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Abstract

In this paper we formulate a theory b1/- and Cholesky factorization of bi-infinite block
Toeplitz matricesA = (Ai—j)i.jezd indexed byi, j € Z¢ and develop two numerical
methods to compute such factorizations. © 2002 Elsevier Science Inc. All rights reserved.
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1. Introduction

Given a bi-infinite block Toeplitz matrid = (A;_;); jez, indexed by the integers
i, j € Z and having reat x k matrices as its entries (called block Laurent operators
in some publications; cf., e.g., [15]), it is well known how to factorize it in the form

A=LDU, (1.1)

whereL = (L;_;); jez is a lower triangular (i.e.; = 0 for i < 0) block Toeplitz
matrix with Lo = I (thek x k unit matrix) having a block lower triangular inverse,
U = (Ui—))i,jez is an upper triangular (i.el/; = 0 fori > 0) block Toeplitz matrix
with Ug = I} and having a block upper triangular inverse, dxds a nonsingular
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k x k matrix. Such factorizations are usually studied foin the Wiener class of
block Toeplitz matrices that satisfy

o0
Il = 114l < +oo, (1.2)
1=—00
the norms on the right-hand side being arbitrary k£ matrix norms, and in that case
the factorsL andU and their inversed —1 andU ~* have finite Wiener norm when
the L DU -factorization (1.1) exists. A necessary (but not sufficient) condition for the
existence of the factorization (1.1) is that the values of the symbol

o
ARy = ) A =1 (1.3)
1=—00
are nonsingulat x k matrices.

Three special cases should be mentionedd Iis banded (i.e., ifA; = 0 for
li| > m), then the factord andU, when they exist, are banded as well (ile.,= 0
fori >m andU; =0 fori < —m). If A is positive definite (as a bounded linear
operator on the Hilbert spad¢é(Z)) or, equivalently, ifA(z) is positive definite for
everyz on the unit circle, the factorization (1.1) existé,= LT (the transpose of
L) and D is positive definite. In that case, putting= L D'/2, we obtain the block
Cholesky factorization

A=ttT (1.4)

of A. Finally, if the symbol ofA is scalar (i.e.k = 1), a necessary and sufficient
condition for the existence of the factorization (1.1) is that 0 has zero winding
number with respect to the curve— A(z). In this case the factorization can be
obtained by separating the Fourier expansion ofA¢g in terms analytic inside
and outside the unit disks and exponentiating the terms obtained.

The theory of Wiener—Hopf factorization of matrix functions of the form (1.3)
with k£ x k matrix coefficientsA; satisfying (1.2) is well known from the theoretical
point of view. We mention the seminal paper by Gohberg and Krein [18] and several
textbooks [8,14,15]. The scalar case goes back to the paper by Krein [24]. In the
special case of banded matrices, the symb@ a trigonometric matrix polynomial
and the factorization can be obtained explicitly by applying the theory of matrix
polynomials [19,20,28].

Numerical methods for computing the Cholesky factors of a bi-infinite positive
definite block Toeplitz matrix have been developed by various authors. In [22] the
relative merits of various methods for the scalar case have been discussed in detail.
For banded block Toeplitz matrices, a numerical method based on matrix polynomial
factorization theory was developed in [25,26] and one based on band extension was
given in [27].

In this paper we are primarily interested in multi-index block Toeplitz matrices,
i.e., matricesA = (A;—;); jcz« Which are indexed by, j € 74 (the lattice points in
R%) and have redl x k matrices as their entries. Although much of the theory can be
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developed in analogy with the one-index case of block Toeplitz matrdeslexed
by i, j € Z, much of it has been developed in a lacunary manner and numerical
methods are difficult to find.

At first sight, multi-index Toeplitz matrix theory can be developed more or less
as in the one-index case. The symbols now are sumbs\@friable Fourier series
and are continuouk x k matrix-valued functions on thé-dimensional torus. The
usual Banach algebra techniques (see [12,15] for the scalar case and [4,15] for the
matrix case) can be applied to study the invertibility of bi-infinite multi-index block
Toeplitz matrices. The method of writing the logarithm of the symbol as the sum of
two series, either of which is then exponentiated, can be applied, exclusively in the
scalar case, to obtaibhD U -factorizations [23].

Multi-index block Toeplitz factorization theory has several features that make it
more challenging than the corresponding one-index theory, both from the functional
analytic and the numerical point of view.

First of all, in order to defind. DU -factorizations in a meaningful way, one must
introduce a linear ordex on Z¢ preserving the displacement structure, using the
fact thatZ¢ is an ordered group. The net effect is that instead of two such orders
as forZ (the natural and the reversed natural order), there are now infinitely many
such orders, leading to very different factorization problems. Using a suitable order,
one can now formulate (i) scalar factorizations through separation of logarithms of
the symbol and exponentiation [23], (ii) band extension [2,3], and (iii) the projection
method of approximating the solutions of the given bi-infinite block Toeplitz sys-
tems by the solutions of finite block Toeplitz systems (extending methods given in
[5,17,31]). However, the band extension method leads to the approximation of the
solution of the original bi-infinite system by the solutions of infinite systems, which
makes it as good as useless from the numerical point of view.

Secondly, there is no meaningful multi-variable matrix polynomial theory to assist
in the factorization of banded multi-index block Toeplitz matrices. Moreover [32,33],
multi-index Toeplitz matrices having a trigonometric polynomial symbol and having
an L DU -factorization may not have factors whose symbols are nontrivial trigono-
metric polynomials. Hence, there is no hope of generalizing the numerical methods
developed in [25,26].

Finally, in order to study the algebraic or exponential decay of the coefficients
of the factors and their inverses in the case of algebraic or exponential decay of
the coefficients of the given matrix, one can either apply Banach algebra techniques
with weighted Wiener algebras [12,15] or generalize the so-called exponential equiv-
alence of bi-infinite matrices to the multi-index case [22,23]. In the scalar gase (

1), one does not encounter many problems, as we will show shortly. However, in
the block Toeplitz casek(> 2) the nonexistence of a proof of the compactness of
semi-infinite multi-index block Hankel matrices (as opposed to the situation in the
one-index case, see [14,15,18]) makes it impossible to extend the existing techniques
for proving algebraic or exponential decay of the coefficients of the factors and their
inverses to the multi-index case.
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Hence, as sketched above, we have only two numerical methods in the multi-
index case, namely (i) scalar factorizations through separation of logarithms of the
symbol and exponentiation [23], and (ii) the projection method. We will discuss both
methods in detail.

Let us first discuss the contents of the various sections. Section 2 is of a pre-
liminary nature and contains the definitions (Banach algebras etc.) and main re-
sults on the existence of dnDU -factorization in suitable Banach algebras. In Sec-
tion 3 we deal with the scalar multi-index case and develop factorization theory by
Krein's method, taking account also of various decay properties of the coefficients. In
Section 4 we develop the band extension method in the multi-index case and discuss
the main result of [3]. In Section 5 we discuss the projection method in detail and
explain why the band extension method has no multi-index generalization that is
meaningful from the numerical point of view. In Section 6 we consider the spectral
factorization of a scalar multi-index matrix connected to the numerical solution of
the Helmholtz equation in a half-plane.

2. Preliminaries
2.1. Bi-infinite block Toeplitz matrices

Let Z¢ be the set of points id-dimensional space with integer coordinates. Then
by a bi-infinite block Toeplitz matrix, with blocks of ordér, we mean a matrix
A= (Aj_j)i’jezd whose entriest; _; are complex x k matrices. Such a matrix is

said to be in th&Viener class/¢{ if

IAlLy¢ = 1Al < +oo. 2.1)
iezd
where|| - || is an arbitraryt x k matrix norm. Using multi-index notatiohwe define
its symbolby

ARy =) ZA. zeT’ (2.2)
iezd
whereT = {z € C: |z| = 1}. Clearly, the symboﬁ is a continuous complex-valued
function on thed-dimensional torug .
Consider a sequenge= (8;);.,« Of weights satisfying the condition L g;;
< Bip; fori, j e Z%. Then a bi-infinite block Toeplitz matri¥ is said to be in the
p-weighted Wiener clasy’{ , if

L Frorz=1(zq,..., zg) € C4 andi = (iq, ..., iq) € 29 we write 7' = 21 - 2 and |i| = |iq| + - -
+ ligl-
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1Allyg o= 3 BillAill < +oo. (2.3)
iezd
Then A is a bounded linear operator on the Banach srfé’c,;eof all sequences
(xi);<z¢ in C* which are finite with respect to the norm

1/p
)i | [Zien Billxi DT, 1< p < oo, o
ICxi)iczallp.p {sugezd Billxill, » = +o0; (2.4)

this can be proved trivially forp =1 and p = +0c0 and by interpolation for
p € (1, 00). We write¢! if g; = 1foralli € Z?. ForM c 74, we denote byf’p(M)
andey (M) the subspaces tﬂf’ﬂ andey of those sequences;); . ;« for whichx; = 0

for i € 7%\ M; their elements are written as sequences indexeddy/ .

The following result is well known for the one-index case [15]; for the multi-index
case the proof is similar. In fact, the principal observation in proving this result is that
the (continuous) multiplicative linear functionals @ﬁfﬁ are exactly the evaluation

mapsA — A(z), wherez € Q, with Q4 as in (2.6).

Proposition 2.1. The p-weighted Wiener class't/ﬁ’,, is a Banach algebra with
respect to the convolution product

(AxB)i= Y AjBi_j, ieZ’ (2.5)
jezd
with involution A — A* defined by(A*); = (A_))*, i € Z¢, where the asterisk

superscript denotes the conjugate transpose. Its invertible elements are exactly those
A€ Wf’ﬁ for which A(z) is a nonsingulak x k matrix for all z € Qg, where

Qp:=1zeC% supE < 4o0}. (2.6)
iezd Pi
When the weight sequencg = (8;);,.,« is separated in the sense that

;= B where 1< 81 . < BB fori,, j,e Zandr =1,...,d, we
(Bl where 1< BT, < BB ¢ Zandr=1...d
have

QI;—HQ(r}—l_Il{ZEC:,O(_r)<|Z|<p.(:)}a (2-7)
r

where, forr = 1,...,d, B = (8")icz and

-1
o) = [Iim sup (ﬁ(_’i))l/‘] , P =1im sup (8")Y1. (2.8)
i—>+00 i—+00
A further generalization consists of considering bi-infinite block Toeplitz matrices
A= (Ai—j); jeza such thatd; = Oforalli ¢ J, whereJ is an additive subgroup of
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7¢. For any weight sequenge= (B;);,« one can now define the Banach algebra
"f/d J (resp. W )conS|st|ng of thosd e W (resp A€ “//d)such thatdA; =0

for aII i¢J. Instead of Proposition 2.1, we then have the following more general
result.

Proposition 2.2. For any additive subgroup’ of 74, WZ:I{ is a Banach algebra
with respect to the convolution product

(A% B); = ZAjBi_jZZAjB,‘_j, iEZd, (2.9)

jezd =

with involution A — A* defined by (4%); = (A_p*, i eZ? lIts invertible
elements are exactly thogee Wf;l}’ for which A(z) is a nonsingulark x k matrix

for all z € QJ, where

Q —{zecd sup| |

ieJ Pi

< ~|—OO} . (2.10)

In the same way one can define bi-infinite block Toeplitz matrices whose elements
belong to a Banach algebg# with unit element (such as the bounded linear opera-
tors on some Banach space). Propositions 2.1 and 2.2 are valid in this more general
situation which can be proved by using results from [4,21]. Here we use the fact
that (1) “f/k B = Wd S Q@ A, O standing for the projective tensor product, and

(2) the multlpllcatlve linear functionals i"{ 1,4 are precisely the evaluation maps
A A(z), wherez € Q.

2.2. Multilevel block Toeplitz matrices

In analogy with [36,37], block Toeplitz matrices with elements indexed’ty
can be converted into so-called multi-level block Toeplitz matrices. In fact, given a
bi-infinite block Toeplitz matrixA = (A;—;); jcz«, We can define the block Toep-
litz matrix o/ = («7;_;); jez indexed byZ whose entries are in turn block Toeplitz
matrices, but this time indexed &1, by the following conversion rule:

oA = (A(il,iz,---,id))(iz iezd-ts i1€ 7. (2.11)

,,,,,

In turn, ford > 3 the block Toeplitz matrices/; indexed byZd‘l can be converted
into block Toeplitz matrices indexed &whose elements are block Toeplitz matri-
ces indexed by“~2, and so on. For block Toeplitz matricase #¢, we easily see
that the Wiener norm of/ satisfies

2 We note that Banach algebras of bi-infinite Toeplitz matrices indexed by arbitrary additive subgroups
of R andR? have been studied in [29] and [30,31], respectively.
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I ly:= ) iyl

i1eZ

= > I iDinl = 1Al (212)

Analogously, the symboj?/ of </ is a continuous function of with values in the
Banach algebraﬂifl, and for the symbol of each block Toeplitz matrix(z1) we
have

—

A (2102, -5 20) = Aza, - -, 24),
21eT, (z2,....2q) € T4 L, (2.13)

Now consider the weight sequencf = (8;);.,« having the property

.....

(V) jeza-1- ThenQg = Qu0) x €y, while (2.12) is to be replaced by

._ (€8} .
11y, = DB Iillyas

i1€Z
1
_ Z /31‘(1) Z Viig,.oia) 1 i) (ia....i) |
HEZ  (ip,....ig)ezd~1
— ||A||~tt";’,,’ (2.14)

where the subscript indicating the matrix order involved in stating the (weighted)
Wiener algebra has been dropped. Using Proposition 2.1, (2.13) and (2.14), we see
that A is an invertible element Wf’ﬁ if and only if .« is an invertible element

of W;@, which is the case whenever (z1) is an invertible element of/ ¢~ for

everyzy € Q. But the latter is true if and only if its symbO?(z\l)(Zz ey 2d)
is a nonsingulak x k matrix for everyz; € Q) and every(za, ..., zq) € 2y, in

other words, if and only ifA(z1,....24) is @ nonsingulak x k matrix for every
z2=1(z1,...,24) € 2.

2.3. LDU-factorization of bi-infinite block Toeplitz matrices

Given a block Toeplitz matri¥d = (A;_); ;cz« of Wiener class, by ad. DU-
factorizationof A (with respect to the ordex) we mean a representation 4fin the
form

A = LDM*, (2.15)
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whereL = (Li—j); jeza, M = (Mi—j); jeza @NAD = (Dj_j); ;4 are block Toep-

litz matrices of Wiener class having the following properties:

(@) Lo = Mgy = I (thek x k unit matrix),

(b) D; =0fori #0andL; = M; =0fori <0, and

(c) the inversed.~1 andM~1 of L and M are block Toeplitz matrices of Wiener
class satisfyingL 1], = [M~1], = 0fori < 0.

Passing to the respective symbalsD(z) = Do andM, one gets

A(z) = L(2)DoM (2)*, z € T (2.16)

When A is positive definite on the Hilbert spa¢é(Z?) of square integrable se-
quences o (or, equivalently, ifA(z) is positive definite for alt € T¢), A always
has anL DU -factorization of the form (2.16) witlh. = M and Dy a positive defi-
nite k x k matrix. In that case we put;t= L,-Dé/2 and obtain thévlock Cholesky
factorization

A =L@LE@" zeT" (2.17)

Following the procedure inherent in Theorem XXII 8.2 of [15], the inverses of
the factorsL and M in (2.15) can be found by solving suitable semi-infinite linear
systems. Indeed, writing (2.15) in the fora{DM*)~1 = L, restricting oneself to
indices= 0, applying it to the semi-infinite vecter. = (8o,; Ix)i<o0 and changing the
sign of all indices, we obtain the linear system

ZAjfin =(ep);, >0, (2.18)
j>=0

where [(DM*)—l]i,j = X;_; (using the convention that; =0 for i <0),
e = (80, Ix)i=0 andxy = (X;);cpa € 3.

Analogously, writing (2.15) asA*([LD]*)~1 = M, restricting oneself to the
indices> 0 and applying it tee;, we obtain the linear system

DAY =& ix0, (219)
Jj=0

where([LD]*)"1 = (Yi—j)i jezd (using the convention that, = 0 for i < 0) and
Yo =Yi)jepa € K,}. Since a solution of either of (2.18) or (2.19) leads ta/dnU -
factorization of the form (2.15) with the diagonal faci@rabsorbed il/* andL, re-
speftively, and such factorizations are unique, those equations are uniquely solvable
in¢;.

Vlilhen the weight sequengkis to be taken into account, the classical argument
of exploiting the compactness of Hankel operators [15] to prove that the vegtors
andy, belong toe,}’ﬂ fails if k > 2. Fork = 1 one can apply factorization in suitable
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commutative Banach algebras to establish Theorem 2.3. We therefore postpone its
proof until the end of Section 3.

Theorem 2.3. Let f = (B;);.,« be a weight sequence arfdan additive subgroup
of 7¢. Supposet € "”/Zf;{ has anL DU -factorization in#"¢ of the typg(2.15)and
that A(z) is a nonsingulak x k matrix forz € Q;. Then in the scalar casé = 1,
the factorsL and M* and their inverses belong W;’:I{.

We now apply Theorem 2.3 to positive definite bi-infinite block Toeplitz matrix
Ae WZ’J, whereJ is an additive subgroup @. Then, according to Theorem 14.2
of [9] (applied to the nest algebra generated by (the strong limits of) the orthogonal
projections ontd(x;) jez € E,f": xj =0for j > i}, i € J), every such matrix has
an L DU -factorization of the form (2.15), wherk and M* and their inverses are
bounded linear operators cﬂﬁj In the next theorem we will actually prove that

L and M* and their inverses belong W'Z’J if k = 1. To do so, we first state the
following result on linear orders dR? due to Erds [10] (see [7] for a concise proof).

Lemma24. Let < be a linear order onZ¢ such thati +/ < j + ! whenever

i, j,l € 7% andi < j. Then< can be extended to a so-called term orderingish
i.e., to alinear order< such thatc + z < y 4+ zandcx < cy whenever, y, z € R?,

x < yandc > 0in R. Moreover there exists an orthogondl x d matrix = such that
the<-nonnegative elements &f are exactly the linear combinations of the columns
of Z with nonnegative coefficients.

Proof . Following [7,10], there exists a sequence of linear subspates H;_1 >
H;_» D --- D Hi D {0} and an orthonormal basﬁsj}‘f:l of R¢ such that dinH; =
j(G=1...,d-1),& €Hy_r41 (r=2,...,d), £ 1L Hy_g (s=1,...d -1),
and§ >0 (t=1,...,d). We then defineZ to be the orthogonadl x d matrix
havingé, ..., &; as its columns. O

Starting with a linear ordex on Z¢ compatible with addition, we first extend
it to a term ordering inR¢. This extension is not necessarily unique; see [7]. For
example, lettingk («) denote the Z 2 rotation matrix, the linear orders ? de-
scribed by the orthogonal matricé«) and R(—«) lead to the same order aff
if tana ¢ Q. For a less trivial example, consider = (1,0,0,0)7, vo = (0, 1, ¢, 0)
andv3=(0, 1, 0, z2), where is irrational and does not satisfy a quadratic equation

with rational coefficients. Then for any>2 2 matrix [‘L‘ j] with integer entries and

determinant 1, the linear orders éf determined by the sequence of linear sub-
spacesHs = span(vi, av2 + bvs, cv2 + dvs), Hp = span(vy, av + bvz) and Hy =
spar{vi) generate the same linear orderzth Indeed, it is easily seen thak N 74
= Ho N 7% = {rvy: r € Z}, no matter the choice of b, ¢, d € Z with ad — bc = 1.
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Now let u = min{s: Hy_s N 7% = #} and u =d if HyNZ? + (. Define the
Besikovich transformatiop: Z¢ — R* (used in [3] ford = 2, but actually already
implicit in [10]) by

"

(i) = (c1(i), ... cu(@) =E7H, i=) ek (2.20)

Theng[Z9 = Ny x -+ x N, for certain additive subgroups &, ordered lexico-
graphically. In particular, ifu = 1, we havep[Z¢] = cZ for somec > 0, and for
w = d we haveyp[7?] = ¢7? for somec > 0. For the above example #f* we have

o i20% — i3l —is |
©(i1,i2,13,i4) = | —7—,1i1
Vet+e2+1

o[7* ~ span,(1, ¢, t?) x 7.

(2.21)

Theorem 2.5. Letfi = (,B, icz¢ b€ aweight sequence andan additive subgroup
of . Supposet € Wk’ﬁ is positive definite and thad (z) is a nonsingulark x k
matrix for z € QI{. ThenA has a Cholesky factorization of the ty(#@17), where
the Cholesky factok and its inverse belong IWZ’]. Moreover in the scalar case
k = 1, the Cholesky factar and its inverse.~1 belong tOWZ,’;{

Below we give the proof of Theorem 2.5 with the exception of the proof of the
statement that £ and ¥ belong toWd,{ For k = 1, this part will be established
at the end of Section 3. We mention that the analogous result for discrete additive
subgroups oft? (and hence for symbols that are< k matrices whose elements are
suitable almost periodic functions ih variables) has been established in [30,31],
though without accounting for weight sequenges

Proof of Theorem 2.5 (first parf). The proof focuses on the existence of @B U -
factorization; the final part of Theorem 2.5 will be established in Section 3. To
establish the existence part, we generalize the proof given in [3] fer2.

LetA e #" Z’ s be positive definite. To prove the existence oflabU-factoriza-
tion of A in W'Z (without taking account of the subgroupand the weight sequence
B), we apply the Besikovich transformationZ8 to obtain a positive definite bi-in-
finite block Toeplitz matrix indexed by[Z¢] = N1 x - - x N,,whereNy, ..., N,
are additive subgroups . In this way a factorization problem for a matrix indexed
by i € 7¢ (with respect to the ordek) has been transformed into a factorization
problem for a matrix indexed by e ¢[Z¢] (with respect to the lexicographical
order onR* restricted tap[Z?]). A subgroupJ of Z¢ is converted into a subgroup
¢[J] of ¢[Z9] and the weight sequengkis converted into the weight sequence
7= (Vr)regze) defined byyyi) = Bi (i € 7%). Now convert the lattep-index

matrix to a multilevel matrix. Then if = 1, the factorization result in"¢ follows
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immediately from Theorem 6.1 of [29]. K& > 2, ¢[Z¢] is isomorphic toZ ® N,
where N is an additive subgroup d&*~. Using Lemma 3.1 of [38] (which is a
variation of the main result of [21] applied to positive definite finite- or infinite-
dimensional block matrices indexed &Y, we obtain the factorization

A(z1) =T +UE))'DU +U(z), z1€eT, (2.22)

whereD is positive definite or¢2(N) andU is an element OW,](V such that theg'th
Fourier coefficient of/ and (I + U)~* — I vanish for eacty > 0. Next, depend-
ing on the structure o as a direct product gk — 1 additive subgroups dR, we
apply the same result again (f = Z or if N = Z x M for an additive subgroup
M of R*~?) or the main results of [1,34] (applying to positive definite finite- or
infinite-dimensional block matrices indexed by an additive subgrouR)pfo fac-
torize the diagonal factaP in (2.22) as a positive definite one-index Toeplitz matrix
with (u — 2)-index matrices as entries. We end up with/abU -factorization of the
form (2.15) for the Besikovich transform of the original bi-infinite matdxwhere

U = L* andD is positive definite. Applying the inverse @fto the index set, we get
an L DU -factorization ofA in WZ’J.

When A € “//Z’J for some additive subgroug of 74, we defineu =1 if
Hy1NJ=---=H1NJ=0andu =#s: H,NJ # #}. The Besikovich trans-
formationg;: J — R* is then defined by

d
0(i) = (oD H,inszs.  i= Y cs(DE. (2.23)
s=1
whereH,; = R¢ andHg = {0}.
The part of the theorem dealing with weight sequences follows directly from
Theorem 3.2 [cf. the end of Section 3]

A bi-infinite block Toeplitz matrixA is called (initely) bandedif all but finitely
many A; are equal to the zero matrix. A well-known result (Féjer's theorer i
positive definite) states that, far= 1, the factord. and M* (resp., the factor t) in
an L DU -factorization (resp., Cholesky factorization) of an arbitrary (resp., positive
definite) (finitely) banded block Toeplitz matrix of Wiener class are (finitely) banded
themselves. This is no longer the case i 2 [33]. For instance [6,32], il = 2,

8 € (0, 3)and

A(z) = 14 25 [cogz1) + €0S22)] , (2.24)

thenA(z) is positive for every = (z1, z2) € T2 but cannot be written as the product
of two nonconstant trigopnometric polynomialsinandz,. In other words, no matter
the choice of the ordex in Z2, the corresponding Toeplitz matrik has anL DU -
factorization (resp., a Cholesky factorization) of the form (2.15) (resp., (2.17)), but
its factorsL and M* (resp., the factor ) are not (finitely) banded Toeplitz matrices.
Ford = 2, necessary and sufficient conditions to write) as the squared absolute
value of a stable polynomial itx1, z2) have been given in [13].
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3. Factorization of Toeplitz matrices

In this section a well-known method to compute thB U -factorization of a bi-
infinite Toeplitz matrix indexed by is generalized to bi-infinite Toeplitz matrices
indexed byz¢. We need the following result (cf. [11, Theorem | 5.1]).

Theorem 3.1. LetA € WZ:; for some weight sequengeand some additive sub-

groupJ of 74, and lety be an analytic function in a neighborhood of the 5e#) =
{A(2): z € Qljf}' Let I be a closed rectifiable Jordan contour in the domaingof
which has winding numberwith respect to each point af(4). Then

1
w(A)= o~ /Fw(,\)(u —A)~tdr (3.1)
belongs to ("} .

Proof . From the second parts of Propositions 2.1 and 2.2 it follows Xialt)
coincides with the set of all. € C for which A — A does not have an inverse
in W‘Z:If. As a resultA] — A is an invertible element o?//'Z:,{ forall A e I' and

hence the right-hand side of (3.1) beIongqu‘f_’I{, by the usual Riesz functional
calculus. O '

WhenA € %7{';/, exp(A) can be defined by choosing) = €" in (3.1). How-
ever, logA) can only be defined in this way if I@g) is an analytic function on a
neighborhood of(A). This is the case if and only if there exists a (continuous)
curve inC\ X (A) connecting zero to infinity.

The next theorem generalizes a well-known result by Krein [24].

Theorem 3.2. LetA e “//‘11,{ be a bi-infinite Toeplitz matrix with scalar elements

(i.e., with k = 1) for some weight sequengeand some additive subgroupof 7¢.
Supposdog(2) is an analytic function in a neighborhood af(A). Write log(A)
= (Bi—j)i,jeld' PutL = (Li—./)i,jezd’ M = (Mi—j)i,jeld and D = (Di—./)i,jezd’
whereL; = B; and M; = B_; fori =0, Lo=Mpo=1, L; =M; =0fori <0,
and Do = BgandD; = 0fori #+ 0. Then

A = exp(L) exp(D) exp(M™) = exp(L) exp(D)[exp(M)]* (3.2)
is an L DU -factorization ofA in W”ll:;.
Theorem 3.2 cannot be generalized to block Toeplitz matrices with blocks of

orderk > 2, because the final part of its proof requires the propertyExpS) =
exp(T) exp(S) for k x k matricesT andS, which is only true if7 andS commute.
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We conclude this section by pointing out that the parts of Theorems 2.3 and 2.5
left unproved are immediate from Theorem 3.2, since the factors in (2.15) and their
inverses belong &/ {'; .

4. Theband extension method

Let E c Z¢. For every bi-infinite block Toeplitz matrid, we define the bi-infi-
nite block Toeplitz matrixA£ by

E A, i€E,
O (4.1)
Then a bi-infinite block Toeplitz matri® is called E-bandedif B = A£ for some
bi-infinite block Toeplitz matrixA.

Let < be a given linear order o that is compatible with addition, and
let £Ec7? be nonempty. PutE, ={icE:i>0}, E_={ie€E:i <0},
EQ={icE:i>0}, EC={icE:i=<0} and Ec= E+ UE_U{0}. If E is
=<-convex(i.e., if / € E wheneveri, j € E andi <[ < j) and symmetric(i.e., if
—E = E), thenE. = E and the following addition table applies:

74\E E, {0} E_ 74\E
ZI\E Z4\E Z4\E Z4\E 74\{0} Vid
E, Z4\E Z4\(0) E, E¢ 72\(0}
{0} VARV E. {0} E_ Z4\E
E_ 74\{0} Ec E_ 74\{0} 74\E
74\E 74 79\{0} 74\E 74\E 79\E

For every weight sequenge= (8;);.z«, We now introduce the closed linear sub-
spaces&VZ:; of the Banach algebra/;f’p by

wig={aewi, a=oforigz\E},

wig={aewi, a=0forigE,

i :={A6Wf’p:Ai=Oforigé0], (4.2)
wig={aewi, a=oforig¢E|,

wis = {A e, A =0forig¢ Z‘i\E}.
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Then we have thél-direct sum decompositions

d,1 d,c d,5 d,c d,2 d,3 d,4
w¢ﬂ=%%ﬂ@w%;@wkw Wig =g @W i © Wiy (4.3)

We also put
d d.4 d,5 d _dl d,2
Wk,ﬂ,— :Wk,ﬁ®Wk,ﬁ’ kal;,_F—Wk’ﬁ@Wk’ﬁ,
do _ .-d3 d,4 d,5
Wig—=Tig@ Wiy W
and
do _ .d1 d?2 d,3
Wk,/f,+ _“f/k,ﬁea%k,ﬁ@%/k,ﬁ.

AssumingE to be=<-convex and symmetric, we get the multiplication table:

d,1 d,2 d,3 d,4 d,5
i Wi o o o
d,1 d,1 d,1 d,1 d d
Wk,ﬂ Wk,ﬂ Wk,ﬂ Wk,ﬂ Wk,ﬂ.,-‘r Wk,ﬁ
s v Wipr s ey e
Yier o " Vi Wi "
s d ,C s d ,
Pog o T Txp T Mg Ty
Mg Wi W, - W W ip W

We also note that the involution — A* defined by(A*); = (A_;)*,i € 74, maps
WZ:; onton:/?_’ (r =1, 2, 3,4,5). Hence, in the terminology of Chapter XXXIV
of [15], if E is a nonempty=<-convex and symmetric subset 51, then"f/ﬁ’,, is an
algebra with band structure (4.3).

Now let A € Wf_ﬁ be positive definite (as a bounded linear operator&iz?))

and let its symboﬂ(z) be a nonsingulak x k matrix for everyz € Qg. ThenA is an
invertible element offﬂ‘f’ﬁ. ThenA has a block Cholesky factorization with respect

to any linear ordex on Z¢ that is compatible with addition, and the factors as well
as their inverses belong Wf’ﬁ. Moreover, ifA is alsoE-banded, then thé DU -
factors and Cholesky factors df are E-banded as well, as a result of Theorem 1.3
and Lemma 1.4 of Chapter XXXIV of [15].

Let Aew ‘,f, 8 be E-banded, where is nonempty,<-convex and symmetric.
Then by apositive E-band extensiorof A in WZ’I, we mean a bi-infinite block
Toeplitz matrixB Wz s that satisfies3; = A for j € Ec, is positive definite (as
a bounded linear operator @A(7)) and has arE-banded inverse iy ;.
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The following result plus the subsequent remark are immediate from Theorems
1.1, 1.2 and 2.1 in Chapter XXXIV of [15].

Theorem4.1. Let E c Z¢ be nonempty <-convex and symmetricand let
Ae Wf’ﬁ be E-banded and satisf = A*. ThenA has a positiveE-band extension

in W‘,f,ﬁ if and only if there exists @unique vector(Xi)ieEg of k x k matrices
such thatXg is positive definiteZieE& Bill Xill < +o0, (Xi—j); jeze has aninverse

. d,0
element m%/k’/H, and

|k, i=0,
D AinjXj = {o, i € Ey. “44)

jeEﬂ
Similarly, A has a positiveE-band extension irWZ’ﬁ if and only if there exists a
(unique vector (Yi);epo of k x k matrices such thatty is positive definite

- s d,0
ZieEE BillYill < 400, (Yi—)); jez has an inverse element wrk,,,ﬁ, and

NI, i=0,
ZO AijYj = {o, icE_. (4.5)
JEEZ

Here we use the convention th&t = 0 for i ¢ EQ and ¥; =0 for i € E°. The
E-band extensiom is then given by either of the expressions

Bl =X2(XghX* = Yoy hHr*, (4.6)

whereX is theE?L-banded block Toeplitz matrix with coefficiets, Y is the E° -
banded block Toeplitz matrix with coefficients and Q(Xgl) and @(Ygl) are the
block diagonal matrices with diagonal entrid%1 andY; !, respectively.

Proof . Let us first point out than’ﬂ can be imbedded into the unital-algebra
A of bounded linear operators @A(Z?) of the form

izt = | D Aijx;

P d
JEZ iezd

whose symbol&(z) =D icpd z' A; is norm continuous in € Q. Since“//f,,, is an
algebra with band structure (4.3) haviggy as its “ambient” algebra, Theorem 4.1
follows directly from Theorems 1.1 and 1.2 in Chapter XXXIV of [15]. It follows
from Theorem 1.3 of this chapter that the band extensions found using (4.4) and (4.5)
are identical. O
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PUtU = X2(X; "% andv = vy, '/
sion of A in ¢ ; is of the form?

). Then every positive definite exten-

7(G) = (G*V* + U Y1 - G*G(VG +U) L, 4.7)

whereG is an arbitrary element ijﬁl satisfying SUPcg, 1G] < 1. Similarly,
the positive definite extensions df can be represented in the form

F'(H) = (H*U* +V*"Y(I — H*H)(UH + V)1, (4.8)

whereH is an arbitrary element oﬂ/d; satisfying SUP.q, |H ()| < 1. To prove
this result, one employs Theorem 2.1 in Chapter XXXV of [15] and the paragraph
following its statement. The only thing to establish is their Axiom (A), which says

that#{ , can be imbedded in a unitat*-algebraz such that/ — G)"* e #'{§
whenevelG € W‘Z,p’i and||Gllz < 1. AsZ, we take the algebra defined in the
first sentence of the proof of Theorem 4.1. With respect to this uGitadlgebraz, a
givenG € Wzl, + suchthatsupg, G(2)| < 1, the element — G is invertible in
Wd . To prove thatin fact! — G)™ 1 "ﬂ/k p,+» We note that SURg, ||AG(z)|| <1
for everyk € C with |A] < 1. As a result, the Neumann seri@s;-(A*G* is
absolutely convergent m%//k Bt for every L € C with |A| <1 and hence

(I —G)™t e W) .., which establishes Axiom (A).

If Ae Wk’ is E-banded for somex-convex and symmetric index sét and
belongs toW‘Z:I{ for some additive subgroup of Z¢, then (4.4) and (4.5) can be
replaced by

|k, i=0,
D AiXj= {0, i€eEyNJ, (4.9)
jeESnJ
and
)&k, i=0,
D A= {o, icE_NJ, (4.10)
jeE%nJ

respectively. This is easily understood, sidte= 0 for j EE’F\J andY; = 0 for

j € EO\J. PuttingU = X,@(Xal/z) andV = Y@(Yo_l/z), all positive definite ex-
tensions ofA in "///‘“ are given by either (4.7) or (4.8), whe€e (resp.,H) is an

arbitrary element of///k e (resp. Wk 5. J) satisfying SUpq! 1G] < 1 (resp.,
SURco/ IH @) < 1).

The band extension method #f has been developed before by Bakonyi et al.
[2,3]. Similar results were obtained for additive subgroup&d29] and R? [31],

3 In this paragraph, the symbpl || stands for the spectralx k matrix norm.
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where the symbol is a univariate or multivariate almost periodic matrix function of
Wiener type with spectrum within the subgroup.

5. Projection method for block Toeplitz matrices

The band extension method discussed in Section 4 can in principle be used to
compute the inverses of the factors t arfdih the Cholesky factorization of a pos-
itive definite bi-infinite block Toeplitz matrixA (with respect to a linear ordex
compatible with addition). In fact, replacing with the E-banded block Toeplitz
matrix AL defined by (4.1) and then replacing’ in turn by its E-band extension
B, we obtain as an approximation

RS REEND €776 7ol W Tt VR 710 AoV ol (5.1)
By the same token, i andt* denote the Cholesky factors dfwith respect to the
inverted orderg (i.e.,i <g jifandonlyifi = j), thenwe have as an approximation

E 1 xax;"?, Elrax X (5.2)
Egs. (5.1) and (5.2) represent better approximations of the inverses of the Cholesky
factors of A if we chooseE to be a member of a sequence-ofconvex setst ")
with E® = —E™ and unionJ,,., E™ = 74, and letr tend to infinity.

Whereas the band extension leads to accurate numerical results§2#]1f, the
problem ford > 2 is to convert a theoretically valid approximation method into a
sequence of operations involving only finite matrices, because o2 one cannot
write Z¢ as the union of countably many finite-convex sets (as is possible for
d = 1). As aresult, foed > 2 any method to compute the inverses of the Cholesky
factors of A based on the band extension method involves operations with infinite
matrices.

We now follow the procedure of the band extension method but choose a count-
able sequence of finite symmetric s&t%’ with unionz¢, dropping the assumption
that eachE™ is <-convex. This leads to the projection method, which was first
formulated ford = k = 1 in [14]. Here we draw on results of [17], in particular the
paragraph following the statement of Theorem 4.1. Similar results appeared in [5].
We put(E™)% = {i € E® :i > 0} and(E™)® = (i e E™ :i < 0},

Theorem 5.1. Let A be a positive definite bi-infinite block Toeplitz matriX"M‘ig,ﬁ,

where g is a given weight sequencand let A(z) be a nonsingulaik x k matrix
for everyz e Q. Suppose E™),cy is a sequence of symmetric sets with union
U,eny E™ =79, Then for sufficiently largen there exist unique vectors

(Xf”)) E0)0 and (Yl.(”)) gm0 Of k x k matrices such thalx(()”) and Yé”) are

positive definiteZl.e(E(,,))(i ﬂiIIXf”)II and Zie(E<”))9 ﬂiIIYi(")II are finite

ie( ie(
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v e, =0,
Z Al—JXj _{0, ie(E(n))Jr’ (5:3)

je(E™M?
and
v ke, =0,
> Ay —{o, i€ (EM)_. (5-4)
je(EM)®

Moreover there exist vectorSXl-)iezi and(Yi)iEz{i of k x k matrices such that

2
i (n)
Jm o (Bx - X1

ie(EM)
2
: (n)
= lim > (BlIvi-v") =o. (55)
ie(EMm)°
Further,
ATt =Xxa(XHX* = Yoy, hrt, (5.6)

where the triangular matriceX = (X;—;); jez« andY = (¥;—); ;cz« belong to
d 4
W g

Proof . Let us apply the projection method to either of the linear systems
I, i=0,
D AiniXj = {ok i >0 ®.7)
jezi I ’
defined on the Hilbert spaaﬁé’ﬂ(zi), and
Iy, i=0,
D Aini¥y = {ok i <0 (57)
jezd_ £ £

defined on the Hilbert spat.ﬁ%’,}(z‘i). Let us define the projectioriig(t") on K,f’ﬁ(zi)
as follows:

n) . xi i€ (EM)y,
(Pi (x])jeZ‘i)l. = {O, i e Zi\(E("))i-

ThenPi”) converges strongly to the identity operatorﬁjy),(zi) asn — oo.

If all the weightsp; = 1, the infinite system matrices in (5.7) and?q% are self-
adjoint and the projections’i") are orthogonal. Then the projection method can
be applied (see the sufficient condition following Theorem Il 2.1 of [14]) and the

4 We used the conventioki; = O fori < 0 andY; = O fori > O.
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conclusions of Theorem 5.1 are immediate. For more general weights, consider the
commutative diagram

6 4D ()

T I~

+

D
e,f’ﬂ(zi) — 2z

Dy

whereA .. is the compression of to ¢Z (Zd) andDy. : € (Zd) — 02(24) is the
unitary operator defined b(;Di(x,)jGZd), = Bix;. Clearly, smceD(Z ) commutes
with eachP™, the projectionsP\" are also selfadjoint oA? ﬂ(Z ) and converge
to the identity operator oﬂzﬁ(z ). Now note that the real part @f., given by

X Bi | Bj
5T +T7 ) =52+ 5 )Ai—j.
2( s]+ ],l) 2<:3j+131 J
is positive selfadjoint. We may then employ the same result of [14], followed by an
application of Theorem Il 2.2 of [14], to prove the applicability of the projection
method and hence the validity of Theorem 5.1 in the case of general weights.

When applying Theorem 5.1 to a sequenceafonvex symmetric sets ™, one
finds a justification of the band extension method as described in Section 4 and in the
first paragraph of Section 5. However, as explained above] fer2 the setst™
are infinite for sufficiently large.

When applying Theorem 5.1 to finite sei§”, one obtains a numerically imple-
mentable method for computing the inverses of the Cholesky factors of a positive
definite bi-infinite block Toeplitz matrix. However, faf > 2 and sufficiently large
n the setsE ™ are not<-convex, and hence the finite linear systems (5.3) and (5.4)
are not finite multi-index Toeplitz systems.

6. Example
Let us consider the bi-infinite Toeplitz matrix with entries A0 = 2¢,

A10 =A@o = Ao,-1 = A1 = —1, and A; = 0 otherwise, whereg; > 2.
Then its symbol is positive

A(z) = 2[¢ — cog61) — cos(ez)] >0, z=(e% %) eT? (6.1)
Let EN = {i = (i1,i2) € Z?: |i1] < N, li2] < N}. The sete" is symmetric and,
with respect to the lexicographical ordgr
EV ={ie7?: (i1=0and 0<iz < N)or (1< i1 < N andliz] < N)}.
(6.2)

In this case the linear system (5.3) takes the form
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BXx = ey, (6.3)
where
[ Hyya [0 —Iny1] ]
0
H —1
[_ IN+1i| 2N+1 2N+1
B— —Iny1 Hony1  —Ion+a

—Irnia

B —Dn+1  Honi1 |
X = (x0, X1, ..., xm) € R"1 and e =(L0,....,0T e ", with m=

2N(N +1). Here I; stands for the identity matrix of ordef, the dimensions of
the various zero matrices are not indicated &hd= H;(¢) is the tridiagonal matrix
of order; defined by

[2¢ -1

-1 2 -1

Hj() = L . (6.4)

L -1 2|
Recalling the definition of the Chebyshev polynomials of the second ¥ird) =
sin((j 4+ D)/ sint for ¢ = cost € [-1, 1] and U;(¢) = sinh((j + 1)¢)/ sinht for
¢ = costr € (1, 00), we easily derive that déf;(¢) = U;(¢) # 0.
Let us write the system (6.3) in the form

s S-[3)

N N
wherexg = col [xj]jzo, X4+ = col [xj]’l’?:NH, e = col [5j,o]j=0,

Cn =[Ow+ny.v  —In+1 Owvtny.(v—1@v+D)]

where the dimensions of the zero matrices have been indicatedyaisdthe block
tridiagonal N x N matrix with diagonal blocksH,y1 and off-diagonal blocks
—1In+1. Using the recurrence relation for the Chebyshev polynomials of the second
kind, —=U;_1(£) + 2¢U;(¢) — Uj41(¢) = 0 with U_1(¢) =0 andUp(¢) = 1, we
obtain

~ N ~
S col[Un—j(Hzn+1)];_ = col [5j,112N+1]}V:1UN(H2N+1)s (6.6)

where the matrixﬁzNH = %H2N+1 has been substituted into various scalar poly-
nomials. Since the set of eigenvaluestbfy_, 1 is given by
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jm
2N + 2

0(ﬁ2N+1)={§—cos< ):j=1,2,...,2N+1}, (6.7)

¢ >2andUy(z) # Oforz > 1, the matrixUN(ﬁ2N+1) is nonsingular® Hence,Sy
is nonsingular [16] and the first column (of thex N matrix having entries of order
2N + 1) of its inverse is given by

Syt col[8)1lan411Y_y = col[Un—; (Han+0)1;_y Un (Han 1)~ (6.8)
It now follows from straightforward calculation that thex22 block matrix in (6.5)
is nonsingular if and only if thé NV + 1) x (N + 1) matrix

M=Hys1— CySytCh

~ ~ 1\ (O
=[Ont1n  In1] (H2N+1 — Un-1(H2n+1)Un (H2n+1) 1) [ IIVNZ—;__]-]
(6.9)
is nonsingular. In that case the inverse is given by
Mt —M1Cy Syt
. 6.10
[—S;,lCLM—l Syt + sytel Moy syt (6.10)

The solution of (6.5) is the first column of the: + 1) x (m+1) matrix in (6.10),
wherem = N + N(2N + 1). Since the eigenvalues éfy 1 all belong to(1, +oc0)
(because > 2), we can employ the relation (based on the monotonicity of sinh
forr > 0)

_ . Uvaz/2
W=y )
=2cosh — M >0, z=2cosh > 1, (6.11)

sinh((N + 1)¢)
to prove that the matri®/ in (6.9) is positive definite and hence nonsingular. Note
that fy (17) = (N +2)/(N + 1), fn(z) < zand fy(z) ~ z asz — +oo, while
, cosh(Nt) cosi(N + 1))
=1+ NN +1
v @ 2 sinhz sinlf((N + 1)1) ( )
[tanr(Nt) tanh((N + 1)t)i|
> _

N N+1
is positive. We also remark that the matn'xS;,lCI, (of dimension(m + 1) x

(N + 1)) in the left lower corner of (6.10) consists exactly of &+ 1)th up to the
(2N + 1th column of the matrix given by (6.8). Moreover, the condition number

5 Its eigenvalues are the numbérs (; — cos(#’iz)), j=12 ..., 2N + 1.
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of M (with respect to the spectral norm) is bounded above by thafaf,1 —
Un_1(Han+1)Un (Hay+1) "2, which equals
v (Uy (20 +2codn/(2N + 2)]))
fn (Un (2t —2cogn/(2N +2)1)’

which behaves a€ (¢)[(¢ + 1)/(¢ — 1]V asN — oo for fixed¢ > 2 ([35], 8.21.9
for @ = B = 1, in combination withfy (z) ~ z asz — o).

Finally, sinceA_; = A; for i € 7%, the solution of the system (5.4) is given by
the vector co[x_j]jE(E<n>)g, where CO[Xj]jE(E(”))?_ is the solution of (5.3).

When taking the limit agv — oo, one gets the lower triangular Toeplitz matrix
X = (Xi—j); jezds with x; = 0 whenevek < 0, and the Cholesky factorization

A = T =4t T, (6.13)

where t is the lower triangular matri}x,-_jxal/z)i’jezd.
The computation of the solution of system (6.3) can be greatly improved, both in
terms of stability and of computational complexity, by resorting to the factorization
Hony1= VDV, (6.14)
whereD is the diagonal matrix of the eigenvaluesi@y_ 1, given by (6.7), and’
is the orthogonal matrix formed by its eigenvectors, whose entries are
Vij = ! sin i
VTUNFL 2N 42
Substituting (6.14) in (6.9), we get

(6.12)

i,j=1...,2N+1.

Iny1
so that the matrixM can be computed by evaluating the scalar Chebyshev poly-
nomials on the eigenvalues by 1 and by applying two sine transforms.
Finally, the matrix—S,;lcN, necessary to obtain the lower patt of vectorx, is
given by the lastV + 1 columns of the matrix

diag(V, v, ..., V)col [UN_j(D)]jyleN(D)*lvT.

In order to give an idea of the numerical performance of the method just illus-
trated, in Fig. 1 we depicted l@g|x(y,,i,)| for (i1, i2) € Ef‘r’ and N = 40, where
Xk = X(ipip), TOrk = (2N + 1)i1 +ip andk =0, 1, ..., m, are the solutions of sys-
tem (6.3) obtained by the above algorithm. Fig. 1 clearly shows that only a
small number (890) of the components xfhave an absolute value exceeding
computer precision and also that they decay exponentially with respdtt o
lig] + liz].

As k = 1, the Cholesky factorization of ~* can also be obtained by the meth-
od due to Krein, illustrated in Theorem 3.2. For a comparison of the computation-
al effectiveness of the two numerical methods, in Fig. 2 we reported the values of
10G10 1X(ip,i) |, fOT (i1, i2) € E4P, obtained by Krein's method.

M=[Oyi1n  Inga]V <2D - UN_l(D)UN(D)A) VT [ON,NH] ’
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Even though the numerical results are both acceptable, the algorithm based on the
projection method leads to more accurate results. In fact, as is evident in
Fig. 2, our implementation of Krein’s algorithm raises to a value close to the machine
precisionepsall the components ot whose absolute values are smaller than or
equal toeps(roughly 1016 in double precision). The reason for this is that thst
Fourier transform(FFT), on which our implementation of Krein’s algorithm heavily
depends, does not distinguish between quantities whose difference does not exceed
the computer floating point precision in absolute value.

40 —
30 1-5
20 {-10
10
- -15
0
-10
-20
-30
-40
-40 -20 0 20 40
Fig. 1. logig|x(iy,i5) . Projection method.
40 T
30 . r1-5
20 . Fo4-10
10
-15
0
-20
-10
= -25
-20
. -30
-30
—40 -35
-40 20 0 20 40

Fig. 2. logglx(iy,ip) |, Krein's method.
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4
-40 -20 0 20 40
Fig. 3. logg |(A—1)(,-l,,»2)|, projection method.

In general it may be impossible to simplify system (6.3) in order to reduce com-
plexity and memory storage, as in this example. So, even though less accurate,
Krein's method might be the most convenient algorithm to deal with in a scalar
multi-index factorization problem.

Finally, Fig. 3, reporting the values of Iggl(A ™), i, | for (i1, i2) € EZ°, shows
that, as should be expected; ! decays exponentially. In this figure, the devia-
tion from radial symmetry along the vertical axis is a numerical effect, due to the
columnwise lexicographical ordering chosen.
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