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In this article the inverse scattering problem of reconstructing the energy dependent
potential iAE22m2 P(x)1Q(x) of a Schro¨dinger equation on the line from its
reflection coefficients and bound state data~i.e., poles of the transmission coeffi-
cients and associated norming constants! is solved using the Marchenko integral
equation approach. ©2001 American Institute of Physics.
@DOI: 10.1063/1.1326921#

I. INTRODUCTION

In this article we study the inverse scattering problem for the generalized 1-D Schro¨dinger
equation,

c9~k,x!1@k21m2#c~k,x!5@ ikP~x!1Q~x!#c~k,x!, xPR, ~1.1!

where the prime denotes the derivative with respect to the spatial coordinatex, k is the wave-
number,m is a positive mass parameter,P(x) describes the energy absorption or generation,
Q(x) represents the restoring force density. The quantityE5Ak21m2 stands for the energy.

Letting C1 andC2 stand for the open upper and lower complex half-planes and defining
regionsV15C1\ i @0,m# andV25C2\ i @2m,0#, for a suitable choice of the square root one c
use the mappingE5Ak21m2 to transform either of the regionsV6 conformally and bijectively
into either of the regionsC6, thus yielding four transformations. Using the inverse transforma
k(E)5AE22m2 we obtain the two-fold Riemann surface with branch cuts along the real
from m to 1` and from2m to 2`. As we are interested primarily in the domainEPC1øR, it
is natural to definek(E)5AE22m2 as a single-valued continuous function ofEPC1øR with
(k(E)/E).0 for EPR\@2m,m#, so that Imk(E).0 for EP(2m,m). We then write~1.1! in the
equivalent form

c69~E,x!1E2c6~E,x!5@6 i k~E!P~x!1Q~x!#c6~E,x!, ~1.2!

wherexPR andEPC1.
Let us define the Jost solutionsf l

6(E,x) and f r
6(E,x) as the solutions of~1.2! with the6 sign

in the first term of the right-hand side that satisfy the boundary conditions

f l
6~E,x!5eiEx1o~1!, x→1`,

~1.3!
f r

6~E,x!5e2 iEx1o~1!, x→2`.
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In terms of the Jost solutions, the scattering coefficientsal
6(E), ar

6(E), bl
6(E), andbr

6(E) are
defined by

f l
6~E,x!5al

6~E!eiEx1bl
6~E!e2 iEx1o~1!, x→2`,

~1.4!
f r

6~E,x!5ar
6~E!e2 iEx1br

6~E!eiEx1o~1!, x→1`.

In this article a fundamental role is played by the transformation

g1~E!5
g1~E!1g2~E!

2
, g2~E!5

g1~E!2g2~E!

2ik~E!
, ~1.5!

between pairs of functions ofE. This transformation allows one to convert the pair of uncoup
differential equations~1.2! into the coupled system of differential equations,

Fc19~E,x!

c29~E,x!G1E2Fc1~E,x!

c2~E,x!G5J~E,x!Fc1~E,x!

c2~E,x!G , ~1.6!

where

J~E,x!5FQ~x! 2k~E!2P~x!

P~x! Q~x!
G ~1.7!

andk(E)25E22m2. Transforming the Jost solutions as in~1.5!, we obtain from~1.3! and~1.4!,

f l1~E,x!5eiEx1o~1!, f l2~E,x!5o~1!, x→1`,
~1.8!

f r1~E,x!5e2 iEx1o~1!, f r2~E,x!5o~1!, x→2`,

f ls~E,x!5als~E!eiEx1bls~E!e2 iEx1o~1!, x→2`,
~1.9!

f rs~E,x!5ars~E!e2 iEx1brs~E!eiEx1o~1!, x→1`,

wheres51,2.
The direct and inverse scattering problems for Schro¨dinger equations of the type~1.1! have

been studied extensively. Jaulent and Jean1–3 studied~1.1! with m50, imaginaryP(x) and real
Q(x), both on the half-line and on the full line~problems leading to unitary scattering data!, and
established the unique solvability of their Marchenko equations. Jaulent4 derived Marchenko
integral equations leading to the solution of the inverse problem for~1.1! with m50 and real
potentialsP(x) and Q(x). Sattinger and Szmigielski5 studied~1.1! with m50, imaginaryP(x)
and realQ(x) and applied the results to solve a nonlinear evolution equation. Aktosunet al.6,7

studied in detail the direct and inverse scattering problems for~1.2! for m50, obtained many
results on the discrete eigenvalues, and gave sufficient conditions for the unique solvability
Marchenko equations.

The more interesting case wherem.0, was taken up by Kaup8,9 in connection with a non-
linear evolution equation~a long-wave water equation resembling the Boussinesq equation!. In
Ref. 9 a pair of coupled Marchenko integral equations was given to solve the inverse sca
problem. Under the assumption that*2`

` dx P(x)50, Sattinger and Szmigielski10 considered the
direct and inverse problems for~1.1! with m51 andC` potentials and applied their results to
nonlinear evolution equation. Equation~1.1!, with k21m2 and ikP(x) replaced byk22m2 and
kP(x), respectively, for real potentialsP(x) andQ(x), is the 1-D Klein–Gordon equation. Fo
this equation and on the half-line, Corinaldesi,11 Degasperis,12 and Weiss and Scharf13 studied the
inverse scattering problem and Pivovarchik14 studied the number of bound states.
23 Jan 2002 to 192.167.144.227. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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WhenP,QPL1(R), the Schro¨dinger operators in~1.2! have very different properties depen
ing on whetherm50 or m.0, since form50 their essential spectrum is the set ofkPR whereas
for m.0 it is the set ofkPRø i @2m,m#. Moreover, as observed in Refs. 8 and 9, them.0
equation is important for solving a certain system of nonlinear evolution equations by the in
scattering transform, whereas no such connection is apparent form50.

In this article we analyze the inverse scattering problem for~1.2! by the Marchenko method
Essentially, although most of the scattering solutions and scattering coefficients are define
Refs. 6 and 7 where them50 case was treated, we differ from these papers in one impo
aspect: We also define the scattering solutions and scattering coefficients as if~1.6! were the
equation of interest rather than~1.2!. The Riemann–Hilbert problem relating the usual Fadd
solutions, as studied since the seminal papers by Faddeev15 and Deift and Trubowitz,16 and the
Marchenko integral equations obtained by Fourier transformation are derived for quantitie
are primarily connected with~1.6!. The relationships between the two approaches are explain
detail. The advantage of the new approach lies in the behavior asE→6m. In this case,~1.2!
approaches two copies of the 1-D Schro¨dinger equation on the line with real potentialQ(x),
whereas~1.6! tends to a nonselfadjoint matrix Schro¨dinger equation that also involvesP(x). In
principle, this new approach could also have been applied to the casem50, a possibility not
observed before. It might then be comparatively easy to study the behavior of the solutions o~1.2!
asm→01.

Let us discuss briefly some of the differences between Ref. 10 and the present paper. I
9 and 10 theE and k variables are transformed into the complexz variable by the conforma
mappingz5E1k5m2/(E2k), wherem51 in Ref. 10. The complexz-plane is then divided into
the regionsU15$zPC:uzu.m and Imz.0%ø$zPC:uzu,m and Imz,0% and U25$zPC:uzu.m
and Imz,0%ø$zPC:uzu,m and Imz.0%, separated byS5$zPC:uzu5m%ø(R\$0%). The inverse
scattering problem is then posed as a vector Riemann–Hilbert problem on the curveS that relates
vector functions analytic inU2 to vector functions analytic inU1 . The unfamiliarity of the curve
S, however, makes it hard to replace these Riemann–Hilbert problems by equivalent in
equations. For this reason we have decided not to use thez variable.

Let us now discuss the contents of this article. In Sec. II we introduce and study the sca
solutions and their asymptotic properties asuEu→`. We also derive the continuity of the scatte
ing solutions for~1.6! asE→6m. In Sec. III we introduce and study the scattering coefficie
and their asymptotics asuEu→`. Their behavior asE→6m is also obtained. Their asymptotics a
E→0 is found using the recent results in Ref. 17. It follows in particular that the scattering m
is unitary if EP@2m,m#, something that can also be derived from results in Ref. 10, and
certain contractivity and expansivity properties ifEPR\@2m,m# andP(x) does not change sign
In Sec. IV an idea by Weiss and Scharf13 is employed to derive Marchenko integral equations
~1.6!, both in the absence and in the presence of~finitely many! discrete eigenvalues. Any solutio
of one of the two coupled systems of two Marchenko integral equations allows one to uni
determine the potentialsP(x) andQ(x), provided the second one of the pair of functions bein
solution has its values in (21,1). In Sec. V we relate, as in Ref. 7, the unique solvability of eit
of the systems of Marchenko equations to the existence of a canonical Wiener–Hopf factor
of a 232 matrix function on the line.

II. JOST SOLUTIONS AND FADDEEV FUNCTIONS

In this section we introduce various scattering solutions for~1.2! and ~1.6! and study their
symmetry and asymptotic properties.

A. Analyticity and symmetry properties

Let P,QPL1(R). Then the Jost solutionsf l
6(E,x) and f r

6(E,x) satisfy the integral equation

f l
6~E,x!5eiEx1

1

E E
x

`

dy sin$E~y2x!%@6 i k~E!P~y!1Q~y!# f l
6~E,x!; ~2.1!
23 Jan 2002 to 192.167.144.227. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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f r
6~E,x!5e2 iEx1

1

E E
2`

x

dy sin$E~x2y!%@6 i k~E!P~y!1Q~y!# f r
6~E,x!. ~2.2!

Using the 232 matrixJ(E,x) introduced in~1.7!, these integral equations are easily transform
into the pairs of coupled integral equations,

F f l1~E,x!

f l2~E,x!G5F cos~Ex!

sin~Ex!

k~E!
G1E

x

`

dy
sin$E~y2x!%

E
J~E,y!F f l1~E,y!

f l2~E,y!G ;

F f r1~E,x!

f r2~E,x!G5F cos~Ex!

sin~Ex!

k~E!
G1E

2`

x

dy
sin$E~x2y!%

E
J~E,y!F f r1~E,y!

f r2~E,y!G .
Defining the Faddeev functionsml

6(E,x) andmr
6(E,x) by

ml
6~E,x!5e2 iExf l

6~E,x!, mr
6~E,x!5eiExf r

6~E,x!, ~2.3!

we get from~2.1! and ~2.2! the Volterra integral equations,

ml
6~E,x!511E

x

`

dy
e2iE(y2x)21

2iE
@6 i k~E!P~y!1Q~y!#ml

6~E,y!; ~2.4!

mr
6~E,x!511E

2`

x

dy
e2iE(x2y)21

2iE
@6 i k~E!P~y!1Q~y!#mr

6~E,y!. ~2.5!

Using ~1.5!, these are transformed into the pairs of coupled integral equations:

Fml1~E,x!

ml2~E,x!G5F10G1E
x

`

dy
e2iE(y2x)21

2iE
J~E,y!Fml1~E,y!

ml2~E,y!G ; ~2.6!

Fmr1~E,x!

mr2~E,x!G5F10G1E
2`

x

dy
e2iE(x2y)21

2iE
J~E,y!Fmr1~E,y!

mr2~E,y!G . ~2.7!

By differentiation with respect tox we obtain

Fml18 ~E,x!

ml28 ~E,x!G52E
x

`

dy e2iE(y2x) J~E,y!Fml1~E,y!

ml2~E,y!G ; ~2.8!

Fmr18 ~E,x!

mr28 ~E,x!G5E
2`

x

dy e2iE(x2y) J~E,y!Fmr1~E,y!

mr2~E,y!G . ~2.9!

In the next theorem we state the analyticity and continuity properties ofmls(E,x), mrs(E,x),
f ls(E,x), f rs(E,s) and their derivatives (s51,2). Such results will then also hold forml

6(E,x),
mr

6(E,x), f l
6(E,x), f r

6(E,x) and their derivatives.
Theorem 2.1:Assume P,QPL1(R). Then the following is true.

(1) For xPR and s51,2, the functions mls(E,x), mrs(E,x), mls8 (E,x) and mrs8 (E,x) are analytic
in C1 and continuous inC1\$0%. Consequently, for each xPR and s51,2 the transformed
Jost solutions fls(E,x) and frs(E,x) and their derivatives fls8 (E,x) and frs8 (E,x) are analytic
in C1 and continuous inC1\$0%.

(2) If P,QPL1
1(R), the continuity of the functions in~i! extends toC1.
23 Jan 2002 to 192.167.144.227. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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Proof: Let EPC1. For largeuEu it is expedient to iterate the four integral equations~2.4! and
~2.5! for ml

6(E,x) andmr
6(E,x), while it is more convenient to iterate the two systems~2.6! and

~2.7! asE→6m.
First, using the estimate

AuuEu22m2u<uk~E!u<AuEu21m2,

one obtains the auxiliary upper bounds:

Ue2iEuy2xu21

2iE
@6 i k~E!P~y!1Q~y!#U<H 2uP~y!u1

1

m
uQ~y!u, uEu>m,

~m& uP~y!u1uQ~y!u!/uEu, uEu<m,
uy2xu@m& uP~y!u1uQ~y!u#, uEu<m.

In analogy with Refs. 15 and 16 we obtain the estimates

uml
6~E,x!u<H expS 2iPi11

1

m
iQi1D , uEu>m,

exp~~m& iPi11iQi1!/uEu!, uEu<m,
@11max~0,2x!#exp~m& iPi1,11iQi1,1!, uEu<m,

and hence

max~ uml
6~E,x!u,umr

6~E,x!!<c2 ;

max~ uml
68~E,x!u,umr

68~E,x!u!<c1c2~ iPi11iQi1!@11uEu#,

wherec25ec1(iPi11iQi1)/min(1,uEu) andc15max(2,m&,1/m), as well as

uml
6~E,x!u<@11max~0,2x!#ec1(iPi1,11iQi1,1); ~2.10!

uml
68~E,x!u<c1c3~ iPi11iQi1!@11uEu#@11max~0,2x!#, ~2.11!

wherec35ec1(iPi1,11iQi1,1). The proof formr
6(E,x) andmr

68(E,x), where~2.10! and~2.11! hold
with max(0,2x) replaced by max(0,x), is similar.

Next, the derivation of the analyticity ofmls(E,x) and mrs(E,x) and their derivatives in a
neighborhood of6m in C1 for s51,2 is analogous. Here one employs the following estimate
the Euclidean norm of the matrixJ(E,x):

iJ~E,x!i<2uQ~x!u1~11uk~E!u2!uP~x!u,

which completes the proof. h

WhenP,QPL1
1(R), we find asE→0,

ml
6~0,x!511E

x

`

dy ~y2x!@Q~y!7mP~y!#ml
6~0,y!; ~2.12!

mr
6~0,x!511E

2`

x

dy ~x2y!@Q~y!7mP~y!#mr
6~0,y!. ~2.13!

Then ~2.12! and ~2.13! are the integral equations for the zero energy Jost functions of the u
1-D Schrödinger equation with potentialQ(x)7mP(x). We will call Q7mP an exceptional
potential~for the usual Schro¨dinger equation! if there exists a nonzero~real! constantg6 such that
23 Jan 2002 to 192.167.144.227. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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g65
ml

6~0,x!

mr
6~0,x!

5
f l

6~0,x!

f r
6~0,x!

. ~2.14!

OtherwiseQ7mP is called agenericpotential. Obviously,~2.12! and~2.13! can be transformed
into the pairs of coupled integral equations

Fml1~0,x!

ml2~0,x!G5F10G1E
x

`

dy ~y2x!FQ~y! m2P~y!

P~y! Q~y!
G Fml1~0,y!

ml2~0,y!G ;
Fmr1~0,x!

mr2~0,x!G5F10G1E
2`

x

dy ~x2y!FQ~y! m2P~y!

P~y! Q~y!
G Fmr1~0,y!

mr2~0,y!G .
The complicated conjugation symmetry properties ofk(E) make it hazardous to state conju

gation symmetry properties forf l
6(E,x), f r

6(E,x), ml
6(E,x), andmr

6(E,x) directly. However,
sincek(2Ē)25k(E)2, we immediately have fors51,2,

f ls~2Ē,x!5 f ls~E,x!, f rs~2Ē,x!5 f rs~E,x!, ~2.15!

and similarly for mls(E,x) and mrs(E,x) where s51,2. Now note that (k(E)/E).0 for E

PR\@2m,m# and k(E) is positive imaginary forEP(2m,m). Thus k(2Ē)52k(E) for E
PC1. Using the identitiesf l

6(E,x)5 f l1(E,x)6 ik(E) f l2(E,x) and similarly for f r
6(E,x), we

obtain

f l
6~2Ē,x!5 f l

6~E,x!, f r
6~2Ē,x!5 f r

6~E,x!. ~2.16!

Similar relations hold forml
6(E,x) andmr

6(E,x).

B. Large- E asymptotics

To study the large-E asymptotics of the Jost solutions, we define

h l
6~E,x!5e6z(x)ml

6~E,x!5e2 iEx6z(x) f l
6~E,x!; ~2.17!

h r
6~E,x!5e6p7z(x)ml

6~E,x!5eiEx6p7z(x) f r
6~E,x!, ~2.18!

where

z~x!5
1

2 Ex

`

dz P~z!, p5
1

2 E2`

`

dz P~z!. ~2.19!

Theorem 2.2:Let P,QPL1(R). Then the following statements are true.

(i) For each xPR, the functionsh l
6(E,x) and h r

6(E,x) are analytic inC1, are continuous in
C1\$0%, and we have for some constant C not depending on k and x,

uh l
6~E,x!u<CeC/uEu, uh r

6~E,x!u<CeC/uEu, EPC1\$0%. ~2.20!

Further, asuEu→` in C1 we have

h l
6~E,x!511o~1!, h r

6~E,x!511o~1!; ~2.21!

h l
68~E,x!5o~E!, h r

68~E,x!5o~E!. ~2.22!
23 Jan 2002 to 192.167.144.227. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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(ii) If P ,QPL1
1(R), the continuity of the functions in~i! extends toC1. Moreover, for EPC1 we

have

uh l
6~E,x!u<C@11max~0,2x!#, uh r

6~E,x!u<C@11max~0,x!#.

Proof: Letting z(E,x)5h l
6(E,x)21, we obtain

z~E,x!5z0~E,x!1E
x

`

dy
e2iE(y2x)21

2iE
e6[ z(x)2z(y)]@6 i k~E!P~y!1Q~y!#z~E,y!, ~2.23!

where

z0~E,x!5E
x

`

dy
e2iE(y2x)21

2iE
e6[ z(x)2z(y)]Q~y!

6
k~E!

2E E
x

`

dy e2iE(y2x)e6[ z(x)2z(y)] P~y!1S 12
k~E!

E D @e6z(x)21#.

Then the Riemann–Lebesgue lemma implies that supt>xuz0(E,t)u vanishes asE→6`. Iterating
~2.23! we now see thatz(E,x) is uniformly bounded inC1 for uEu>a.0 for eachxPR anda
.0. Using a Phragmen–Lindelo¨f theorem~cf. Ref. 18! we conclude thatz(E,x) vanishes asE
→` in C1.

To prove~2.22! we introduce the function

j l
6~E,x!5

1

iE
ml

68~E,x!e6z(x)5
1

2iE
@6P~x!h l

6~E,x!12h l
68~E,x!#.

From ~2.8! and ~2.17! we get

j l
6~E,x!5E

x

`

dy e2iE(y2x)F7
k~E!

E
P~y!1

i

E
Q~y!Ge6[ z(x)2z(y)]h l

6~E,y!. ~2.24!

Thus, using~2.20!, we see that the integrand on the right-hand side of~2.24! is bounded by the
integrable functionCa@ uP(y)u1uQ(y)u#, uniformly in xPR andEPC1 for uEu>a.0 and each
a.0, where the constantCa does not depend onx andE. By the Riemann–Lebesgue lemma, w
conclude that the right-hand side of~2.24! is o(1) asE→6`, so that by a Phragmen–Lindelo¨f
theorem~cf. Ref. 18! we see that the left-hand side of~2.24! is o(1) asE→` in C1. Conse-
quently, j l

6(E,x)5o(1) as E→` in C1, which implies ~2.22! for h l
68(E,x). The proof for

h r
6(E,x) andh r

68(E,x) is similar. h

To study the inverse scattering problem for~1.2!, as in Ref. 7 we strengthen Theorem 2.2
making additional assumptions onP andQ. In fact, we assume thatP is absolutely continuous
and define the two auxiliary potential functions,

W6~x!5Q~x!7 1
2 P8~x!2 1

4 P~x!2. ~2.25!

Using ~1.2!–~1.4! we obtain forxPR,

h l
69~E,x!1@2iE6P~x!#h l

68~E,x!5@W6~x!7 i ~E2k~E!!P~x!#h l
6~E,x!, ~2.26!

h l
6~E,1`!51, h l

68~E,1`!50, ~2.27!

whereW6(x) is given by~2.25!. Multiplying ~2.26! by m l
6(E,x)5e2iEx72z(x), we obtain forx

PR,
23 Jan 2002 to 192.167.144.227. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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@m l
6~E,x! h l

68~E,x!#85m l
6~E,x! @W6~x!7 i ~E2k~E!!P~x!#h l

6~E,x!. ~2.28!

Integrating~2.28! and using~2.27! we get

h l
68~E,x!52E

x

`

dy e2iE(y2x)6*x
ydẑ P( ẑ)@W6~y!7 i ~E2k~E!!P~y!#h l

6~E,y!. ~2.29!

Integrating~2.29!, using~2.27! once again and changing the order of integration, we find

h l
6~E,x!511E

x

`

dy Gl
6~E;x,y!@W6~y!7 i ~E2k~E!!P~y!#h l

6~E,y!, ~2.30!

where we have defined

Gl
6~E;x,y!5E

x

y

dz e2iE(y2z)6*z
ydẑ P( ẑ)

5
1

2iE
@e2iE(y2x)6*x

ydẑ P( ẑ)21#7
1

2iE E
x

y

dz P~z! e2iE(y2z)6*z
ydẑ P( ẑ). ~2.31!

Similarly, using~1.2!–~1.4!, ~2.17!–~2.19!, and~2.25! we obtain

h r
69~E,x!2@2iE6P~x!# h r

68~E,x!5@W7~x!6 i ~E2k~E!!P~x!#h r
6~E,x!, ~2.32!

h r
6~E,2`!51, h r

68~E,2`!50. ~2.33!

Integrating~2.32! twice and using~2.33! we first get

h r
68~E,x!5E

2`

x

dy e2iE(x2y)6*y
xdẑ P( ẑ)@W7~y!6 i ~E2k~E!!P~y!#h r

6~E,y!,

and subsequently

h r
6~E,x!511E

2`

x

dy Gr
6~E;x,y! @W7~y!6 i „E2k~E!…P~y!#h r

6~E,y!, ~2.34!

where we have defined

Gr
6~E;x,y!5E

y

x

dz e2iE(z2y)6*y
zdẑ P( ẑ)

5
1

2iE
@e2iE(x2y)6*y

xP(z)dz21#6
1

2iE E
y

x

dz P~z! e2iE(z2y)6*y
zdẑ P( ẑ).

Let us now employ the integral equations~2.30! and ~2.34! to derive asymptotic expression
for h l

6(E,x) andh r
6(E,x) asE→` in C1.

Theorem 2.3:(1) Assume PPL1(R) and QPL1
1(R). Then, for each fixed xPR, the functions

h l
6(E,x) and h r

6(E,x) are analytic inC1 and continuous inC1, and

h l
6~E,x!511o~1!, h r

6~E,x!511o~1!, E→` in C1.

(2) Assume that W1,W2PL1(R). Then as E→` in C1 we have

h l
6~E,x!511O~1/uEu!, h r

6~E,x!511O~1/uEu!. ~2.35!
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(3) If further we assume PPL1
1(R), QPL2

1(R) and W6PL1
1(R), then

h l
6~E,x!512

*x
`dz W6~z!

2iE
1O~1/uEu2!, E→` in C1, ~2.36!

h r
6~E,x!512

*2`
x dz W7~z!

2iE
1O~1/uEu2!, E→` in C1. ~2.37!

Proof: We only prove~2.35!, ~2.36! and ~2.37!, because the rest of the proof is given
Theorem 3.1 of Ref. 6. Note that~2.31! implies for y>x,

uGl
6~E;x,y!u<

C

uEu
, EPC1\$0%, ~2.38!

whereC5 1
2 „11(11uuPuu1)euuPuu1

…. Thus, iterating~2.30! and using~2.38! we obtain

uh l
6~E,x!21u<

C

uEu F Ex

`

dt ~ uW6~ t !u1muP~ t !u!G expS E
x

`

dz„uW6~z!u1muP~z!u…D ,

where EPC1\$0% and uEu>m. This implies ~2.35! for h l
6(E,x) wheneverW6PL1(R). The

proof of ~2.35! for h r
6(E,x) is obtained in a similar manner. To prove~2.36! we obtain from

~2.30!,

h l
6~E,x!511E

x

`

dy Gl
6~E;x,y!@W6~y!7 i ~E2k~E!!P~y!#

1E
x

`

dy Gl
6~E;x,y!@W6~y!7 i ~E2k~E!!P~y!#

3E
y

`

dz Gl
6~E;y,z!@W6~z!7 i ~E2k~E!!P~z!#h l

6~E,z!. ~2.39!

Using ~2.36! and the inequality

uE2k~E!u<
m2

uEu
, uEu>m,

we obtain from~2.39!,

h l
6~E,x!511E

x

`

dy Gl
6~E;x,y!W6~y!1OS 1

uEu2D , ~2.40!

as E→` in C1. Substituting~2.31! into ~2.40! and integrating by parts we obtain~2.36!. The
proof of ~2.37! is analogous. h

III. SCATTERING COEFFICIENTS

In this section we introduce various scattering coefficients as well as the scattering mat
~1.2! and ~1.6! and study their symmetry, asymptotic and unitarity and contractivity properti

A. Wronskian relations and symmetry properties

Let @ f ;g#5 f g82 f 8g denote the Wronskian. Then from~1.3! and ~1.4! asx→6` we get

@ f l
6~E,x!; f r

6~E,x!#522iEal
6~E!522iEar

6~E!, ~3.1!
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where~3.1! holds forEPC1. Consequently,al
6(E)5ar

6(E), which we now denote bya6(E).
From ~1.8! and ~1.9! we now easily obtain

as~2Ē!5as~E!, EPC1; ~3.2!

bls~2E!5bls~E!, brs~2E!5brs~E!, EPR, ~3.3!

wheres51,2. Using~1.3!, ~1.4!, and~2.16! we easily obtain

a6~2Ē!5a6~E!, EPC1; ~3.4!

bl
6~2E!5bl

6~E!, br
6~2E!5br

6~E!, EPR. ~3.5!

Next, if one assumes thata6(E)Þ0 and defines the transmission coefficients byT6(E)
5a6(E)21, the reflection coefficients from the left byL6(E)5bl

6(E)/a6(E), and the reflection
coefficients from the right byR6(E)5br

6(E)/a6(E), then, if P,QPL1(R) @P,QPL1
1(R), re-

spectively#, the functionEa6(E)5E/T6(E) is analytic inC1 and continuous inC1\$0% @C1,
respectively# and the functionsEbl

6(E)5EL6(E)/T6(E) and Ebr
6(E)5ER6(E)/T6(E) are

continuous inR\$0% @R, respectively#. In terms of the reflection and transmission coefficients
define the scattering matrix by

S6~E!5FT6~E! R6~E!

L6~E! T6~E!
G . ~3.6!

Let EPR\@2m,m#. Thenk(2E)52k(E) is real. Thusf l
6(E,x), f r

6(E,x), f l
7(2E,x) and

f r
7(2E,x) all satisfy~1.2! and hence their Wronskians are independent ofx. Using~1.3! and~1.4!

we get
@ f l

6~E,x!; f l
7~2E,x!#522iE522iE@al

6~E!al
7~2E!2bl

6~E!bl
7~2E!#,

@ f l
6~E,x!; f r

7~2E,x!#522iEbr
7~2E!52iEbl

6~E!,

@ f r
6~E,x!; f l

7~2E,x!#522iEbr
6~E!52iEbl

7~2E!,

@ f r
6~E,x!; f r

7~2E,x!#52iE@ar
6~E!ar

7~2E!2br
6~E!br

7~2E!#52iE,

where the behavior asx→1` is given first and then the behavior asx→2`. As a result, we get

S6~E!215S7~2E!. ~3.7!

From ~1.3!, ~1.4!, and~3.6! we obtain

F f l
7~2E,x!

2 f r
7~2E,x!G5S6~E!F f r

6~E,x!

2 f l
6~E,x!G . ~3.8!

Let EP(2m,m). Then k(2E)5k(E) is positive imaginary. Thusf l
6(E,x), f r

6(E,x),
f l

6(2E,x) and f r
6(2E,x) all satisfy ~1.2! and hence their Wronskians are independent ofx.

Using ~1.3! and ~1.4! we get

@ f l
6~E,x!; f l

6~2E,x!#522iE522iE@al
6~E!al

6~2E!2bl
6~E!bl

6~2E!#,

@ f l
6~E,x!; f r

6~2E,x!#522iEbr
6~2E!52iEbl

6~E!,

@ f r
6~E,x!; f l

6~2E,x!#522iEbr
6~E!52iEbl

6~2E!,

@ f r
6~E,x!; f r

6~2E,x!#52iE@ar
6~E!ar

6~2E!2br
6~E!br

6~2E!#52iE,
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where the behavior asx→1` is given first and then the behavior asx→2`. As a result, we get

S6~E!215S6~2E!. ~3.9!

From ~1.3!, ~1.4!, and~3.6! we obtain

F f l
6~2E,x!

2 f r
6~2E,x!G5S6~E!F f r

6~E,x!

2 f l
6~E,x!G . ~3.10!

WhenEP$2m,m%, the6 equations~1.2! are identical and the boundary conditions~1.3! do
not distinguish between the6 versions of~1.2!. It then follows that

f l1~m,x!5 f l
1~m,x!5 f l

2~m,x!, f l1~2m,x!5 f l
1~2m,x!5 f l

2~2m,x!,

f r1~m,x!5 f r
1~m,x!5 f r

2~m,x!, f r1~2m,x!5 f r
1~2m,x!5 f r

2~2m,x!,

which implies

a1~m!5a1~m!5a2~m!, a1~2m!5a1~2m!5a2~2m!,

bl1~m!5bl
1~m!5bl

2~m!, bl1~2m!5bl
1~2m!5bl

2~2m!,

br1~m!5br
1~m!5br

2~m!, br1~2m!5br
1~2m!5br

2~2m!.

Hence, S1(m)5S2(m) and S1(2m)5S2(2m) are both unitary matrices, provideda1(m)
5a1(2m)Þ0. The behavior ofa2(E), bl2(E), andbr2(E) asE→6m will be given by ~3.20!.

Finally, for EPR\$2m,m% and under the assumption thata6(E)Þ0 for everyEPR, we
introduce the modified scattering matrix,

S̃~E!5M̃ ~E!@S1~E! % S2~E!#M̃ ~E!21, ~3.11!

where

M̃ ~E!5
1

2ik~E!F ik~E! 0 ik~E! 0

0 ik~E! 0 ik~E!

1 0 21 0

0 1 0 21

G ;

M̃ ~E!215F 1 0 ik~E! 0

0 1 0 ik~E!

1 0 2 ik~E! 0

0 1 0 2 ik~E!

G .

Using that

S̃~E!5F T1~E! R1~E! 2k~E!2T2~E! 2k~E!2R2~E!

L1~E! T1~E! 2k~E!2L2~E! 2k~E!2T2~E!

T2~E! R2~E! T1~E! R1~E!

L2~E! T2~E! L1~E! T1~E!

G , ~3.12!

we obtain from~3.8! and ~3.10! the following Riemann–Hilbert problem valid for bothEPR\
@2m,m# andEP(2m,m):
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F f l1~2E,x!

2 f r1~2E,x!

f l2~2E,x!

2 f r2~2E,x!

G5S̃~E!F f r1~E,x!

2 f l1~E,x!

f r2~E,x!

2 f l2~E,x!

G . ~3.13!

One easily proves thatS̃(E)215S̃(2E), both forEP(2m,m) and forEPR\@2m,m#.

B. Various asymptotic properties

Theorem 3.1:Let P,QPL1(R). Then

a6~E!e6p511OS 1

uEu D , E→` in C1; ~3.14!

br
6~E!5OS 1

uEu D , bl
6~E!5OS 1

uEu D , E→6`, ~3.15!

where p is defined by (2.19).
Proof: From ~3.1! we obtain

2iEa6~E!e6p5@2iE6P~x!#h l
6~E,x!h r

6~E,x!1h l
68~E,x!h r

6~E,x!2h l
6~E,x!h r

68~E,x!.

~3.16!

Now ~3.14! follows from ~2.21!, ~2.22!, and~3.16!. Similarly, ~3.15! follows with the help of

22iEbr
6~E!5e22iEx7p62z(x)@h l

6~E,x!;h l
7~2E,x!#, ~3.17!

and the analogous expression involvingbl
6(E). h

Let us now consider the low energy asymptotics of the scattering coefficients. From R
we get the following result, depending on whether we are in the generic or in the exceptiona
We let f l

6(0,x) and f r
6(0,x) stand for the zero energy Jost functions of the usual 1-D Schro¨dinger

equation with potentialQ(x)7mP(x) andg6 for the quantity given by~2.14!.
Using Theorem 2.2 of Ref. 17, withF(k)5k21m2, k05 im, S5$kPC1:uk2 imu<m% and

P(k0)5 i @0,m#, we easily obtain the following result.
Proposition 3.2: Suppose P,QPL1

1(R).

(i) In the generic case we have

T6~E!52
2iE

@ f l
6~0,• !; f r

6~0,• !#
1o~E!, E→0 in C1,

~3.18!
L6~E!5211o~1!, R6~E!5211o~1!, E→0 in R.

(ii) In the exceptional case we have

T6~0!5
2g6

g6211
, L6~0!5

g6221

g6211
, R6~0!5

12g62

g6211
. ~3.19!

Finally, we consider the behavior of the scattering coefficients asE→6m in C1.
Propositon 3.3: Let PPL1

1(R) and QPL2
1(R). Then the expressions

a1~E!2a2~E!

k~E!
,

bl
1~E!2bl

2~E!

k~E!
,

br
1~E!2br

2~E!

k~E!
, ~3.20!
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have finite limits as E→6m, EPC1.
Proof: From ~1.4!, ~2.3!, ~2.6!, and~2.7! we have

Fa1~E!

a2~E!G5F10G2 1

2iE E
2`

`

dy J~E,y!Fml1~E,y!

ml2~E,y!G
5F10G2 1

2iE E
2`

`

dy J~E,y!Fmr1~E,y!

mr2~E,y!G ;
Fbl1~E!

bl2~E!G5 1

2iE E
2`

`

dy e2iEyJ~E,y!Fml1~E,y!

ml2~E,y!G ;
Fbr1~E!

br2~E!G5 1

2iE E
2`

`

dy e22iEyJ~E,y!Fmr1~E,y!

mr2~E,y!G ,
where the limits asE→6m from C1 exist. h

When 1/T1(E) and 1/T2(E) have a~necessarily common! nonzero limit asE→6m, the next
corollary is a restatement of Proposition 3.3.

Corollary 3.4: Let PPL1
1(R) and QPL2

1(R) and suppose1/T1(E) and 1/T2(E) have a
nonzero limit as E→6m in C1. Then the expressions

T1~E!2T2~E!

k~E!
,

L1~E!2L2~E!

k~E!
,

R1~E!2R2~E!

k~E!
,

have finite limits. Hence, T2(E)5@T1(E)2T2(E)#/2ik(E) and the analogous quantities R2(E)
and L2(E) are continuous in EPR if T6(E) is continuous in EPR.

Proposition 3.5: Assume PPL1
1(R), QPL2

1(R), and W6PL1
1(R), and let T1(E) and T2(E)

be continuous in EPR. Then the functions L1(E), L2(E), k(E)2L2(E), R1(E), R2(E), and
k(E)2R2(E) belong to L2(R).

Proof: In view of Corollary 3.4 and the continuity ofT6(E) in EPR, it suffices to study the
asymptotic behavior of the above functions asE→6`. From ~2.36! and ~2.37! we have asE
→6`,

h l
68~E,x!5

W6~x!

2iE
1OS 1

uEu2D , h r
68~E,x!52

W7~x!

2iE
1OS 1

uEu2D .

Using ~3.17! we find

br
6~E!5

R6~E!

T6~E!
5OS 1

uEu2D ,

and similarly forL6(E)/T6(E). On the other hand, using~3.16! we get

T6~E!5e6pH 11
*2`

` dz W6~z!

2iE
1OS 1

uEu2D J ,

whence

R6~E!5OS 1

uEu2D .

A similar asymptotic expression can be derived forL6(E). This expression implies thatL1(E),
L2(E), andk(E)2L2(E) belong toL2(R). h
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C. Unitarity and contractivity properties

Let EP(2m,m). Then~1.2! is a pair of 1-D Schro¨dinger equations with real potentials an
hence the scattering matrixS6(E) is unitary~cf. Refs. 15 and 16!. As a result, the reflection an
transmission coefficientsR6(E), L6(E), andT6(E) are continuous inEP(2m,m).

Let EPR\@2m,m#. Observe that ifc(E,x) is a solution of the6 version of ~1.2! and
w(E,x) of the 7 version of~1.2!, then

d

dx
@c~E,x!;w~E,x!#572ik~E!P~x!c~E,x!w~E,x!. ~3.21!

Hence two expressions of the Wronskian ofc(E,x) andw(E,x) can be found by examining thei
value asx→6` and integrating with respect tox. Using ~2.16!, ~3.4!, ~3.5!, and~3.21! we get

@ f l
6~E,x!; f l

6~2E,x!#

5H 22iE62ik~E!E
x

`

dy P~y!u f l
6~E,y!u2;

22iE@ ua6~E!u22ubl
6~E!u2#72ik~E!E

2`

x

dy P~y!u f l
6~E,y!u2,

~3.22!

@ f l
6~E,x!; f r

6~2E,x!#5H 2iEbl
6~E!72ik~E!E

2`

x

dy P~y! f l
6~E,y! f r

6~E,y!;

22iEbr
6~E!62ik~E!E

x

`

dy P~y! f l
6~E,y! f r

6~E,y!,
~3.23!

@ f r
6~E,x!; f r

6~2E,x!#

5H 2iE72ik~E!E
2`

x

dy P~y!u f r
6~E,y!u2;

2iE@ ua6~E!u22ubr
6~E!u2#62ik~E!E

x

`

dy P~y!u f r
6~E,y!u2.

~3.24!

Subtracting the two right-hand sides of each of~3.22!–~3.24!, we get

211ua6~E!u22ubl
6~E!u257

k~E!

E E
2`

`

dy P~y!u f l
6~E,y!u2; ~3.25!

2bl
6~E!2br

6~E!57
k~E!

E E
2`

`

dy P~y! f l
6~E,y! f r

6~E,y!, ~3.26!

211ua6~E!u22ubr
6~E!u257

k~E!

E E
2`

`

dy P~y!u f r
6~E,y!u2. ~3.27!

From ~3.25! and ~3.27! it is clear thata6(E)Þ0 when„7P(x)…>0. In that case we define th
matrix

W6~E!57F E
2`

`

dyP~y!u f l
6~E,y!u2 E

2`

`

dyP~y! f r
6~E,y! f l

6~E,y!

E
2`

`

dyP~y! f r
6~E,y! f l

6~E,y! E
2`

`

dyP~y!u f r
6~E,y!u2

G ,
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and, provideda6(E)Þ0, derive the identity

k~E!

E
uT6~E!u2W6~E!5F1 0

0 1G2S6~E!†S6~E!,

which is nonnegative selfadjoint if„7P(x)…>0. Here † denotes the conjugate transpose. S
larly, one proves that if„7P(x)…<0 and the transmission coefficientT6(E) is well-defined, the
scattering matrixS6(E) has a contractive inverse.

D. Discrete eigenvalues

The discrete eigenvalues of the pair of modified Schro¨dinger equations~1.2! coincide with
those of the system~1.6!. They form a finite or countably infinite subset ofC1 of eigenvalues of
finite algebraic multiplicity. The geometric multiplicity of the eigenvalues of either of the eq
tions ~1.2! is one, while that of~1.6! is at most two. They can only accumulate in a bound
interval of the real line, but not at points of (2m,m). Accumulation asE→` is impossible
because of~3.14!. Accumulation at points of (2m,m) is impossible, because the scattering mat
S6(E) is unitary if EP(2m,m).

The discrete eigenvalues are symmetrically located with respect to the imaginary axis,
the geometric and algebraic multiplicities of an eigenvalue atE0 coincide with those at2E0. This
follows directly from~3.4!–~3.5!. The net result is that the residues ofiT6(E) at E0 and2E0 are
complex conjugates.

For the problem~1.2! with m50, the properties of the discrete spectrum have been discu
in detail in Ref. 6. Many of these results also follow from spectral properties of certain ope
pencils~cf. Ref. 19!. If m.0, most of those results are expected to go through, albeit in a slig
different form.

IV. MARCHENKO EQUATIONS

In this section we derive the Marchenko integral equations leading to the solution o
inverse scattering problem.

A. Fourier transformation properties

Let us apply the method of Ref. 13 to derive Marchenko integral equations to solv
inverse scattering problem. We begin by deriving some integral representations for the~trans-
formed! Jost solutions.

Theorem 4.1: Assume PPL1
1(R), QPL2

1(R), and W6PL1
1(R). Then the Jost solutions

f rs(E,x) and fls(E,s) (s51,2) can be represented as follows:

f r1~E,x!5e2 iExcosh„p2z~x!…1E
2`

x

dt Kr1~x,t !e2 iEt, ~4.1!

f r2~E,x!5E
2`

x

dt Kr2~x,t !e2 iEt, ~4.2!

f l1~E,x!5eiExcosh„z~x!…1E
x

`

dt Kl1~x,t !eiEt, ~4.3!

f l2~E,x!5E
x

`

dt Kl2~x,t !eiEt, ~4.4!

where Krs
6(x,t) and Kls

6(x,t) (s51,2) are independent of E and belong to L2(R) as functions of
t when xPR is fixed.
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Proof: Using ~2.17!, ~2.18!, ~2.36!, and ~2.37! it follows that f̃ l1(E,x)5 f l1(E,x)
2eiEx cosh„z(x)… and f̃ r1(E,x)5 f r1(E,x)2e2 iEx cosh„p2z(x)…, as well as f̃ l2(E,x)
5 f l2(E,x) and f̃ r2(E,x)5 f r2(E,x) belong toL2(R) as functions ofE for fixed xPR. Further,
these functions multiplied by„log(uEu12)…1/2 belong toL2(R). So Plancherel’s theorem~cf. Ref.
20, Theorems 48 and 63! implies the existence of the integrals,

Krs~x,t ! 5
a→1`

l .i .m. 1

2p E
2a

a

dE f̃rs~E,x!eiEt, s51,2,

Kls~x,t ! 5
a→1`

l .i .m. 1

2p E
2a

a

dE f̃ls~E,x!e2 iEt, s51,2.

It is clear thatKrs(x,t) andKls(x,t) (s51,2) belong toL2(R) as functions oft for everyxPR ~cf.
Ref. 20, Theorems 48 and 63!.

Due to ~1.7! and Theorem 2.1, the functionsf rs(E,x) and f ls(E,x) (s51,2) are analytic in
EPC1. Moreover, there existsC.0 ~depending onxPR) such that fors51,2,

u f rs~E,x!u<Cex Im E, u f ls~E,x!u<Ce2x Im E,

for all xPR. From ~2.37! we obtain

E
2`

`

dt u f̃ r1~ t1 i Im E,x!u25O~e22x Im E!.

Similar estimates hold forKr2(E,x) and for Kls(E,x) (s51,2). Hence we may apply Titch
marsh’s theorem~cf. Ref. 20, Theorem 96! and obtain

Kr1~x,t !5Kr2~x,t !50, t.x,

Kl1~x,t !5Kl2~x,t !50, t,x.

This proves the representations~4.1!–~4.4!. h

Using ~2.18!, ~2.19!, and~2.37!, we obtain

f̃ r1~E,x!5
ie2 iEx

4E S e2p1z(x)E
2`

x

dz W1~z!1ep2z(x)E
2`

x

dz W2~z! D 1OS 1

uEu2D
5

ie2 iEx

4~E1 ix! S e2p1z(x)E
2`

x

dz W1~z!1ep2z(x)E
2`

x

dz W2~z! D 1OS 1

uEu2D ,

wherex is an arbitrary positive number. Its Fourier transform is of the form

Kr1~x,t !5Fe2p1z(x)

4 E
2`

x

dz W1~z!1
ep2z(x)

4 E
2`

x

dz W2~z!Ge2x(x2t)u~x2t !1Mr1~x,t !,

whereu(z) is the Heaviside function given by

u~z!5H 0, for z,0,

1, for z.0,
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Mr1(x,t) is continuous in tPR for fixed xPR and there exists the partial derivativ
„]Mr1(x,t)/]t…PL2(R) ~cf. Ref. 20, the beginning of Sec. 6.13, before Theorem 128!. Hence,
Kr1(x,t) has a jump discontinuity atx5t. Taking into account the identityKr1(x,x10)50, we
obtain

Kr1~x,x20!5
1

4 S e2p1z(x)E
2`

x

dz W1~z!1ep2z(x)E
2`

x

dz W2~z! D . ~4.5!

In the same way we obtain

Kr2~x,x20!5sinh„p2z~x!…. ~4.6!

Using ~4.5! and ~4.6! we now computeQ(x) and P(x) from Kr1(x,x20) andKr2(x,x20). In
fact, we obtain

P~x!52
d

dx
log„Kr2~x,x20!1~Kr2~x,x20!211!1/2

…, ~4.7!

Q~x!52
d

dx S Kr1~x,x20!

cosh1
2 *2`

x dz P~z!
2

P~x!

4
tanhS 1

2 E2`

x

dz P~z! D D 1
P~x!2

4
. ~4.8!

In the same way we derive

Kl2~x,x10!5sinh„z~x!…,

P~x!522
d

dx
log~Kl2~x,x20!1„Kl2~x,x20!211…1/2!, ~4.9!

Q~x!522
d

dx S Kl1~x,x10!

cosh1
2 *x

` dz P~z!
2

P~x!

4
tanhS 1

2 Ex

`

dz P~z! D D 1
P~x!2

4
. ~4.10!

B. Marchenko equations without bound states

Let us assume thatT1(E) andT2(E) are both continuous inEPR. Before deriving the two
pairs of Marchenko integral equations, we introduce the two sets of integral kernels as foll

Fl1~x!5
1

2p E
2`

`

dE L1~E!eiEx5E
2`

` dE

4p
@L1~E!1L2~E!#eiEx, ~4.11!

Fl2~x!5
1

2p E
2`

`

dE L2~E!eiEx5E
2`

` dE

4p

L1~E!2L2~E!

i k~E!
eiEx, ~4.12!

Fl3~x!52
1

2p E
2`

`

dE k~E!2L2~E!eiEx

5 i E
2`

` dE

4p
k~E!@L1~E!2L2~E!#eiEx, ~4.13!

as well as

Fr1~x!5
1

2p E
2`

`

dE R1~E!eiEx5E
2`

` dE

4p
@R1~E!1R2~E!#eiEx, ~4.14!
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Fr2~x!5
1

2p E
2`

`

dE R2~E!eiEx5E
2`

` dE

4p

R1~E!2R2~E!

i k~E!
eiEx, ~4.15!

Fr3~x!52
1

2p E
2`

`

dE k~E!2R2~E!eiEx

5 i E
2`

` dE

4p
k~E!@R1~E!2R2~E!#eiEx. ~4.16!

Then the integrals~4.11!–~4.13! and ~4.14!–~4.16! exist as a result of Proposition 3.5 and th
continuity of T1(E) andT2(E) in EPR.

Next, we introduce the unknown functionsBrs(x,y) andBls(x,y) (xPR, y.0, s51,2) by

Brs~x,y!5
Krs~x,x2y!

cosh„p2z~x!…
, Bls~x,y!5

Kls~x,x1y!

cosh„z~x!…
, ~4.17!

and write~4.1!–~4.4! in the form

f rs~E,x!5e2 iExcosh„p2z~x!…Fds,11E
0

`

dy eiEyBrs~x,y!G ,
f ls~E,x!5eiExcosh„z~x!…Fds,11E

0

`

dy eiEyBls~x,y!G ,
wheres51,2.

Starting from the two pairs of equations@cf. ~3.13!#,

f r1~2E,x!1L1~E! f r1~E,x!2k~E!2L2~E! f r2~E,x!

5T1~E! f l1~E,x!2k~E!2T2~E! f l2~E,x!, ~4.18!

f r2~2E,x!1L2~E! f r1~E,x!1L1~E! f r2~E,x!

5T2~E! f l1~E,x!1T1~E! f l2~E,x!, ~4.19!

and

f l1~2E,x!1R1~E! f l1~E,x!2k~E!2R2~E! f l2~E,x!

5T1~E! f r1~E,x!2k~E!2T2~E! f r2~E,x!, ~4.20!

f l2~2E,x!1R2~E! f l1~E,x!1R1~E! f l2~E,x!

5T2~E! f r1~E,x!1T1~E! f r2~E,x!, ~4.21!

and Fourier transforming the contributions to these equations that are analytic inC2 and vanish at
infinity while taking into account~4.11!–~4.17!, we obtain the two pairs of coupled Marchenk
equations,

Br1~x,y!1E
0

`

dz@Fl1~y1z22x!Br1~x,z!1Fl3~y1z22x!Br2~x,z!#

52Fl1~y22x!, ~4.22!
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Br2~x,y!1E
0

`

dz@Fl2~y1z22x!Br1~x,z!1Fl1~y1z22x!Br2~x,z!#

52Fl2~y22x!, ~4.23!

and

Bl1~x,y!1E
0

`

dz@Fr1~y1z12x!Bl1~x,z!1Fr3~y1z12x!Bl2~x,z!#

52Fl1~y12x!, ~4.24!

Bl2~x,y!1E
0

`

dz@Fr2~y1z12x!Bl1~x,z!1Fr1~y1z12x!Bl2~x,z!#

52Fr2~y12x!. ~4.25!

In deriving ~4.22!–~4.25!, we have assumed the absence of the discrete spectrum of the
equations~1.2! and hence the analyticity ofT1(E) andT2(E) in C1.

C. Marchenko equations with bound states

When one of the two equations~1.2! has a discrete spectrum, the derivation of the Marche
equations~4.22!–~4.25! should be modified, since the right-hand sides of~4.18!–~4.21! may no
longer vanish. To simplify the discussion, we make the following assumptions.

~1! T1(E) andT2(E) are continuous inEPR.
~2! The number of poles ofT1(E) andT2(E) in C1 is finite @denote the poles of either ofT6(E)

in C1 by Ej , where j 51,...,N#.
~3! The poles ofT1(E) andT2(E) in C1 are simple; we writei t j

6 for the residue ofT6(E) at
E5Ej ( j 51,...,N). We putt j 15@ t j

11t j
2#/2 andt j 25@ t j

12t j
2#/2ik(Ej ).

~4! We remark thatt j
6 , t j 1 , t j 2 , and ik(Ej ) are real ifEj is imaginary. Quantitiest j

6 , t j 1 , t j 2 ,
and ik(Ej ) corresponding to eigenvalues symmetrically located with respect to the imag
axis are complex conjugates. These properties are immediate from the observations m
Sec. III D.

~5! Using the terminology of Ref. 16 and recalling that the eigenvalues of either of~1.2! have
geometric multiplicity one, we first introduce the norming constants,

Cj
65

f l
6~Ej ,x!

f r
6~Ej ,x!

, j 51,...,N j
6 .

Then one easily verifies that

f l1~Ej ,x!5Cj 1f r1~Ej ,x!2kj
2Cj 2f r2~Ej ,x!,

f l2~Ej ,x!5Cj 2f r1~Ej ,x!1Cj 1f r2~Ej ,x!,

wherekj5k(Ej ) and

Cj 15
Cj

11Cj
2

2
, Cj 25

Cj
12Cj

2

2ik j
.

Calculating the residues of the expressions on the right-hand sides of~4.18!–~4.21! at E
5Ej in C1, we obtain
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@ t j 1Cj 12kj
2t j 2Cj 2# f r1~Ej ,x!2kj

2@ t j 1Cj 21t j 2Cj 1# f r2~Ej ,x!, ~4.26!

@ t j 2Cj 11t j 1Cj 2# f r1~Ej ,x!1@2kj
2t j 2Cj 21t j 1Cj 1# f r2~Ej ,x!, ~4.27!

@ t j 1D j 12kj
2t j 2D j 2# f r1~Ej ,x!2kj

2@ t j 1D j 21t j 2D j 1# f r2~Ej ,x!, ~4.28!

@ t j 2D j 11t j 1D j 2# f r1~Ej ,x!1@2kj
2t j 2D j 21t j 1D j 1# f r2~Ej ,x!, ~4.29!

multiplied by the imaginary uniti . Here

f r1~Ej ,x!5D j 1f l1~Ej ,x!2kj
2D j 2f l2~Ej ,x!,

f r2~Ej ,x!5D j 2f l1~Ej ,x!1D j 1f l2~Ej ,x!,

where we note that

FD j 1 2kj
2D j 2

D j 2 D j 1
G5FCj 1 2kj

2Cj 2

Cj 2 Cj 1
G21

.

We remark thatCj
6 , Cj 1 , Cj 2 , D j 1 , D j 2 and ik j are real ifEj is imaginary. Quantitiest j

6 , Cj 1 ,
Cj 2 , D j 1 , D j 2 , and ik j corresponding to eigenvalues symmetrically located with respect to
imaginary axis are complex conjugates. These properties are immediate from~2.16!.

We now recall that in order to compute the left-hand side minus the right-hand side of~4.22!
and~4.23!, we have to single out the contributions to~4.18! and~4.19! that are analytic inC2 and
vanish at infinity and apply the operation 1/2p *2`

` dE eiE(y2x)@cosh„p2z(x)…#21 to them. Ap-
plying the same procedure to the right-hand sides of~4.18! and~4.19! and using~4.17!, ~4.26!, and
~4.27!, we obtain

2(
j 51

N
eiE j (y22x)S Al j 11E

0

`

dz eiE jz@Al j 1Br1~x,z!2kj
2Al j 2Br2~x,z!# D ,

2(
j 51

N
eiE j (y22x)S Al j 21E

0

`

dz eiE jz@Al j 2Br1~x,z!2kj
2Al j 1Br2~x,z!# D ,

where

Al j 15t j 1Cj 12kj
2t j 2Cj 2 , Al j 25t j 1Cj 21t j 2Cj 1 .

Introducing the modified Marchenko kernel functions,

F̃ ls~x!5Fls~x!1(
j 51

N
Al jseiE jx, s51,2,3,

whereAl j 352kj
2Al j 2 , we arrive at the coupled Marchenko integral equations,

Br1~x,y!1E
0

`

dz@ F̃ l1~y1z22x!Br1~x,z!1F̃ l3~y1z22x!Br2~x,z!#

52F̃ l1~y22x!, ~4.30!
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Br2~x,y!1E
0

`

dz@ F̃ l2~y1z22x!Br1~x,z!1F̃ l1~y1z22x!Br2~x,z!#

52F̃ l2~y22x!. ~4.31!

In an analogous way we obtain the coupled Marchenko integral equations

Bl1~x,y!1E
0

`

dz@ F̃r1~y1z12x!Bl1~x,z!1F̃r3~y1z12x!Bl2~x,z!#

52F̃r1~y12x!, ~4.32!

Bl2~x,y!1E
0

`

dz@ F̃r2~y1z12x!Bl1~x,z!1F̃r1~y1z12x!Bl2~x,z!#

52F̃r2~y12x!, ~4.33!

where

F̃rs~x!5Frs~x!1(
j 51

N
Ar jseiE jx, s51,2,3,

Ar j 15t j 1D j 12kj
2t j 2D j 2 , Ar j 25t j 1D j 21t j 2D j 1 ,

and Ar j 352kj
2Ar j 2 . Using the symmetry statements made before in this subsection, one

proves thatF̃ ls(x) and F̃rs(x) (s51,2,3) are real functions.
WhenT1(E) andT2(E) both have a finite number of poles and some of them are mult

poles~but otherwise the first assumption is fulfilled!, ~4.30!–~4.33! can be derived using a gene
alization of the notion of norming constant given in Ref. 7, but with more complicated auxi
kernel functionsF̃ ls(y) and F̃rs(y) (s51,2,3).

We now state the main result. The first part is immediate from~4.7!–~4.8! and ~4.17!. The
second part follows from the second~4.17! and expressions involvingKls(x,t) and Bls(x,y) (s
51,2) analogous to~4.7!–~4.8!.

Theorem 4.2: Suppose PPL1
1(R), QPL2

1(R), and W6PL1
1(R), and let conditions (1)–(3)

stated at the beginning of Sec. IV C be fulfilled. Then if Brs(x,•) (s51,2) are the solutions of the
Marchenko equations (4.30) and (4.31) and Br2(x,01)P(21,1), the potentials Q(x) and P(x)
are given by

P~x!5
d

dx
log

11Br2~x,01!

12Br2~x,01!
; ~4.34!

Q~x!52
d

dx FBr1~x,01!2
P~x!

4
tanhS 1

2 E2`

x

dz P~z! D G1
P~x!2

4
. ~4.35!

Similarly, if Bls(x,•) (s51,2) are the solutions of the Marchenko equations (4.32) and (4.33)
Bl2(x,01)P(21,1), then the potentials Q(x) and P(x) are given by

P~x!5
d

dx
log

12Bl2~x,01!

11Bl2~x,01!
; ~4.36!

Q~x!522
d

dx FBl1~x,01!2
P~x!

4
tanhS 1

2 Ex

`

dz P~z! D G1
P~x!2

4
. ~4.37!
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V. SOLVABILITY OF THE MARCHENKO EQUATIONS

In this section we establish the compactness of the Marchenko integral operators and re
unique solvability of the~pairs of! Marchenko integral equations to the canonical factorizability
a matrix function.

Theorem 5.1: Suppose PPL1
1(R), QPL2

1(R), and W6PL1
1(R), and let conditions (1)–(3)

stated at the beginning of Sec. IV C be fulfilled. Then the integral operators arising from
Marchenko integral equations (4.30)–(4.33) are compact on L2(R1).

Proof: All of these integral operators have the form

~Kg!~y!5E
0

`

dz F~y1z!g~z!, y.0,

where

F~x!5
1

2p E
2`

`

dE F~E!eiEx,

for some functionF(E) that is continuous inEPR and vanishes asE→6`. Such integral
operators are Hankel operators with continuous symbol and as such compact onL2(R) ~cf. Refs.
21 and 22!. h

In order to derive sufficient conditions for the unique solvability of the Marchenko equa
~4.30!–~4.31! or the Marchenko equations~4.32!–~4.33!, we define the quantities

R̂s~E!5E
2`

`

dz e2 iEzF̃rs~z!, L̂s~E!5E
2`

`

dz e2 iEzF̃ ls~z!,

wheres51,2,3. If neither of~1.2! has any eigenvalues, we have

R̂1~E!5R1~E!, R̂2~E!5R2~E!, R̂3~E!52k~E!2R2~E!,

L̂1~E!5L1~E!, L̂2~E!5L2~E!, L̂3~E!52k~E!2L2~E!.

Introducing the functions

Brs
6~E,x!56E

0

6`

dy Brs~x,y!eiEy, Bls
6~E,x!56E

0

6`

dy Bls~x,y!eiEy,

wheres51,2, by Fourier transformation we obtain from~4.30!–~4.31! the Riemann–Hilbert prob-
lem,

F I 0

Fl~2E,x! I G F X1~E,x!

X2~2E,x!G1F I Fl~E,x!

0 I G F X2~E,x!

X1~2E,x!G5FY~2E,x!

Y~E,x! G , ~5.1!

whereI denotes the 232 identity matrix and

X6~E,x!5FBr1
6 ~E,x!

Br2
6 ~E,x!G , Y~E,x!52e22iExF L̂1~E!

L̂2~E!
G ,

Fl~E,x!5e22iExF L̂1~E! L̂3~E!

L̂2~E! L̂1~E!
G .

In the same way we define
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Fr~E,x!5e2iExF R̂1~E! R̂3~E!

R̂2~E! R̂1~E!
G .

In analogy with~5.1!, we derive the Riemann–Hilbert problem,

F I 0

Fl~2E,x! I G F X1~E,x!

2X2~2E,x!G1F I Fl~E,x!

0 I G F X2~E,x!

2X1~2E,x!G5FY~2E,x!

2Y~E,x!G ,
from the system of integral equations obtained from~4.30! and~4.31! by replacing the kernelsF̂ ls

with 2F̂ ls .
Next, by a~right! canonical factorizationof a matrix functionW(E) defined forEPR we

mean a factorization of the form

W~E!5W2~E!W1~E!, ~5.2!

where bothW6(E) andW6(E)21 are continuous inEPC6, are analytic inEPC6, and have a
limit as E→` in C6. Replacing~5.2! with W(E)5W1(E)W2(E), we get the definition of a left
canonical factorization.

The following theorem easily follows using the methods employed in Refs. 23 and 24.
methods were applied to inverse scattering before in Ref. 7.

Theorem 5.2: Suppose PPL1
1(R), QPL2

1(R) and W6PL1
1(R), and let conditions (1)–(3)

stated at the beginning of Sec. IV C be fulfilled. Then, for fixed xPR, the system of Marchenk
integral equations (4.30) and (4.31) and the system of integral equations obtained from th

replacing the kernels F˜
ls with 2F̃ ls both have a unique solution if and only if the434 matrix

function

F I 2Fl~E,x!Fl~2E,x! 2Fl~E,x!

Fl~2E,x! I G ~5.3!

has a (right) canonical factorization. Similarly, for fixed xPR, the system of Marchenko integra
equations (4.32) and (4.33) and the system of integral equations obtained from them by rep

the kernels F˜ rs with 2F̃rs both have a unique solution if and only if the434 matrix function

F I 2Fr~E,x!Fr~2E,x! 2Fr~E,x!

Fr~2E,x! I G ~5.4!

has a (right) canonical factorization.
In Ref. 7 the Marchenko equations are simple enough to allow for a representation of

34 matrix functions in~5.3! and~5.4! as the direct sum of two 232 matrix functions~one being
the adjoint of the other! multiplied on either side by constant nonsingular matrices. As a resu
Ref. 7 the analog of the present Theorem 5.2 involves the equivalence of the simultaneous
solvability of two pairs of Marchenko equations to the existence of both a left and a right ca
cal factorization of a 232 matrix function. No such simplification has been found for the pres
problem.

We conclude this article by giving a sufficient condition for the canonical factorizability of
matrix function in ~5.3! and hence of the unique solvability of the solution of the Marchen
equations~4.30!–~4.31!.

Corollary 5.3: Suppose PPL1
1(R), QPL2

1(R) and W6PL1
1(R), and let conditions (1)–(3)

stated at the beginning of Sec. IV C be fulfilled. Then, for fixed xPR, the system of Marchenk
integral equations (4.30) and (4.31) are uniquely solvable if

sup
EPR

iFl~E,x!i,1. ~5.5!
23 Jan 2002 to 192.167.144.227. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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Analogously, for fixed xPR, the system of Marchenko integral equations (4.32) and (4.33)
uniquely solvable if

sup
EPR

iFr~E,x!i,1. ~5.6!

In (5.5) and (5.6) the norm is defined as the largest singular value of the matrix.
Proof: This corollary is immediate from Theorem 5.2 by observing that~5.5! implies that

Fl(E,x) has a canonical factorization~cf. Ref. 25, Sec. III A!. h
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