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ABSTRACT

The abstract differential equation (Tf)' =-Af with "partial
range' boundary conditions is solved on a Hilbert space. T and A

are (possibly unbounded) self-adjoint operators, A 2 0 and semi-
Fredholm. Examples from kinetic theory are given.

. INTRODUCTION

In a recent paperl the partial range boundary value problem

§associated with the abstract kinetic equation

3 .
Y (Tf) = -Af

Q0 = o 0

1im [If(x)ll < @

b o

dwas studied on an abstract Hilbert space, under the assumption that A
is positive (possibly unbounded) self-adjoint and Fredholm, and T is

bounded self-adjoint and one-one. Here Q+ is the maximal positive pro-

‘jection associated with T. Such an abstract equation includes as special

: 155



156 GREENBERG AND VAN DER MEE

cases a number of one-dimensional problems in neutron transport,
electron transport, and radiative transfer. However, the bounded-
ness restriction on T explicitly excludes those one-dimensional
problems in gas kinetics for which explicit representations of
solutions are already known.

The present paper removes the boundedness restriction on T,
and existence and uniqueness of solutions to (1) will be proved.
The approach we utilize, from the theory of strongly continuous
linear semigroups, provides a rigorous framework for the method
of singular eigenfunctions introduced by K. M. Case2 to construct
solutions of transport equations. This approach was introduced
into neutron transport theory by R. Hangelbroek3 in 1973, and has
been extended to a wide range of abstract problems by R. Beals.11

The solution of the boundary value problem (1) we give here
follows closely the development in Ref. 1, and in some cases, the
reader is referred to that source for the proofs of preliminary
propositions which are quite similar. The notation in this paper
and the previous one is consistent.

For completeness, we give the

principle result of the earlier paper.

THEOREM 1.

If A is positive, self-adjoint, and Fredholm, and T is bounded

self-adjoint and one-one, then for @06Q+(HT), the boundary value problem

(1) has a (differentiable) solution which is unique if and only if
Ker A is positive definite with respect to the T-indefinite inner
product (defined in Eq. 12).
. . . -1 .
In Section II, we obtain a reduction of the operator T A which

mables us to restate the half-space problem. The existence of a

o
G
bt
b
*
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suitable signature operator provides T-lA with self-adjoint exten-—
sions. 1In the following section, these extensions are used to

construct the Larsen-Habetler albedo operator and obtain half-range
expansions. The existence and uniqueness theorems are stated in
Section IV.

Finally, in the last section, applications from kinetic

theory are presented.

IT. DEFINITIONS AND DECOMPOSITIONS

Throughout we consider a (possibly unbounded) self-adjoint
operator T with trivial kernel Ker T = {0} and a (possibly
unbounded) positive self-adjoint operator A with closed range Ran A
in an abstract Hilbert space H and with kernel Ker A of finite

dimension:

dim Ker A=n < = ,

(2)

Such a pair (T,A) is called a symmetric pair on H if the follow-
ing conditions are satisfied:

(1) D(T) N D(A) is dense in H. This assumption implies that
T_lA is a closable operator. Indeed, AT_1 densely defined
and extension (AT—l)* 2 T_lA imply that (AT-l)* is closed
and T-lA is closable,

0= T—lA be the closure of T-lA on H.

(ii) Let K Define the zero

root linear manifold ZO(KO) of KO by

Zo(Ry) = {£eD(K,) |£,eD(K,) and K'f =

0 0 for some neZ+},
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and similarly the zero root linear manifold ZO(B) for any

linear operator B. We assume that ZO(KO) D(T) and

n

if xeKer A with x¢Ran KO, then there exists ye¢

Ker A such that (x,Ty) #0. This is precisely the require-
ment that a maximal subspace of eigenvectors which are not
the image of generalized eigenvectors be non-degenerate

with respect to the indefinite inner product of Eq. (12).

LEMMA 1: T_lA is densely defined.

PROOF  The proof depends only upon the closedness of R = Ran A
and its finite co-dimension. Write D = D(T—l). If DN R is not
dense in R, then there exists qeR\?ﬁﬁR and a functional ZQR* such
that £(q) = 1, £(RnD) = {0}. But codim R < » and D ¢ H dense
imply that H = R@® N, N ¢ D. Extending { to H by setting
L) = {0} gives ZeH* and £(D) = {0}, Thus £ = 0, which is a

contradiction.

Ker K

LEMMA 2: 0

-1
= Ker A and ZO(KO) = ZO(T A).
PROOF  Assume xneD(T_lA) N (Ker A)* » x and T tA x sh > 0,
Then hnaD(TLhn+ 0 and A—lThn + X, where A_l is the bounded
x for

*
l) and

operator from Ran A into (Ker A)Y- defined by A-l(Ax) =

1

xe(Ker A)". But AT is closable, because a7l ¢ (TA”

TA-l is a densely defined operator from Ran A into H (cf. Lemma
1). Thus x = 0.

Similarly, if Ta = Ag for some aeKer A, then xnsD(T_lA)

H
¥

ABSTRACT BOUNDARY VALUE PROBLEMS 159

1

-1 . S |
N (Rer A)* > x and T Ax =g o imply Ax = Tg » since QO(T A)

< D(T), and thus g, a,A-ngn + x, Therefore, aeD(A-lT) and

~1 -
(A "T)a = A lTa = x = g, where we have used the fact that

Toe(Ker A)*. Note that if To = Ag has no solution g, then

Condition (ii) in the definition of a symmetric pair implies

Tog (Ker A)*, which is incompatible with aeD(A_lT).

We have defined the zero root linear manifold ZO(KO). In

a similar way we define the zero root linear manifold ZO(KO*)
%
0

characterization of ZO(KO).

but with K0 replaced by K The next lemma gives another

LEMMA 3: If fOsZO(KO), then there exists f ZO(KO) such that

lE

PROOF We remark that, by virtue of Lemma 2, ZO(K

o)

-1
= ZO(T A) € D(A). By Condition (ii) in the definition of a
symmetric pair, ZO(KO) < D(T). Now the lemma can be proved in

the same way as Lemma 1 of Ref. 1.

Lemma 3 implies that the length of a zero Jordan chain of
Ko cannot exceed 2, For special cases similar results were

found in Refs. 1 and 3. The next proposition relates ZO(KO)

*
and ZO(K0 ) and yields two useful decompositions of H.

PROPOSITION 1. One has
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* % 4
TZO(KO) = zO(K0 ), A{ZO(KO )y N D(a)?}

* L L
= T{zo(Ko Yy n ()} = zO(KO) s 3)

and the following decompositions hold true:

* 4
Zy(Ky) @ 2oy ) = E 3 (4a)
* 4
= . 4
Zo(Ky ) @ Z5(Kp) H (4b)
PROOF Let us first prove the identity
=z (KD (5)
TZO(KO) = zO(K0 .

- -1 *
If acKer A, then aeD(T),TaeD(AT l) and AT “To = KO To = 0.
1f T_lAg = ceKer A for some gsZo(Ko) = ZO(T_lA), then aeD(T),
Ag = Ta and g = A_lTa + al, where A_lTe(Ker A)* and aleKer A.

But geD(T), so Tg = TA ‘T + Tt and AT 'Tg

L

*
KyTg = Ta. There-

*
fore, TZO(KO) = ZO(KO Yo

* - -
Next assume feKer KO . Then (£f,T lAg) = 0 for all geD(T lA),

or (£, 'h*) = 0 for all h'eRan A N p(r™hy = (®er &Y N DT,

Then h™* » (f,T—lh*) is bounded on a manifold of finite co-dimension,
and thus on all of D(T—l). Since T.-1 is self-adjoint, feD(T-l)

and (T_lf,hL) = 0, Therefore T-lf = geKer A, or £ = Ta. We have

*
shown that Ker KO = T Ker A.

* * *
Assume KO £ = To,fe(Ker KO )¢ﬂ D(K0 ) and ceKer A. Then
1

* - - * - .
ToeRan Ko ¢ (Ker A)* = D(A l), so ATk *f = A7 Tqe (Rer A)%,

0
We claim T-lAg = 4o For if this is not the case,

ABSTRACT BOUNDARY VALUE PROBLEMS

Ta4Ran A = (Ker A, Thus TAan*Of = Tg, since Z;(K;)) < D(T).
-1 % * * * -
But TAT'K" = T on (Ker Kj)* N {£eD(Ky) Ky £eD(TA Ly, we
* -
"have shown KO feD(TA 1). Therefore, £ = Tg. Repeating this
* -
argument one shows that Ker(K0 )n = T Ker(T lA)n for all neZ+,
* *
and thus Ker(Ko )2 = ZO(K0 ) = TZO(KO), which establishes (5).
LS -1 -1
Next take erO(KO) n ZO(K0 )~ . Then xeD(T "A), T AerO(KO)
* A L N
. nd thus AxeTZO(KO) [= ZO(K0 ). But ero(K0 Y. So (Ax,X) 0,
‘which, by the positivity of A, implies xeKer A. However, we
* L AL s . .
also have vaO(K0 Y < (Ker KO ) = Ran KO. Condition (ii) in
he definition of a symmetric pair yields xeRan KO, and Lemma 2

- - *
ields x = T lAy for some yeD(T 1A). Because TyeZO(KO ), one gets
(Ay,y) = (Ix,y) = (x,Ty) = 0,

. % 1 .
. implying Tx = Ay = 0, Thus x = 0 and ZO(KO) n ZO(K0 ) = {0}.
* 1 *
Take ysZO(K0 yn ZO(KO) and zt—:ZO(K0 ). Then (5) implies
= Tx with ero(Ko) and z = Tu with ueZO(KO). So (x,2) = (x,Tu)
*
(Tx,u) = (y,u) = 0. Thus erO(KO) n ZO(K0 ) = {0} and y = Tx

0. Hence,
* * n
Zo(e) N 2o &y T = 2o &) N zgR* = {0}, (6)

»The remaining part of the proof is the same as the corresponding
part of Ref.l. The decompositions (4a)-(4b) follows from (5), (6)
- and a simple dimension argument.

7 let H

1 *
) = D(Aﬁ) n ZO(K0 )* be the Hilbert space with inner product

(), = (A5,A%) Q)

t

Now, modifying an idea originally introduced by Hangelbroek,4

161



162 GREENBERG AND VAN DER MEE

*

Note that (x,y)A = (Ax,y) for x,yeD(A) N ZO(K0 y < H,, and that
*

H, is continuously and densely embedded in ZO(K0 Y. We define

—A

K, = 71a @ 17la

ZO(KO)
to be the direct sum of two operators: (i) the restriction of
T-lA to ZO(KO), which is bounded; (ii) the closure in ( , )A-

- *
topology of the restriction of T 1A to ZO(K0 yt. Note that

-1

‘T A s K1 < KO R

with ZO(KO) in the domain of all three operators., Then Lemma
2 and 3 and Proposition 1 are also valid for Kl' Henceforth

we write T and A also for their restrictions on HA'

Obviously the operator T-lAIZ K *yL is symmetric with
00

respect to the inmer product (7) and K, is its second adjoint
with respect to (7). In general, it is quite difficult to

* - ST
find out whether KllZO(K ¥ is ( , )A self-adjoint or even if

it has a self-adjoint extension. However, if either T or A is

-— %
bounded, then K1 =T 1A is closed and its restriction to ZO(K0 )
is ( , )A—self-adjoint. The following lemma gives the existence

of self-adjoint extensions for the most interesting kinetic models.

LEMMA 4:

F2 = 1) such that FD(T) € D(T), FD(A) € D(A) and

*
Let F be a signature operator on H (i.e., F=F ,

FTx = -TFx, FAy = AFy; xeD(T), yeD(A) .
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Then K ¥+ has a ( , )A-self-adjoint extension K which

, 11z, )
satisfies

FD(K) ¢ D(K); FKz = -KFz, zeD(K) ¢ H, . (8)
PROOF

Certainly FHA < HA and F induces a ( , )A-signature oper-

~ ator on HA’ which has the following properties:

FD(T-lA) c D(T_lA); FT Az = —T'lAFz, zeD(T_lA) .

Hence, a similar property holds for the second ( , )A—adjoint

L of T_lA %1l , Let us denote the ( , ),-adjoint
A

1IZ (X ZO(KO )

*
00 )
of B by B+. Then the relations

+ + t + +
FD(K1 ) < D(K1 )s FK1 z —-Kl Fz, zED(Kl )
imply

F Ker(Kl* - 1) = Rer (Kl+ + 1),

and thus Kl has equal deficiency indices. Using the procedure

of Theorem X.2 of Ref, 6, one defines

oo
D(K) = {x + x, + Fx+|st(Kl), x+eKer(Kl - 1)} (9a)
K(x + x, + Fx+) = le + i(x+ - 1*"x.l_). (9b)

Then K * - *
IZO(KO )¢ is a self-adjoint extension of Kl|zo(KO )1 .
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A signature operator F on H that leaves invariant D(T) and D(A),  symmetric pair on H with Ker AB = {0} (which one easily checks),

and anticommutes with T and commutes with A, will be called an n

the operator T_]'AB is closable in H, . However,
B

inversion symmetry for the symmetric pair (T,A). It is easy to

%
prove that in this case dimZO(K) = 2m = even and the spectra of D(AB) = D(a) = {D(a) N ZO(K0 fﬂ'@ ZO(KO)

T and K are real and symmetric with respect to A = 0 (cf. Refs.

3 and 7; the dimensional statement will be proved at the end of and dim ZO(KO) < ®. Thus HA does not depend on the particular

8
choice of B and so we suppress B and write HA. (Note that the

‘this section.),

As in Ref. 1 define a matrix operator 8 on ZO(KO) and a new HA equals HAGB zo(Ko))‘ The minimal closure of AélT in
-1

. % _
positive operator A HA is K @ B. If on ZO(K0 )L the operator T lA has a ( , )A—

to reduce the half-space problem to one

B

where Ker A = {0}. . ) -1 ) )
self-adjoint extension K, then K ~ & B will be a self-adjoint

extension of A _lT.

PROPOSITION 2. Let (T,A) be a symmetric pair and let P B

*
denote the projection of H onto ZO(KO )L along ZO(KO). For

LEMMA 4: The subspace ZO(KO) is a Pontryagin space8 with respect
some invertible operator 8 on the finite-dimensional space

to the indefinite inner product
ZO(KO) put .

-1 [Ll,V] = (TU,V). (12)
AB=AP+T6 (I -9 . (10)

If M is a complement of KO{ZO(KO)} in ZO(KO) and N, is a maximal
Then the operator A_ is densily defined with bounded inverse and -

B positive/negative subspace of M with respect to (12), then

-1 -1
Ay T =8 Q(T Al

K. {2 (K.)} ®& N, is a maximal positive/negative subspace of Z_(K.)

#a)7 (11) 000 : 0o

ZO(KO ) and there exists a maximal negative/positive subspace M_ of
I

1 ZO(KO) orthogonal to KO{ZO(KO)} ® N, such that

One may choose Bin such a way that (TB "x,x) > 0 for all erO(KO), B

in which case AB will be a positive operator.
KO{ZO(KO)}EB N, ® M; = ZO(KO) .

The proof of this proposition is the same as the one of Proposi-

tion 2 of Ref. 1. Whenever (TB-lx,x) > 0 for all erO(KO), we

. This lemma can be proved in the same way as Lemma 2 of Ref, 1.
define a Hilbert space HA and its inner product (.,.)

8 Ag

= (AB.,.) in analogy with HA and (.,.)

As in Ref. 1 we may derive the following: in order that there
A Because (T,AB) is a
¥ exists a unique maximal positive subspace M+ such that KO{ZO(KO)}
%

i
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< F&;;Ker K, = Ker A, it is necessary and sufficient that Ker A

0

is definite (i.e., either positive or negative) with respect
-1

to (12). 1If all zero eigenvectors of Ko(or T “A; see Lemma 2)

are the image under KO (or T-lA) of a generalized eigenvector,

then Ker KO = Ker A is neutral (i.e., consists of zero norm

vectors only) and M+ is uniquely specified. 1In fact, in this

case M_ = Ker K, = KO{ZO(KO)}.

0

In case the symmetric pair (T,A) has an inversion symmetry

F, one obviously has

F Ker A = Ker A, FZO(KO) = ZO(KO) . (13)

Then

(u,v)p = (Fu,v) (14)

is another indefinite inmer product on ZO(KO) in which

1 1

iT_1A|Z (x.y is self-adjoint. (Note that FT ~Ax = -T ~AFx for
00 .
erO(KO)). The subspace Z.~

0

vectors in ZO(KO) is strictly positive/negative with respect to

= {XEZO(KO)|FX = +x} of even/odd

(14) and for x+eZOi one has

(xpox )p = (Fx,x ) = (x,Fx ) .

+
As in =% x,, one gets (x+,x_)F = 0, and thus Zo' are orthogonal

in (14) with ZO+€B ZO_ = ZO(KO). (For the latter we note that

1 1
7(1 + F) + E(I -F)

I). Let us make the connection of (12)

+
and (14)., As T and F anticommute, the subspaces ZO‘ satisfy

;7 HA S H densely. In analogy with Qt’ we define Pi to be the ( , )A -

ABSTRACT BOUNDARY VALUE PROBLEMS

+
[X,X] =0, XEZO— .

Hence, the dimension m, of a maximal [ , ]-positive/negative

subspace of ZO(KO) equals or exceeds max{dimZ +, dimZo-}. But

o -
m +m = dim Z0 + dim Z0 = dim ZO(KO) < w,
= = = i + = - =
Hence, m = m =m_ dim ZO dim ZO and dim ZO(KO) 2m even.

For symmetric pairs (T,A) for which T is bounded and I-A is com—~

‘. pact this has been observed before in Ref. 3. The presence

of the inversion symmetry F implies that Ker A is definite in

(12) if and only if every zero eigenvector of T—lA is the image under

T_lA of a generalized eigenvector.

III. HALF-RANGE EXPANSIONS

Throughout Sections III to V we assume that T-lAl * has

2o (K
a( , )A— self-adjoint extension K which we extend linearly to HA
by putting Kx = T—le for erO(KO). This assumption is satisfied
if (T,A) has an inversion symmetry F (cf. Lemma 4) or if either T
or A is bounded. In the latter case one simply takes K = T_lA. We
define Q+ to be the H-orthogonal projections of H onto the maximal
T-invariant subspace on which T is positive/negative. We already
defined the ( , )A -inner product on HA8 and took the decision to

suppress B8 in HA (because this space does not depend on 8); then
B

. B8
orthogonal projections of HA onto the maximal KB-invariant subspace

on which

~ _ . -1
K, = Be(KlZO(KS) ) (15)

167
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is ( , )A -selfadjoint.
8

Let us introduce two additional inner products; namely

&) = (Tlx,y),  (x,yeD(D) (16)
~with the completion of D(T) denoted HT’ and
g (Rglxayyy o (x,7eD(K,)) an
with the completion of D(ﬁs) denoted HKS. We remark that
DR, = 25(Ky) & {D(X) n ENCOW! (18)

(cf. (15)), and thus D(ﬁB) does not depend on B. Also (x,y)A
x B
= (Ax,y) for x,yeD(A) n ZO(Kg) . Therefore, all norms (17) are
equivalent on the set (18) and henceforth we shall suppress g in
HK and write H_.
8 K
One of the main differences with the case when T is bounded

is that H is not '"naturally" embedded in H However, the set

T

1
D([T[é) is complete with respect to the graph inner product

g = Gy + (1% 115, Goyen(|T®)

(note that I'I‘|1/2 is closed) and densely embedded in both H and HT'

The domains D(T) and D(lT|%) are invariant under Q, and Q_ is orthogonal
with respect to (, %Hf In a straightforward way one shows that Qt
extends to an orthogonal projection with respect to (16) alsog. In an

1/ .
analogous way one shows that the set D(IKB|2), which is a complete

Hilbert space with respect to the graph inner product

then Ef will be the corresponding total flux.

e R

ABSTRACT BQUNDARY VALUE PROBLEMS

1
%

~ A ) ~ L
®W g = Gy, + (K| x,lel/zy)Aé x,yeD([Rg ™)
B

B

is densely embedded in both HA and HK’ while Pt extends to a ( , )K -

B
H,.

orthogonal projection on H, Finally, the identity Ker P = ZO(KO)
€ D(A) n D(T) allows us to extend continuously the projection P of H
<

*

onto ZO(K0

and HK.

10
Let us introduce the Larsen-Habetler albedo operator E.

along ZO(KO) to bounded projections on the spaces HA

In both cases, Ker P = ZO(KO).

This
operator is defined by the conditions that, for all £eD(T),
(1) Q.EQ f = QEf;
i < + (19)
(ii) P;EQif =0 .

In transport theory terminology, these conditions imply that if

feRan Q+ is an incoming flux for a right half-space problem, then
Ef will be the corresponding total (incoming plus reflected) flux,
and if feRan Q_ is an incoming flux for a left half-space problem,

In this way E will

" depend on the particular self-adjoint extension K, contrary to the

case when T is bounded or A is bounded, because in these cases

K= T-lA is uniquely specified by T and A.

To derive an explicit representation for E:H_, - HK’ we establish

T
first the intertwining relation

P E = EQ

+

on HT' We have

P,E = P,E(Q, + Q) = PEQ, = EQ, ,

169
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where we have used Egqs. (19). Now by (19) again,

whence, by adding the % equations,

= . 2
Q+P+EQ+ + Q_P_EQ_ (Q+P+ + Q_P_)E I (20)

PROPOSITION 3. There exists a unique albedo operator E:HT +-HK that
is bounded, injective and satisfies the conditions (19). Further,

E acts as a bounded operator from HT into HT.

PROOF. On HA we define the Hangelbroek operators

= H = P + P:H - H.
v QP, *+QP_:H ~H W QP_+QF:H
(21)
. 11 .
Following an argument of Beals we compute that, for £ eHA, if
the terms on the left hand side are both finite, then
HVfllz - HWfilz = {(TP £,Q P £) - (TP £,Q P £)}
T T + 7+ =T
- {(tp_£,qp ) - (TP £,Q P D)} (22)
e (TP £, ) - (TP ERE) = (K |E,D), = el 2
+ 0 It Al B ,A KB

Let us prove that E extends to a bounded operator from HT

12

into HT. A straightforward calculation shows that, for £ EHA,

(Q+— Q_)(P+— P)f = VE-W = (2v - Df , (23)

ABSTRACT BOUNDARY VALUE PROBLEMS 171

and therefore, for ¢ EHA nD(T),

((2v - DE, D), = (tlq,- @) - P)EH =

-1 -1
= Ry -PIED, = (KD, =
B8 8
2
= el -
KB (24)
This implies the following identity:
ave ey = NEll 2+ lell2, fen an(m
My T Ky’ A ’ (25)

Introduce the semi-bounded quadratic form

q(f,g) = 2(Vf,g)T »  fgeHn D(T) (26)

on the Hilbert space HT. Note that q can be extended to a closed form

with domain D(q) = HTerK, and HAn D(T) 1is a form core for q. Now q
is the quadratic form of a unique self-adjoint operator whose domain

D satisfies

HAODG)QDSHTnHKgHT.

Hence V extends to a unique self-adjoint operator on HT (with domain

D), and moreover,

2
2v6,6) . 2 |IEll . feD. (27)

From this we find V to have trivial kernel and dense range in H_.
T

Putting E on the manifold DO(E) as

DO(E) = VD ¢ HT . E(VE) = feD,
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E extends to a bounded operator on HT.
Since V(HAer(T)) is dense in HT, we may consider E as a

densely defined operator on Dl(E):

= VE) = feH D(T) .
D, (E) {Vf|f€HAn D(T)}, E(VE) eH, nD(T)
From Eq. (22) it follows that
2 2
”EgllK < ”8]|T s geD(E) ¢ o (28)

B

which establishes the existence of E as a bounded operator from HT
into H_.

K

For arbitrary T and bounded injective A the invertibility of
the Hangelbroek operator V from HK into HT and the equivalence of

11
the ( , ) inner products on D(A) N D(T) were proved

K
B

. ~1
by Beals, after which he could simply put E = V

and ( , )T

Subsequently
these results were generalized to the case when T is bounded and A
may be unbounded with non-trivial kernel (see Refs. 1 and 13),
but as in the present article the proof of the boundedness of V
(rather than E = V~1) can not be obtained. For a discussion of the
implications of the boundedness of V we refer to Lemma 3 in Ref. 1.
Earlier, HangelbroekA proved the invertibility of V as an
operator from H into H for neutron transport with isotropic (and
In that work I-A

later also anisotropic) scattering kernels.

was assumed compact. Under the conditions that I-A 1is compact

a 3
and Ran (I-A) < Ran [T| for 0<0<l, van der Mee proved the
. e sqs -1 . . . .
invertibility of V and of TVT on H, which in that case implies

Beals' result on HT.

sl AT R R S

ABSTRACT BOUNDARY VALUE PROBLEMS 173

IV, EXISTENCE AND UNIQUENESS THEORY FOR HALF SPACE PROBLEMS

To solve the half-space problem, one seeks a solution of Eq.

L, f:[O,m)->HK, subject to

Q£(0) = £, € RanQ (29a)

Lim sup “f(x)llfinite .

X > ©

(29b)

Because the albedo operator E acts from HT into HK’ a state-
ment of this type is required. Below, we give a more precise state-

ment of the problem.

The decomposition of H into reducing subspaces of K, Proposition
1, decouples the half-space problem, into a half-space problem on PH

(with a different f+) and a finite-dimensional first order system on

(I - P)H. However, the use of a suitable operator A, makes it

B
possible to extend the half-space problem on PH to one on H of a

simpler structure than the original problem, the simplicity

- stemming from the injectivity of AB' The main difficulty of the

newly obtained half-space problem is that the albedo operator E
acts from HT into HK and might not act from H into H. For this

reason we state the following weakened version of the half-space

problem:

Given f+€RanQ+, construct a continuous function ¢:[0,») + HK’

with both KP$ and (I-P)¢ differentiable on (0,»), such that

d

I KBo = -P¢ (on P Hy) (30a)
L (1 -py =1t

dx ¢ = -T "A¢ (on 2, (K1) (30b)
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¢(0)5HT and Q+¢(0) = f+ (30c)
2o () || g = 0C1), [[(T-P)o ()| = 0(1) () . (30d)

We did not make use of g in this statement of the half-space problem.
In (30d) it is immaterial which B one applies in the KB-norm.

The decompositions of HK into reducing subspaces of K, Proposition
1 extended to HK’ decouples the weak half-space problem (30) into an
infinite dimensional evolution equation on PHK (namely, (30a) with
initial value PEf+) and a finite-dimensional first order system on
(I - P)HK = ZO(KO). On PHK, the weak half-space problem is equivalent

to the semigroup problem
9 = —Ad :
'a_x Tp = -Ad 3
¢(0) = PEf_ ;
oGl = 0L o)

which has a unique solution once ¢(0) = PEf+ is specified uniquely.

The albedo operator E satisfies conditions (19). bn (I - P)HK==ZO(K0),
boundedness at infinity requires that (I - P)Ef+_eKer A, after which
the solution on ZO(KO) can be written as a constant; more precisely,

(I -P)o(x) = e—XT—lA(I - P)Ef, = (I - P)EE, .
+ +

THEOREM 2. For every f+€Q+(HT), the half-space problem has a unique

(differentiable) solution if and only if Ker A is

ABSTRACT BOUNDARY VALUE PROBLEMS 175

positive definite with respect to the indefinite inner product (12).
This will be the case if each A = 0 eigenvector of K has a corresponding
generalized eigenvector. If Ker A is not positive definite; there exist

non-trivial solutions with incoming flux f+ = 0 (non-uniqueness). On
PH, lim llp (=) g =0
Koo

The theorem follows immediately from standard semigroup theory,
assuming the construction of E (which dependes on B) gives a unique
albedo operator E. We observe that PE:HT - PHK is independent of the
choice of B. The reasoning involving the uniqueness or non-uniqueness
of the construction of E is precisely the same as in Ref. 1. As in

Ref. 1 we may derive the following measure of non-uniqueness:

§ = dim [Ran PP+ @ Ran Q_] n Ker A,

which is the dimension of the maximal strictly negative subspace of

Ker A with respect to the indefinite inner product (12).

V. APPLICATIONS

This section contains several physical models leading to an
equation of the form (1), which were not contained in Ref. 1. How-
ever, all models in Ref. 1 could be added here as applications.

All of them (the present ones and those in Ref. 1) involve a time-
independent one-dimensional transport problem in a semi-infinite
medium with spatial variable xe(0,»). For all these models we
shall specify the Hilbert space H, the operators T and A, whether
or not (T,A) is a symmetric pair on H, and the structure of the
zero root linear manifold ZO(KO). All models will involve an

unbounded operator T.
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14,15,16,17
1. SCALAR BGK EQUATION

of - 1[ 2o .
iy (x,n) = f()f,u) + /TT,[_“, f(x,v)e = dv, < p <o,

In this case we take H = Lz(—w,u’)6 with & the measure on (—=,®)

L o2
with Radon-Nikodym derivative d§/duy = n e " . We define A and T by
1 ® -2 _
(Af) (u) = £(u) - Vi f(v)e ~ dv, (Tf)(w) = uf(w) .

Then T is unbounded self-adjoint, A bounded positive and I - A

compact. Further,

I

Ker A = span{l}, ZO(KO) = span{1l,u} < D(T) (31)

The map (F£f)(p) f(-u) is an inversion symmetry of the symmetric
pair (T,A). As the assumption (2) is fulfilled, the half-space
problem can be solved and has a unique solution (cf. (31)).

2. BGK EQUATION FOR HEAT TRANSFER'>: 18,19

5 2 1 2 1.
3 [fl] - _[fl(x’“)] L1 J 1+§(u2 ~—2-)(v?~%) g(u2 -2 W e_v2
T e

fz(x,u) %(V2 - %) —:23‘ fz(x,v)

(= < y < =)

1 2
We take H = LZ(—m,m)G® LZ(—w,w)G with dé/dp == %™ and define

A and T by

- 2 1 1,2 1
[(Af)l (u)] i} [ £,(0) ]_L I L+ 302 - -9 362 =P £, oV
@o, wl Lew ] 7 .- 22 - 2 £,
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(T, () = wfi, (W) =1, 2) ,

where f is the column vector with entries f1 and f2‘ Then T is

unbounded, self-adjoint, A bounded positive, I - A compact and

1 u2
KerA=span[],

0 1

NENENN
Z(K)= an > ) ’
00 Sp 0 [0 [l [u

The map (Ff), (w) =

(32)

fi(—u) (i = 1,2;f = (fl,fz)) is an inversion
symmetry of the inversion symmetric pair (T,A). As (2) is ful-
filled, the half-space problem can be solved and has a unique
solution (ef. (32)).

3. NEUTRON TRANSPORT WITH ANGULARLY DEPENDENT CROSS—SECTIONSl’ZO’21

of 1 (M
N g(x,u) = —T(w)f(x,w) +-2—J I (@) f(x,u")du', -1 s pus1., (33)
-1 8

We assume that £ and ):s are measurable and I 2 Es 2 ¢ > 0. Now
premultiply Eq. (33) by Zs(u) and consider the new equation on

1
H= Lz[-l,-l-l]. Assume that J Zs(u)zdu < o, Put

-1

1t
Zs(u) {Z(u)f(u)-5{_1ls(u')f(u')du’} ’

(af) (w)

(T£) (0)

qu(u)f(u) .

Then T is self-adjoint, A is self-adjoint with closed range.



178 GREENBERG AND VAN DER MEE

Schwarz's inequality implies that

1 +1 1 +1 +1 +1
E{ J_l Zsfdu]z < §-J_lz§1f]2du . J_l dus< J_l zsz{f|2du

and therefore A is positive. Note that T (resp. A) is bounded if

and only if ZS (resp. £ ) is bounded. As ZSELZ[—l,l], it is clear

that
D(A) = {f[ZSZfeLZ[—l,l]}, (T) = {quESfeLZ[—l,I]}.

Thus D(A) n D(T) is dense in Lz[-l,l].
In the same way as in Ref. 1 (Ch. VI, Appl. 6) we compute the

zero root linear manifold. We find that Ker A # {0} if and omnly

if Z(u) = Zs(p) almost everywhere, in which case

+1

-1
span{z=!, uI(w -2} ifI uZ(w) dp =0 ;

ZO(KO) =
+1
. pr(w~lap # 0 .

span{Z~1} = Ker A 1_fJ

We observe that ZO(KO) € D(T) and Eq. (2) is satisfied. Note that
[2_1,2_1] = fil uZ(u)_ldu. Thus Ker A is positive definite if the
integral is non-negative, and strictly negative otherwise.

Now let us calculate the deficiency subspaces of T—lA. If
0 # feKer(T—lAZFi), then

+1
() 7 1 Ew) =%J RENCH L LIRS (34)

£+

1
and thus [ fs(u')f(u')du' # 0. Thus £(u) = a(Z(p) iu)-i a#0,

]
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which certainly is an Lz—function. By substitution into (34) one

gets

+1 I () +1Z5(Z-T )+u?
0=1-1| S —au-%| 5
2 J_p T(uwEip 2 J-1Z(u)%+u

+1 uES(u)
. —s " 4
H [—1 T(uy2 +p 77
which cannot possibly hold true. (Note that E(Z-ZS) + p220). Thus
Ker(T_lA:;i) = {0}. An easy calculation gives the invertiblity of

TR

In fact,
e g - G
where

+1
(Note that ¢ is a bounded functional, because J 1(22+u2)'1u222du

< «,) Hence, T-}A is essentially self-adjoint in ( , )A'
All information considered, we may conclude that (T,A) is a
symmetric pair on Lz[—l,ll and the half-space problem has a unique

. . 1 -1 .
solution if and only if f_luZ(u) du > 0. Otherwise the measure of

non-uniqueness § = 1.
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