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Abstract

In this paper we formulate a theory ofLU - and Cholesky factorization of bi-infinite block
Toeplitz matricesA = (Ai−j )i,j∈Zd indexed by i, j ∈ Zd and develop two numerical
methods to compute such factorizations. © 2002 Elsevier Science Inc. All rights reserved.
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1. Introduction

Given a bi-infinite block Toeplitz matrixA = (Ai−j )i,j∈Z, indexed by the integers
i, j ∈ Z and having realk × k matrices as its entries (called block Laurent operators
in some publications; cf., e.g., [15]), it is well known how to factorize it in the form

A = LDU, (1.1)

whereL = (Li−j )i,j∈Z is a lower triangular (i.e.,Li = 0 for i < 0) block Toeplitz
matrix withL0 = Ik (thek × k unit matrix) having a block lower triangular inverse,
U = (Ui−j )i,j∈Z is an upper triangular (i.e.,Ui = 0 for i > 0) block Toeplitz matrix
with U0 = Ik and having a block upper triangular inverse, andD is a nonsingular
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k × k matrix. Such factorizations are usually studied forA in the Wiener class of
block Toeplitz matrices that satisfy

‖A‖W =
∞∑

i=−∞
‖Ai‖ < +∞, (1.2)

the norms on the right-hand side being arbitraryk × k matrix norms, and in that case
the factorsL andU and their inversesL−1 andU−1 have finite Wiener norm when
theLDU -factorization (1.1) exists. A necessary (but not sufficient) condition for the
existence of the factorization (1.1) is that the values of the symbol

Â(z) =
∞∑

i=−∞
ziAi, |z| = 1, (1.3)

are nonsingulark × k matrices.
Three special cases should be mentioned. IfA is banded (i.e., ifAi = 0 for

|i| > m), then the factorsL andU , when they exist, are banded as well (i.e.,Li = 0
for i > m andUi = 0 for i < −m). If A is positive definite (as a bounded linear
operator on the Hilbert space�2(Z)) or, equivalently, ifÂ(z) is positive definite for
everyz on the unit circle, the factorization (1.1) exists,U = LT (the transpose of
L) andD is positive definite. In that case, putting Ł= LD1/2, we obtain the block
Cholesky factorization

A = ŁŁT (1.4)

of A. Finally, if the symbol ofA is scalar (i.e.,k = 1), a necessary and sufficient
condition for the existence of the factorization (1.1) is thatz = 0 has zero winding
number with respect to the curvez �→ Â(z). In this case the factorization can be
obtained by separating the Fourier expansion of logÂ(z) in terms analytic inside
and outside the unit disks and exponentiating the terms obtained.

The theory of Wiener–Hopf factorization of matrix functions of the form (1.3)
with k × k matrix coefficientsAi satisfying (1.2) is well known from the theoretical
point of view. We mention the seminal paper by Gohberg and Krein [18] and several
textbooks [8,14,15]. The scalar case goes back to the paper by Krein [24]. In the
special case of banded matrices, the symbolA is a trigonometric matrix polynomial
and the factorization can be obtained explicitly by applying the theory of matrix
polynomials [19,20,28].

Numerical methods for computing the Cholesky factors of a bi-infinite positive
definite block Toeplitz matrix have been developed by various authors. In [22] the
relative merits of various methods for the scalar case have been discussed in detail.
For banded block Toeplitz matrices, a numerical method based on matrix polynomial
factorization theory was developed in [25,26] and one based on band extension was
given in [27].

In this paper we are primarily interested in multi-index block Toeplitz matrices,
i.e., matricesA = (Ai−j )i,j∈Zd which are indexed byi, j ∈ Zd (the lattice points in

Rd ) and have realk × k matrices as their entries. Although much of the theory can be
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developed in analogy with the one-index case of block Toeplitz matricesA indexed
by i, j ∈ Z, much of it has been developed in a lacunary manner and numerical
methods are difficult to find.

At first sight, multi-index Toeplitz matrix theory can be developed more or less
as in the one-index case. The symbols now are sums ofd-variable Fourier series
and are continuousk × k matrix-valued functions on thed-dimensional torus. The
usual Banach algebra techniques (see [12,15] for the scalar case and [4,15] for the
matrix case) can be applied to study the invertibility of bi-infinite multi-index block
Toeplitz matrices. The method of writing the logarithm of the symbol as the sum of
two series, either of which is then exponentiated, can be applied, exclusively in the
scalar case, to obtainLDU -factorizations [23].

Multi-index block Toeplitz factorization theory has several features that make it
more challenging than the corresponding one-index theory, both from the functional
analytic and the numerical point of view.

First of all, in order to defineLDU -factorizations in a meaningful way, one must
introduce a linear order
 on Zd preserving the displacement structure, using the
fact thatZd is an ordered group. The net effect is that instead of two such orders
as forZ (the natural and the reversed natural order), there are now infinitely many
such orders, leading to very different factorization problems. Using a suitable order,
one can now formulate (i) scalar factorizations through separation of logarithms of
the symbol and exponentiation [23], (ii) band extension [2,3], and (iii) the projection
method of approximating the solutions of the given bi-infinite block Toeplitz sys-
tems by the solutions of finite block Toeplitz systems (extending methods given in
[5,17,31]). However, the band extension method leads to the approximation of the
solution of the original bi-infinite system by the solutions of infinite systems, which
makes it as good as useless from the numerical point of view.

Secondly, there is no meaningful multi-variable matrix polynomial theory to assist
in the factorization of banded multi-index block Toeplitz matrices. Moreover [32,33],
multi-index Toeplitz matrices having a trigonometric polynomial symbol and having
anLDU -factorization may not have factors whose symbols are nontrivial trigono-
metric polynomials. Hence, there is no hope of generalizing the numerical methods
developed in [25,26].

Finally, in order to study the algebraic or exponential decay of the coefficients
of the factors and their inverses in the case of algebraic or exponential decay of
the coefficients of the given matrix, one can either apply Banach algebra techniques
with weighted Wiener algebras [12,15] or generalize the so-called exponential equiv-
alence of bi-infinite matrices to the multi-index case [22,23]. In the scalar case (k =
1), one does not encounter many problems, as we will show shortly. However, in
the block Toeplitz case (k � 2) the nonexistence of a proof of the compactness of
semi-infinite multi-index block Hankel matrices (as opposed to the situation in the
one-index case, see [14,15,18]) makes it impossible to extend the existing techniques
for proving algebraic or exponential decay of the coefficients of the factors and their
inverses to the multi-index case.



358 C.V.M. van der Mee et al. / Linear Algebra and its Applications 343–344 (2002) 355–380

Hence, as sketched above, we have only two numerical methods in the multi-
index case, namely (i) scalar factorizations through separation of logarithms of the
symbol and exponentiation [23], and (ii) the projection method. We will discuss both
methods in detail.

Let us first discuss the contents of the various sections. Section 2 is of a pre-
liminary nature and contains the definitions (Banach algebras etc.) and main re-
sults on the existence of anLDU -factorization in suitable Banach algebras. In Sec-
tion 3 we deal with the scalar multi-index case and develop factorization theory by
Krein’s method, taking account also of various decay properties of the coefficients. In
Section 4 we develop the band extension method in the multi-index case and discuss
the main result of [3]. In Section 5 we discuss the projection method in detail and
explain why the band extension method has no multi-index generalization that is
meaningful from the numerical point of view. In Section 6 we consider the spectral
factorization of a scalar multi-index matrix connected to the numerical solution of
the Helmholtz equation in a half-plane.

2. Preliminaries

2.1. Bi-infinite block Toeplitz matrices

Let Zd be the set of points ind-dimensional space with integer coordinates. Then
by a bi-infinite block Toeplitz matrix, with blocks of orderk, we mean a matrix
A = (Ai−j )i,j∈Zd whose entriesAi−j are complexk × k matrices. Such a matrix is

said to be in theWiener classWd
k if

‖A‖Wd
k
:=

∑
i∈Zd

‖Ai‖ < +∞, (2.1)

where‖ · ‖ is an arbitraryk × kmatrix norm. Using multi-index notation,1 we define
its symbolby

Â(z) :=
∑
i∈Zd

ziAi, z ∈ Td , (2.2)

whereT = {z ∈ C: |z| = 1}. Clearly, the symbolÂ is a continuous complex-valued
function on thed-dimensional torusTd .

Consider a sequence� = (βi)i∈Zd of weights satisfying the condition 1� βi+j
� βiβj for i, j ∈ Zd . Then a bi-infinite block Toeplitz matrixA is said to be in the
�-weighted Wiener classWd

k,� if

1 For z = (z1, . . . , zd ) ∈ Cd and i = (i1, . . . , id ) ∈ Zd we write zi = zi11 · · · z
id
d

and |i| = |i1| + · · ·
+ |id |.
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‖A‖Wd
k,�
:=

∑
i∈Zd

βi‖Ai‖ < +∞. (2.3)

ThenA is a bounded linear operator on the Banach space�
p
k,� of all sequences

(xi)i∈Zd in Ck which are finite with respect to the norm

‖(xi)i∈Zd‖p,� =
{[∑

i∈Zd (βi‖xi‖)p
]1/p

, 1 � p < +∞,
supi∈Zd βi‖xi‖, p = +∞; (2.4)

this can be proved trivially forp = 1 and p = +∞ and by interpolation for
p ∈ (1,∞). We write�pk if βi = 1 for all i ∈ Zd . ForM ⊂ Zd , we denote by�pk,�(M)

and�pk (M) the subspaces of�pk,� and�pk of those sequences(xi)i∈Zd for whichxi = 0

for i ∈ Zd\M; their elements are written as sequences indexed byi ∈ M.
The following result is well known for the one-index case [15]; for the multi-index

case the proof is similar. In fact, the principal observation in proving this result is that
the (continuous) multiplicative linear functionals onWd

k,� are exactly the evaluation

mapsA �→ Â(z), wherez ∈ ��, with �� as in (2.6).

Proposition 2.1. The �-weighted Wiener classWd
k,� is a Banach algebra with

respect to the convolution product

(A ∗ B)i =
∑
j∈Zd

AjBi−j , i ∈ Zd , (2.5)

with involutionA �→ A∗ defined by(A∗)i = (A−i )∗, i ∈ Zd , where the asterisk
superscript denotes the conjugate transpose. Its invertible elements are exactly those
A ∈Wd

k,� for whichÂ(z) is a nonsingulark × k matrix for all z ∈ ��, where

�� :=
{
z ∈ Cd: sup

i∈Zd

|zi |
βi

< +∞
}
. (2.6)

When the weight sequence� = (βi)i∈Zd is separated in the sense that

βi = β(1)i1 · · ·β
(d)
id

, where 1� β
(r)
ir+jr � β

(r)
ir
β
(r)
jr

for ir , jr ∈ Z andr = 1, . . . , d, we
have

�� =
d∏
r=1

��(r) =
d∏
r=1

{
z ∈ C: ρ(r)− � |z| � ρ

(r)
+

}
, (2.7)

where, forr = 1, . . . , d, �(r) = (β(r)i )i∈Z and

ρ
(r)
− =

[
lim sup

i→+∞
(β
(r)
−i )

1/i
]−1

, ρ
(r)
+ = lim sup

i→+∞
(β
(r)
i )1/i . (2.8)

A further generalization consists of considering bi-infinite block Toeplitz matrices
A = (Ai−j )i,j∈Zd such thatAi = 0 for all i /∈ J , whereJ is an additive subgroup of
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Zd . For any weight sequence� = (βi)i∈Zd one can now define the Banach algebra
Wd,J

k,� (resp.,Wd,J
k ) consisting of thoseA ∈Wd

k,� (resp.,A ∈Wd
k ) such thatAi = 0

for all i /∈ J . Instead of Proposition 2.1, we then have the following more general
result.2

Proposition 2.2. For any additive subgroupJ of Zd , Wd,J
k,� is a Banach algebra

with respect to the convolution product

(A ∗ B)i =
∑
j∈Zd

AjBi−j =
∑
j∈J

AjBi−j , i ∈ Zd , (2.9)

with involution A �→ A∗ defined by (A∗)i = (A−i )∗, i ∈ Zd . Its invertible
elements are exactly thoseA ∈Wd,J

k,� for whichÂ(z) is a nonsingulark × k matrix

for all z ∈ �J� , where

�J� :=
{
z ∈ Cd: sup

i∈J
|zi |
βi

< +∞
}
. (2.10)

In the same way one can define bi-infinite block Toeplitz matrices whose elements
belong to a Banach algebraA with unit element (such as the bounded linear opera-
tors on some Banach space). Propositions 2.1 and 2.2 are valid in this more general
situation which can be proved by using results from [4,21]. Here we use the fact
that (1)Wd,J

k,� =Wd,J
1,� ⊗� A, ⊗� standing for the projective tensor product, and

(2) the multiplicative linear functionals inWJ
1,� are precisely the evaluation maps

A �→ Â(z), wherez ∈ �J� .

2.2. Multilevel block Toeplitz matrices

In analogy with [36,37], block Toeplitz matrices with elements indexed byZd

can be converted into so-called multi-level block Toeplitz matrices. In fact, given a
bi-infinite block Toeplitz matrixA = (Ai−j )i,j∈Zd , we can define the block Toep-
litz matrix A = (Ai−j )i,j∈Z indexed byZ whose entries are in turn block Toeplitz
matrices, but this time indexed byZd−1, by the following conversion rule:

Ai1 = (A(i1,i2,...,id ))(i2,...,id )∈Zd−1, i1 ∈ Z. (2.11)

In turn, ford � 3 the block Toeplitz matricesAi indexed byZd−1 can be converted
into block Toeplitz matrices indexed byZ whose elements are block Toeplitz matri-
ces indexed byZd−2, and so on. For block Toeplitz matricesA ∈Wd

k , we easily see
that the Wiener norm ofA satisfies

2 We note that Banach algebras of bi-infinite Toeplitz matrices indexed by arbitrary additive subgroups
of R andRd have been studied in [29] and [30,31], respectively.
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‖A‖W1
k
:=

∑
i1∈Z

‖Ai1‖Wd−1
k

=
∑
i1∈Z

(i2,...,id )∈Zd−1

‖(Ai1)(i2,...,id )‖ = ‖A‖Wd
k
. (2.12)

Analogously, the symbol̂A of A is a continuous function onT with values in the
Banach algebraWd−1

k , and for the symbol of each block Toeplitz matrixÂ(z1) we
have

̂̂
A(z1)(z2, . . . , zd) = Â(z1, . . . , zd),

z1 ∈ T, (z2, . . . , zd) ∈ Td−1. (2.13)

Now consider the weight sequence� = (βi)i∈Zd having the property

βi = β(1)i1 γ(i2,...,id ) for certain weight sequences�(1) = (β(1)i1 )i1∈Z and � =
(γj )j∈Zd−1. Then�� = ��(1) × ��, while (2.12) is to be replaced by

‖A‖W1
�(1)
:=

∑
i1∈Z

β
(1)
i1
‖Ai1‖Wd−1

�

=
∑
i1∈Z

β
(1)
i1

∑
(i2,...,id )∈Zd−1

γ(i2,...,id )‖(Ai1)(i2,...,id )‖

= ‖A‖Wd
k,�
, (2.14)

where the subscriptk indicating the matrix order involved in stating the (weighted)
Wiener algebra has been dropped. Using Proposition 2.1, (2.13) and (2.14), we see
thatA is an invertible element ofWd

k,� if and only if A is an invertible element

of W1
�(1)

, which is the case whenever̂A(z1) is an invertible element ofWd−1
� for

everyz1 ∈ ��(1) . But the latter is true if and only if its symbol̂A(z1)(z2, . . . , zd)

is a nonsingulark × k matrix for everyz1 ∈ ��(1) and every(z2, . . . , zd) ∈ ��, in

other words, if and only ifÂ(z1, . . . , zd) is a nonsingulark × k matrix for every
z = (z1, . . . , zd) ∈ ��.

2.3. LDU -factorization of bi-infinite block Toeplitz matrices

Given a block Toeplitz matrixA = (Ai−j )i,j∈Zd of Wiener class, by anLDU -
factorizationof A (with respect to the order
) we mean a representation ofA in the
form

A = LDM∗, (2.15)
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whereL = (Li−j )i,j∈Zd ,M = (Mi−j )i,j∈Zd andD = (Di−j )i,j∈Zd are block Toep-
litz matrices of Wiener class having the following properties:
(a) L0 = M0 = Ik (thek × k unit matrix),
(b) Di = 0 for i /= 0 andLi = Mi = 0 for i ≺ 0, and
(c) the inversesL−1 andM−1 of L andM are block Toeplitz matrices of Wiener

class satisfying[L−1]i = [M−1]i = 0 for i ≺ 0.
Passing to the respective symbolsL̂, D̂(z) ≡ D0 andM̂, one gets

Â(z) = L̂(z)D0M̂(z)
∗, z ∈ Td . (2.16)

WhenA is positive definite on the Hilbert space�2(Zd) of square integrable se-
quences onZd (or, equivalently, ifÂ(z) is positive definite for allz ∈ Td ),A always
has anLDU -factorization of the form (2.16) withL = M andD0 a positive defi-
nite k × k matrix. In that case we put Łi = LiD1/2

0 and obtain theblock Cholesky
factorization

Â(z) = Ł̂(z)Ł̂(z)∗, z ∈ Td . (2.17)

Following the procedure inherent in Theorem XXII 8.2 of [15], the inverses of
the factorsL andM in (2.15) can be found by solving suitable semi-infinite linear
systems. Indeed, writing (2.15) in the formA(DM∗)−1 = L, restricting oneself to
indices
 0, applying it to the semi-infinite vectore− = (δ0,iIk)i
0 and changing the
sign of all indices, we obtain the linear system

∑
j�0

Aj−iXj = (e+)i , i � 0, (2.18)

where [(DM∗)−1]i,j = Xj−i (using the convention thatXi = 0 for i ≺ 0),
e+ = (δ0,iIk)i�0 andx+ = (Xi)i∈Zd ∈ �1

k.
Analogously, writing (2.15) asA∗([LD]∗)−1 = M, restricting oneself to the

indices� 0 and applying it toe+, we obtain the linear system

∑
j�0

A∗j−iYj = (e+)i , i � 0, (2.19)

where([LD]∗)−1 = (Yi−j )i,j∈Zd (using the convention thatYi = 0 for i ≺ 0) and

y+ = (Yi)i∈Zd ∈ �1
k. Since a solution of either of (2.18) or (2.19) leads to anLDU -

factorization of the form (2.15) with the diagonal factorD absorbed inM∗ andL, re-
spectively, and such factorizations are unique, those equations are uniquely solvable
in �1

k.
When the weight sequence� is to be taken into account, the classical argument

of exploiting the compactness of Hankel operators [15] to prove that the vectorsx+
andy+ belong to�1

k,� fails if k � 2. Fork = 1 one can apply factorization in suitable
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commutative Banach algebras to establish Theorem 2.3. We therefore postpone its
proof until the end of Section 3.

Theorem 2.3. Let � = (βi)i∈Zd be a weight sequence andJ an additive subgroup

of Zd . SupposeA ∈Wd,J
k,� has anLDU -factorization inWd

k of the type(2.15)and

that Â(z) is a nonsingulark × k matrix for z ∈ �J� . Then, in the scalar casek = 1,

the factorsL andM∗ and their inverses belong toWd,J
k,� .

We now apply Theorem 2.3 to positive definite bi-infinite block Toeplitz matrix
A ∈Wd,J

k , whereJ is an additive subgroup ofZd . Then, according to Theorem 14.2
of [9] (applied to the nest algebra generated by (the strong limits of) the orthogonal
projections onto{(xj )j∈Z ∈ �2,J

k : xj = 0 for j � i}, i ∈ J ), every such matrix has
anLDU -factorization of the form (2.15), whereL andM∗ and their inverses are
bounded linear operators on�2,J

k . In the next theorem we will actually prove that

L andM∗ and their inverses belong toWd,J
k if k = 1. To do so, we first state the

following result on linear orders onRd due to Erd"os [10] (see [7] for a concise proof).

Lemma 2.4. Let 
 be a linear order onZd such thati + l 
 j + l whenever
i, j, l ∈ Zd and i 
 j . Then
 can be extended to a so-called term ordering onRd ,

i.e., to a linear order
 such thatx + z 
 y + z andcx 
 cy wheneverx, y, z ∈ Rd ,

x 
 y andc � 0 in R. Moreover, there exists an orthogonald × d matrix� such that
the
-nonnegative elements ofRd are exactly the linear combinations of the columns
of � with nonnegative coefficients.

Proof . Following [7,10], there exists a sequence of linear subspacesRd ⊃ Hd−1 ⊃
Hd−2 ⊃ · · · ⊃ H1 ⊃ {0} and an orthonormal basis{ξj }dj=1 of Rd such that dimHj =
j (j = 1, . . . , d − 1), ξr ∈ Hd−r+1 (r = 2, . . . , d), ξs ⊥ Hd−s (s = 1, . . . d − 1),
and ξt � 0 (t = 1, . . . , d). We then define� to be the orthogonald × d matrix
havingξ1, . . . , ξd as its columns. �

Starting with a linear order
 on Zd compatible with addition, we first extend
it to a term ordering inRd . This extension is not necessarily unique; see [7]. For
example, lettingR(α) denote the 2× 2 rotation matrix, the linear orders inR2 de-
scribed by the orthogonal matricesR(α) andR(−α) lead to the same order onZ2

if tanα /∈ Q. For a less trivial example, considerv1 = (1, 0, 0, 0)T, v2 = (0, 1, ζ, 0)
andv3=(0, 1, 0, ζ 2), whereζ is irrational and does not satisfy a quadratic equation

with rational coefficients. Then for any 2× 2 matrix
[
a b

c d

]
with integer entries and

determinant 1, the linear orders onR4 determined by the sequence of linear sub-
spacesH3 = span(v1, av2+ bv3, cv2+ dv3), H2 = span(v1, av2+ bv3) andH1=
span(v1) generate the same linear order onZ4. Indeed, it is easily seen thatH3 ∩ Z4

= H2 ∩ Z4 = {rv1: r ∈ Z}, no matter the choice ofa, b, c, d ∈ Z with ad − bc = 1.
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Now let µ = min{s: Hd−s ∩ Zd = ∅} and µ = d if H1 ∩ Zd /= ∅. Define the
Besikovich transformationϕ: Zd → Rµ (used in [3] ford = 2, but actually already
implicit in [10]) by

ϕ(i) = (c1(i), . . . , cµ(i)) = �−1i, i =
µ∑
s=1

cs(i)ξs . (2.20)

Thenϕ[Zd ] = N1× · · · ×Nµ for certain additive subgroups ofR, ordered lexico-
graphically. In particular, ifµ = 1, we haveϕ[Zd ] = cZ for somec > 0, and for
µ = d we haveϕ[Zd ] = cZd for somec > 0. For the above example inZ4 we have

ϕ(i1, i2, i3, i4) =
(
i2ζ

2− i3ζ − i4√
ζ 4+ ζ 2+ 1

, i1

)
,

ϕ[Z4]  spanZ(1, ζ, ζ
2)× Z.

(2.21)

Theorem 2.5. Let � = (βi)i∈Zd be a weight sequence andJ an additive subgroup

of Zd . SupposeA ∈Wd,J
k,� is positive definite and that̂A(z) is a nonsingulark × k

matrix for z ∈ �J� . ThenA has a Cholesky factorization of the type(2.17),where

the Cholesky factorŁ and its inverse belong toWd,J
k . Moreover, in the scalar case

k = 1, the Cholesky factorŁ and its inverseŁ−1 belong toWd,J
k,� .

Below we give the proof of Theorem 2.5 with the exception of the proof of the
statement that Ł and Ł−1 belong toWd,J

k,� . For k = 1, this part will be established
at the end of Section 3. We mention that the analogous result for discrete additive
subgroups ofRd (and hence for symbols that arek × k matrices whose elements are
suitable almost periodic functions ind variables) has been established in [30,31],
though without accounting for weight sequences�.

Proof of Theorem 2.5 (first part). The proof focuses on the existence of anLDU -
factorization; the final part of Theorem 2.5 will be established in Section 3. To
establish the existence part, we generalize the proof given in [3] ford = 2.

Let A ∈Wd
k,� be positive definite. To prove the existence of anLDU -factoriza-

tion ofA in Wd
k (without taking account of the subgroupJ and the weight sequence

�), we apply the Besikovich transformation toZd to obtain a positive definite bi-in-
finite block Toeplitz matrix indexed byϕ[Zd ] = N1× · · · ×Nµ, whereN1, . . . , Nµ
are additive subgroups ofZ. In this way a factorization problem for a matrix indexed
by i ∈ Zd (with respect to the order
) has been transformed into a factorization
problem for a matrix indexed byr ∈ ϕ[Zd ] (with respect to the lexicographical
order onRµ restricted toϕ[Zd ]). A subgroupJ of Zd is converted into a subgroup
ϕ[J ] of ϕ[Zd ] and the weight sequence� is converted into the weight sequence
� = (γr)r∈ϕ[Zd ] defined byγϕ(i) = βi (i ∈ Zd ). Now convert the latterµ-index

matrix to a multilevel matrix. Then ifµ = 1, the factorization result inWd
k follows
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immediately from Theorem 6.1 of [29]. Ifµ � 2, ϕ[Zd ] is isomorphic toZ⊗N ,
whereN is an additive subgroup ofRµ−1. Using Lemma 3.1 of [38] (which is a
variation of the main result of [21] applied to positive definite finite- or infinite-
dimensional block matrices indexed byZ), we obtain the factorization

Â(z1) = (I + Û (z1))
∗D(I + U(z1)), z1 ∈ T, (2.22)

whereD is positive definite on�2(N) andU is an element ofWN
k such that thej th

Fourier coefficient ofU and(I + U)−1− I vanish for eachj � 0. Next, depend-
ing on the structure ofN as a direct product ofµ− 1 additive subgroups ofR, we
apply the same result again (ifN = Z or if N = Z×M for an additive subgroup
M of Rµ−2) or the main results of [1,34] (applying to positive definite finite- or
infinite-dimensional block matrices indexed by an additive subgroup ofR), to fac-
torize the diagonal factorD in (2.22) as a positive definite one-index Toeplitz matrix
with (µ− 2)-index matrices as entries. We end up with anLDU -factorization of the
form (2.15) for the Besikovich transform of the original bi-infinite matrixA, where
U = L∗ andD is positive definite. Applying the inverse ofϕ to the index set, we get
anLDU -factorization ofA in Wd,J

k .

When A ∈Wd,J
k for some additive subgroupJ of Zd , we defineµ = 1 if

Hd−1 ∩ J = · · · = H1 ∩ J = ∅ andµ = #{s: Hs ∩ J /= ∅}. The Besikovich trans-
formationϕJ : J → Rµ is then defined by

ϕ(i) = (cν(i))Hd−i∩J /=∅, i =
d∑
s=1

cs(i)ξs, (2.23)

whereHd = Rd andH0 = {0}.
The part of the theorem dealing with weight sequences follows directly from

Theorem 3.2 [cf. the end of Section 3].�

A bi-infinite block Toeplitz matrixA is called (finitely) bandedif all but finitely
manyAi are equal to the zero matrix. A well-known result (Féjer’s theorem ifA is
positive definite) states that, ford = 1, the factorsL andM∗ (resp., the factor Ł) in
anLDU -factorization (resp., Cholesky factorization) of an arbitrary (resp., positive
definite) (finitely) banded block Toeplitz matrix of Wiener class are (finitely) banded
themselves. This is no longer the case ifd � 2 [33]. For instance [6,32], ifd = 2,
δ ∈ (0, 1

4) and

Â(z) = 1+ 2δ [cos(z1)+ cos(z2)] , (2.24)

thenÂ(z) is positive for everyz = (z1, z2) ∈ T2 but cannot be written as the product
of two nonconstant trigonometric polynomials inz1 andz2. In other words, no matter
the choice of the order
 in Z2, the corresponding Toeplitz matrixA has anLDU -
factorization (resp., a Cholesky factorization) of the form (2.15) (resp., (2.17)), but
its factorsL andM∗ (resp., the factor Ł) are not (finitely) banded Toeplitz matrices.
Ford = 2, necessary and sufficient conditions to writeÂ(z) as the squared absolute
value of a stable polynomial in(z1, z2) have been given in [13].
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3. Factorization of Toeplitz matrices

In this section a well-known method to compute theLDU -factorization of a bi-
infinite Toeplitz matrix indexed byZ is generalized to bi-infinite Toeplitz matrices
indexed byZd . We need the following result (cf. [11, Theorem I 5.1]).

Theorem 3.1. LetA ∈Wd,J
k,� for some weight sequence� and some additive sub-

groupJ of Zd , and letϕ be an analytic function in a neighborhood of the set�(A) =
{Â(z): z ∈ �J� }. Let � be a closed rectifiable Jordan contour in the domain ofϕ

which has winding number1 with respect to each point of�(A). Then

ϕ(A):= 1

2�i

∫
�
ϕ(λ)(λI − A)−1 dλ (3.1)

belongs toWd,J
k,� .

Proof . From the second parts of Propositions 2.1 and 2.2 it follows that�(A)
coincides with the set of allλ ∈ C for which λI − A does not have an inverse
in Wd,J

k,� . As a result,λI − A is an invertible element ofWd,J
k,� for all λ ∈ � and

hence the right-hand side of (3.1) belongs toWd,J
k,� , by the usual Riesz functional

calculus. �

WhenA ∈Wd,J
k,� , exp(A) can be defined by choosingϕ(λ) = eλ in (3.1). How-

ever, log(A) can only be defined in this way if log(λ) is an analytic function on a
neighborhood of�(A). This is the case if and only if there exists a (continuous)
curve inC\�(A) connecting zero to infinity.

The next theorem generalizes a well-known result by Krein [24].

Theorem 3.2. LetA ∈Wd,J
1,� be a bi-infinite Toeplitz matrix with scalar elements

(i.e., with k = 1) for some weight sequence� and some additive subgroupJ of Zd .
Supposelog(λ) is an analytic function in a neighborhood of�(A). Write log(A)
= (Bi−j )i,j∈Zd . PutL = (Li−j )i,j∈Zd , M = (Mi−j )i,j∈Zd andD = (Di−j )i,j∈Zd ,

whereLi = Bi andMi = B−i for i � 0, L0 = M0 = 1, Li = Mi = 0 for i ≺ 0,
andD0 = B0 andDi = 0 for i /= 0. Then

A = exp(L)exp(D) exp(M∗) = exp(L)exp(D)[exp(M)]∗ (3.2)

is anLDU -factorization ofA in Wd,J
1,� .

Theorem 3.2 cannot be generalized to block Toeplitz matrices with blocks of
orderk � 2, because the final part of its proof requires the property exp(T + S) =
exp(T )exp(S) for k × k matricesT andS, which is only true ifT andS commute.
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We conclude this section by pointing out that the parts of Theorems 2.3 and 2.5
left unproved are immediate from Theorem 3.2, since the factors in (2.15) and their
inverses belong toWd,J

1,� .

4. The band extension method

Let E ⊂ Zd . For every bi-infinite block Toeplitz matrixA, we define the bi-infi-
nite block Toeplitz matrixAE by

[AE]i =
{
Ai, i ∈ E,
0, i /∈ E. (4.1)

Then a bi-infinite block Toeplitz matrixB is calledE-bandedif B = AE for some
bi-infinite block Toeplitz matrixA.

Let 
 be a given linear order onZd that is compatible with addition, and
let E ⊂ Zd be nonempty. PutE+ = {i ∈ E : i � 0}, E− = {i ∈ E : i ≺ 0},
E0+ = {i ∈ E : i � 0}, E0− = {i ∈ E : i 
 0} and Ec = E+ ∪ E− ∪ {0}. If E is

-convex(i.e., if l ∈ E wheneveri, j ∈ E and i 
 l 
 j ) and symmetric(i.e., if
−E = E), thenEc = E and the following addition table applies:

Zd+\E E+ {0} E− Zd−\E
Zd+\E Zd+\E Zd+\E Zd+\E Zd+\{0} Zd

E+ Zd+\E Zd+\{0} E+ Ec Zd−\{0}
{0} Zd+\E E+ {0} E− Zd−\E
E− Zd+\{0} Ec E− Zd−\{0} Zd−\E
Zd−\E Zd Zd−\{0} Zd−\E Zd−\E Zd−\E

For every weight sequence� = (βi)i∈Zd , we now introduce the closed linear sub-
spacesWd,s

k,� of the Banach algebraWd
k,� by

Wd,1
k,� :=

{
A ∈Wd

k,� : Ai = 0 for i /∈ Zd+\E
}
,

Wd,2
k,� :=

{
A ∈Wd

k,� : Ai = 0 for i /∈ E+
}
,

Wd,3
k,� :=

{
A ∈Wd

k,� : Ai = 0 for i /= 0
}
,

Wd,4
k,� :=

{
A ∈Wd

k,� : Ai = 0 for i /∈ E−
}
,

Wd,5
k,� :=

{
A ∈Wd

k,� : Ai = 0 for i /∈ Zd−\E
}
.

(4.2)
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Then we have the�1-direct sum decompositions

Wd
k,� =Wd,1

k,� ⊕Wd,c
k,� ⊕Wd,5

k,�, Wd,c
k,� =Wd,2

k,� ⊕Wd,3
k,� ⊕Wd,4

k,� . (4.3)

We also put

Wd
k,�,− =Wd,4

k,� ⊕Wd,5
k,�, Wd

k,�,+ =Wd,1
k,� ⊕Wd,2

k,�,

Wd,0
k,�,− =Wd,3

k,� ⊕Wd,4
k,� ⊕Wd,5

k,�

and

Wd,0
k,�,+ =Wd,1

k,� ⊕Wd,2
k,� ⊕Wd,3

k,� .

AssumingE to be
-convex and symmetric, we get the multiplication table:

Wd,1
k,� Wd,2

k,� Wd,3
k,� Wd,4

k,� Wd,5
k,�

Wd,1
k,� Wd,1

k,� Wd,1
k,� Wd,1

k,� Wd
k,�,+ Wd

k,�

Wd,2
k,� Wd,1

k,� Wd
k,�,+ Wd,2

k,� Wd,c
k,� Wd

k,�,−
Wd,3

k,� Wd,1
k,� Wd,2

k,� Wd,3
k,� Wd,4

k,� Wd,5
k,�

Wd,4
k,� Wd

k,�,+ Wd,c
k,� Wd,4

k,� Wd
k,�,− Wd,5

k,�

Wd,5
k,� Wd

k,� Wd
k,�,− Wd,5

k,� Wd,5
k,� Wd,5

k,�

We also note that the involutionA �→ A∗ defined by(A∗)i = (A−i )∗, i ∈ Zd , maps
Wd,r

k,� ontoWd,6−r
k,� (r = 1, 2, 3, 4, 5). Hence, in the terminology of Chapter XXXIV

of [15], if E is a nonempty,
-convex and symmetric subset ofZd , thenWd
k,� is an

algebra with band structure (4.3).
Now letA ∈Wd

k,� be positive definite (as a bounded linear operator on�2(Zd))

and let its symbolÂ(z) be a nonsingulark × k matrix for everyz ∈ ��. ThenA is an
invertible element ofWd

k,�. ThenA has a block Cholesky factorization with respect

to any linear order
 on Zd that is compatible with addition, and the factors as well
as their inverses belong toWd

k,�. Moreover, ifA is alsoE-banded, then theLDU -
factors and Cholesky factors ofA areE-banded as well, as a result of Theorem 1.3
and Lemma 1.4 of Chapter XXXIV of [15].

Let A ∈Wd
k,� beE-banded, whereE is nonempty,
-convex and symmetric.

Then by apositiveE-band extensionof A in Wd
k,� we mean a bi-infinite block

Toeplitz matrixB ∈Wd
k,� that satisfiesBj = Aj for j ∈ Ec, is positive definite (as

a bounded linear operator on�2(Zd)) and has anE-banded inverse inWd
k,�.
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The following result plus the subsequent remark are immediate from Theorems
1.1, 1.2 and 2.1 in Chapter XXXIV of [15].

Theorem 4.1. Let E ⊂ Zd be nonempty, 
-convex and symmetric, and let
A ∈Wd

k,� beE-banded and satisfyA = A∗. ThenA has a positiveE-band extension

in Wd
k,� if and only if there exists a(unique) vector (Xi)i∈E0+ of k × k matrices

such thatX0 is positive definite,
∑
i∈E0+ βi‖Xi‖ < +∞, (Xi−j )i,j∈Zd has an inverse

element inWd,0
k,�,+, and

∑
j∈E0+

Ai−jXj =
{
Ik, i = 0,
0, i ∈ E+. (4.4)

Similarly, A has a positiveE-band extension inWd
k,� if and only if there exists a

(unique) vector (Yi)i∈E0− of k × k matrices such thatY0 is positive definite,∑
i∈E0− βi‖Yi‖ < +∞, (Yi−j )i,j∈Zd has an inverse element inWd,0

k,�,−, and

∑
j∈E0−

Ai−j Yj =
{
Ik, i = 0,
0, i ∈ E−. (4.5)

Here we use the convention thatXi = 0 for i /∈ E0+ and Yi = 0 for i ∈ E0−. The
E-band extensionB is then given by either of the expressions

B−1 = XD(X−1
0 )X∗ = YD(Y−1

0 )Y ∗, (4.6)

whereX is theE0+-banded block Toeplitz matrix with coefficientsXi, Y is theE0−-
banded block Toeplitz matrix with coefficientsYi, andD(X−1

0 ) andD(Y−1
0 ) are the

block diagonal matrices with diagonal entriesX−1
0 andY−1

0 , respectively.

Proof . Let us first point out thatWd
k,� can be imbedded into the unitalC∗-algebra

R� of bounded linear operators on�2(Zd) of the form

(xi)i∈Zd �→

∑
j∈Zd

Ai−j xj



i∈Zd

whose symbolÂ(z) =∑
i∈Zd z

iAi is norm continuous inz ∈ ��. SinceWd
k,� is an

algebra with band structure (4.3) havingR� as its “ambient” algebra, Theorem 4.1
follows directly from Theorems 1.1 and 1.2 in Chapter XXXIV of [15]. It follows
from Theorem 1.3 of this chapter that the band extensions found using (4.4) and (4.5)
are identical. �
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PutU = XD(X−1/2
0 ) andV = YD(Y−1/2

0 ). Then every positive definite exten-
sion ofA in Wd

k,� is of the form3

F(G) = (G∗V ∗ + U∗)−1(I −G∗G)(VG+ U)−1, (4.7)

whereG is an arbitrary element ofWd,1
k,� satisfying supz∈��

‖Ĝ(z)‖ < 1. Similarly,
the positive definite extensions ofA can be represented in the form

F′(H) = (H ∗U∗ + V ∗)−1(I −H ∗H)(UH + V )−1, (4.8)

whereH is an arbitrary element ofWd,5
k,� satisfying supz∈��

‖Ĥ (z)‖ < 1. To prove
this result, one employs Theorem 2.1 in Chapter XXXIV of [15] and the paragraph
following its statement. The only thing to establish is their Axiom (A), which says
thatWd

k,� can be imbedded in a unitalC∗-algebraR such that(I −G)−1 ∈Wd,0
k,�,±

wheneverG ∈Wd
k,�,± and‖G‖R < 1. AsR, we take the algebraR� defined in the

first sentence of the proof of Theorem 4.1. With respect to this unitalC∗-algebraR, a
givenG ∈Wd

k,�,± such that supz∈��
‖Ĝ(z)‖ < 1, the elementI −G is invertible in

Wd
k,�. To prove that in fact(I −G)−1 ∈Wd

k,�,±, we note that supz∈��
‖λĜ(z)‖ < 1

for every λ ∈ C with |λ| � 1. As a result, the Neumann series
∑∞
s=0 λ

sGs is
absolutely convergent inWd

k,�,± for every λ ∈ C with |λ| � 1 and hence

(I −G)−1 ∈Wd,0
k,�,±, which establishes Axiom (A).

If A ∈Wd
k,� is E-banded for some
-convex and symmetric index setE and

belongs toWd,J
k,� for some additive subgroupJ of Zd , then (4.4) and (4.5) can be

replaced by∑
j∈E0+∩J

Ai−jXj =
{
Ik, i = 0,
0, i ∈ E+ ∩ J, (4.9)

and ∑
j∈E0−∩J

Ai−j Yj =
{
Ik, i = 0,
0, i ∈ E− ∩ J, (4.10)

respectively. This is easily understood, sinceXj = 0 for j ∈ E0+\J andYj = 0 for

j ∈ E0−\J . PuttingU = XD(X−1/2
0 ) andV = YD(Y−1/2

0 ), all positive definite ex-

tensions ofA in Wd,J
k,� are given by either (4.7) or (4.8), whereG (resp.,H ) is an

arbitrary element ofWd,1
k,�,J (resp.,Wd,5

k,�,J ) satisfying supz∈�J�
‖Ĝ(z)‖ < 1 (resp.,

supz∈�J�
‖Ĥ (z)‖ < 1).

The band extension method inZ2 has been developed before by Bakonyi et al.
[2,3]. Similar results were obtained for additive subgroups ofR [29] andRd [31],

3 In this paragraph, the symbol‖ · ‖ stands for the spectralk × k matrix norm.
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where the symbol is a univariate or multivariate almost periodic matrix function of
Wiener type with spectrum within the subgroup.

5. Projection method for block Toeplitz matrices

The band extension method discussed in Section 4 can in principle be used to
compute the inverses of the factors Ł and Ł∗ in the Cholesky factorization of a pos-
itive definite bi-infinite block Toeplitz matrixA (with respect to a linear order

compatible with addition). In fact, replacingA with theE-banded block Toeplitz
matrixAE defined by (4.1) and then replacingAE in turn by itsE-band extension
B, we obtain as an approximation

(Ł∗)−1 ≈ YD(Y−1/2
0 ), Ł−1 ≈ D(Y

−1/2
0 )Y ∗. (5.1)

By the same token, if̃Ł andŁ̃∗ denote the Cholesky factors ofA with respect to the
inverted order
0 (i.e.,i 
0 j if and only if i � j ), then we have as an approximation

(Ł̃∗)−1 ≈ XD(X−1/2
0 ), Ł̃−1 ≈ D(X

−1/2
0 )X∗. (5.2)

Eqs. (5.1) and (5.2) represent better approximations of the inverses of the Cholesky
factors ofA if we chooseE to be a member of a sequence of
-convex setsE(n)

with E(n) = −E(n) and union
⋃
n∈N E

(n) = Zd , and letn tend to infinity.
Whereas the band extension leads to accurate numerical results [27] ifd = 1, the

problem ford � 2 is to convert a theoretically valid approximation method into a
sequence of operations involving only finite matrices, because ford � 2 one cannot
write Zd as the union of countably many finite
-convex sets (as is possible for
d = 1). As a result, ford � 2 any method to compute the inverses of the Cholesky
factors ofA based on the band extension method involves operations with infinite
matrices.

We now follow the procedure of the band extension method but choose a count-
able sequence of finite symmetric setsE(n) with unionZd , dropping the assumption
that eachE(n) is 
-convex. This leads to the projection method, which was first
formulated ford = k = 1 in [14]. Here we draw on results of [17], in particular the
paragraph following the statement of Theorem 4.1. Similar results appeared in [5].
We put(E(n))0+ = {i ∈ E(n) : i � 0} and(E(n))0− = {i ∈ E(n) : i 
 0}.

Theorem 5.1. LetA be a positive definite bi-infinite block Toeplitz matrix inWd
k,�,

where� is a given weight sequence, and let Â(z) be a nonsingulark × k matrix
for everyz ∈ ��. Suppose(E(n))n∈N is a sequence of symmetric sets with union⋃
n∈N E

(n) = Zd . Then for sufficiently largen there exist unique vectors

(X
(n)
i )i∈(E(n))0+ and (Y (n)i )i∈(E(n))0− of k × k matrices such thatX(n)0 and Y (n)0 are

positive definite,
∑
i∈(E(n))0+ βi‖X

(n)
i ‖ and

∑
i∈(E(n))0− βi‖Y

(n)
i ‖ are finite,
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∑
j∈(E(n))0+

Ai−jX(n)j =
{
Ik, i = 0,
0, i ∈ (E(n))+, (5.3)

and ∑
j∈(E(n))0−

Ai−j Y (n)j =
{
Ik, i = 0,
0, i ∈ (E(n))−. (5.4)

Moreover, there exist vectors(Xi)i∈Zd+ and(Yi)i∈Zd− of k × k matrices such that

lim
n→∞

∑
i∈(E(n))0+

(
βi‖Xi −X(n)i ‖

)2

= lim
n→∞

∑
i∈(E(n))0−

(
βi‖Yi − Y (n)i ‖

)2 = 0. (5.5)

Further,

A−1 = XD(X−1
0 )X∗ = YD(Y−1

0 )Y ∗, (5.6)

where the triangular matricesX = (Xi−j )i,j∈Zd and Y = (Yj−i )i,j∈Zd belong to

Wd
k,�. 4

Proof . Let us apply the projection method to either of the linear systems∑
j∈Zd+

Ai−jXj =
{
Ik, i = 0,
0, i � 0,

(5.7)

defined on the Hilbert space�2
k,�(Z

d+), and

∑
j∈Zd−

Ai−j Yj =
{
Ik, i = 0,
0, i ≺ 0,

(5.7′)

defined on the Hilbert space�2
k,�(Z

d−). Let us define the projectionsP (n)± on�2
k,�(Z

d±)
as follows:(

P
(n)
± (xj )j∈Zd±

)
i
=

{
xi, i ∈ (E(n))±,
0, i ∈ Zd±\(E(n))±.

ThenP (n)± converges strongly to the identity operator on�2
k,�(Z

d±) asn→∞.
If all the weightsβi ≡ 1, the infinite system matrices in (5.7) and (5.7′) are self-

adjoint and the projectionsP (n)± are orthogonal. Then the projection method can
be applied (see the sufficient condition following Theorem II 2.1 of [14]) and the

4 We used the conventionXi = 0 for i ≺ 0 andYi = 0 for i � 0.
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conclusions of Theorem 5.1 are immediate. For more general weights, consider the
commutative diagram

�2
k,�(Z

d±)
D±−→ �2

k(Z
d±)�A± �T±

�2
k,�(Z

d±)
D±−→ �2

k(Z
d±)

whereA± is the compression ofA to �2
k,�(Z

d±) andD± : �2
k,�(Z

d±)→ �2
k(Z

d±) is the

unitary operator defined by(D±(xj )j∈Zd )i = βixi . Clearly, sinceD(Zd±) commutes

with eachP (n)± , the projectionsP (n)± are also selfadjoint on�2
k,�(Z

d±) and converge

to the identity operator on�2
k,�(Z

d±). Now note that the real part ofT±, given by

1

2
(Ti,j + T ∗j,i ) =

1

2

(
βi

βj
+ βj

βi

)
Ai−j ,

is positive selfadjoint. We may then employ the same result of [14], followed by an
application of Theorem II 2.2 of [14], to prove the applicability of the projection
method and hence the validity of Theorem 5.1 in the case of general weights.�

When applying Theorem 5.1 to a sequence of
-convex symmetric setsE(n), one
finds a justification of the band extension method as described in Section 4 and in the
first paragraph of Section 5. However, as explained above, ford � 2 the setsE(n)

are infinite for sufficiently largen.
When applying Theorem 5.1 to finite setsE(n), one obtains a numerically imple-

mentable method for computing the inverses of the Cholesky factors of a positive
definite bi-infinite block Toeplitz matrix. However, ford � 2 and sufficiently large
n the setsE(n) are not
-convex, and hence the finite linear systems (5.3) and (5.4)
are not finite multi-index Toeplitz systems.

6. Example

Let us consider the bi-infinite Toeplitz matrixA with entries A(0,0) = 2ζ ,
A(−1,0) = A(1,0) = A(0,−1) = A(0,1) = −1, andAi = 0 otherwise, whereζ > 2.
Then its symbol is positive

Â(z) = 2[ζ − cos(θ1)− cos(θ2)] > 0, z = (eiθ1, eiθ2) ∈ T2. (6.1)

Let EN = {i = (i1, i2) ∈ Z2 : |i1| � N, |i2| � N}. The setEN is symmetric and,
with respect to the lexicographical order
,

EN+ =
{
i ∈ Z2 : (i1 = 0 and 0� i2 � N) or (1 � i1 � N and|i2| � N)

}
.

(6.2)

In this case the linear system (5.3) takes the form
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Bx = e0, (6.3)

where

B =




HN+1
[
0 −IN+1

][
0

−IN+1

]
H2N+1 −I2N+1

−I2N+1 H2N+1 −I2N+1
...

...
...

. ..
. .. −I2N+1

−I2N+1 H2N+1



,

x = (x0, x1, . . . , xm)
T ∈ Rm+1 and e0 = (1, 0, . . . , 0)T ∈ Rm+1, with m =

2N(N + 1). Here Ij stands for the identity matrix of orderj , the dimensions of
the various zero matrices are not indicated andHj = Hj(ζ ) is the tridiagonal matrix
of orderj defined by

Hj(ζ ) =




2ζ −1
−1 2ζ −1

...
...

...
. ..

. . .
. ..

. . .
. .. −1
−1 2ζ



. (6.4)

Recalling the definition of the Chebyshev polynomials of the second kindUj (ζ ) =
sin((j + 1)t)/ sint for ζ = cost ∈ [−1, 1] andUj(ζ ) = sinh((j + 1)t)/ sinht for
ζ = cosht ∈ (1,∞), we easily derive that detHj(ζ ) = Uj (ζ ) /= 0.

Let us write the system (6.3) in the form[
HN+1 CN
CT
N SN

] [
x0
x+

]
=

[
e0
0

]
, (6.5)

wherex0 = col [xj ]Nj=0, x+ = col [xj ]mj=N+1, e0 = col [δj,0]Nj=0,

CN =
[
0(N+1),N −IN+1 0(N+1),(N−1)(2N+1)

]
,

where the dimensions of the zero matrices have been indicated, andSN is the block
tridiagonalN ×N matrix with diagonal blocksH2N+1 and off-diagonal blocks
−IN+1. Using the recurrence relation for the Chebyshev polynomials of the second
kind, −Uj−1(ζ )+ 2ζUj (ζ )− Uj+1(ζ ) = 0 with U−1(ζ ) ≡ 0 andU0(ζ ) = 1, we
obtain

SN col [UN−j (H̃2N+1)]Nj=1 = col [δj,1I2N+1]Nj=1UN(H̃2N+1), (6.6)

where the matrixH̃2N+1 = 1
2H2N+1 has been substituted into various scalar poly-

nomials. Since the set of eigenvalues ofH̃2N+1 is given by
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σ(H̃2N+1) =
{
ζ − cos

(
j�

2N + 2

)
: j = 1, 2, . . . ,2N + 1

}
, (6.7)

ζ > 2 andUN(z) /= 0 for z � 1, the matrixUN(H̃2N+1) is nonsingular.5 Hence,SN
is nonsingular [16] and the first column (of theN ×N matrix having entries of order
2N + 1) of its inverse is given by

S−1
N col [δj,1I2N+1]Nj=1 = col [UN−j (H̃2N+1)]Nj=1UN(H̃2N+1)

−1. (6.8)

It now follows from straightforward calculation that the 2× 2 block matrix in (6.5)
is nonsingular if and only if the(N + 1)× (N + 1) matrix

M=HN+1− CNS−1
N CT

N

=[
0N+1,N IN+1

] (
H2N+1− UN−1(H̃2N+1)UN(H̃2N+1)

−1
) [

0N,N+1
IN+1

]
(6.9)

is nonsingular. In that case the inverse is given by[
M−1 −M−1CNS

−1
N

−S−1
N CT

NM
−1 S−1

N + S−1
N CT

NM
−1CNS

−1
N

]
. (6.10)

The solution of (6.5) is the first column of the(m+ 1)× (m+ 1) matrix in (6.10),
wherem = N +N(2N + 1). Since the eigenvalues of̃H2N+1 all belong to(1,+∞)
(becauseζ > 2), we can employ the relation (based on the monotonicity of sinhτ

for τ > 0)

fN(z)=z− UN−1(z/2)

UN(z/2)

=2 cosht − sinh(Nt)

sinh((N + 1)t)
> 0, z = 2 cosht > 1, (6.11)

to prove that the matrixM in (6.9) is positive definite and hence nonsingular. Note
thatfN(1+) = (N + 2)/(N + 1), fN(z) < z andfN(z) ∼ z asz→+∞, while

f ′N(z) = 1+ cosh(Nt) cosh((N + 1)t)

2 sinht sinh2((N + 1)t)
N(N + 1)

×
[

tanh(Nt)

N
− tanh((N + 1)t)

N + 1

]

is positive. We also remark that the matrix−S−1
N CT

N (of dimension(m+ 1)×
(N + 1)) in the left lower corner of (6.10) consists exactly of the(N + 1)th up to the
(2N + 1)th column of the matrix given by (6.8). Moreover, the condition number

5 Its eigenvalues are the numbersUN
(
ζ − cos

(
j�

2N+2

))
, j = 1,2, . . . ,2N + 1.



376 C.V.M. van der Mee et al. / Linear Algebra and its Applications 343–344 (2002) 355–380

of M (with respect to the spectral norm) is bounded above by that ofH2N+1−
UN−1(H̃2N+1)UN(H̃2N+1)

−1, which equals

fN (UN (2ζ + 2 cos[�/(2N + 2)]))
fN (UN (2ζ − 2 cos[�/(2N + 2)])) , (6.12)

which behaves asC(ζ )[(ζ + 1)/(ζ − 1)]N asN →∞ for fixed ζ > 2 ([35], 8.21.9
for α = β = 1

2, in combination withfN(z) ∼ z asz→∞).
Finally, sinceA−i = Ai for i ∈ Zd , the solution of the system (5.4) is given by

the vector col[x−j ]j∈(E(n))0− , where col[xj ]j∈(E(n))0+ is the solution of (5.3).
When taking the limit asN →∞, one gets the lower triangular Toeplitz matrix

X = (xi−j )i,j∈Zd , with xk = 0 wheneverk ≺ 0, and the Cholesky factorization

A−1 = ŁŁT = ŁTŁ, (6.13)

where Ł is the lower triangular matrix(xi−j x−1/2
0 )i,j∈Zd .

The computation of the solution of system (6.3) can be greatly improved, both in
terms of stability and of computational complexity, by resorting to the factorization

H̃2N+1 = VDV T, (6.14)

whereD is the diagonal matrix of the eigenvalues ofH̃2N+1, given by (6.7), andV
is the orthogonal matrix formed by its eigenvectors, whose entries are

Vij = 1√
N + 1

sin
ij�

2N + 2
, i, j = 1, . . . ,2N + 1.

Substituting (6.14) in (6.9), we get

M = [
0N+1,N IN+1

]
V

(
2D − UN−1(D)UN(D)

−1
)
V T

[
0N,N+1
IN+1

]
,

so that the matrixM can be computed by evaluating the scalar Chebyshev poly-
nomials on the eigenvalues of̃H2N+1 and by applying two sine transforms.

Finally, the matrix−S−1
N CN , necessary to obtain the lower partx+ of vectorx, is

given by the lastN + 1 columns of the matrix

diag(V , V, . . . , V ) col [UN−j (D)]Nj=1UN(D)
−1V T.

In order to give an idea of the numerical performance of the method just illus-
trated, in Fig. 1 we depicted log10 |x(i1,i2)| for (i1, i2) ∈ EN+ andN = 40, where
xk = x(i1,i2), for k = (2N + 1)i1+ i2 andk = 0, 1, . . . , m, are the solutions of sys-
tem (6.3) obtained by the above algorithm. Fig. 1 clearly shows that only a
small number (890) of the components ofx have an absolute value exceeding
computer precision and also that they decay exponentially with respect to|i| =
|i1| + |i2|.

As k = 1, the Cholesky factorization ofA−1 can also be obtained by the meth-
od due to Krein, illustrated in Theorem 3.2. For a comparison of the computation-
al effectiveness of the two numerical methods, in Fig. 2 we reported the values of
log10 |x(i1,i2)|, for (i1, i2) ∈ E40+ , obtained by Krein’s method.
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Even though the numerical results are both acceptable, the algorithm based on the
projection method leads to more accurate results. In fact, as is evident in
Fig. 2, our implementation of Krein’s algorithm raises to a value close to the machine
precisioneps all the components ofx whose absolute values are smaller than or
equal toeps(roughly 10−16 in double precision). The reason for this is that thefast
Fourier transform(FFT), on which our implementation of Krein’s algorithm heavily
depends, does not distinguish between quantities whose difference does not exceed
the computer floating point precision in absolute value.

Fig. 1. log10 |x(i1,i2)|, projection method.

Fig. 2. log10 |x(i1,i2)|, Krein’s method.
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Fig. 3. log10 |(A−1)(i1,i2)|, projection method.

In general it may be impossible to simplify system (6.3) in order to reduce com-
plexity and memory storage, as in this example. So, even though less accurate,
Krein’s method might be the most convenient algorithm to deal with in a scalar
multi-index factorization problem.

Finally, Fig. 3, reporting the values of log10 |(A−1)(i1,i2)| for (i1, i2) ∈ E40+ , shows
that, as should be expected,A−1 decays exponentially. In this figure, the devia-
tion from radial symmetry along the vertical axis is a numerical effect, due to the
columnwise lexicographical ordering chosen.
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