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In this article the inverse scattering problem of reconstructing the energy dependent
potentiali VEZ—m? P(x) + Q(x) of a Schralinger equation on the line from its
reflection coefficients and bound state déta., poles of the transmission coeffi-
cients and associated norming constamgssolved using the Marchenko integral
equation approach. @001 American Institute of Physics.
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[. INTRODUCTION

In this article we study the inverse scattering problem for the generalized 1-D diuieo
equation,

" (k,x)+[k2+m? gk, x) =[IkP(x) + Q(x) ] (k,x), xeR, (1.2

where the prime denotes the derivative with respect to the spatial coordinatés the wave-
number,m is a positive mass paramet&(x) describes the energy absorption or generation, and
Q(x) represents the restoring force density. The quaitity\k?>+m? stands for the energy.
Letting C* andC~ stand for the open upper and lower complex half-planes and defining the
regionsQ " =C*"\i [0,m] andQ~ =C"\i [ —m,0], for a suitable choice of the square root one can
use the mappin@ = Vk?+m? to transform either of the regior3* conformally and bijectively
into either of the region&™, thus yielding four transformations. Using the inverse transformation
k(E)=VE?—m? we obtain the two-fold Riemann surface with branch cuts along the real line
from m to +« and from—m to —«. As we are interested primarily in the domdir:= C* UR, it
is natural to defin&(E)=\E?—m? as a single-valued continuous function B& C*UR with
(k(E)/E)>0 for E e R\[ —m,m], so that Ink(E)>0 for E e (—m,m). We then write(1.1) in the
equivalent form

¢ (E,X) + B2~ (E, ) =[ =i k(E)P(X) + Q(x)]¢~(E,X), 1.2

wherexe R andE e C*.
Let us define the Jost solutiofis (E,x) andf, (E,x) as the solutions ofl.2) with the + sign
in the first term of the right-hand side that satisfy the boundary conditions

f(Ex)=€F*+0(1), x—+x,
_ (1.3
f (E;x)=e '®+0(1), x——x.
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In terms of the Jost solutions, the scattering coefficiefitéE), a, (E), b, (E), andb, (E) are

defined by
fi(E,x)=a; (E)e'®*+b/"(E)e 'B*+0(1), x——,
_ _ (1.9
f (Exx)=a, (E)e "®*+Db, (E)e'T*+0(1), Xx— +o=.
In this article a fundamental role is played by the transformation
9" (E)+g (E) 9" (BE)-g (E)
gl(E)_fa gZ(E)_T(E)’ (1.9

between pairs of functions &. This transformation allows one to convert the pair of uncoupled
differential equationg1.2) into the coupled system of differential equations,

l,//Z(E,X) l/fl(E,X) — lrljl(E’X)
Lﬂé(E.x) +Ez[zpz(E,x) =EEX) o Ex| (1.6
where
E(E,X)= Q(x)  —k(E)*P(x) (17)
TP Qe :

andk(E)?=E?—m?. Transforming the Jost solutions as(ih5), we obtain from(1.3) and(1.4),

fl(E,x)=eF*+0(1), f(E,x)=0(1), X— -+,
. (1.8
f(Ex)=e '®+0(1), f(E,x)=0(1), X——os,

fis(E,x)=a,s(E)e®*+b(E)e B+ 0(1), x——o,
. , (1.9
fis(E,X)=a,(E)e 'B*+ b (E)eF*+0(1), Xx—+,

wheres=1,2.

The direct and inverse scattering problems for Sdimger equations of the typd.1) have
been studied extensively. Jaulent and Jelstudied(1.1) with m=0, imaginaryP(x) and real
Q(x), both on the half-line and on the full lingroblems leading to unitary scattering datand
established the unique solvability of their Marchenko equations. JAutlemived Marchenko
integral equations leading to the solution of the inverse problen(ifd) with m=0 and real
potentialsP(x) and Q(x). Sattinger and Szmigielskstudied(1.1) with m=0, imaginaryP(x)
and realQ(x) and applied the results to solve a nonlinear evolution equation. Aktesatf:’
studied in detail the direct and inverse scattering problemg¥@ for m=0, obtained many
results on the discrete eigenvalues, and gave sufficient conditions for the unique solvability of the
Marchenko equations.

The more interesting case whare>0, was taken up by Kag in connection with a non-
linear evolution equatioria long-wave water equation resembling the Boussinesq equalion
Ref. 9 a pair of coupled Marchenko integral equations was given to solve the inverse scattering
problem. Under the assumption th@t..dx P(x)=0, Sattinger and SzmigielsRiconsidered the
direct and inverse problems f¢t.1) with m=1 andC” potentials and applied their results to a
nonlinear evolution equation. Equatiéh.1), with k?+m? andikP(x) replaced byk?—m? and
kP(x), respectively, for real potentiaB(x) and Q(x), is the 1-D Klein—Gordon equation. For
this equation and on the half-line, Corinald&sDegasperis? and Weiss and Schaffstudied the
inverse scattering problem and Pivovarcfiistudied the number of bound states.
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WhenP,Q e L(R), the Schrdinger operators ifil1.2) have very different properties depend-
ing on whethem=0 orm>0, since fom=0 their essential spectrum is the sekef R whereas
for m>0 it is the set ofke RUi[—m,m]. Moreover, as observed in Refs. 8 and 9, the 0
equation is important for solving a certain system of nonlinear evolution equations by the inverse
scattering transform, whereas no such connection is apparent=fd@.

In this article we analyze the inverse scattering problem(fd? by the Marchenko method.
Essentially, although most of the scattering solutions and scattering coefficients are defined as in
Refs. 6 and 7 where then=0 case was treated, we differ from these papers in one important
aspect: We also define the scattering solutions and scattering coefficient41a§ ivere the
equation of interest rather thdf.2). The Riemann—Hilbert problem relating the usual Faddeev
solutions, as studied since the seminal papers by Fafftlard Deift and Trubowit2® and the
Marchenko integral equations obtained by Fourier transformation are derived for quantities that
are primarily connected witfiL.6). The relationships between the two approaches are explained in
detail. The advantage of the new approach lies in the behavi@—as-m. In this case (1.2
approaches two copies of the 1-D Sdfirmer equation on the line with real potenti@(x),
whereas(1.6) tends to a nonselfadjoint matrix Schiinger equation that also involvé¥(x). In
principle, this new approach could also have been applied to thersad® a possibility not
observed before. It might then be comparatively easy to study the behavior of the solutibri of
asm—0*.

Let us discuss briefly some of the differences between Ref. 10 and the present paper. In Refs.
9 and 10 theE andk variables are transformed into the complexariable by the conformal
mappingz=E+k=m?/(E—k), wherem=1 in Ref. 10. The complex-plane is then divided into
the regions/, ={ze C:|z|>m and Imz>0}U{zeC:|7<m and Imz<0} andi/_={ze C:|z|>m
and Imz<0}U{ze C:|7<m and Imz>0}, separated b ={ze C:|z|=m}U(R\{0}). The inverse
scattering problem is then posed as a vector Riemann—Hilbert problem on thectivaerelates
vector functions analytic ia/_ to vector functions analytic ity, . The unfamiliarity of the curve
3, however, makes it hard to replace these Riemann—Hilbert problems by equivalent integral
equations. For this reason we have decided not to use Hagiable.

Let us now discuss the contents of this article. In Sec. Il we introduce and study the scattering
solutions and their asymptotic properties|BEs— . We also derive the continuity of the scatter-
ing solutions for(1.6) asE— *=m. In Sec. Il we introduce and study the scattering coefficients
and their asymptotics d&|— . Their behavior a&— + m is also obtained. Their asymptotics as
E—0 is found using the recent results in Ref. 17. It follows in particular that the scattering matrix
is unitary if Ee[ —m,m], something that can also be derived from results in Ref. 10, and has
certain contractivity and expansivity propertie€ie R\[ —m,m] andP(x) does not change sign.

In Sec. IV an idea by Weiss and ScHaiit employed to derive Marchenko integral equations for
(1.6), both in the absence and in the presencfinitely many) discrete eigenvalues. Any solution

of one of the two coupled systems of two Marchenko integral equations allows one to uniquely
determine the potentialR(x) andQ(x), provided the second one of the pair of functions being a
solution has its values in{1,1). In Sec. V we relate, as in Ref. 7, the unique solvability of either

of the systems of Marchenko equations to the existence of a canonical Wiener—Hopf factorization
of a 2x 2 matrix function on the line.

II. JOST SOLUTIONS AND FADDEEV FUNCTIONS

In this section we introduce various scattering solutions(1oB) and (1.6) and study their
symmetry and asymptotic properties.

A. Analyticity and symmetry properties

Let P,QeLY(R). Then the Jost solutiorfs (E,x) andf, (E,x) satisfy the integral equations

. 1 (>
(B¢ 2 | aysiE( 0l HIKEPY+QWIEX: (21
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, 1 (x
fr(Ex)=e &+ Ef_xdySin{E(X—y)}[ii K(E)P(y)+Q(y)1f, (E\x). (2.2

Using the 2< 2 matrix £ (E,x) introduced in(1.7), these integral equations are easily transformed
into the pairs of coupled integral equations,

coq EXx) .
fli(EX)| | o = SIfE(y—x)} _ fl(Ey) |,
M e o[ e e
(E)
cog EXx) .
fra(EX)| | x sifE(x—y)} _ fra(E)y)
[fr;;(E,x) =| snEo |+ [ ay T ”(E’y)[fQ(E,y)}
k(E)
Defining the Faddeev functions, (E,x) andm, (E,x) by
m (E,x)=e "®f"(E,x), m;(E,x)=e5f"(E,x), 2.3
we get from(2.1) and(2.2) the Volterra integral equations,
o e2iE(y7x)_1 .
mF(E,><)=1+fX dy —— = [=1k(B)P(Y)+Q(y) Im (E,y); (2.9
X eZiE(x—y)_l
m; (E,x)=1+ f_xdyT[ii k(E)P(Y)+Q(Y)Im (E,y). (2.9

Using (1.5), these are transformed into the pairs of coupled integral equations:

miﬁgﬁi :[é +Lmdy%5(&y) 2:;23” 2.6
o e o RS
By differentiation with respect ta we obtain
m:&gz; =—f:dy eziE(yX)E(E’y)m;EE:z”; (2.9
Ei:i = [[ayeEnzey) ey @9

In the next theorem we state the analyticity and continuity propertieg4E,x), m,s(E,x),
fis(E.x), f.s(E,s) and their derivativess=1,2). Such results will then also hold fay (E,x),
m, (E,x), f; (E,x), f, (E,x) and their derivatives.

Theorem 2.1:Assume FQ e LY(R). Then the following is true

(1) For xe R and s=1,2, the functions m3(E,x), m,s(E,x), m/s(E,x) and nf(E,x) are analytic
in C* and continuous irCF\{0}. Consequently, for eachexR and s=1,2 the transformed
Jost solutions £(E,x) and f,s(E,x) and their derivatives {(E,x) and f{;(E,x) are analytic
in C* and continuous i-"\{0}.

2) If P,Qe Li(R), the continuity of the functions ifi) extends tac*.

Downloaded 23 Jan 2002 to 192.167.144.227. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



162 J. Math. Phys., Vol. 42, No. 1, January 2001 C. Van der Mee and V. Pivovarchik

Proof: Let Ee C*. For large|E| it is expedient to iterate the four integral equatié®s) and
(2.5 for m;"(E,x) andm,”(E,x), while it is more convenient to iterate the two syste(@$) and
(2.7 asE—=*=m.

First, using the estimate

VIIE[*=m?[<|k(E)|< VIE[*+m?,

one obtains the auxiliary upper bounds:

1
N 2[P(y)[+ Q). [E[=m,
—2E “'”E)P(VHQW”‘S (MvZ [P(y)|+|Qy))IE], |El=m,
ly=x|[mv2 |P(y)|+|Q(y)[], [E[]<=m.

In analogy with Refs. 15 and 16 we obtain the estimates

1
x| 21PLu+ Tl [El=m,

exp((mv2 |[P[l+[QlI)/ED.  [E[<m,
[1+max(0,—x)Jexp(mv2 [Pl 1 +[IQfl1).  [E[<m,

|m;"(E,x)|<

and hence
max(|mi (E,x)|,|my (E,x))<cy;
max(|m;™' (E, )], |m7™" (E,x)) < csca(|Pl+ QI L+[E[T,
wherec,= e°1IPli+IRI)/MN@IE) anqc, = max(2nmv2,1/m), as well as
Imi"(E,x)|<[1+max0,— x)]eIPl:IQlp; (2.10
Im”" (E,x)|<cacs(|Pll+[Qfl)[1+|E[1[1+max0,~x)], (219
wherecy=e®tIPlL1#1Q1D The proof form™ (E,x) andm;"’(E,x), where(2.10 and(2.11) hold
with max(0;-x) replaced by max(®), is similar.
Next, the derivation of the analyticity ah (E,x) and m,¢(E,x) and their derivatives in a

neighborhood of-min C* for s=1,2 is analogous. Here one employs the following estimate for
the Euclidean norm of the matri (E,x):

IE(EX)[=2[Q00[+(1+k(E)[A)P(X)],

which completes the proof. O
WhenP,Qe L}(R), we find asE—0,

mli(O,X)=1+f:dy(y—x)[Q(Y)ImP(Y)]mf(O,y); (2.12

m(00=1+ [ dy (-yIrQ(y) F mPty)Im: (0). 213

Then(2.12 and (2.13 are the integral equations for the zero energy Jost functions of the usual
1-D Schralinger equation with potentiaD(x) F mP(x). We will call QmP an exceptional
potential(for the usual Schidinger equatioif there exists a nonzer@eal) constanty™ such that
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. mi(0x) i (0x)
Y 00 FE (0% (219

OtherwiseQ+ mP is called agenericpotential. Obviously(2.12) and(2.13 can be transformed
into the pairs of coupled integral equations

m1(0X)] 1}+Fd __[Qw mZP(V)Hmu(O,y)}_
m20)] 10T [, O™ by oy |ma0y)]
m(0X)] [1]  [x Q(y) mZP(y)} mrl(O,y)}
m,,(0x)| |0 +f_xdy(x—y) P(y) Q(y) |[m200y)]

The complicated conjugation symmetry propertiek (@) make it hazardous to state conju-
gation symmetry properties fdi (E,x), f; (E,x), m (E,x), andm; (E,x) directly. However,
sincek(—E)?=k(E)?, we immediately have fos=1,2,

f|3(—EX)=f|S(E,X), frs(_EX):frs(EaX)v (2.19

and similarly for mg(E,x) and m,¢(E,x) wheres=1,2. Now note that K(E)/E)>0 for E
e R\[—m,m] and k(E) is positive imaginary forE e (—m,m). Thus k(—E)=—k(E) for E
eC*. Using the identitiesf;” (E,x) = f,,(E,x) +ik(E)f»(E,x) and similarly forf (E,x), we
obtain

fif(~Ex)=f(Ex), f (~Ex)=f7(EX). (2.16

Similar relations hold fom;"(E,x) andm, (E,x).

B. Large- E asymptotics

To study the largd= asymptotics of the Jost solutions, we define

7 (E,x)=e"{mi" (E,x)=e "Bt (E x); (2.17
7 (E,x)=e*P*m (E,x) =e/ &P (E x), (2.189
where
1 (= 1 (=
Z(X):EL dz A(z), p=§J7 dz P(z). (2.19

Theorem 2.2:Let P,Q e L%(R). Then the following statements are true

(i) For each xe R, the functionsz; (E,x) and », (E,x) are analytic inC*, are continuous in
C™\{0}, and we have for some constant C not depending on k and x

|9 (E,x)|<Ce“lEl | 55(E,x)|<Ce” Bl EeC\{0}. (2.20

Further, as|E|— in C* we have
i (Exx)=140(1), 7, (E,x)=1+0(1); (2.21)

7 (Ex)=0(E), 77 (Ex)=0(E). (2.22
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(i) If P,Qe Li(R), the continuity of the functions i) extends ta*. Moreover, for E= C* we
have

|7 (E,x)|<C[1+max0,—x)], |# (E,x)|<C[1l+max0x)].

Proof: Letting z(E,x) = 7, (E,x) — 1, we obtain

@2 E(y—x) _
2(E,X) =29(E,X) + f dy—Eleﬂ“X"“y’][ti K(E)P(y)+Q(y)]Z(E.y), (2.23

where

2|E(y X) 1
Zo(E X) J'dy—Eei[g(x)fg(y)]Q(y)

KE) (» o N
_;_EJ; dyeZIE(y*X)e,[é’(X) g(Y)]P(y) (1_ ( ))[eg(x)_l]

Then the Riemann—Lebesgue lemma implies thaf.sigy(E,t)| vanishes a&— + . Iterating
(2.23 we now see thaz(E,x) is uniformly bounded inC* for |E|=a>0 for eachxe R anda
>0. Using a Phragmen-—Lindédltheorem(cf. Ref. 1§ we conclude thaz(E,x) vanishes a€
—oin CF,

To prove(2.22 we introduce the function

“(Ex)= e m (Ex)e 0= 2= [ £ P(x) 5 (E) + 27 (E
& (BEx)=Em (Ex)ems == [P g (B X)+ 277 (EX) ]

From (2.8) and(2.17) we get

+(—)P(y)+ EQ(y) e WIpFEY). (.29

& (Ex)= f dy eF0=»

Thus, using(2.20, we see that the integrand on the right-hand sid€2d4) is bounded by the
integrable functiorC,[|P(y)|+|Q(y)|], uniformly inxe R andE e C* for |E|=a>0 and each
a>0, where the constai, does not depend anandE. By the Riemann—Lebesgue lemma, we
conclude that the right-hand side @.24 is o(1) asE— *, so that by a Phragmen—Lindélo
theorem(cf. Ref. 18§ we see that the left-hand side (#.24) is o(1) asE—x in C*. Conse-
quently, & (E,x)=0(1) asE— in C*, which implies(2.22 for #~'(E,x). The proof for
», (E,x) and 5, (E,x) is similar. O

To study the inverse scattering problem {@r2), as in Ref. 7 we strengthen Theorem 2.2 by
making additional assumptions édhandQ. In fact, we assume thd& is absolutely continuous,
and define the two auxiliary potential functions,

W= (x)=Q(X)F 3P’ (x)— 3 P(x). (2.29

Using (1.2—(1.4) we obtain forxe R,
7 "(EX)+[2QE+P()] 7 (Ex)=[W*(x) FI(E-K(E)P(X)]7 (Ex), (2.26
ni (E,+0)=1, 75 '(E,+%2)=0, (2.27

whereW=(x) is given by(2.29. Multiplying (2.2 by w;" (E,x)=e?&**2{®) we obtain forx
eR,
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[ui (EX) 7" (EX)]' =i (EX) [WH() Fi(E—K(E)P(X)]7i (EX). (2.28

Integrating(2.28 and using(2.27) we get
S(EX=— [ Ty @ISO (y) Fi(E-KENPY) 171 (Ey). (229
Integrating(2.29, using(2.27) once again and changing the order of integration, we find
nf(E,X)=1+Lwdy G (E;x,y)[W=(y) FI(E-K(E))P(Y)]%i (E.Y), (2.30
where we have defined

G (Epxy)= [ dz Ev-n=rkirtd
X

2 E[EZIE(y X) = [YdzP(2) _ 1]+_f dz P(2) e2E(Y-2)= jydzP(z)_ (2.30)
i

Similarly, using(1.2—(1.4), (2.17—(2.19, and(2.25 we obtain
7 "(EX)—[2IEXP(X)] 7, "(EX)=[W*(X) =i (E-K(E))P(X)]7; (E)x),  (2.32

7 (E,—0)=1, 57/ (E,—»)=0. (2.33

Integrating(2.32 twice and using2.33 we first get
7 (Ex0= | dy @O (y) i (B KENPY) 77 (E),
and subsequently
yiEx=1+ [ dy G (Exy) (W ) IE-KENPYI (Ey), (234
where we have defined

G, (E;x,y)= fxdz IEE-Y) *[(d2P()
y

— 1 [GZ'E(X y) =X P(z)dz ]_._ 1

2iE(z—y)= [ dzP(z)
- 2iE 2iE dz R2)e '

Let us now employ the integral equatio(®s30 and(2.34 to derive asymptotic expressions
for ;" (E,x) and 5, (E,x) asE— in C*.

Theorem 2.3:(1) Assume R LY(R) and Qe Li(R). Then, for each fixedx R, the functions
7 (E,x) and 7, (E,x) are analytic inC* and continuous ir:*, and

n (Ex)=1+0(1), 7 (Ex)=1+0(1), E—=inC*,
(2) Assume that W,W~ e L1(R). Then as E»x in C* we have

7 (Ex)=1+O0(1E|), 7 (Ex)=1+O(1/E]). (2.35

Downloaded 23 Jan 2002 to 192.167.144.227. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



166 J. Math. Phys., Vol. 42, No. 1, January 2001 C. Van der Mee and V. Pivovarchik

(3) If further we assume BLi(R), Qe L3(R) and W* e L1(R), then

Jxdz W (2)

7 (ExX)=1-=—=——+O(L[E[*), E—> in ct, (2.36
. JX..dzW(2) ) e
n;(E,x)=1—T+O(1/|E| ), E—o in C*. (2.3

Proof: We only prove(2.39, (2.36 and (2.37), because the rest of the proof is given in
Theorem 3.1 of Ref. 6. Note thé2.31) implies fory=x,

+ C p——
IGr(E;x,y)Iﬁﬁ, EeCN\{0}, (2.39
whereC= 3 (1+(1+]|P||,)ell). Thus, iterating2.30 and using(2.38 we obtain

+ C * "
e -1i=rg| [ atwewlemiec)

exp( j:‘dz<|Wi<z>|+m|P<z>|> |

where E e CT\{0} and|E|=m. This implies (2.35 for 7 (E,x) wheneverW* e L%(R). The
proof of (2.35 for #, (E,x) is obtained in a similar manner. To prov2.36 we obtain from

(2.30,

nF<E,x>=1+f:°dy G (Epx,y) [WE () 71 (E—k(E)P(Y)]
+ f;dy G (E;x,y)[W*(y) Fi(E-K(E))P(y)]

xf:dzCﬂE;y,z)[W*(z)ﬂ(E—k(E))P(z)]nRE,z). (239

Using (2.36 and the inequality

m2

E—Kk(E)|< =,

|E|=m,
we obtain from(2.39,

, (2.40

. = . . 1
77|_(E,X)=1+f dy G (E;x,y)W=(y)+0O TEP
X

asE—o in CF. Substituting(2.31) into (2.40 and integrating by parts we obta{@.36). The
proof of (2.37) is analogous. O

lll. SCATTERING COEFFICIENTS

In this section we introduce various scattering coefficients as well as the scattering matrix for
(1.2) and (1.6) and study their symmetry, asymptotic and unitarity and contractivity properties.

A. Wronskian relations and symmetry properties

Let[f;g]=fg’ —f’'g denote the Wronskian. Then froft.3) and(1.4) asx— *o we get

[f; (E,x);f, (E,x)]=—2iEa; (E)=—2iEa, (E), (3.1
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where(3.1) holds forEe C™. Consequentlya; (E)=a; (E), which we now denote bg*(E).
From (1.8) and(1.9) we now easily obtain

a(—E)=a4E), EeC"; (3.2

bis(—E)=Dbis(E), bs(—E)=Dbs(E), EeR, (3.3

wheres=1,2. Using(1.3), (1.4), and(2.16) we easily obtain

a*(—E)=a*(E), EeC'; (3.9
bi’(—E)=bj"(E), b (—E)=bj(E), EeR. (3.5

Next, if one assumes that™(E)#0 and defines the transmission coefficients oy(E)
=a“(E) 1, the reflection coefficients from the left y" (E)=b;"(E)/a*(E), and the reflection
coefficients from the right byR*(E)=b,"(E)/a*(E), then, if P,QeL*(R) [P,QeL(R), re-
spectivelyl, the functionEa™(E)=E/T*(E) is analytic inC*™ and continuous ir:*\{0} [C",
respectively and the functionsEb;"(E)=EL*(E)/T*(E) and Eb, (E)=ER*(E)/T*(E) are
continuous iNR\{0} [R, respectively. In terms of the reflection and transmission coefficients we
define the scattering matrix by
T*(E) R7(E)

SE= | 16

. (3.6

_ LetEeR\[-m,m]. Thenk(—E)=—Kk(E) is real. Thusf;"(E,x), f; (E,x), f;"(—E,x) and
f (= E,x) all satisfy(1.2) and hence their Wronskians are independent ¢Jsing(1.3) and(1.4)
e oct [ (Ex);f7(—E,x)]=—2iE=—2iE[a] (E)a; (—E)— b (E)b] (—E)],

[f; (E,x);f, (—E,x)]=—2iEb,; (—E)=2iEb; (E),
[f7 (Ex);f (—E,x)]=—2iEb; (E)=2iEb] (-E),
[f7 (Ex):f (—Ex)]=2iE[a; (E)a, (—E)—b; (E)b; (—E)]=2iE,
where the behavior as— + o is given first and then the behavioras> — . As a result, we get
S*(E) " '=S"(—E). (3.7
From (1.3), (1.4), and(3.6) we obtain

f'(—E.x)

(E,X)
—f7(—EX) -

SEx | (3.9

e
_S (E) —f
Let Ee(—m,m). Then k(—E)=Kk(E) is positive imaginary. Thus; (E,x), f, (E,x),
f(—E,x) and f/(—E,x) all satisfy (1.2) and hence their Wronskians are independenk.of
Using (1.3) and(1.4) we get
[f7(Ex); i (~Ex)]=—2iE=—2iE[a (E)aj (~E)~b{ (E)bj (—E)],
[f (E,x);f, (—E,x)]=—2iEb, (—E)=2iEb; (E),
[f7 (E);fi7(—E,x)]=—2iEb; (E)=2iEbj (—E),

[f (Ex);f7 (—Ex)]=2iE[a, (E)a; (—E)—b, (E)b, (—E)]=2iE,
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where the behavior as— + o is given first and then the behavioras> —». As a result, we get
S*(E) " '=S"(—E). (3.9
From (1.3), (1.4), and(3.6) we obtain

fr (—Ex)

Lt (—Ex|~S®)

f(EX)
: . (3.10

—fi (EX)

WhenE € {—m,m}, the = equationg1.2) are identical and the boundary conditidis3) do
not distinguish between the versions of(1.2). It then follows that

fa(mx)=f"(mx)=f (mx), fia(—=mx)=f"(=mx)="f (-mx),
fra(mx)=f (mx)=f (mx), f(=mx)=f (=mx)=f (-m,x),
which implies
aj(m=a’(m=a (m), a(-my=a’(-my=a (-m),
biy(m)=b;"(m)=by (M), bjy(=m)=b/"(=m)=b; (-m),
bry(m)=b;(m)=b, (M), b (—m)=b/(—m)=b, (—m).
Hence_,S*(m)=S‘(m) and S*(—m)=S"(—m) are both unitary matrices, providea(m)
—a,(—m)#0. The behavior 0b,(E), by,(E), andb,,(E) asE— =m will be given by(3.20.

Finally, for Ee R\{—m,m} and under the assumption that (E)+#0 for everyE<R, we
introduce the modified scattering matrix,

S(E)=M(E)[S"(E)®S (E)IM(E) " *, (3.11
where
ik(E)y 0 ik(E) O
1 0 ik(E) 0 ik(E)|
(E)_Zik(E) 1 0 -1 o |’
0 1 0 -1
1 0 ik(E) 0
L]0t 0 ik(E)
ME)"=14 0 —ik(E) 0
0 1 0 —ik(E)
Using that

Ti(E) Ry(E) —Kk(E)*To(E) —K(E)’Ry(E)
Li(E) Ti(E) —K(E)’Lo(E) —k(E)?*To(E)
To(E) Ry (E) T.(E) R.(E) ’
Lo(E)  To(E) L.(E) T.(E)

SE)= (3.12

we obtain from(3.8) and (3.10 the following Riemann—Hilbert problem valid for botae R\
[—m,m] andE e (—m,m):
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fll(_E!X) frl(E,X)
—f(=EX) | = —f,,(E,x)
f(—Ex) | =SB foEX | (3.13
_frZ(_E!X) _f|2(E,X)

One easily proves th&E)  1=5(—E), both forEe (—m,m) and forE e R\[ —m,m].

B. Various asymptotic properties

Theorem 3.1:Let P,Qe L*(R). Then

a*(E)e*P=1+0 %) E— in C*; (3.14
. 1 . 1
br(E)=O(E>, b,(E)=O(|E|>, E—+oo, (3.15

where p is defined by (2.19).
Proof: From (3.1) we obtain

2iEa*(E)e"P=[2IE=P(X)] 7 (E.X) 5 (E,X)+ 77 ' (E,X) 7, (E,X)— 7 (E,X) 7, (E,X).

(3.16

Now (3.14) follows from (2.21), (2.22), and(3.16. Similarly, (3.15 follows with the help of
—2iEb, (E)=e 2BX*P=2(9[ = (E,X); 5 (— E,x)], (3.17
and the analogous expression involving(E). O

Let us now consider the low energy asymptotics of the scattering coefficients. From Ref. 17
we get the following result, depending on whether we are in the generic or in the exceptional case.
We letf;"(0x) andf, (0x) stand for the zero energy Jost functions of the usual 1-D Siahger
equation with potentiaQ(x) ¥ mP(x) andy~ for the quantity given by2.14).

Using Theorem 2.2 of Ref. 17, witA(k) =k?+m?, ko=im, S={ke C":|[k—im|<m} and
P(ko)=i[0,m], we easily obtain the following result.

Proposition 3.2: Suppose,P e Li(R).

() In the generic case we have
2iE
[f77(0,):f,7(0,)]

L*(E)=—1+0(1), R*(E)=—1+0(1), E—0 in R.

T*(E)=— +0(E), E—0 in C",

(3.18

(i) In the exceptional case we have

+ +2 1_,yi2

2y~ N y -1 N
=——7, R (@—m-

T*(O)Zm,

(3.19

Finally, we consider the behavior of the scattering coefficient&-as=m in cr.
Propositon 3.3: Let R L1(R) and Qe L3(R). Then the expressions

a’(E)-a(E) b/ (E)—b/ (E) b/ (E)—b, (E)
k(E) ' k(E) ’ k(E) ’ (320
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have finite limits as E>+m, Ee C*.
Proof: From (1.4), (2.9), (2.6), and(2.7) we have

~2iE | LIYEEY moEy)

a(BE)| |1
a,(E)|~|0

1 fx my(E,y)]

(1L e (ma(Ey)],
%%ﬁfﬁdyﬁ(ay) mea(Ey) |

-mll(Eiy) .
_mIZ(Eiy) '

b (E)| 1 [~ Eym
{blz(E)}_ﬁdeyéEyw(EaW

brl(E) _ 1 foo —2iEy— [mrl(an)}
[bQ(E) =2 ) WYETTEEY Mo Ey)
where the limits a€— +m from C* exist. O

When 1T (E) and 17~ (E) have anecessarily commomonzero limit asE— +m, the next
corollary is a restatement of Proposition 3.3.

Corollary 3.4: Let PeLj(R) and Qe L3(R) and supposel/T*(E) and 1/T"(E) have a
nonzero limit as E-+=m in C*. Then the expressions

T(E)-T(E) L'(E)-L(E) R(E)-R(E)
k(E) ' k(E) ' k(E) '

have finite limits. HengeT,(E)=[T"(E)— T (E)]/2ik(E) and the analogous quantities,fE)
and L,(E) are continuous in E R if T*(E) is continuous in E R.

Proposition 3.5: Assume PL1(R), Qe L3(R), and W* e L}(R), and let T"(E) and T (E)
be continuous in ER. Then the functions {(E), L,(E), k(E)2L,(E), R.(E), R,(E), and
K(E)?R,(E) belong to I?(R).

Proof: In view of Corollary 3.4 and the continuity af*(E) in E € R, it suffices to study the

asymptotic behavior of the above functionsks> =. From (2.36 and (2.37) we have a
— + oo,

W™ (x)

W= (x) .,
Ez), ur (E,X)—— 2IE +0

2iE

7 (E,X)= +0

Using (3.17) we find

. R(E) (1
5 ()= 7y =l e

and similarly forL=(E)/T=(E). On the other hand, usin@.16 we get

T Ey el 1 JZ..dzW(2) 1
®=ef e "OlEr/)
whence
R*(E)=0 !
©=Oler)
A similar asymptotic expression can be derived lfér(E). This expression implies that, (E),
L,(E), andk(E)?L,(E) belong toL?(R). O
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C. Unitarity and contractivity properties

Let Ee (—m,m). Then(1.2) is a pair of 1-D Schrdinger equations with real potentials and
hence the scattering matr&" (E) is unitary (cf. Refs. 15 and 16 As a result, the reflection and
transmission coefficient®=(E), L=(E), andT=(E) are continuous irE € (—m,m).

Let E€ R\[ —m,m]. Observe that if)(E,x) is a solution of thex version of (1.2) and
¢(E,x) of the ¥ version of(1.2), then

d
axLY(EX)e(EX)]= 5 2Ik(E)P(X) (EX) ¢(E,X). (3.21)

Hence two expressions of the Wronskianyge,x) and¢(E,x) can be found by examining their
value asx— o0 and integrating with respect ta Using (2.16), (3.4), (3.5, and(3.21) we get

[ (Ex);ifi (—Ex)]

—2iEi2ik(E)Lwdy Py (E,y)|%

_ ) (322
—2iE[|ai(E)|2—|b|i(E)|2]12ik(E)J_wdy P(y)|f"(E,y)|%,
2iEb,f(E):2ik(E)f_dey POy (E ) (Ey);
[ (Ex);fr (—Ex)]= o . (323
~2iEb; (B)=2k(E) [ “dy P (E)T; (),
[f, (ExX);f (—EX)]
2iE12ik(E)JX dy P(y)|f(E,y)|%;
_ o i} (3.24
2iE[|ff(E)|2—|bri(E)|2]i2ik(E)fX dy P(y)|f; (E,y)[%.
Subtracting the two right-hand sides of each®£2—(3.24), we get
L+ [a (B |b ()= T _dy Pyt (B[ (329
N ——— _K(E) (= N P
—br(BE)=b (B)=%—F— f_wdy P (Ey)fr (Eyy), (3.26
—1+[a*(B)]*~ b, (B)]*= 1% _dy Py)lfr (Ey)*. (3.27

From (3.25 and(3.27) it is clear thata™(E)#0 when(FP(x))=0. In that case we define the
matrix

f:dyF’(y)lI‘F(E,y)l2 fldyP(y)ff(E,y)fF(E,y)
WHE)=F| . . ,
| avpoirEniiEy [ ayrmliEpE
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and, provideda™ (E) #0, derive the identity

k(E)

1 0
+ AVYES _ _ ot tat
£ [T (B)*W™(E) [0 1| 7S (B)'ST(B),

which is nonnegative selfadjoint {f+ P(x))=0. Here 1 denotes the conjugate transpose. Simi-
larly, one proves that i+ P(x))<0 and the transmission coefficiefit (E) is well-defined, the
scattering matrixS™ (E) has a contractive inverse.

D. Discrete eigenvalues

The discrete eigenvalues of the pair of modified Sdimger equationg1.2) coincide with
those of the systertlL.6). They form a finite or countably infinite subset©f of eigenvalues of
finite algebraic multiplicity. The geometric multiplicity of the eigenvalues of either of the equa-
tions (1.2) is one, while that of(1.6) is at most two. They can only accumulate in a bounded
interval of the real line, but not at points of-(m,m). Accumulation asE— is impossible
because 0f3.14). Accumulation at points of-{ m,m) is impossible, because the scattering matrix
S*(E) is unitary if Ee (—m,m).

The discrete eigenvalues are symmetrically located with respect to the imaginary axis, where
the geometric and algebraic multiplicities of an eigenvaluggatoincide with those at-Eq. This
follows directly from(3.4)—(3.5). The net result is that the residuesi®f* (E) atE, and—E, are
complex conjugates.

For the problem(1.2) with m=0, the properties of the discrete spectrum have been discussed
in detail in Ref. 6. Many of these results also follow from spectral properties of certain operator
pencils(cf. Ref. 19. If m>0, most of those results are expected to go through, albeit in a slightly
different form.

IV. MARCHENKO EQUATIONS

In this section we derive the Marchenko integral equations leading to the solution of the
inverse scattering problem.

A. Fourier transformation properties

Let us apply the method of Ref. 13 to derive Marchenko integral equations to solve the
inverse scattering problem. We begin by deriving some integral representations frate
formed Jost solutions.

Theorem 4.1: Assume R L1(R), QeL3(R), and W* e L}(R). Then the Jost solutions
f,s(E,x) and fis(E,s) (s=1,2) can be represented as follows:

f.1(E,x)=e" "®*cosip— ¢(x))+ f_xwdt K,1(x,t)e Bt (4.2
frz(E,x):ﬁxmdtKrz(x,t)e*iEt, (4.2
f11(E,x)=e'F*cosHZ(x)) + f:dt K1(x,t)e'Et 4.3
f|2(E,x)=f:dtK,z(x,t)eiEt, (4.4

where K (x,t) and Kig(x,t) (s=1,2) are independent of E and belong t3(I?) as functions of
t when xe R is fixed
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Proof: Using (2.17, (2.18, (2.36, and (2.37 it follows that f;(E,x)="f(E,X)
—e'®¥coshz(x)) and T,1(E,x)=f1(E,x)—e "®¥coshp—{(x)), as well as T ,(E,x)
=f,,(E,x) andf,,(E,x)=f,,(E,x) belong toL?(R) as functions ofE for fixed xe R. Further,
these functions multiplied bfog(E|+2))*? belong toL?(R). So Plancherel’s theorefef. Ref.
20, Theorems 48 and B&mplies the existence of the integrals,

Lim. 1 a ~ -
Ks(X,t) = —f dE f.¢(E,x)e'E, s=1,2,
rs . 27 ). rs
Lim 1 a ~ )
Kis(x,t) = —f dE f(E,x)e "B, s=12.
a— +owo 277 —a

Itis clear that,4(x,t) andKs(x,t) (s=1,2) belong td_%(R) as functions of for everyx e R (cf.
Ref. 20, Theorems 48 and 63

Due to(1.7) and Theorem 2.1, the functioriss(E,x) and fs(E,x) (s=1,2) are analytic in
E<C*. Moreover, there exist€>0 (depending orxe R) such that fors=1,2,

|er(EyX)|$CeX|mE, |f|S(ny)|$Ce*XImE,

for all xe R. From(2.37) we obtain
J dt[f,o(t+i ImE,x)|?>=0(e >*'ME),

Similar estimates hold foK,,(E,x) and for K|;(E,x) (s=1,2). Hence we may apply Titch-
marsh’s theorengcf. Ref. 20, Theorem 96and obtain

Kr(x,1) =K 5(x,t)=0, t>Xx,
Kii(x, ) =Kja(x,t) =0, t<x.

This proves the representatio@s1)—(4.4). O
Using (2.18), (2.19, and(2.37), we obtain
1
[E[?

1
[E[?)”

ie—iEx

T (Ex)= +0

X X
e””“")f sz\F(z)+ep’5(x)J’ dzW (2)

ie—iEX

TAETIY o

X X
efp%(X)J’ dz\Aﬁ(z)+ep’§(x)f dzW (2)

wherey is an arbitrary positive number. Its Fourier transform is of the form

e7p+§(x) X epfg(x) X
) deW(Z)"‘ 1 fszV’(z)

Krl(X!t) =

e XV g(x—1)+ M, 1(x,1),

where 6(z) is the Heaviside function given by

0, for z<O,
1, for z>0,

0(2):[
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M;1(x,t) is continuous inteR for fixed xe R and there exists the partial derivative
(M, 1(x,t)/at) e L2(R) (cf. Ref. 20, the beginning of Sec. 6.13, before Theorem).1P&nce,
K,1(X,t) has a jump discontinuity at=t. Taking into account the identiti{,;(x,x+0)=0, we
obtain

Krl(x,x—O)z%f(ep”(")J’X dz V\F(z)+ep*f(x)£( dz V\f(z)). 4.5

In the same way we obtain

Kr2(x,x=0)=sinh(p—{(x)). (4.6

Using (4.5 and (4.6) we now compute(x) and P(x) from K,;(x,x—0) andK,,(x,x—0). In
fact, we obtain

d
P(x)=2d—xlog(Krz(x,x—O)+(Krz(x,x—0)2+ 1)1?), (4.7)
. d K,1(Xx,x—0) P(X) 1 (x P(x)?
Q(x)—2d—x coshi [ dz A(2) -2 tan}‘(zj_mdz P(z)| |+ 7 (4.8
In the same way we derive
Ki2(X,x+0)=sinh({(X)),
d
P(x)=—2&Iog(K|2(x,x—0)+(K|2(x,x—0)2+ 1)Y?), (4.9
o d [ Kp(x,x+0) P(x) 1 (= P(x)?
Q(X)__Zd_x(cosh%ffdz 2 -2 tan}‘(ifx dzP(z) ||+ 7 (4.10

B. Marchenko equations without bound states

Let us assume that* (E) and T~ (E) are both continuous i& € R. Before deriving the two
pairs of Marchenko integral equations, we introduce the two sets of integral kernels as follows:

1 (= . = dE _
F|1(x)=zﬁxdE L, (E)e'®*= LCE[L*(E)JFL*(E)]e'EX, (4.12)

1 (= . » dELT(E)—L (E) .
F,Z(x)zﬂﬁde L,(E)e®*= f_mﬂ %e@‘, (4.12

1 (= _
Fia)=—5_ fﬁwdE K(E)?L,(E)e'™

(= dE _
=|fﬁwﬂk(E)[L*(E)—L’(E)]e'EX, (4.13
as well as
1 (= . = dE .
Frl(x)zﬁﬁwdE Ri(E)e'F*= fﬁwE[R+(E)+R*(E)]e'EX, (4.14
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1 (= o (* dER"(E)-R™(E) _,
Frz(X)=EJ_wdE R,(E)e'E _f_mEWeE ' 4.19
1 [~ )
Fr3(X):—EJ’7 dE k(E)?R,(E)e'E*
(= dE _
='fﬁwﬂk(E)[RWE)—R*(E)]e'EX. (4.16

Then the integral$4.11)—(4.13 and (4.14—(4.16) exist as a result of Proposition 3.5 and the
continuity of T*(E) and T (E) in E€R.
Next, we introduce the unknown functioBss(x,y) andBs(Xx,y) (xe R, y>0, s=1,2) by

Krs(x,x—y) K|S(X!X+y)

costp—2x))" Y= cosz(x)) .19

Bis(x,y)=

and write(4.1)—(4.4) in the form

fs(E,x)=e"'"BXcosi(p— (X)) :

55,1"’_ f dy éEyBrs(Xay)
0

fis(E,x) =€'EXcosi({(x))| 81+ fxdy e5YBis(x,y)
0

wheres=1,2.
Starting from the two pairs of equatiohsf. (3.13)],

fra(—EX)+La(E)f 1 (E,x) —K(E)?Lo(E)f 5(E,X)
=T1(E)f11(E,X) —K(E)*To(E) f1o(E,X), (4.18

fra(—E,x)+Lo(E)f1(E,x)+ L1 (E)fo(E,X)
=TL(E)f12(E,X)+ T1(E)f2(E,X), (4.19

and

fi2(—E,x)+Ry(E)fi1(E,X) —K(E)?R,(E) f|2( E,X)
=T1(E)f1(E,X) —K(E)?TA(E)f,5(E,X), (4.20

fi2( —E,X) + Ro(E) f11(E,x) + R1(E) f12(E,X)
=To(E)f1(EX)+T1(E)f2(E,x), (4.21)

and Fourier transforming the contributions to these equations that are analyficaind vanish at
infinity while taking into account4.11)—(4.17), we obtain the two pairs of coupled Marchenko
equations,

B,1(x,y) + J:dz[F.l<y+z—2x>Brl<x,z>+F|3<y+z—2x>Br2<x,z>]

=—Fu(y=2x), 4.22
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Bra(x,y)+ J:dZ[F|z(y+ 2= 2x)B1(x,2) + Fi1(y +2—2x)B2(x,2) ]

=—Fialy=2x), 4.23

and
Bia(xy)+ fo A2[F 1 (y+ 2+ 20Ba(%,2) + Fraly + 2+ 20Bia(x,2)]

=~ F(y+2x), (4.24

Bia(x,y) + jode[FrZ(y+ z+2x)B1(X,2) + Fr1(y +2+2x)By2(x,2)]

=~ Fra(y+2x). (4.29

In deriving (4.22—(4.295, we have assumed the absence of the discrete spectrum of the two
equations(1.2) and hence the analyticity af,(E) andT,(E) in C*.

C. Marchenko equations with bound states

When one of the two equatiori.2) has a discrete spectrum, the derivation of the Marchenko
equations(4.22—(4.25 should be madified, since the right-hand sidegbf.8—(4.21) may no
longer vanish. To simplify the discussion, we make the following assumptions.

(1) T"(E) andT~(E) are continuous irE € R.

(2) The number of poles of *(E) andT~(E) in C* is finite [denote the poles of either &f (E)
in C* by E;, wherej=1,... \V].

(3) The poles ofT"(E) andT (E) in C" are simple; we Wl’itEitJ-t for the residue off *(E) at
E=E; (j=1.....NV). We puttj;=[t;"+t; /2 andt;,=[t;" —t; ]/2ik(E;).

(4) We remark thatji, tj1, tj2, andik(E;) are real ifg; is imaginary. Quantitiei;ji, ti1, tjo,
andik(E;) corresponding to eigenvalues symmetrically located with respect to the imaginary
axis are complex conjugates. These properties are immediate from the observations made in
Sec. llID.

(5) Using the terminology of Ref. 16 and recalling that the eigenvalues of eithét.2f have
geometric multiplicity one, we first introduce the norming constants,

fi"(E; ,x .
f=% j=1,...N7.
Then one easily verifies that

fi11(Ej, %) =Cj1f1(E; vX)_ijCjZfrZ(Ej X),
f12(Ej %)= Cjof 1 1(Ej ,X) + Cja fr2(Ej %),
wherek;=k(E;) and

+ - + -

Cix 2 CizT 2ik;

Calculating the residues of the expressions on the right-hand sides18—(4.21) at E
=E; in C*, we obtain
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[tj1Cj1—Ktj2C21f 1(Ej ,X) = KTtj1Cj2+1j5C 11 2( Ej %), (4.26
[tj2Cj1+tj1Cj2]fr1(Ej %) +[ —Kitj5C o+ 1;1Cj11fra( Ej X), (4.27
[tj1Dj1—Kt;2D o1 1(Ej ,X) = KTtj1Djo+ 5D 11, o(Ej %), (4.28
[tj2Dj1+1;1D2] 11 (Ej ) + [ —KFtjoD o+ 11D4 1 o(E; %), (4.29

multiplied by the imaginary unit. Here
fr1(Ej,x)=Djafi1(E; ,X)—kaDjzﬁz(Ej X)),
fr2(Ej,X)=Dj2f11(Ej,X) + Dj1f12(Ej %),
where we note that
{Djl _kaDi2}:[le —kajz}‘l
Di2  Dj Co Cpu |

We remark thaC;", Cj;, Cj,, Dj;, Dj, andik; are real ifE; is imaginary. Quantities;” , Cjy,

Cj2, Dj1, Dj,, andik; corresponding to eigenvalues symmetrically located with respect to the
imaginary axis are complex conjugates. These properties are immediaté2rbén

We now recall that in order to compute the left-hand side minus the right-hand side28f
and(4.23), we have to single out the contributions(t18 and(4.19 that are analytic i~ and
vanish at infinity and apply the operation #/2” _dE €50~ [cosHp— ¢(x))] * to them. Ap-
plying the same procedure to the right-hand side@df8 and(4.19 and using4.17), (4.26), and
(4.27), we obtain

N )
_jgl eiEj(y—ZX)(A|jl+ fo dz éEjZ[A”lBrl(X,Z)—kj2A|szr2(X,Z)]) ,

N

—le e‘EJ(V—ZX)<A”~2+ fo dz éEJZ[AHZBrl(x,z)—kj2A|le,2(x,z)]),

where
Aij1=t1Ci1—KtjCia,  Ajja=11Cjo+1;,Cis.
Introducing the modified Marchenko kernel functions,

N
Fis(¥)=Fis(x)+ >, AjjseF%, s=1.23,
=1

whereA ;3= —ijA“-z, we arrive at the coupled Marchenko integral equations,

Bri(x,y)+ f:dz[ﬁu(yﬁL 2= 2%)B,1(x,2) + Fia(y +2—2X)B,2(x,2)]

—Fuly-2x) 430
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Bra(x,y)+ J:dz[?.z(w 2= 2%)B,1(%,2) + Fi2(y+2—2X)B/2(x,2)]

=—Fialy=2%). (4.30

In an analogous way we obtain the coupled Marchenko integral equations
Bll(x,y)+fowdz[ﬁrl(y+z+2x)B.1(x,z)+ﬁ,3(y+z+2x)B.2(x,z)]
=—F1(y+2x), (4.32
B|2(x,y)+J':dz[lérz(waz+2x)B|1(x,z)+l~:,1(y+z+2x)B|2(x,z)]

=—Fraly+2x), (4.33

where

N
Fs(x)= Frs(x)+z A €5%, s=12,3,

Ar1=t;1Dj1—Kt;Djo,  Arp=t51D )+ 15D,

andAj3= —ijArjz. Using the symmetry statements made before in this subsection, one easily
proves thaf (x) andF,s(x) (s=1,2,3) are real functions.

WhenT"(E) and T~ (E) both have a finite number of poles and some of them are multiple
poles(but otherwise the first assumption is fulfilled4.30—(4.33 can be derived using a gener-
alization of the notion of norming constant given in Ref. 7, but with more complicated auxiliary
kernel functionsk(y) andF,s(y) (s=1,2,3).

We now state the main result. The first part is immediate f(d@)—(4.8) and (4.17). The
second part follows from the secorid.17) and expressions involvings(x,t) and Bs(X,y) (s
=1,2) analogous t¢4.7)—(4.9).

Theorem 4.2: Suppose R Li(R), Qe L3(R), and W* e L}(R), and let conditions (1}(3)
stated at the beginning of Sec. IV C be fulfilled. Then,i{8-) (s=1,2) are the solutions of the
Marchenko equations (4.30) and (4.31) angh®&,0") e (—1,1), the potentials @x) and P(x)

are given by
5 1+ Brz(x 0+) 43
. d L Px) 1 (x P(x)?
Q(x)—2dX B,1(x,0 )—Ttam‘(ifwdz P(z) ||+ 7 (4.35

Similarly, if Bs(X,-) (s=1,2) are the solutions of the Marchenko equations (4.32) and (4.33) and
B,»(x,07) e (—1,1), then the potentials (x) and P(x) are given by

1—-B,(x,0M)

d
P(X)_ gm (4.36

( > . (4.37)

d
Q=2 Bu(x0") - o ta nr( f dz R(2)
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V. SOLVABILITY OF THE MARCHENKO EQUATIONS

In this section we establish the compactness of the Marchenko integral operators and relate the
unique solvability of thépairs o) Marchenko integral equations to the canonical factorizability of
a matrix function.

Theorem 5.1: Suppose R Li(R), Qe L3(R), and W* e L}(R), and let conditions (1(3)
stated at the beginning of Sec. IV C be fulfilled. Then the integral operators arising from the
Marchenko integral equations (4.39).33) are compact ond(R ™).

Proof: All of these integral operators have the form

(Kg)(y)= J:dz Fy+2)9(z), y>0,

where
F(x)= > Jx dE®(E)eF
277 — '

for some functiond(E) that is continuous irEe R and vanishes aE— *o. Such integral
operators are Hankel operators with continuous symbol and as such compatin(cf. Refs.
21 and 22. O

In order to derive sufficient conditions for the unique solvability of the Marchenko equations
(4.30—(4.31) or the Marchenko equationig.32—(4.33, we define the quantities

RE)- | dze Fu 2, (- [ dzeFy ),

wheres=1,2,3. If neither of(1.2) has any eigenvalues, we have
Ri(E)=Ry(E), Ry(E)=Ry(E), Rs(E)=—K(E)’Ry(E),
Li(E)=Ly(E), LAE)=L(E), Ls(E)=—k(E)2Ly(E).
Introducing the functions

Bé(E,X)=if0ﬂdy Bis(x,y)€e'®, BE(E,X)=rf0de Bi(X,y)€'EY,

wheres=1,2, by Fourier transformation we obtain frdgh30—(4.31) the Riemann—Hilbert prob-

lem,
I 0} X" (E,X) I F(EX)][ X (E,x) _[Y(—E,x) 51
F—Ex) 1IIX(-Ex|T o 1 |[x*(-Ex]7| vEX || &Y
wherel denotes the 2 identity matrix and
= — Brtl(E'X) — _ a—2iEx Ll(E)
X (E'X)_[BfZ(E,X) , Y(Exx)=-—e I:2(E) ,
L.(E) L4E
e )
L2(E)  Li(E)

In the same way we define
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Ry(E) Rs(E)
R,(E) Ry(E)

Fo(E,x) = e%&

In analogy with(5.1), we derive the Riemann—Hilbert problem,

I 0
F(—ExXx) |

I F(E,X)
0 I

X*(E,x)
—X"(—E,x)

X~ (E,x)
—X*(—E,x)

[Y(-Ex)
| —Y(E,x)

from the system of integral equations obtained fr@h80 and(4.31) by replacing the kernel§,q
with —Fs.

Next, by a(right) canonical factorizatiorof a matrix functionW(E) defined forEe R we
mean a factorization of the form

W(E)=W (E)W*(E), (5.2
where bothw=(E) andW=(E) ! are continuous irfE e C*, are analytic inE e C*, and have a
limit as E— o in C*. Replacing(5.2) with W(E)=W"(E)W (E), we get the definition of a left
canonical factorization.

The following theorem easily follows using the methods employed in Refs. 23 and 24. Such
methods were applied to inverse scattering before in Ref. 7.

Theorem 5.2: Suppose R LI(R), Qe Li(R) and W* e Li(R), and let conditions (1(3)
stated at the beginning of Sec. IV C be fulfilled. Then, for fixe®xthe system of Marchenko
integral equations (4.30) and (4.31) and the system of integral equations obtained from them by
replacing the kernels g with —F ¢ both have a unique solution if and only if tde< 4 matrix
function

[I —F(E,X)F(—E,x) —F/(E,X)
(5.3

Fi(—E,X) |

has a (right) canonical factorization. Similarly, for fixedexXt, the system of Marchenko integral
equations (4.32) and (4.33) and the system of integral equations obtained from them by replacing

the kernels~|r:S with —I~:rS both have a unique solution if and only if tde<4 matrix function
I—F.(E,X)F.(—E,x) —F.(E,X)
F.(—E,x) I

(5.9

has a (right) canonical factorization

In Ref. 7 the Marchenko equations are simple enough to allow for a representation of the 4
X 4 matrix functions in(5.3) and(5.4) as the direct sum of two>22 matrix functionsone being
the adjoint of the othemultiplied on either side by constant nonsingular matrices. As a result, in
Ref. 7 the analog of the present Theorem 5.2 involves the equivalence of the simultaneous unique
solvability of two pairs of Marchenko equations to the existence of both a left and a right canoni-
cal factorization of a X2 matrix function. No such simplification has been found for the present
problem.

We conclude this article by giving a sufficient condition for the canonical factorizability of the
matrix function in(5.3) and hence of the unique solvability of the solution of the Marchenko
equationg4.30—(4.31).

Corollary 5.3: Suppose BLi(R), QeL3(R) and W= e L1(R), and let conditions (1}(3)
stated at the beginning of Sec. IV C be fulfilled. Then, for fixed® xthe system of Marchenko
integral equations (4.30) and (4.31) are uniquely solvable if

sup||F(E,x)||<1. (5.5
EeR
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Analogously, for fixed % R, the system of Marchenko integral equations (4.32) and (4.33) are
uniquely solvable if

sup||F(E,x)||<1. (5.6)
EeR

In (5.5) and (5.6) the norm is defined as the largest singular value of the matrix
Proof: This corollary is immediate from Theorem 5.2 by observing a5 implies that
Fi(E,x) has a canonical factorizatiqef. Ref. 25, Sec. Il A. O
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