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ABSTRACT

In this article the existence and uniqueness theory of time
dependent kinetic equations is developed for collision terms
dominated in the norm by the collision frequency, thus gen-
eralizing prior work by Beals and Protopopescu.

1 INTRODUCTION

In this article we study initial-boundary value problems of the type

@u

@t
ðx, v, tÞ þ v

@u

@x
þ aðx, v, tÞ

@u

@v
þ hðx, v, tÞuðx, v, tÞ

¼ ðJuÞðx, v, tÞ þ f ðx, v, tÞ, ðx, v, tÞ 2 �� V � Rþ; ð1:1Þ

uðx, v, 0Þ ¼ g0ðx, vÞ, ðx, vÞ 2 �� V; ð1:2Þ

u�ðx, v, tÞ ¼ ðKuþÞðx, v, tÞ þ g�ðx, v, tÞ, ðx, v, tÞ 2 �� � Rþ; ð1:3Þ
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where the position x 2 � (� a region in R
n), the velocity v 2 V (V a

region in R
n), the time t 	 0, and �
 are the parts of the boundary � of

the phase space �� V where the integral curves of the vector field aðx, v, tÞ
enter and leave. A comprehensive theory of the existence and uniqueness
of solutions of Eqs. (1.1)–(1.3) in an Lp-space setting has been developed by
Beals and Protopopescu [3]. This theory can also be found in Chapter XI
of [16]. In this theory the major assumptions on Eqs. (1.1)–(1.3) are as
follows:

1. The vector field aðx, v, tÞ is Lipschitz continuous and diver-
gence free;

2. The function hðx, v, tÞ is nonnegative and locally integrable, the
operator J is bounded, and the operator K has norm strictly less
than 1. If J and K are positive operators (in lattice sense), K is
allowed to have unit norm;

3. The operators J and K are real (i.e., for all u, Ju ¼ Ju and Ku ¼
Ku) and local in time (i.e., they commute with the multiplication
by any bounded measurable function of t only);

4. The integral curves of the vector field aðx, v, tÞ do not reach infi-
nity in finite time. This condition is always satisfied if jaðx, v, tÞj �
const. ð1þ jxj þ jvjÞ for ðx, v, tÞ 2 �� V � Rþ.

Assuming a phase space �� V equipped with a Borel measure � and a
vector field independent of t and writing

X ¼ v �
@

@x
þ aðx, vÞ �

@

@v
, ð1:4Þ

the fact that the vector field is divergence free may be expressed through the
Green’s identity Z

��V

X� d� ¼

Z
�þ

� d�þ �

Z
��

� d�� ð1:5Þ

for � in a suitable test function space, where �
 are suitable measures on �
.
After constructing the boundary measures �
 and the test function space
pertaining to the vector field Y ¼ ð@=@tÞ þ X, Eqs. (1.1)–(1.3) with J ¼ 0 and
K ¼ 0 reduce to ordinary first order differential equations along the integral
curves of Y which can be solved trivially. Two perturbation arguments then
allow one to incorporate a bounded J and K with kKk < 1 into the theory.
If J and K are positive operators, a monotonicity argument allows one
to extend the existence and uniqueness result to operators K of unit norm.
We mention that important earlier work on Eqs. (1.1)–(1.3) was done by
Voigt [31] for the case where a 
 0 and J ¼ 0, and Ukai [30] for J ¼ 0, while
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Cessenat [8, 9] derived trace theorems for a ¼ 0. The non divergence free
case was pioneered, for h ¼ 0 and K ¼ 0, by Bardos [2], and the results of
[3, 16] were extended to the non divergence free case by van der Mee [21]. In
addition to these papers, there exist hundreds of papers dealing with par-
ticular examples of Eqs. (1.1)–(1.3), but discussing them is beyond the scope
of this article.

Let us devote a few words to the physical meaning of Eqs. (1.1)–(1.3).
Equations (1.1)–(1.3) describe the time evolution of the distribution function
uðx, v, tÞ of particles in a phase space of functions of position and velocity
ðx, vÞ, or the time evolution of the specific intensity uðx, v, tÞ of unpolarized
light in a phase space of functions of position and frequency ðx, vÞ, given the
initial distribution u0ðx, vÞ and subject to the reflection law (1.3). The func-
tion f ðx, v, tÞ describes internal sources and the function g0ðx, v, tÞ describes
particles or radiation entering the medium at the boundary. The term con-
taining aðx, v, tÞ accounts for the effect of external forces.

Let us now discuss some of the open problems regarding
Eqs. (1.1)–(1.3). First, there are a number of problems in which it is
useful to enlarge the scope of [3, 16]. In problems where the natural
functional space is L1ð�� V; d�Þ and some equilibrium condition demands
that Z

��V

fhu� Jug d� ¼ 0, u 2 L1ð�� V; d�Þ: ð1:6Þ

the theory in an L1-setting should be extended to deal with J for which
khuk1 ¼ kJuk1. Further, in various applications with unbounded h 	 0
one deals with positive J satisfying kJuk1 � �khuk1 for some � 2 ½0, 1�. To
mention a few, in neutron transport the collision frequency dominates the
collision kernel integrated over outgoing velocities if the medium is nonmul-
tiplying [5]. In radiative transfer, the phase function integrated over outgoing
directions is dominated by the extinction coefficient [7, 29]. In cell growth
modeling [28], electron transport in weakly ionized gases [15], rarefied gas
dynamics [6], and modeling of electron-phonon interaction in semiconduc-
tors [18, 19], the integrated (nonnegative) collision kernel is exactly equal
to the collision frequency. In fact, Eq. (1.6) is the linear counterpart of
the balance condition involved in the nonlinear Boltzmann equation.

Secondly, once an existence and uniqueness theory of Eqs. (1.1)–(1.3)
has been put in place, the consideration of various moments of the solutions
uðx, v, tÞ makes it mandatory to also study Eqs. (1.1)–(1.3) in suitably
weighted Lp-spaces. However, on adding a weight to the phase space meas-
ure � one usually turns a divergence free vector field X for which the
Green’s identity (1.5) is valid into a vector field for which (1.5) cannot be
formulated any more. To overcome this difficulty, one may either use the far
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more complicated theory involving non divergence free vector fields or
employ the solutions of Eqs. (1.1)–(1.3) already found in the weighted
Lp-setting. The latter requires an enhancement of the theory with estimates
of solutions in suitably weighted Lp-norms.

In this article we will not study all of these questions in full generality.
We will restrict ourselves to the following situation:

1. The vector field aðx, v, tÞ is Lipschitz continuous and divergence
free and the phase space �� V has piecewise C1 boundary;

2. The function hðx, v, tÞ is nonnegative and locally integrable,

J ¼ J1 þ J2, kJ1uk1 � �khuk1 for some � 2 ½0, 1�, kJ2uk1 � jkuk1
for some j 
 0, and K is a contraction from L1ð�þ; d�þÞ into
L1ð��; d��Þ;

3. The operators J1, J2 and K are real (i.e., for all u, J1u ¼ J1u,
J2u ¼ J2u and Ku ¼ Ku) and local in time (i.e., they commute

with the multiplication by any bounded measurable function of

t only);

4. The integral curves of the vector field aðx, v, tÞ do not reach

infinity in finite time.

Alongside we study the analogous Lp-problem where 1 < p < þ1. Here the
condition on J1 is that kJ1ukp � �khjuj

p
k
1=p
1 for some � 	 0. Here there is no

restriction on the size of �.
If h is unbounded, the operator J1 is unbounded and has the Lp-func-

tions u for which h1=pu is also an Lp-function, as its domain. Hence, when
h is bounded, the theory developed in this article reduces to the theory
expounded in [3].

We now briefly describe the organization of the paper. In Section 2 we
develop the vector field formalism, in analogy with Sections XI.2 and XI.3
of [16]. As far as Eqs. (1.1)–(1.3) are concerned, this formalism can be
copied verbatim from [3, 16]. In Section 3 we prove the existence and
uniqueness of the solution of Eqs. (1.1)–(1.3). The incorporation of K pro-
ceeds exactly as in [3, 16], but with J one has to deal differently. To maintain
a clear exposition of the theory, we only discuss the L1-case in the main text
and defer the discussion of the general Lp-case to Appendix A. In Section 4
we prove that the solution is generated by an evolution family in the sense of
[23] (or by a C0-semigroup if a, h, J and K are time independent). In
Section 5 the existence and uniqueness theory of Eqs. (1.1)–(1.3) is adapted
to deal with suitably weighted Lp-norms. Our insights on Eqs. (1.1)–(1.3) in
weighted Lp-spaces then allow us to derive certain results under multiplying
boundary conditions (i.e., for kKk > 1), using a weight function proposed
by Boulanouar [4].
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Section 6, divided into two subsections, is devoted entirely to applica-
tions. Subsection 6.1 deals with an equation describing the time evolution of
the electron distribution in a weakly ionized gas, studied before by Frosali
et al. [15], Poupaud [25, 26], and Arlotti et al. [1]. In Subsection 6.2 we
briefly discuss the linearized Boltzmann equation studied by Pettersson
[24], Chvála [11] and by Chvála et al. [12] on general spatial domains,
incorporating boundary conditions.

Two appendices have been included. In Appendix A the Lp-counter-
part of the contents of Section 3 is presented. In Appendix B an auxiliary
result on strong limits of evolution families on LpðE, d�Þ is established.

2 PRELIMINARIES

Let � be an open subset of R
n, let V be a subset of R

n equipped
with a positive Borel measure �0 such that all bounded Borel sets in R

n

have finite �0-measure, and denote by � and �T the product measures
d�ðx, vÞ ¼ dxd�0ðvÞ on �� V and d�T ðx, v, tÞ ¼ dx d�0ðvÞ dt on �� V �
½0,T �, respectively. When � and V have boundaries, they are assumed to
be piecewise C1. In typical applications V ¼ V0 � S

n�1 and d�0ðvÞ ¼
d�00ðjvjÞd
, where �00 is a measure on a subset V0 of Rþ and d
 is the
surface Lebesgue measure on the unit sphere Sn�1 of Rn. We assume that
for each T > 0, h is �T -integrable on every bounded �T -measurable subset
of �T ¼ �� V � ð0,TÞ.

Let us assume that aðx, v, tÞ is continuous in ðx, v, tÞ and locally
Lipschitz continuous in x and v on the closure of �� V � Rþ, and let us
define the vector field Y by

Y ¼
@

@t
þ v �

@

@x
þ aðx, v, tÞ �

@

@v
,

and suppose that for each T > 0 and each C1-function � of compact support
in �T Z

�T

Y� d�T ¼ 0,

meaning that Y is divergence free. Then through every point of �T there
passes exactly one integral curve of Y , and this curve has length � T and has
left and right limits on the boundary of �T .

1 The left endpoints form the

1In this article, as in [3, 16], ‘‘length’’ stands for travel time and does not necessarily
have the same meaning as the usual arclength.
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incoming boundary ��T and the right endpoints the outgoing boundary �
þ
T .

Every point of x 2 �T may thus be parametrized as ðz, sÞ where z 2 ��T is the

left endpoint of the integral curve passing through x and s is the time needed

to travel from the left endpoint to x along the integral curve. We have for

the measure space ð�T ,�T Þ

�T ’ fðz, sÞ: z 2 ��T , 0 < s < ‘ðzÞg, d�T ¼ d�
�
ðzÞ ds,

where ds is the travel time measure, ‘ðzÞ (� T) is the total length of the
integral curve starting at z and �� is a Borel measure on ��T . Using the

integral curves to map ð��T , d�
�
Þ in a measure preserving fashion onto

ð�þT , d�
þ
Þ we obtain the Green’s identity

Z
�T

Yu d�T ¼

Z
�þ
T

u d�þ �

Z
��
T

u d��, u 2 �T ,

where �T is the test function space of all Borel functions u on �T such that

(i) u is continuously differentiable on each integral curve, (ii) u and Yu are

bounded, and (iii) the support of u is bounded and the length of the integral

curves meeting the support of u is bounded away from zero.
Let us define Lp, locð�T ; d�T Þ as the linear space of all �T -measurable

functions u on �T such that jujp is �T -integrable on every bounded
�T -measurable subset of �T on which ‘ðz, sÞ 
 ‘ðzÞ is bounded away from
zero. Then if u,Yu 2 Lpð�T ; d�T Þ, we define a trace for u as a pair of
functions u
 2 Lp, locð�



T ; d�



Þ such that for each � 2 �T

< Yu,� > þ < u,Y� >¼

Z
�þ
T

uþ� d�þ �

Z
��
T

u�� d��:

Then if 1 � p <1 and fu, ðY þ hÞug � Lpð�T , d�T Þ, u has a unique trace
u
. Moreover, if u� 2 Lpð�

�
T ; d�

�
Þ, then uþ 2 Lpð�

þ
T ; d�

þ
Þ, hjujp and

jujp�1Yu are �T -integrable and

Z
�þ
T

juþjpd�þ þ p

Z
�T

hjujpd�T

¼

Z
��
T

ju�jpd�� þ p

Z
�T

sgnðuÞjujp�1ðY þ hÞu duT : ð2:1Þ

The present formalism may be unfamiliar to whomever pursues kinetic
theory applications, where usually the time variable on the one hand and the
spatial and velocity variables on the other hand are treated as mutually alien
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species. However, when examined more closely, one sees that, up to sets of
measure zero,

�� ¼ fðx, v, 0Þ: ðx, vÞ 2 �� Vg [ fðx, v, tÞ: ðx, vÞ 2 ��, t, t 2 ð0,TÞg;

�þ ¼ fðx, v,TÞ: ðx, vÞ 2 �� Vg [ fðx, v, tÞ: ðx, vÞ 2 �þ, t, t 2 ð0,TÞg,

where Xt ¼ vð@=@xÞ þ aðx, v, tÞð@=@vÞ, andZ
��V

Xt � d� ¼

Z
�þ, t

� d�þ, t �

Z
��, t

� d��, t:

If a does not depend on t, the subscripts t on Xt, �
, t and �
, t may be
dropped, while d�T ¼ d� dt and d�



¼ ðd�, d�
dtÞ.

3 USING THE METHOD OF CHARACTERISTICS

Let us suppose that J and K are real (i.e., Ju ¼ Ju and Ku ¼ Ku,
u 2 Lpð�T ; d�T Þ) and local in time (i.e., for all u 2 Lpð�T ; d�T Þ, Jð’uÞ ¼
’Ju and Kð’uÞ ¼ ’Ku for any bounded measurable function ’ðtÞ of t
only). In analogy with [3, 16], we set u
ðx, v, tÞ ¼ e

�
tuðx, v, tÞ, f
ðx, v, tÞ ¼
e�
tf ðx, v, tÞ, g
, 0ðx, v, tÞ ¼ e

�
tg0ðx, v, tÞ and g
,�ðx, v, tÞ ¼ e
�
tg�ðx, v, tÞ,

where 
 > 0. Since J and K are local in time, Eqs. (1.1)–(1.3) are trans-
formed to the initial-boundary value problem

@u

@t
ðx, v, tÞ þ v �

@u

@x
þ aðx, v, tÞ

@u

@v
þ fhðx, v, tÞ þ 
gu
ðx, v, tÞ

¼ ðJu
Þðx, v, tÞ þ f
ðx, v, tÞ, ðx, v, tÞ 2 �� V � Rþ; ð3:1Þ

u
ðx, v, 0Þ ¼ g0, 
ðx, vÞ, ðx, vÞ 2 �� V; ð3:2Þ

u�,
ðx, v, tÞ ¼ ðKuþ, 
Þðx, v, tÞ þ g�, 
ðx, v, tÞ, ðx, v, tÞ 2 �� � Rþ: ð3:3Þ

To treat the temporal, spatial and velocity variables on an equal foot-
ing as far as the initial and boundary conditions are concerned, we introduce
K ¼ ð0,KÞ, allowing one to write (3.2) and (3.3) together as u�
 ¼ Ku

þ

 þ g

�

 .

Theorem 3.1. The initial-boundary value problem (3.1)–(3.3) has a unique
solution u
 2 L1ð�T ; d�T Þ for every f 2 L1ð�T ; d�T Þ and ðg0, g�Þ 2
L1ð�

�
T ; d�

�
Þ, provided J ¼ J1 þ J2 with

kJ1u
k1 � �khu
k1, kJ2u
k1 � jku
k1, kKu
þ

 k1 � �ku

þ

 k1,
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for certain �, � 2 ½0, 1Þ and 
 > j 	 0. Then the solution u
 satisfies the con-
ditions hu
 2 L1ð�T ; d�T Þ and u




 2 L1ð�



T ; d�



Þ, and is nonnegative if J1, J2,

K, f and ðg0, g�Þ are nonnegative.

Proof. Integrating Eqs. (3.1)–(3.3) with J ¼ 0 and K ¼ 0 along integral
curves, we find a unique solution u
 ¼ S
ð f
, g

�

 Þ, where g

�

 ¼ ðg0, 
, g�, 
Þ

and

kS
ð f
, g
�

 Þk1 �

1



ðk f
k1 þ kg

�

 k1Þ;

kS
ð f
, g
�

 Þ
þ
k1 �k f
k1 þ kg

�

 k1;

khS
ð f
, g
�

 Þk1 �k f
k1 þ kg

�

 k1:

Now suppose J ¼ 0 and � 2 ½0, 1Þ. Then any solution of
Eqs. (3.1)–(3.3) satisfies u
 ¼ S
ð f
,Ku

þ

 þ g

�

 Þ, where

uþ
 ¼ S
ð0,Ku
þ

 Þ
þ
þ S
ð f
, g

�

 Þ
þ:

Since kS
ð0,Ku
þ

 Þ
þ
k1 � kKu

þ

 k1 � �ku

þ

 k1, a contraction mapping argument

yields uþ
 2 L1ð�
þ
T ; d�

þ
Þ uniquely. We denote the so-obtained solution by

u
 ¼ Z
ð f
, g
�

 Þ. We then have

jjhZ
ð f
, g
�

 Þk1 �k f
k1 þ kg

�



k1 þ �ku

þ

 k1 �

1

1� �
ðk f
k1 þ kg

�

 k1Þ;

jjZ
ð f
, g
�

 Þ
þ
k1 �k f
k1 þ kg

�



k1 þ �ku

þ

 k1 �

1

1� �
ðk f
k1 þ kg

�

 k1Þ;

jjZ
ð f
, g
�

 Þk1 �k


�1
ðk f
k1 þ kg

�



k1 þ �ku

þ

 k1Þ �

1


ð1� �Þ
ðk f
k1 þ kg

�

 k1Þ:

Let us now consider Eqs. (3.1)–(3.3) for J ¼ J1 and K with �þ � < 1.
Then any solution u
 satisfies

u
 ¼ Z
ðJ1u
 þ f
, g
�

 Þ ¼ Z
ðJ1u
, 0Þ þ Z
ð f
, g

�

 Þ:

Moreover, since

khZ
ðJ1u
, 0Þk1 �
1

1� �
kJ1u
k1 �

�

1� �
khu
k1,

a contraction mapping argument yields the existence of u
 if �þ � < 1. We
denote the so-obtained solution by u
 ¼W
ð f
, g

�

 Þ. Then

khW
ð f
, g
�

 Þk1 �

�khu
k1 þ k f
k1 þ kg
�

 k1

1� �
�
k f
k1 þ kg

�

 k1

1� �� �
; ð3:4Þ

kW
ð f
, g
�

 Þ
þ
k1 �

�khu
k1 þ k f
k1 þ kg
�

 k1

1� �
�
k f
k1 þ kg

�

 k1

1� �� �
; ð3:5Þ
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kW
ð f
, g
�

 Þk1 �

�khu
k1 þ k f
k1 þ kg
�

 k1


ð1� �Þ
�
k f
k1 þ kg

�

 k1


ð1� �� �Þ
, ð3:6Þ

where (3.4) has been used to derive Eqs. (3.5) and (3.6).
Applying (2.1) to Eqs. (3.1–3.3) with J ¼ J1 while changing h� hþ 
,

we find

kuþ
 k1 þ khu
k1 þ 
ku
k1 � kKu
þ

 k1 þ kg

�

 k1 þ kJ1u
k1 þ k f
k1,

ð3:7Þ

where the equality sign occurs if J1 and K are positive operators, f
 	 0 and
g�
 	 0. Hence

ð1� �Þkuþ
 k1 þ ð1� �Þkhu
k1 þ 
ku
k1 � k f
k1 þ kg
�

 k1, ð3:8Þ

which suggests that the restriction to �, � 2 ½0, 1Þ with �þ � < 1 is not
necessary.

Let us now extend the above estimates for W
ð f
, g
�

 Þ to the case

where � < 1 and � < 1, without assuming that �þ � < 1. Now choose
�0, �1 2 ½0, 1Þ such that � ¼ �0 þ �1 and �þ �0 < 1, and let u
 ¼ V
ð f
, g

�

 Þ

denote the solution of Eqs. (3.1)–(3.3) with K replaced by ð�0=�ÞK and
J ¼ J1. Replacing K by ð�0=�ÞK and observing that the latter boundary
operator has norm �0 and that �þ �0 < 1, we obtain from Eqs. (3.4)–(3.6)
the bounds

khV
ð f
, g
�

 Þk1 �

k f
k1 þ kg
�

 k1

1� �� �0
;

kV
ð f
, g
�

 Þ
þ
k1 �

k f
k1 þ kg
�

 k1

1� �� �0
;

kV
ð f
, g
�

 Þk1 �

k f
k1 þ kg
�

 k1


ð1� �� �0Þ
:

Now observe that the solution of Eqs. (3.1)–(3.3) with J ¼ J1 has the form

u
 ¼ V
ð f
, ð�1=�ÞKu
þ

 þ g

�

 Þ ¼ V
ð0, ð�1=�ÞKu

þ

 Þ þ V
ð f
, g

�

 Þ:

Since Eq. (3.8) (applied for ð�0=�ÞK instead of K, and hence with �0 taking
the place of �) implies that

V
ð0,
�1
�
Kuþ
 Þ

þ
��� ���

1
�
ð�1=�ÞkKu

þ

 k1

1� �0
�

�1
1� �0

kuþ
 k1,

and since ð�1=ð1� �0ÞÞ < 1, a contraction argument yields the existence of
the solution u
 of Eqs. (3.1)–(3.3) for J ¼ J1. As a result of Eq. (3.8), we now
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obtain the three estimates

khW
ð f
, g
�



Þk1 �

k f
k1 þ kg
�

 k1

1� �
; ð3:9Þ

kW
ð f
, g
�



Þ
þ
k1 �

k f
k1 þ kg
�

 k1

1� �
; ð3:10Þ

kW
ð f
, g
�



Þk1 �

k f
k1 þ kg
�

 k1



, ð3:11Þ

valid under the hypothesis that �, � 2 ½0, 1Þ.
Considering the full problem (3.1)–(3.3), we must solve u
 from

the equation

u
 ¼W
ðJ2u
, 0Þ þW
ð f
, g
�

 Þ:

Since Eq. (3.11) implies that kW
ðJ2u
, 0Þk1 � ð1=
ÞkJ2u
k1 � ð j=
Þku
k1,
we apply a contraction mapping argument for 
 > j to obtain the solution.
As a result, for 
 > j we have

ð1� �Þkuþ
 k1 þ ð1� �Þkhu
k1 þ ð
� jÞku
k1 � k f
k1 þ kg
�

 k1: ð3:12Þ

The general solution u
 satisfies the estimates (3.9) and (3.10) (which actu-
ally apply to the case J ¼ J1), but Eq. (3.11) is to be modified by replacing
the denominator 
 by 
� j. This completes the proof.

Using the monotonicity argument of [3] and Section XI.5 of [16],
we obtain

Theorem 3.2. The initial-boundary value problem (3.1)–(3.3) has a unique
solution u
 2 L1ð�T ; d�T Þ for every f 2 L1ð�T ; d�T Þ and ðg0, g�Þ 2
L1ð�

�
T ; d�

�
Þ, provided J ¼ J1 þ J2, J1, J2 and K are positive operators and

kJ1u
k1 � �khu
k1, kKu
þ

 k1 � �ku

þ

 k1, kJ2u
k1 � jku
k1,

for certain �, � 2 ½0, 1� and j 	 0.

In general, under the conditions of Theorem 3.2 the solution u of
Eqs. (3.1)–(3.3) need not satisfy hu 2 L1ð�T ; d�T Þ if � ¼ 1. Moreover, if
� ¼ 1, the trace u
 of the solution may no longer belong to L1ð�



T ; d�



Þ.

Decomposing u

 in temporal and spatial-velocity sections before
making the conversion from (3.7) to (3.12) and recalling that K ¼ ð0,KÞ,
we get

ku
ðt ¼ TÞk1 þ ð1� kÞku
,þk1 þ ð1� �Þkhu
k1 þ ð
� jÞku
k1

� k f
k1 þ kg0, 
k1 þ kg�, 
k1
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Thus if J ¼ J1 (and hence j ¼ 0) and 
 ¼ 0, we obtain the contracti-
vity property

kuðt ¼ TÞk1 � k f k1 þ kg0k1 þ kg�k1:

An interesting special case occurs if 
 ¼ 0, J ¼ J1 	 0 and
K 	 0, while

kJuk1 ¼ khuk1, u 	 0 in L1ð�T ; d�T Þ; ð3:13Þ

kKuþk1 ¼ ku
þ
k1; uþ 	 0 in L1

Pþ
T

; d�þ
� �

: ð3:14Þ

When premultiplying J by � 2 ð0, 1Þ and K by � 2 ð0, 1Þ, we find the equality

kuð�, �Þðt ¼ TÞk1 þ ð1� �Þku
ð�, �Þ
þ k1 þ ð1� �Þkhu

ð�, �Þ
k1 ¼ k f k1 þ kg0k1 þ kg�k1,

where f , g0 and g� are assumed to be nonnegative. Here the solution u
ð�, �Þ

is monotonically nondecreasing in � and �. So if we let � " 1 and � " 1,
we find the isometry condition

kuð�¼1, �¼1Þðt ¼ TÞk1 ¼ k f k1 þ kg0k1 þ kg�k1, ð3:15Þ

provided the terms having the factors 1� � and 1� � vanish in the limit.
This is automatic if Eqs. (1.1)–(1.3) with � ¼ � ¼ 1 have a solution u 2
L1ð�T ; d�T Þ satisfying u

þ
2 L1ð�

þ
T ; d�

þ
Þ and hu 2 L1ð�T ; d�T Þ. We may

then simply pass to the limit as � " 1 and � " 1, using that khuð�, �Þk1 �
khuk1 <1 and kuð�, �Þ

þ
k1 � ku

þ
k1 <1.

The situation as described in the preceding paragraph occurs in vari-
ous applications, such as electron transport in weakly ionized gases [15], cell
growth modeling [20], and modeling of electron-phonon interactions in
semiconductors [19]. In these papers, sufficient conditions for having the
isometry condition (3.15) are derived and the possibility of not having
(3.15) is discussed, though without providing explicit models in which the
isometry relation (3.15) is not satisfied.

We have

Theorem 3.3. Suppose J and K are positive operators satisfying (3.13) for
every u 	 0 in L1ð�T ; d�T Þ and (3.14) for every u

þ
	 0 in L1ð�

þ
T ; d�

þ
Þ. Then

for nonnegative f , g0 and g� the solution of Eqs. (1.1)–(1.3) satisfies the
isometry condition (3.15) if the following conditions are fulfilled:

1. hu 2 L1ð�T ; d�TÞ;
2. uþ 2 L1ð�þ

T ; d�
þÞ.

This occurs if

a. the integral curves do not ever meet the boundary of the phase space
�, and
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b. for some finite constant C independent of the choice of z 2 ��
T ,

we have Z ‘ðzÞ

0

hðz, sÞ ds � C: ð3:16Þ

Proof. The first part of the theorem has actually been proven in the few lines
following (3.15). Let us therefore focus on the second part of the theorem in
which the sufficient conditions (a) and (b) are assumed.

As explained in the first few lines of Section 3, the solution u
¼0 of
Eqs. (3.1)–(3.3) with 
 ¼ 0 exists. Unfortunately, the estimates derived in the
proof of Theorem 3.1 do not apply if 
 ¼ 0. In order to derive such esti-
mates if (3.16) holds, we follow the various steps of the proof of Theorem
3.1 for 
 ¼ 0. To simplify notation, we drop the subscript 
 ¼ 0 throughout
the present proof. Because of condition (a), we only have to deal with tem-
poral boundaries. We therefore have K ¼ 0 (and hence � ¼ 0), g� ¼ g0,
u� ¼ uðt ¼ 0Þ ¼ u0, and u

þ
¼ uðt ¼ TÞ ¼ uT .

Let us first devote one paragraph to derive two estimates that also
hold if condition (a) is not assumed. Let u ¼ Sð f , g�Þ be the solution of
Eqs. (3.1)–(3.3) for 
 ¼ 0, K ¼ 0 and J ¼ 0. Then the explicit expression

uðz, sÞ ¼ e
�
R s
0
hðz, tÞ dt

g� þ

Z s

0

e
�
R s
�
hðz, tÞ dt

f ðz, �Þ d�

immediately gives the estimates

kSð f , g�Þþk1 � k f k1 þ kg
�
k1; ð3:17Þ

khSð f , g�Þk1 � ð1� e
�C
Þðk f k1 þ kg

�
k1Þ: ð3:18Þ

Let us again assume both of the conditions (a) and (b). Consider
Eq. (3.1) with initial condition (3.2) for 
 ¼ 0 and J ¼ J1 with �ð1� e

�C
Þ

< 1. Then any solution u satisfies

u ¼ SðJ1uþ f , g0Þ ¼ SðJ1u, 0Þ þ Sð f , g0Þ:

Since (3.17) implies that

khSðJ1u, 0Þk1 � ð1� e
�C
ÞkJ1uk1 � �ð1� e

�C
Þkhuk1,

a contraction mapping argument yields the existence of u ¼Wð f , g0Þ. Using
(3.17) and (3.18), we then get the estimates

khWð f , g0Þk1 �
1� e�C

1� �ð1� e�CÞ
k f k1 þ kg0k1ð Þ;

kWð f , g0ÞTk1 �
1

1� �ð1� e�CÞ
k f k1 þ kg0k1ð Þ:
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Finally, premultiplying J ¼ J1 by � and denoting the so-obtained sol-
ution by uð�Þ, we obtain

kuð�Þðt ¼ TÞk1 þ ð1� �Þkhu
ð�Þ
k1 ¼ k f k1 þ kg0k1,

implying that huð�Þ 2 L1ð�T ; d�T Þ if �ð1� e�CÞ < 1. Since khuð�Þk1 �
khuð1Þk1 <1, we find the isometry condition 3.15.

The Lp-case with p 2 ð1, þ1Þ can be treated similarly, assuming that
K is a bounded operator from Lpð�

þ
T ; d�

þ
Þ into Lpð�

�
T ; d�

�
Þ with norm

� 2 ½0, 1Þ and J ¼ J1 þ J2 with J2 bounded on Lpð�T ; d�T Þ and J1 satisfying
the norm estimate kJ1ukp � �khjuj

p
k
1=p
1 for some � 	 0. Taking sufficiently

large 
 the existence of a unique solution u
 of Eqs. (3.1)–(3.3) can be proved
and this solution satisfies hju
j

p
2 L1ð�T ; d�T Þ and u




 2 Lpð�



T ; d�



Þ. We

remark that for p > 1 there is no restriction on the size of � 2 R
þ. This is due

to the presence of the factor 
�1þ1=p in the right-hand side of Eq. (XI 4.9) of
[16], which leads to the norm estimates involving strict contractions for
sufficiently large 
 required in the proof. The details will be worked out in
Appendix A.

4 USING AN EVOLUTION SYSTEM

In this section we prove that the solution of Eqs. (3.1)–(3.3) is repre-
sentable by means of an evolution family. By an evolution family on a
Banach space X we mean a family of boundary linear operators Uðt, t0Þ,
t 	 t0, on X such that

1. for t0 2 R we have Uðt0, t0Þ ¼ I , the identity operator;
2. for t 
 r 
 t0 we have the product rule Uðt, rÞUðr, t0Þ ¼ Uðt, t0Þ;
3. for every � 2 X , Uðt, t0Þ� is a continuous function of ðt, t0Þ 2 �;
4. there exist constants M,! such that kUðt, t0Þk �Me!ðt�t0Þ for

ðt, t0Þ 2 �.

Here we have defined � ¼ fðt1, t2Þ 2 R
2: t1 	 t2g. Evolution families are

studied in detail in [23, 10].
Consider Eqs. (1.1)–(1.3) with J ¼ 0 and K ¼ 0, where f 2 L1ð�T ;d�T Þ

and ðg0,g�Þ 2L1ð�
�
T ;d�

�
Þ. Then the unique solution is given by

uðz, sÞ ¼ e
�
R s
0
hðz, tÞ dt

uðz, 0Þ þ

Z s

0

e
�
R s
�
hðz, tÞ dt

f ðz, �Þ d�,
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where the phase space �T has been decomposed along integral curves and
uðz, 0Þ ¼ ðg0, g�Þ. Let us choose s, s1 such that 0 < s < s1 < ‘ðzÞ. Then

uðz, sÞ � uðz, s1Þ ¼ e
�
R s
0
hðz, tÞ dt

1� e
�
R s1
s
hðz, tÞ dt

h i
uðz, 0Þ

þ

Z s

0

e
�
R s

�
hðz, tÞ dt

1� e
�
R s1
s
hðz, tÞ dt

h i
f ðz, �Þ d�

þ

Z s1

s

e
�
R s1
�
hðz, tÞ dt

f ðz, �Þ d�,

where h 2 L1, locð�T ; d�T Þ for every T > 0. Hence a dominated convergence
argument shows that Z

��
T

juðz, sÞ � uðz, s1Þj d�
�
ðzÞ ð4:1Þ

tends to zero as ðs1 � sÞ # 0. The integrand in (4.1) is set equal to zero on
that part of the incoming boundary ��T where ‘ðzÞ < s1.

When dealing with Eqs. (3.1)–(3.3) with general J and K, the above
argument remains the same, because f and g� are replaced by Ju
 þ f and
Kuþ
 þ g

�, respectively, and h is replaced by hþ 
, provided Ju
 þ f 2
L1ð�T ; d�T Þ, and Ku

þ

 þ g

�
2 L1ð�

�
T ; d�

�
Þ. This is the case if fhu
, u
g �

L1ð�T ; d�T Þ and u
þ

 2 L1ð�

þ
T ; d�

þ
Þ. Thus under the conditions of either

Theorem 3.1 or Theorem 3.3, the solution of Eqs. (3.1)–(3.3) is strongly
continuous in L1ð�T ; d�T Þ.

We have

Proposition 4.1. Under the conditions of either Theorem 3.1 or Theorem 3.3,
the solution of Eqs. (3.1)–(3.3) is strongly continuous in L1ð�T ; d�T Þ.

Under the conditions of either Theorem 3.1 or Theorem 3.3, the unique
solution of the initial-boundary value problem

@u

@t
ðx, v, tÞ þ v �

@u

@x
þ aðx, v, tÞ

@u

@v

þ fhðx, v, tÞ þ 
gu
ðx, v, tÞ ¼ ðJu
Þðx, v, tÞ, ðx, v, tÞ 2 �� V � ðt0,TÞ;

u
ðx, v, t0Þ ¼ gt0, 
ðx, vÞ, ðx, vÞ 2 �� V;

u�, 
ðx, v, tÞ ¼ ðKuþ, 
Þðx, v, tÞ, ðx, v, tÞ 2
X
�
�ðt0,TÞ,

can be written as u
ðx, v, tÞ ¼ ½S
ðt, t0Þgt0, 
�ðx, vÞ, where S
ðt, t0Þ, t 	 t0 	 0,
is an evolution family on L1ð�T ; d�T Þ. In particular, if a, h, J and K do not
depend on time, the solution of Eqs. (3.1)–(3.3) is generated by a strongly
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continuous semigroup on L1ð�T ; d�T Þ. It is easily verified that the same
result is found in the Lp-case under the conditions of Theorem A.1.

If a, h, J and K do not depend on time, the proof that the solution of
Eqs. (1.1)–(1.3) is generated by a strongly continuous semigroup can also be
given using the Hille–Yosida theorem [23]. For that purpose one studies the
boundary value problem

v
@u

@x
þ aðx, vÞ

@u

@v
þ fhðx, vÞ þ 
gu
ðx, vÞ

¼ ðJu
Þðx, vÞ þ f
ðx, vÞ, ðx, vÞ 2 �� V;

u�, 
ðx, vÞ ¼ ðKuþ, 
Þðx, vÞ þ g�, 
ðx, vÞ, ðx, vÞ 2 ��,

where 
 	 0 and h, a, J and K are independent of t. Then defining X as in
(1.4) and supposing that every maximal integral curve of X whose extension
to the left or right is finite has a corresponding left or right endpoint belong-
ing to the set

fðx, vÞ 2 @ð�� VÞ: aðx, vÞ 6¼ 0 if v ¼ 0g,

we have the Green’s identity (1.5), where � belongs to the test function space
� of Borel functions on �� V such that (i) � is continuously differentiable
on each integral curve of X, (ii) � and X� are bounded, and (iii) the support
of � is bounded and the lengths of the integral curves meeting the support of
� is bounded away from zero. Defining Lp, locð�� V; d�Þ and the trace as
in Section 2 we obtain, for 1 � p < þ1, the existence of a unique trace
u
 2 Lp, locð�� V; d�Þ if fu, ðX þ hÞg � Lpð�� V; d�Þ; moreover, if u� 2
Lpð��; d��Þ, we have uþ 2 Lpð�þ; d�þÞ, fhjuj

p, jujp�1Xug � L1ð�� V; d�Þ,
and Z

�þ

juþj
pd�þ þ p

Z Z
���

hjujp d�

¼

Z
��

ju�j
pd�� þ p

Z
���

sgnðuÞjujp�1ðX þ hÞu d�:

From that point the proof of the existence of a unique solution of
Eqs. (1.1)–(1.3) appears to be completely analogous to the proof of
Theorems 3.1 and 3.2 (if p ¼ 1) or Theorem A.1 (if 1 < p < þ1), as has
been given without detailed explanation in [3, 16]. However, the description
of the integral curves of X may be quite different from the description of the
characteristics of Y where each maximal integral curve is parametrized by
s 2 ð0, ‘ðzÞÞ with ‘ðzÞ 2 ð0,T � for every z 2 ��. For instance, there may be
semi-infinite integral curves with only a left endpoint or only a right
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endpoint, infinite integral curves without either endpoint, and closed inte-
gral curves. For instance, for the time dependent kinetic equation

@u

@t
þ y

@u

@x
� x

@u

@y
þ fhðx, y, tÞ þ 
gu
ðx, y, tÞ ¼ f ðx, y, tÞ,

where ðx, yÞ 2 R
2, t > 0 and 
 	 0, the integral curves of the vector field

X ¼ yð@=@xÞ � xð@=@yÞ are the circles

x ¼ r sin s, y ¼ r cos s,

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
is constant. Also other situations may occur. For this

reason we have given above a different proof of the strong continuity of the
solution of Eqs. (1.1)–(1.3) as a function of time. This proof has the advan-
tage of avoiding the vector field X and of extending to evolution families.

We have

Theorem 4.2. Suppose a, h, J and K do not depend on time, and suppose J ¼
J1 þ J2 with

kJ1uk1 � �khuk1, kJ2uk1 � jkuk1, kKu
þ
k1 � �ku

þ
k1,

for certain �, � 2 ½0, 1Þ and j 	 0. Then the solution u of the initial-boundary
value problem (1.1)–(1.3) with f ¼ 0 and g� ¼ 0 has the form u ¼ SK ðtÞg0,
where fSK ðtÞgt	0 is a strongly continuous semigroup on L1ð�� V; d�Þ with
infinitesimal generator BK defined by

DðBK Þ ¼

ðX þ hÞu 2 L1ð�� V; d�Þ

u 2 L1ð�� V; d�Þ: u
 2 L1
P

; d�


� 

u� ¼ Kuþ

8><
>:

9>=
>;; ð4:2Þ

ðBKuÞðx, vÞ ¼ �ðXuÞðx, vÞ � hðx, vÞuðx, vÞ þ ðJuÞðx, vÞ, ð4:3Þ

where ðx, vÞ 2 �� V.

Proof. The only thing to verify is the definition of BK . However, DðBK Þ
coincides with the set of stationary solutions of Eq. (1.1)–(1.3) with 
 > j
if f ¼ 0 and g� ¼ ðg0, 0Þ. Such solutions u satisfy ðY þ hÞu 2 L1ð�T ; d�T Þ,
u
 2 L1ð�



T ; d�



Þ and u�¼Kuþ with its temporal trace belonging to L1

ð��V;d�Þ. Hence u2L1ð��V;d�Þ, u
 2L1ð�
;d�
Þ, ðXþhÞu¼ ðYþhÞu
is in L1ð��V;d�Þ and u�¼Kuþ.

If the conditions of Theorem 4.2 are satisfied, J1 and J2 and K are
positive operators, � 2 ½0, 1� and � 2 ½0, 1�, a monotonicity argument yields
that for f ¼ 0 and g� ¼ 0 and a, h, J and K independent of t the solution of
Eqs. (1.1)–(1.3) has the form u ¼ SK ðtÞg0, where fSK ðtÞgt	0 is a strongly
continuous positive semigroup on L1ð�� V; d�Þ. Its generator is the closure
of the operator BK defined by (4.2) and (4.3). It equals BK only if for
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each solution u of Eqs. (1.1)–(1.3) the trace u
 2 L1ð�


T ; d�



Þ and

hu 2 L1 ð�T ; d�T Þ. In the Lp-case the same result (but for � > 0 instead
of � 2 ½0, 1�) can be derived.

If a, h, J and K depend on time, then Proposition 4.1 implies that the
solution u of the initial-boundary value problem (1.1)–(1.3) with f ¼ 0 and
g� ¼ 0 has the form u ¼ SK ðt, 0Þg0, where fSK ðt, sÞgt	s is an evolution family
on L1ð�� V; d�Þ, provided �, � 2 ½0, 1Þ and j 	 0. Moreover, if J1, J2 and K
are positive operators, � 2 ½0, 1� and � 2 ½0, 1�, a monotonicity argument
based on Proposition B.1 yields that for f ¼ 0 and g� ¼ 0 the solution of
Eqs. (1.1)–(1.3) has the form u ¼ SK ðt, 0Þg0, where fSK ðt, sÞgt	s is an evolu-
tion family of positive operators on L1ð�� V; d�Þ. In the Lp-case the same
result (but for � > 0 instead of � 2 ½0, 1�) can be derived for � 2 ½0, 1Þ, also
using Proposition B.1.

5 WEIGHTED SPACES AND MULTIPLYING

BOUNDARIES

Let us consider Eqs. (3.1)–(3.3) on the function space Lpð�T ;wd�T Þ
with 1 � p <1 and 
 	 0, where w is a positive, time independent
weight function such that w1=p 2 �T . Then if fw

1=pu, ðY þ hþ 
Þðw1=puÞg �
Lpð�T ; d�T Þ, w

1=pu has a unique trace w1=pu
. Moreover, if w1=pu� 2
Lpð�

�
T ; d�

�
Þ, then w1=puþ 2 Lpð�

þ
T ; d�

þ
Þ, whjujp and w1=qjujp�1Yðw1=puÞ

with q ¼ p=ð p� 1Þ are �T -integrable and

kwjuþjpk1 þ p

Z
�T

wðhþ 
Þjujpd�T

¼ kwju�jpk1 þ p

Z
�T

sgnðuÞw1=qjujp�1ðY þ hþ 
Þðw1=puÞ d�T ,

which may be rewritten as

kwjuþjpk1 þ p

Z
�T

w h�
Yw

pw
þ 


� �
jujpd�T

¼ kwju�jpk1 þ p

Z
�T

sgnðuÞwjujp�1ðY þ hþ 
Þu d�T , ð5:1Þ

If we also assume that Yw=w be bounded above, then there exists 
p 	 0
such that

hp ¼ h�
Yw

pw
þ 
p 	 0: ð5:2Þ
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This identity then takes the form

kuþkpp, w þ pkhpjuj
p
k1,w þ ð
� 
pÞkuk

p
p,w

¼ ku�kpp,w þ p

Z
�T

sgnðuÞjujp�1ðY þ hþ 
Þuw d�T ,

where k � kp,w denotes the Lp-norm with respect to the measures �T and �



weighted by w. From this moment on the theory of Sections 2 and 3 and
Appendix A can be repeated in full, with the sole exception of Theorem 3.3,
provided 
 is replaced by 
� 
p. The fact that the vector field Y may not be
divergence free with respect to the measure wd�T [i.e., there may exist a
C1-function v of compact support such that

R
�T
Yvw d�T 6¼ 0], does not

matter, because of the ‘‘renormalization’’ of h and 
. One should require,
however, norm estimates on J1, J2 and K that involve the weighted function
spaces rather than the original spaces. This means that �, j and � should be
replaced by constants �w, jw and �w satisfying

kJ1ukp,w � �wkhpjuj
p
k
1=p
1,w, kJ2ukp,w � jwkukp,w, kKu

þ
kp,w � �wku

þ
kp,w,

ð5:3Þ

where �w 	 0 (but �w 2 ½0, 1� if p ¼ 1), jw 	 0 and �w 2 ½0, 1�.
Choosing a particular weight proposed by Boulanouar [4], we now

derive the following result under multiplying boundary conditions. For
the sake of simplicity, we do not write J ¼ J1 þ J2.

Theorem 5.1. Suppose the lengths ‘ðxÞ of the integral curves of Y have a
positive lower bound, kKk 	 1, and h 2 L1ð�T ; d�T Þ. Then for 1 � p <1
the initial-boundary value problem (1.1)–(1.3) has a unique solution
u 2 Lpð�T ; d�T Þ for every f 2 Lpð�T ; d�T Þ and ðg0, g�Þ 2 Lpð�

�
T ; d��Þ, pro-

vided J is bounded on Lpð�T ; d�T Þ. For this solution we have hjuj
p
2

L1ð�T ; d�T Þ and u


2 Lpð�



T ; d�
Þ.

Proof. Let us introduce the weight function

wðz, sÞ ¼ kKkps=‘ðzÞ, 0 � s � ‘ðzÞ, z 2 ��T :

Then 1 � wðz, sÞ � kKkp, w ¼ 1 on ��T , w ¼ kKk
p on �þT , and

Yw

pw
¼
lnðkKkÞ

‘ðzÞ
�

lnðkKkÞ

inff‘ðzÞ: z 2 ��T g
< þ1:

Since the norms on Lpð�T ; d�T Þ and Lpð�T ;wd�T Þ are equivalent, w ¼ 1
on ��T and w ¼ kKkp on �þT , we obtain (5.3) (with J1 ¼ 0 and J2 ¼ J)
for finite jw 	 0 and �w 2 ½0, 1�. Since h 2 L1ð�T ; d�T Þ and the lengths
of the integral curves of Y have a positive lower bound, one may apply



TIME-DEPENDENT KINETIC EQUATIONS 81

Eq. (IX 3.11) of [16], which is based on an argument of [30], to prove that
the trace u
 2 Lpð�



T ; d�
Þ.

The condition on the lengths of the integral curves is needed to guar-
antee the existence of a constant 
p such that hp in (5.2) is nonnegative. The
second assumption, h 2 L1ð�T ; d�T Þ, is only required to get the trace
u
 2 Lpð�



T ; d�
Þ, in accordance with Eq. (IX 3.11) of [16].

6 APPLICATIONS

In this section two illustrative kinetic theory applications are dis-
cussed. Both of them have been or still are the object of intensive research.

6.1 Electron Transport in Weakly Ionized Gases

The initial-boundary value problem for the electron distribution in a
weakly ionized gas is given by

@u

@t
þ v �

@u

@x
þ aðx, tÞ �

@u

@v
þ �ðx, v, tÞu ¼ ðJuÞðx, v, tÞ þ f ðx, v, tÞ, ð6:1Þ

uðx, v, 0Þ ¼ u0ðx, vÞ, ð6:2Þ

where x 2 R
n is the spatial variable, v 2 R

n is velocity, n 2 N (only n ¼ 1 and
n ¼ 3 are physically relevant), aðx, v, tÞ is the electrostatic acceleration,
�ðx, v, tÞ is the collision frequency, ðJuÞðx, v, tÞ describes scattering, and
f ðx, v, tÞ accounts for internal sources (cf. [1, 15, 25, 26]). We assume that
� is integrable on every subset of Rn � R

n
� Rþ of finite Lebesgue measure

and almost everywhere positive, aðx, tÞ is Lipschitz continuous, and

ðJuÞðx, v, tÞ ¼

Z
R
n

kðx, v, v̂v, tÞ � ðx, v̂v, tÞ u ðx, v̂v, tÞ dv̂v

for some nonnegative measurable function kðx, v, v̂v, tÞ satisfyingZ
R
n
kðx, v, v̂v, tÞ dv ¼ 1:

The acceleration aðx, tÞ should have the property that the integral curves of
the vector field ð@=@tÞ þ vð@=@xÞ þ aðx, tÞð@=@vÞ do not reach infinity in finite
time. This is the case if jaðx, tÞj � Cð1þ jxjÞ for all ðx, tÞ 2 R

n
� Rþ with

C independent of ðx, tÞ. As a result, when considering Eqs. (6.1)–(6.2) for
t 2 ½0,T �, the integral curves may be parametrized by s 2 ½0,T �. Let us define
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CT ¼ sup
ðxð0Þ, x0ð0ÞÞ2Rn�Rn

Z T

0

�ðxðtÞ, x0ðtÞ, tÞ dt, ð6:3Þ

where xðtÞ is the solution of the characteristic equations ðdx=dtÞ ¼ v and
ðdv=dtÞ ¼ aðx, tÞ given ðxð0Þ, vð0ÞÞ 2 R

n
� R

n.
In the present context, � ¼ V ¼ R

n and the boundary � ¼60. For each
T > 0, J is a positive operator on Y0,T ¼ L1ðR

n
� R

n
� ½0,T �Þ satisfying

kJuk1 ¼ k�uk1 for every u 	 0 in Y0,T . Thus for every f 2 Y0,T and
u0 2 X0 ¼ L1ðR

n
� R

n
Þ there exists a unique solution u in Y0,T . This solution

is nonnegative if f and u0 are nonnegative. Moreover, in X0 we have

kuk1 �

Z T

0

k f ð�, �, �Þk1 d� þ ku0k1,

where the equality sign holds if f and u0 are nonnegative and �u 2 Y0,T
[which occurs if CT given by (6.3) is finite]. Moreover, uð�, �, tÞ is a strongly
continuous function from ½0,T � intoX0.Thesolutioncanbewritten in the form

uð�, �, tÞ ¼ Sðt, 0Þu0 þ

Z t

0

Sðt, �Þ f ð�, �, �Þ d�, 0 � t � T ,

where fSðt, sÞgt	s is an evolution family of contractions on X0.
When studying Eqs. (6.1)–(6.2) on the weighted space Y�,T ¼

L1ðR
n
� R

n
� ½0,T �, ð1þ v2Þ�=2dx dv dtÞ with wðvÞ ¼ ð1þ v2Þ�=2 for some

� 	 0, we first observe that ðYw=wÞ ¼ �ðaðx, tÞ�vÞ=ð1þ v2Þ. Now let us
assume ðYw=wÞ is bounded below. Then, if J is bounded on Y�,T or if
kJuk1,w � ��k�uk1,w for every u 2 Y�,T with �� 2 ½0, 1�, then (6.1)–(6.2)
have a unique solution in Y�,T for every initial condition u0 2 X� ¼
L1ðR

n
� R

n, ð1þ v2Þ�=2dx dvÞ. Moreover, uð�, �, tÞ is a strongly continuous
function from ½0,T � into X� . The solution can be written in the form

uð�, �, tÞ ¼ Sðt, 0Þu0 þ

Z t

0

Sðt, �Þ f ð�, �, �Þ d�, 0 � t � T ,

where fSðt, sÞgt	s is an evolution family on X� .

6.2 The Linearized Boltzmann Equation

The initial-boundary value problem for the evolution of the dis-
tribution function f ðx, v, tÞ of the charged particles in a two-component
gas mixture of mostly neutral and comparatively few particles, where the
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distribution function Fðx, v, tÞ of the neutral particles is known, is given by

@f

@t
þ v �

@f

@x
þ ½�ðx, tÞ þ v�
ðx, tÞ� �

@f

@v
þ �ðx, v, tÞ f ¼ ðJf Þðx, v, tÞ, ð6:4Þ

f ðx, v, 0Þ ¼ f0ðx, vÞ: ð6:5Þ

Here the nonlinear Boltzmann equation has been linearized, x 2 � � R
3

with � a bounded region with a piecewise C1 boundary, v 2 R
3,

�ðx, v, tÞ ¼ 2�

Z
R
3

Z �=2

0

Fðx, v�, tÞB ð
, v� v�Þ dv� d


is the collision frequency, and

ðJf Þðx, v, tÞ ¼

Z
R
3

Z �=2

0

Z 2�

0

f ðx, v0, tÞFðx, v0�, tÞB ð
, v� v�Þ dv� d
 d",

with v0 ¼ v� 2ð1þ �Þ�1ððv� v�Þ � eÞe, v
0
� ¼ v� þ 2�ð1þ �Þ

�1
ððv� v�Þ � eÞe, �

is the ratio of the masses of the charged and the neutral particles, and
e ¼ ðsin 
 cos ", sin 
 sin ", cos 
Þ, is the collision term. Assuming an inverse
power law interaction potential, we have

Bð
,wÞ ¼ w� bð
Þ, 
 2 0,
�

2

h �
, w > 0,

where � ¼ ðk� 5Þ=ðk� 1Þ 2 ð�3, 1Þ and bð
Þ is a nonnegative function in
L1ð0,�=2Þ (cf. [6] for the details). We assume that �ðx, tÞ and 
ðx, tÞ are
Lipschitz continuous on �� ½0,T � and that j�ðx, tÞjþ j
ðx, tÞj �Cð1þ jxjÞ
for some constant C and any T > 0. In this way we prevent the integral
curves of the vector field Y ¼ ð@=@tÞþ vð@=@xÞþ ½�ðx, tÞþ v�
ðx, tÞ�ð@=@vÞ
from running off to infinity in finite time.

Many of the results of [24, 12, 11] can now be reproduced as applica-
tions of the theory of Sections 2–5, under the simplifying conditions that
J ¼ J1 	 0 and kJuk1 ¼ khuk1 for u 	 0. In these papers, Eqs. (6.4)–(6.5)
were considered under hypotheses that are very similar to those made in the
present article, as well as for the weight functions wðx, vÞ ¼ ð1þ v2Þ�=2 for
some � 	 0. One should, of course, assume that ðYw=wÞ ¼ �ð�ðx, tÞ � vÞ=
ð1þ v2Þ is bounded below.

A THE Lp CASE

Theorem A.1. For 1 < p < þ1 the initial-boundary value problem (3.1)–
(3.3) has a unique solution u
 2 Lpð�T ; d�T Þ for every f 2 Lpð�T ; d�T Þ
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and ðg0, g�Þ 2 Lpð�
�
T ; d�

�
Þ, provided J ¼ J1 þ J2 with

kJ1u
kp � �khju
j
p
k
1=p
1 , kJ2u
kp � jku
kp, kKu

þ

 kp � �ku

þ

 kp,

for certain � 2 ½0, 1Þ, j, � 	 0 and 
 > 0 satisfying j < 
ð1� �Þ � �ð
=pÞ1=p.
Then the solution u
 satisfies hju
j

p
2 L1ð�T ; d�T Þ and u




 2 Lpð�



T ; d�



Þ,

and is nonnegative if J1, J2, K, f and ðg0, g�Þ are nonnegative.

Notice that any 
 > 0 satisfying j < 
ð1� �Þ � �ð
=pÞ1=p has the prop-
erty that 
 > j. Since 
ð1� �Þ � �ð
=pÞ1=p!þ1 as 
!þ1 for any p > 1,
the condition on 
 is satisfied for 
 large enough.

Proof. Integrating Eqs. (3.1)–(3.3) with J ¼ 0 and K ¼ 0 along integral

curves, we find a unique solution u ¼ S
ð f
, g
�

 Þ, where g

�

 ¼ ðg0, 
, g�,
Þ

and, for q ¼ p=ðp� 1Þ,

kS
ð f
, g
�

 Þkp �

1



k f
kp þ

1


1=p
kg�
 kp; ðA:1Þ

kS
ð f
, g
�

 Þ
þ
kp �

1


1=q
k f
kp þ kg

�

 kp; ðA:2Þ

khjS
ð f
, g
�

 Þj

p
k
1=p
1 �

1

p1=p
1


1=q
k f
kp þ kg

�

 kp

� �
: ðA:3Þ

Indeed, 2.1 implies

kuþ
 k
p
p þ pkhju
j

p
k1 þ p
ku
k

p
p ¼ ku

�

 k

p
p þ p

Z
�T

sgnðu
Þju
j
p�1
ðJu
 þ f
Þ d�T

� kKuþ
 þ g
�

 k

p
p þ ð p� 1Þ
ku
k

p
p þ 


1�p
kJu
 þ f
k

p
p,

so that

kuþ
 k
p
p þ pkhju
j

p
k1 þ 
ku
k

p
p � kKu

þ

 þ g

�

 k

p
p þ 


1�p
kJu
 þ f
k

p
p: ðA:4Þ

Equation (A.4) with K ¼ 0 and J ¼ 0 immediately gives the estimates

(A.1)–(A.3).
Now suppose J ¼ 0 and � 2 ½0, 1Þ. Then any solution of Eqs. (3.1)–(3.3)

satisfies u
 ¼ S
ð f
,Ku
þ

 þ g

�

 Þ, where

uþ
 ¼ S
ð0,Ku
þ

 Þ
þ
þ S
ð f
, g

�

 Þ
þ:

Since kS
ð0,Ku
þ

 Þ
þ
kp � kKu

þ

 kp � �ku

þ

 kp, a contraction mapping argument

yields uþ
 2 Lpð�
þ
T ; d�

þ
Þ uniquely. We denote the so-obtained solution by
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u
 ¼ Z
ð f
, g
�

 Þ. We then have

kZ
ð f
, g
�

 Þkp � 


�1
k f
kp þ 


�1=p
kg�
 kp þ �ku

þ

 kp

� �

�
1

1� �

1



k f
kp þ

1


1=p
kg�
 kp

� �
;

kZ
ð f
, g
�

 Þ
þ
kp �

1

1� �

1


1=q
k f
kp þ kg

�

 kp

� �
;

khjZ
ð f
, g
�

 Þj

p
k
1=p
1 �

1

p1=p
1


1=q
k f
kp þ kg

�

 kp þ �ku

þ

 kp

� �

�
1

p1=pð1� �Þ

1


1=q
k f
kp þ kg

�

 kp

� �
:

Let us now consider Eqs. (3.1)–(3.3) for J ¼ J1. Then any solution
u
 satisfies

u
 ¼ Z
ðJ1u
 þ f
, g
�

 Þ ¼ Z
ðJ1u
, 0Þ þ Z
ð f
, g

�

 Þ:

Moreover, since

khjZ
ðJ1u
, 0Þj
p
k
1=p
1 �

1

p1=p 
1=qð1� �Þ
kJ1u
kp�

�

p1=p 
1=qð1� �Þ
khju
j

p
k
1=p
1 ,

a contraction mapping argument yields the existence of u
 if 
 >
ð�=p1=pð1��ÞÞq. We denote the so-obtained solution by u
¼W
ð f
,g

�

 Þ.

Then

kW
ð f
, g
�

 Þkp�

�khju
j
p
k
1=p
1 þ k f
kpþ


1=q
kg�
 kp


ð1� �Þ
�
k f
kp þ 


1=q
kg�
 kp


ð1� �Þ��ð
=pÞ1=p
;

kW
ð f
, g
�

 Þ
þ
kp�

�khju
j
p
k
1=p
1 þk f
kp þ 


1=q
kg�
 kp


1=qð1� �Þ
�
k f
kp þ 


1=q
kg�
 kp


1=qð1� �Þ � ð�=p1=pÞ
;

khjW
ð f
, g
�

 Þj

p
k
1=p
1 �

�khju
j
p
k
1=p
1 þk f
kp þ 


1=q
kg�
 kp

p1=p 
1=qð1� �Þ
�
k f
kp þ 


1=q
kg�
 kp

p1=p
1=qð1� �Þ � �
:

Considering the full problem (3.1)–(3.3), we must solve u
 from
the equation

u
 ¼W
ðJ2u
, 0Þ þW
ð f
, g
�

 Þ:
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Since Eq. (3.11) implies that

kW
ðJ2u
, 0Þkp �
1


ð1� �Þ � �ð
=pÞ1=p
kJ2u
kp �

j


ð1� �Þ � �ð
=pÞ1=p
ku
kp,

we apply a contraction mapping argument to obtain the solution, requiring
that j < 
ð1� �Þ � �ð
=pÞ1=p. This completes the proof.

The monotonicity argument of [3] and Section XI.5 of [16] used to
prove the existence of a solution of Eqs. (3.1)–(3.3) for positive K, J1 and J2
and nonnegative f and g� for � ¼ 1 breaks down whenever � > 0. The
reason is that 
 > 0 has satisfy the inequality j < 
ð1� �Þ � �ð
=pÞ1=p,
which is impossible for some 
 > 0 non depending on � if we pass to the
limit � " 1. The monotonicity argument only goes through for p > 1 if one
can choose J1 ¼ 0, i.e., if J is a bounded. However, the resulting existence
theorem for the solution of Eqs. (3.1)–(3.3) for � ¼ 1 and nonnegative f
 and
g�
 has been obtained before in [3].

B STRONG LIMITS OF EVOLUTION FAMILIES

Throughout Appendix B, � is a positive measure on E which is
assumed to be �-finite if p ¼ 1.

Proposition B.1. For 1 � p <1, let fUnðt, sÞgt	s be an increasing sequence of
evolution families of positive operators on LpðE, d�Þ such that kUnðt, sÞk
�Me!ðt�sÞ for t 	 s and n 2 N. Then there exists a unique evolution family
fUðt, sÞgt	s on LpðE, d�Þ such that

lim
n!1
kUðt, sÞg�Unðt, sÞgkp ¼ 0, g 2 LpðE, d�Þ:

Proof. It suffices to establish the strong continuity of Uðt, sÞ as a function of
ðt, sÞ 2 �. To do so, we define the evolution semigroups [22, 27, 10].

½TnðtÞ f �ð�Þ ¼ Unð�, � � tÞ f ð� � tÞ, ½TðtÞ f �ð�Þ ¼ Uð�, � � tÞ f ð� � tÞ:

According to either [22], Proposition 3.1 (cf. [10], Proposition 3.11),
fTnðtÞgt	0 is a strongly continuous semigroup on the Banach space Y ¼
C0ðR;LpðE, d�ÞÞ of strongly continuous functions f : R! LpðE, d�Þ vani-
shing strongly at infinity, endowed with the norm k f kY ¼ sup�2R k f ð�Þkp.
Moreover, kTnðtÞk �Me

!t. According to the same result in [27], it suffices to
prove that fTðtÞgt	0 is a strongly continuous semigroup on Y .
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To reduce the problem further, let us show that it suffices to prove that

lim
n!1

< TnðtÞ f , ’ >¼< TðtÞ f , ’ >, f 2 Y , ’ 2 Y�, ð27Þ

where Y� is the dual of Y . Indeed, (B.1) would cause the function t�TðtÞ f
acting from ½0,1Þ into Y to be weakly measurable for every f 2 Y . By
Pettis’ measurability theorem ([13], Theorem II.1.2) and the separability
of Y , it would be strongly measurable. From (B.1) we would also find the
semigroup properties Tð0Þ ¼ I and Tðt1ÞTðt2Þ ¼ Tðt1 þ t2Þ for t1, t2 	 0.
Finally, Lemma VIII 1.3 of [14] would imply the strong continuity of
t�TðtÞ.

The proof of (B.1) hinges upon a characterization of Y� that allows
one to write the pairings occurring in (B.1) as integrals. After that, mono-
tone convergence will do the job.

First of all, Y ¼ C0ðRÞ!"LpðE, d�Þ, where !" denotes the injective
tensor product [13]. The dual spaces of C0ðRÞ and LpðE, d�Þ are the space
NBVðRÞ of regular Borel measures of bounded variation on R with the total
variation norm and LqðE, d�Þ with q ¼ p=ð p� 1Þ, respectively [14]. For
� 2 NBVðRÞ and h 2 LqðE, d�Þ the corresponding functionals have the
form < b, � >¼

R1
�1

b d� and < g, h >¼
R
E gh d�. Then the Cartesian prod-

uct K of the closed unit spheres in NBVðRÞ and LqðE, d�Þ endowed with
their weak-* topologies is a compact Hausdorff space, as a result of
Alaoglu’s theorem. Then the dual space of CðKÞ consists of the regular
Borel measures on K . According to a result by Grothendieck ([13],
Theorem VIII.2.5), Y� consists of the continuous bilinear functionals  
on C0ðRÞ � LpðE, d�Þ such that

 ðb, gÞ ¼

Z
K

< b, � >< g, h > d�ð�, hÞ, b 2 C0ðRÞ, g 2 LpðE, d�Þ,

for some regular Borel measure � on K .
Next, let f 2 Y and ’ 2 Y�. Then

< TnðtÞ f , ’ > ¼

Z
K

Z
E

Z 1
�1

½ðTnðtÞ f Þð�Þ�ðzÞ hðzÞ d�ð�Þ d�ðzÞ d�ð�, hÞ

¼

Z
K

Z
E

Z 1
�1

½Un ð�, � � tÞ f ð� � tÞ�ðzÞ hðzÞ d�ð�Þ d�ðzÞ d� ð�, hÞ

for some regular Borel measure � on K . Monotone convergence will
instantly give (B.1), which completes the proof.

For semigroups Proposition (B.1) follows easily by applying the Hille–
Yosida theorem to the iterates of the resolvent of the limiting semigroup,
or by applying Proposition A.1 of [32].
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9. M. Cessenat, Théorèmes de trace pour des espaces de fonctions de la
neutronique, Comptes Rendus Acad. Sci. Paris, Série 1, 300, 89–92
(1985).

10. C. Chicone and Yu. Latushkin, Evolution Semigroups in Dynamical
Systems and Differential Equations, Math. Surveys and Monographs
70, Amer. Math. Soc., Providence, R.I., 1999.
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