries, and I
���
and I

���
are the calculated and `measureda brightnesses

for the geometry i, respectively. �I was assigned a large value, �I
���	

, for g

�
(0.3 and g

�
'0.95 in

order to exclude implausible phase functions and to prevent exceedingly lengthy calculations (for
large g

�
). For this minimization, Brent's method was used [43].

Then, conversely, g
�
was "xed at its new value, and p and h were varied to minimize the function

�P(p, h)"�
����

���
[P

���
(p, h)!P

���
]�, p and h meaningful,

�P
���	


otherwise,
(55)

whereP"�Q�#;�/I. `Meaningfulameans that the combination of p and h assures that the trial
parameterizedmatrix is a PSM. For this two-dimensional minimization, Powell's method [43] was
used, using Brent's method for the one-dimensional subminimizations.
This process was iterated until the values of both �I and �P did not change by more than 0.0001

times their previous values from one iteration to the next.

7.2. Results and discussion

The elements of the retrieved PSMs as functions of scattering angle are shown as dashed curves
in Figs. 6 and 7. At "rst sight, the retrieved elements seem quite reasonable, especially a

�
(�) and

!b
�
(�)/a

�
(�), although it stands out that in the second case study, the retrieved function

!b
�
(�)/a

�
(�) reaches a signi"cantly lower maximum than the original one. Also, in both case

studies, the retrieved value of h is equal to 1. Note that in our parameterization, a
�
(�)/a

�
(�) and

b
�
(�) are "xed. Since b

�
(�),0 in both case studies, there was no need to parameterize a

�
(�).

Hence there are no dashed curves for this element. The original b
�
(�)/a

�
(�) and a

�
(�)/a

�
(�) are

shown for completeness.
The results turned out to be insensitive to the initial guesses for the free parameters. However,

sometimes it occurred that the minimizing algorithm let g
�
wander o! to 0.3 or 0.95. Such solutions
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Table 2
Comparison of original scattering matrices and retrieved PSMs. (See text for further information)

Case study 1 * aggregates Case study 2 * spheroids

Original Retrieved Original Retrieved

�cos��"g
�

0.6989 0.6910 0.7915 0.8181
!b

�
(903)/a

�
(903)"p 0.9078 0.9095 0.6856 0.6021

Maximum of !b
�
(�)/a

�
(�) 0.9160 0.9095 0.7500 0.6021

Location of Maximum �"943 �"903 �"1033 �"903
a
�
(903)/a

�
(903)"h 0.9460 1.0000 0.9129 1.0000

a
�
(1803)/a

�
(1803) 0.9306 1.0000 0.9648 1.0000

are obviously wrong, and were remedied by choosing di!erent initial guesses for the free para-
meters.
Quantitatively, the retrieved PSMs are also similar to the original matrices; some interesting

comparisons are made in Table 2. Especially the retrieved values of g
�
di!er very little from the

original values of �cos��.
As an example, one might now employMie theory for interpreting the retrieved parameters. For

instance, the retrieved g
�
in the "rst case study is reproduced by an ensemble of spheres with

refractive index 1.33#0i that obey a gamma-distribution with an e!ective size parameter of about
2.25 and an e!ective variance of 0.09. However, for this ensemble, !b

�
(�)/a

�
(�) never exceeds

0.54. Similar results were obtained for e!ective variances of 0.03 and 0.20. High enough values of
!b

�
(�)/a

�
(�) are obtained, however, if the refractive index is decreased to about 1.20#0i. Since

this is an uncommon refractive index for particles suspended in air, we may now infer that the
particles in our model atmosphere are not spherical, if in addition we assume that the optical
thickness and the albedo for single scattering were correctly assumed. For the second case study,
we arrive at a similar result.
The discrepancy between the original and retrieved functions!b

�
(�)/a

�
(�) may be caused by

the asymmetry of the original functions !b
�
(�)/a

�
(�), which have their maxima at scattering

angles larger than 903. Also, it is possible that better results may be obtained with a parameteriz-
ation of the phase function a

�
(�) other than a Henyey}Greenstein function. Further studies for

other types of parameterizations and other atmospheres are required to "nd out in detail how one
may obtain valuable information about the single-scattering properties of atmospheric particles.
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