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CANONICAL FACTORIZATION OF CONTINUOUS FUNCTIONS
ON THE d-TORUS

TORSTEN EHRHARDT AND CORNELIS V. M. VAN DER MEE

(Communicated by Joseph A. Ball)

Abstract. In this article we study the canonical factorization of continuous
complex-valued functions on the d-dimensional torus belonging to a weighted
Wiener algebra with respect to a linear order on the d-tuples of integers. It
is proved that a function has a canonical factorization in this algebra if and

only if it has a logarithm belonging to this algebra. A second characterization
is given in terms of winding numbers. Moreover, the maximal ideal spaces of
the relevant Banach algebras are identified.

1. Introduction

Let T denote the unit disk in the complex plane C, Td the d-dimensional torus,
Z the set of all integers and Zd the d-dimensional integer lattice. Consider a weight
β = {βi}i∈Zd satisfying the condition 1 ≤ βi+j ≤ βiβj for all i, j ∈ Zd. A complex-
valued function a on Td is said to be in the β-weighted Wiener class Wd

β if it can
be represented in the form

a(z) =
∑

i=(i1,... ,id)∈Zd
aiz

i1
1 · · · z

id
d , z = (z1, . . . , zd) ∈ Td,(1.1)

where

‖a‖Wdβ :=
∑
i∈Zd

βi|ai| <∞.(1.2)

Then Wd
β is a commutative Banach algebra. If βi ≡ 1 , then we will write Wd for

brevity.
Let � be a linear order on Zd such that Zd becomes an ordered group [18] (i.e.,

i + l � j + l whenever i � j and i, j, l ∈ Zd). By a canonical factorization of a in
Wd
β (with respect to �) we mean a factorization of a ∈Wd

β of the type

a(z) = a−(z)a+(z), z ∈ Td,(1.3)

where a± and 1/a± belong to the closed subalgebra

Wd,±
β =

{
c ∈Wd

β : ci = 0 for all (±i) ≺ 0
}
.(1.4)
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Remark that the factors in a canonical factorization are uniquely determined up to
a nonzero multiplicative constant.

The maximal ideal space of Wd
β ⊆Wd can be shown to be homeomorphic to the

non-empty, compact set

Ωβ =

{
z = (z1, . . . , zd) ∈ Cd : sup

i=(i1,... ,id)∈Zd

|z1|i1 · · · |zd|id
βi

<∞
}
.(1.5)

In fact, the Gelfand transform of a ∈Wd
β is given by the continuous function

â(z) =
∑

i=(i1,...,id)∈Zd
aiz

i1
1 · · · zidd , z = (z1, . . . , zd) ∈ Ωβ.(1.6)

Remark that â(z) = a(z) for z ∈ Td. The maximal ideal space of Wd is equal to
the torus Td.

Canonical factorizations have been studied for d = 1 since the seminal paper
of Krein [14]. The necessary and sufficient condition for a to have a canonical
factorization in W1

β (derived in [14] for βi ≡ 1) is that â(z) 6= 0 for z ∈ Ωβ and
the contour {a(z) : z ∈ T} has winding number zero with respect to the origin. An
equivalent way of expressing this necessary and sufficient condition is to state that
a = exp(b) :=

∑∞
n=0(bn/n!) for some b ∈ W1

β. For d = 1, the maximal ideal space
of W1

β coincides with the annulus {z ∈ T : r− ≤ |z| ≤ r+}, where (r±)±1 is the

limit of β1/i
±i as i → ∞ [6, 7]. Factorizations of positive definite functions in W2

have been studied in [9]. In [19], the closely related problem of giving conditions
under which a Toeplitz operator defined on `p(M), where M is a cone in Zd, is a
Fredholm operator, has been studied without taking into account weights. Some
partial results of this type can also be found in [2]. In this article we generalize the
conditions for the canonical factorization in Banach algebras of functions on the
circle to multi-index weighted Wiener algebras, i.e., to the case d ≥ 2 and βi 6≡ 1.

2. The main result and corollaries

Let a be a continuous complex-valued function on the torus Td such that a(t) 6= 0
for all t ∈ Td. For s = 1, . . . , d, the winding number winds(a) is defined as the
winding number of the contour {a(z1, . . . , zs−1, t, zs+1, . . . , zd) : t ∈ T} with respect
to the origin. Note that this definition does not depend on the particular choice of
(z1, . . . , zs−1, zs+1, . . . , zd) ∈ Td−1.

The main result of this article is the following theorem.

Theorem 2.1. Let β = {βi}i∈Zd be a weight satisfying 1 ≤ βi+j ≤ βiβj (i, j ∈ Zd)
and � a linear order on Zd such that Zd becomes an ordered group. Suppose a ∈Wd

β.
Then the following three statements are equivalent:

(a) a has a canonical factorization in Wd
β with respect to �;

(b) a can be written in the form a = exp(b) for some b ∈Wd
β;

(c) â(z) 6= 0 for all z ∈ Ωβ and winds(a) = 0 for all s = 1, . . . , d.

Statements (b) and (c) do not depend on the underlying linear order. Hence the
existence of the canonical factorization in Wd

β is independent of the linear order.
From the proof of the implication (b) ⇒ (a) given below it will become clear
that the factors a±, which depend on the linear order, can be defined explicitly.
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A sufficient, but not necessary, condition for statement (b) is that log(z) can be
defined continuously on the set {â(z) : z ∈ Ωβ}.

Let us continue with the proof of the trivial implications (b)⇒ (a) and (b)⇒ (c).

Proof of the implication (b)⇒ (a). Assume a = exp(b) for some b ∈ Wd
β, and let

b(z) =
∑
i∈Zd biz

i for z ∈ Td. Then

a(z) = exp(b−(z)) exp(b+(z)), z ∈ Td,(2.1)

where b±(z) =
∑

i∈Zd c
(±)
i zi for z ∈ Td with c

(±)
0 = 1

2b0, c(±)
i = bi if (±i) � 0 and

c
(±)
i = 0 if (±i) ≺ 0, is a canonical factorization of a in Wd

β.

Proof of the implication (b)⇒ (c). Assume that a = exp(b) for b ∈ Wd
β. Then

a(z) 6= 0 for z ∈ Ωβ. For s = 1, . . . , d and any fixed z1, . . . , zs−1, zs+1, . . . , zd ∈ T,
the function as(t) := a(z1, . . . , zs−1, t, zs+1, . . . , zd), t ∈ T, is the exponential of the
function bs(t) := b(z1, . . . , zs−1, t, zs+1, . . . , zd), t ∈ T. Hence winds(a) = 0.

The proof of the implication (c) ⇒ (b) will be given Section 3. For the impli-
cation (a) ⇒ (b) we will give two proofs, one in Section 4 and another in Section
5.

In the following corollary, we answer the question whether (under the obviously
necessary condition) the existence of a factorization in Wd implies the existence of
a factorization inWd

β. It was already established in [15] (and in [8] for more specific
weights) under the additional assumption that log(z) can be defined continuously
on the set {â(z) : z ∈ Ωβ}.

Corollary 2.2. Let β = {βi}i∈Zd be a weight satisfying 1 ≤ βi+j ≤ βiβj (i, j ∈ Zd)
and � a linear order of Zd such that Zd becomes an ordered group. Suppose a ∈Wd

β

and â(z) 6= 0 for all z ∈ Ωβ. Then if a has a canonical factorization in Wd, the
factors a± and 1/a± belong to Wd,±

β .

For the proof it suffices to note that due to the assumption â(z) 6= 0 for all z ∈ Ω,
condition (c) in Theorem 2.1 reduces to the winding number condition, which does
not depend on the underlying weight.

Another corollary, which appears for βi ≡ 1 in [19], is the following. It deals
with the existence of factorizations which are not necessarily canonical.

Corollary 2.3. Let β = {βi}i∈Zd be a weight satisfying 1 ≤ βi+j ≤ βiβj (i, j ∈ Zd)
and � a linear order of Zd such that Zd becomes an ordered group. Suppose a ∈Wd

β

and â(z) 6= 0 for z ∈ Ωβ. Then a allows the representation

a(z) = a−(z)zκa+(z), z ∈ Td,(2.2)

where a± and 1/a± belong to Wd,±
β , zκ = zκ1

1 · · · z
κd
d , and κs = winds(a).

In order to prove Corollary 2.3, it suffices to apply the implication (c)⇒ (a) of
Theorem 2.1 to the function b defined by b(z) = z−κa(z), z ∈ Td.

In what follows, it will be more convenient not to work with the Banach algebras
Wd
β and Wd,±

β of functions, but with Banach algebras consisting of the correspond-
ing sequences of Fourier coefficients. We also prefer to give the following definitions
in the somewhat wider framework of arbitrary additive groups.

Let N be an additive group. An admissible weight β on N is a sequence β =
{βi}i∈N of positive real numbers for which 1 ≤ βi+j ≤ βiβj for all i, j ∈ N . Let
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WN
β denote the Banach algebra of all sequences a = {ai}i∈N of complex numbers

for which at most countably many terms are nonzero and

‖a‖WN
β

:=
∑
i∈N

βi|ai| <∞,(2.3)

where the multiplication is defined as the convolution of two sequences.
If, in addition, N is an ordered group with respect to �, then denote by

N± = {i ∈ N : (±i) � 0}(2.4)

the semi-groups of all non-negative (resp. non-positive) elements. The Banach
algebras WN±

β are the sets of all sequences a = {ai}i∈N± for which

‖a‖WN±
β

:=
∑
i∈N±

βi|ai| <∞,(2.5)

where the multiplication is again defined as convolution.

3. The maximal ideal space of WN
β for N = Zd

We start with some convex analysis (see, e.g., [12]). A subadditive function on
an additive group N is a function f : N → R such that f(x+ y) ≤ f(x) + f(y) for
all x, y ∈ N . A sublinear function on Rd is a function F : Rd → R ∪ {+∞} which
satisfies the following conditions:

(i) F (0) = 0;
(ii) F (x+ y) ≤ F (x) + F (y) for all x, y ∈ Rd;
(iii) F (λx) = λF (x) for all x ∈ Rd and λ > 0.

A sublinear function F taking values only in R will be called finite. Finite sublinear
functions are convex and hence continuous.

Proposition 3.1. Let f : Zd → R be a subadditive function. Then there exists a
(unique) finite sublinear function F : Rd → R such that

F (i) = lim
n→∞

f(ni)
n

for all i ∈ Zd.(3.1)

Proof. For fixed i ∈ Zd, the function fi : Z → R, n 7→ f(ni), is subadditive on
Z. From [11, Chap. V] it follows that the limit (3.1) exists. Hence F is (uniquely)
defined on Zd. Note that F (0) = 0, and F (ni) = nF (i) for all i ∈ Zd and n ∈ N.

Next we extend F to Qd as follows. For each x ∈ Qd there exist q ∈ Q+ and
i ∈ Zd such that x = qi. We define F (x) = qF (i). This definition is correct since
it does not depend on the particular choice of q and i. Indeed, assume i1, i2 ∈ Zd
and q1, q2 ∈ Q+ such that i1q1 = i2q2. Write q1/q2 = n1/n2 with n1, n2 ∈ N.
Then n1F (i1) = F (n1i1) = F (n2i2) = n2F (i2) and hence q1F (i1) = q2F (i2). Thus
there exists a unique function F : Qd → R satisfying (3.1) and the condition that
F (qi) = qF (i) for all q ∈ Q+ and i ∈ Zd.

We claim that F is subadditive on Qd. Indeed, let x, y ∈ Qd and choose q ∈ Q+

such that both i = q−1x and j = q−1y belong to Zd. Then f(ni+nj) ≤ f(ni)+f(nj)
implies F (i + j) ≤ F (i) + F (j). Thus F (x+ y) ≤ F (x) + F (y).



CANONICAL FACTORIZATION OF CONTINUOUS FUNCTIONS 805

Let e1, . . . , ed be the canonical unit vectors in Rd and put e−s = −es. Write
x ∈ Qd as x =

∑d
s=1 |xs|esign(xs)s. The subadditivity and homogeneity of F imply

F (x) ≤
d∑
s=1

|xs|F (esign(s)s) ≤ CF ‖x‖,(3.2)

where CF > 0 is a constant depending only on F but not on x. Let x, y ∈ Qd.
Then, again by subadditivity, we obtain −F (y−x) ≤ F (x)−F (y) ≤ F (x−y). Thus
|F (x)−F (y)| ≤ CF ‖x− y‖. Hence F can be (uniquely) continued by continuity to
a function on all of Rd which is finite sublinear.

A convex body is a non-empty, compact and convex subset of Rd. There exists a
one-to-one correspondence between convex bodies of Rd and finite sublinear func-
tions on Rd. In fact, given a convex body K, the finite sublinear function of support
K is defined by

F (x) = max
y∈K
〈x, y〉.(3.3)

Conversely, given a finite sublinear function F on Rd, the corresponding convex
body can be recovered by

K =
{
y ∈ Rd : 〈x, y〉 ≤ F (x) for all x ∈ Rd

}
.(3.4)

Proposition 3.2. Let β = {βi}i∈Zd be an admissible weight. Then

Kβ =
{
y ∈ Rd : sup

i∈Zd
(〈i, y〉 − log(βi)) <∞

}
(3.5)

is a convex body with a supporting function F for which F (i) = lim
n→∞

log(βni)
n , i ∈ Zd.

Proof. The function f(i) = log(βi) is subadditive. By Proposition 3.1 there exists
a unique finite sublinear function F for which the above limit relation holds. It
suffices to show that Kβ coincides with K defined in (3.4).

Since log(βni)/n ≤ log(βi) by subadditivity, it follows that F (i) ≤ log(βi). Hence
K ⊆ Kβ. Conversely, if y ∈ Kβ, then 〈i, y〉 ≤ log(βi)+M for all i ∈ Zd for a certain
constant M . Now replace i by ni, divide by n and pass to the limit as n → ∞.
It follows that 〈i, y〉 ≤ F (i) for all i ∈ Zd. Since F is finite sublinear, we obtain
〈x, y〉 ≤ F (x) for all x ∈ Rd. Thus y ∈ K.

We proceed with a description of Ωβ, which was defined in (1.5), in terms of Kβ.

Corollary 3.3. Let β = {βi}i∈Zd be an admissible weight. Then Ωβ is homeomor-
phic to Td ×Kβ:

Ωβ = {(t1ex1, . . . , tde
xd) : t1, . . . , td ∈ T, (x1, . . . , xd) ∈ Kβ} .(3.6)

In particular, Ωβ is a non-empty, compact subset of (C \ {0})d.

The identification of Ωβ with the maximal ideal space of WN
β , N = Zd, is

provided by the following theorem. For i ∈ N define the element ei = {δij}j∈N ∈
WN
β where δij is Kronecker’s symbol.
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Theorem 3.4. The maximal ideal space of WN
β , N = Zd, is homeomorphic to Ωβ

endowed with the topology induced by Cd. In fact, given z ∈ Ωβ, the corresponding
multiplicative linear functional Tz is given by

Tz : a = {ai}i∈N 7→
∑
i∈N

aiz
i, zi = zi11 · · · z

id
d .(3.7)

Proof. Since the linear span of {ei}i∈N is dense in WN
β , there exists a one-to-

one correspondence between maximal ideals of WN
β and sequences h = {hi}i∈N

satisfying h0 = 1, hi+j = hihj and supi∈N |hi|/βi < ∞. The multiplicative linear
functional corresponding to h is given by a 7→

∑
i∈N aihi. Note that hi 6= 0 for

all i ∈ N . Write i ∈ Zd as i =
∑d
s=1 ises, where e1, . . . , ed are the canonical

unit vectors. It follows that hi = zi11 · · · z
id
d where zs = hes . Hence we proved the

one-to-one correspondence between the maximal ideal space ofWN
β and Ωβ as sets.

In order to prove that under this identification the topology of Ωβ induced by
Cd coincides with the natural topology of the maximal ideal space, we resort to
the following result (see, e.g., Sect. 11, Thm. 3 in [16]): Let M be the maximal
ideal space of a Banach algebra topologized in such a way that M is compact and
the function m ∈ M 7→ m(a) ∈ C is continuous for all elements a of the Banach
algebra. Then this topology coincides with the natural topology of the maximal ideal
space. In our situation, the compactness of M = Ωβ follows from Corollary 3.3.
Since supz∈Ωβ |Tz(a)| ≤ ‖a‖WN

β
and since the linear span of {ei}i∈N is dense in

WN
β , it suffices to prove only the continuity of the maps z ∈ Ωβ 7→ Tz(ei) for each

i ∈ N . Indeed, the functions z ∈ Ωβ 7→ Tz(ei) = zi11 · · · zidd are continuous because
Ωβ is a subset of (C \ {0})d.

For a Banach algebra A with unit element, let G(A) denote the group of all
invertible elements in A, and let G0(A) denote the connected component of G(A)
containing the unit element. The group G0(A) is an open and closed normal sub-
group of G(A). The quotient group Λ(A) = G(A)/G0(A) is called the abstract
index group of the Banach algebra A. If A is a commutative Banach algebra, then
G0(A) = {a = exp(b) : b ∈ A} (see [4, Sect. 2.9–15]).

We need the following formulation of the Arens-Royden Theorem. LetM stand
for the maximal ideal space of A and π1(M) for the first cohomotopy group of M,
i.e., the group of homotopy classes of continuous functions from M to the unit
circle T with pointwise multiplication.

Theorem 3.5 (Arens-Royden). Let A be a commutative Banach algebra with unit
element. Then the mapping

a ∈ G(A) 7→ f(m) = m(a)/|m(a)|, m ∈ M,(3.8)

induces a group-isomorphism from the abstract index group of A onto π1(M).

Proof. According to the Arens-Royden Theorem [20] (see also [1, 17]) the Gelfand
transform induces an isomorphism from the abstract index group of A onto the
abstract index group of the Banach algebra C(M) of all continuous complex valued
functions onM. On the other hand (see, e.g., [4, Thm. 2.18]), the mapping f(m) 7→
f(m)/|f(m)| induces an isomorphism from Λ(C(M)) onto π1(M).

Proof of the implication (c)⇒ (b) of Theorem 2.1. We rely on the natural identi-
fication of WN

β , N = Zd, with Wd
β. Under this identification, the maximal ideal
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space of Wd
β is homeomorphic to Ωβ and the Gelfand transform of a ∈Wd

β is given
by the function â defined in (1.6). From the first condition in (c) it follows that
a belongs to G(Wd

β). We have to show that the winding number condition implies
that a ∈ G0(Wd

β).
Because βi ≥ 1, Kβ is a convex body which contains the origin. Hence Kβ can

be contracted to the origin. Due to the description of Ωβ given in Corollary 3.3,
the mapping [f ]∼ ∈ π1(Ωβ) 7→ [f |Td ]∼ ∈ π1(Td) is a group-isomorphism. Here [∗]∼
stands for the homotopy classes, and f |Td is the restriction of f to Td. Moreover, a
group-isomorphism from π1(Td) onto Zd is given in terms of winding numbers [13].
In connection with Theorem 3.5 we obtain that the mapping

a ∈ G(Wd
β) 7→ (winds(a))ds=1 ∈ Z

d(3.9)

induces a group-isomorphism between Λ(Wd
β) and Zd. Hence, if winds(a) = 0 for

all s = 1, . . . , d, then a ∈ G0(Wd
β).

4. The triviality of the abstract index group

of Banach algebras WN±
β for certain ordered groups N

In this section we prove that for certain ordered groups N , the abstract index
group of the Banach algebras A =WN±

β is trivial, i.e., G(A) = G0(A).
Let N1, . . . , Nµ be additive groups, each of them provided with a linear order �s

that makes them into an ordered group. The direct sum

N = N1 ⊕ · · · ⊕Nµ(4.1)

is an additive group. Given i = (i1, . . . , iµ) ∈ N we define i � 0 if and only if i = 0
or there exists s = 1, . . . , µ such that

i = (i1, . . . , is, 0, . . . , 0),(4.2)

where i1 ∈ N1, . . . , is ∈ Ns and is �s 0, is 6= 0. The relation � is a linear order
that makes N into an ordered group. We will call � the anti-lexicographic order
on N with respect to the additive ordered groups N1, . . . , Nµ. Our preference for
anti-lexicographic order instead of lexicographic order is just for reasons of easier
bookkeeping.

Theorem 4.1. Let N1, . . . , Nµ be additive ordered subgroups of R with the linear
order inherited from R, and let N be the direct sum (4.1) provided with the anti-
lexicographic order. If β is an admissible weight on N , then G(WN±

β ) = G0(WN±
β ).

Proof. Without loss of generality we carry out the proof only for WN+
β . The proof

goes by induction on µ. For µ = 0, there is nothing to prove. Indeed, in this case
N = {0}, and thus WN+

β is isomorphic to C.
Now let us assume that the assertion has been proved for µ− 1, i.e., for

N̂ = N1 ⊕ · · · ⊕Nµ−1.(4.3)

We can identify N̂ with the subgroup N̂ ⊕ {0} of N . Under this identification N̂+

corresponds to the set of all i ∈ N+ for which iµ = 0. Consequently, the Banach

algebra WN̂+

β̂
with β̂(i1,...,iµ−1) := β(i1,...,iµ−1,0) is isometrically isomorphic to the
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following Banach subalgebra of WN+
β :

ŴN+
β =

{
a ∈ WN+

β : ai = 0 for all i ∈ N+ with iµ > 0
}
.(4.4)

Hence G(A) = G0(A) for A = ŴN+
β .

For r ∈ [0, 1] we define the following mapping on WN+
β :

φr : {ai}i∈N+ 7→ {ci}i∈N+ , ci =

{
ai if iµ = 0,
air

iµ if iµ > 0.
(4.5)

In fact, φr is a homomorphism onWN+
β for each r ∈ [0, 1]. Moreover, φ1(a) = a and

φ0(a) ∈ ŴN+
β . We claim that the mapping r ∈ [0, 1] 7→ φr(a) is continuous for each

a ∈ WN+
β . Indeed, this mapping is continuous for each a = ei with i ∈ N+, the

estimate ‖φr(a)‖ ≤ ‖a‖ holds, and the set of finite linear combinations of {ei}i∈N+

is dense in WN+
β .

Since φr are homomorphisms, the inverse of φr(a) is given by φr(a−1), pro-
vided a is invertible. Hence a ∈ G(WN+

β ) can be pathwise connected to φ0(a) ∈
G(ŴN+

β ) = G0(ŴN+
β ) within G(WN+

β ). Consequently, a ∈ G0(WN+
β ).

The following proposition shows that an ordered group which is group-isomorphic
to Zd is order-preserving group-isomorphic to an ordered group N of the type
appearing in Theorem 4.1. We put R+ = {p ∈ R : p > 0}.

Proposition 4.2. Let G be an ordered group which is group-isomorphic to Zd.
Then there exists an order-preserving group-isomorphism φ : G→ N , where

N = N1 ⊕ · · · ⊕Nµ(4.6)

is provided with the anti-lexicographic order and N1, . . . , Nµ are additive subgroups
of R, inheriting their order from R. Moreover, there exist σs ∈ N and ps ∈ Rσs+

such that

φs : Zσs → Ns, is 7→ 〈ps, is〉(4.7)

are group-isomorphisms for each s = 1, . . . , µ.

We remark that d = σ1 + · · ·+ σµ. The numbers µ and σ1, . . . , σµ are uniquely
determined by the ordered group G.

For s = 1, . . . , µ, one can introduce a linear order �s in Zσs such that Zσs
becomes an ordered group by stipulating that is � 0 for is ∈ Zσs if and only
if φs(is) ≥ 0. We denote this additive ordered group by Zs and remark that
φs : Zs → Ns is an order-preserving group-isomorphism.

Proof. Assume that G = Zd. The proof can be carried out by induction on d,
where the case d = 0 is trivial. It is possible to extend the linear order on Zd to
a (not necessarily unique) linear order on Rd that turns Rd into an ordered real
vector space [3]. By a result of Erdős [5], there exists a hyperplane H , uniquely
determined by the order on Zd, such that the corresponding (two) half-spaces con-
tain exclusively positive or negative, resp., elements with respect to the linear order
on Rd. In other words, there exists a (unique) unit vector p ∈ Rd such that the
following hold: (a) if i ∈ Zd and 〈p, i〉 > 0, then i � 0; (b) if i ∈ Zd and 〈p, i〉 < 0,
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then i ≺ 0. Denote by ξ : Zd → R the group-homomorphism ξ(i) = 〈p, i〉. Obvi-
ously, ker ξ = H ∩Zd is a subgroup of Zd. The image N ′ of ξ is a finitely generated
subgroup of R without nonzero elements of finite order. Since N ′ can also be repre-
sented as the direct sum of finitely many cyclic groups ([10], Corollary to Theorem
4.J), N ′ is group-isomorphic to Zσ for some σ ∈ {1, . . . , d}. Choose any generators
of N ′, and let i1, . . . , iσ ∈ Zd be any pre-images of these generators with respect
to ξ. Let K be the subgroup of Zd generated by i1, . . . , iσ. Then the restriction
of ξ to the ordered group K, where the order is inherited from Zd, is an order-
preserving group-isomorphism between K and N ′. Notice that the injectiveness
of ξ follows from the absence of nonzero elements of finite order, and the order-
preservation follows from statements (a) and (b) above. From this it follows that
Zd = ker ξ⊕K. Thus ker ξ is group-isomorphic to Zd−σ. The induced isomorphism
between Zd = ker ξ⊕K and ker ξ⊕N ′ is order-preserving if the order in ker ξ⊕N ′
is defined in an anti-lexicographic manner. If σ < d, we apply the same argument
once again to ker ξ instead of G. If σ = d, i.e., ker ξ = {0}, we are done.

In order to prove (4.7), recall that N ′ is group-isomorphic to Zσ. Any isomor-
phism is of the kind i ∈ Zσ 7→ 〈q, i〉 ∈ R, where the entries of q ∈ Rσ are Q-linearly
independent. In particular, they are nonzero. A moment’s thought reveals that we
may assume all entries of q to be positive.

First proof of the implication (a)⇒ (b) of Theorem 2.1. From Proposition 4.2 we
obtain that Wd,±

β is isometrically isomorphic to WN±
γ , where γφ(i) = βi, i ∈ Zd.

Moreover, this implies that we can apply Theorem 4.1. Hence G(Wd,±
β ) = G0(Wd,±

β ).
Now assume that condition (a) of Theorem 2.1 is fulfilled. Then a = a−a+ with

a± ∈ G(Wd,±
β ) = G0(Wd,±

β ). Since G0(A) = {exp(b) : b ∈ A} for commutative
Banach algebras A, the functions a± are exponentials of functions in Wd,±

β . Thus
condition (b) follows.

5. The maximal ideal space of WN±
β for ordered groups N = Zd

In this section we describe for arbitrary ordered groups N = Zd and arbitrary
admissible weights the maximal ideal space of WN+

β in terms of the maximal ideal
space of WN

β , or, what is the same (due to Corollary 3.2) and more convenient to

us, in terms of the set Kβ. A description of WN−
β can be carried out analogously

and will therefore be omitted.
According to Proposition 4.2 and the remarks following it, any ordered group

Zd is order-preserving group-isomorphic to the additive ordered group

N = N1 ⊕ · · · ⊕Nµ(5.1)

with anti-lexicographically defined order, where Ns = Zσs are additive ordered
groups with the order �s such that is �s 0 if and only if 〈ps, is〉 ≥ 0. Here
µ, σ1, . . . , σµ ∈ N and ps = (ps,1, . . . , ps,σs) ∈ Rσs+ .

Note that N equals Zd with d = σ1 + · · ·+ σµ. We will assume without loss of
generality that our originally given ordered group Zd is equal to the ordered group
N defined in (5.1). This amounts to considering Zd provided with a linear order
of a special type. However, any arbitrary order on Zd is equivalent to some linear
order of this special type.
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Let d0 = 0 and let ds = σ1 + · · · + σs, s = 1, . . . , µ, noting that dµ = d. For
s = 1, . . . , µ we introduce the following subsets of Rds :

Ks = {(x1, . . . , xds) : (x1, . . . , xd) ∈ Kβ} ,(5.2)

Ks,ps = {x− λ(0, . . . , 0, ps,1, . . . , ps,σs) : x ∈ Ks, λ ≥ 0} .(5.3)

Moreover, let C0 = {0}, and for s = 1, . . . , µ, put

Cs = {(i1, . . . , ids , 0, . . . , 0) ∈ N+} .(5.4)

Then {0} = C0 ⊂ C1 ⊂ C2 ⊂ · · · ⊂ Cµ = N+.

Proposition 5.1. Ks is a convex body in Rds , and Ks,ps is a closed, convex subset
in Rds containing Ks. Moreover,

Ks,ps =

{
y∗ ∈ Rds : sup

i=(i∗,0)∈Cs
(〈i∗, y∗〉 − log(βi)) <∞

}
.(5.5)

Proof. The first two statements are trivial. It remains to prove (5.5). Observe that
for x∗ ∈ Rds

max
y∗∈Ks

〈x∗, y∗〉 = max
y∈Kβ

〈(x∗, 0), y〉 = F ((x∗, 0)),(5.6)

where F is the supporting function of Kβ. Define

F̂s(x1, . . . , xds) =

{
F (x1, . . . , xds , 0, . . . , 0) if φs(xds−1+1, . . . , xds) ≥ 0,
+∞ if φs(xds−1+1, . . . , xds) < 0,

(5.7)

where φs is given by (4.7). We obtain that for x∗ = (x1, . . . , xs) ∈ Rσ1⊕· · ·⊕Rσs =
Rds ,

max
y∗∈Ks,ps

〈x∗, y∗〉 = max
y∗∈Ks, λ≥0

(〈x∗, y∗〉 − λ〈xs, ps〉) = F̂s(x∗).(5.8)

Hence F̂s is the supporting function of the closed, convex set Ks,ps . Therefore [12],

Ks,ps =
{
y∗ ∈ Rds : 〈x∗, y∗〉 ≤ F̂s(x∗) for all x∗ ∈ Rds

}
.(5.9)

Assume y∗ ∈ Ks,ps . Then 〈x∗, y∗〉 ≤ F ((x∗, 0)) for all x∗ = (x1, . . . , xs) ∈ Rds with
φs(xs) ≥ 0. If i = (i∗, 0) ∈ Cs, then this applies to x∗ = i∗. Since F (i) ≤ log(βi), it
follows that y∗ is contained in the set defined by the right-hand side of (5.5).

Conversely, let y∗ belong to the set given by the right-hand side of (5.5). Then
〈i∗, y∗〉 ≤ log(βi) + M for all i = (i∗, 0) ∈ Cs and some constant M . Replace i by
ni, divide by n and take the limit as n→∞. We obtain that 〈i∗, y∗〉 ≤ F (i) for all
i = (i∗, 0) ∈ Cs. In particular, this holds for all i = (i1, . . . , is, 0, . . . , 0) ∈ Zd with
φs(is) > 0. Thus 〈x∗, y∗〉 ≤ F (x) for all x = (x∗, 0) = (x1, . . . , xs, 0, . . . , 0) ∈ Qd
with φs(xs) > 0. A continuity argument finally shows that y∗ ∈ Ks,ps .

Now we introduce for s = 1, . . . , µ the following subsets of Cd:

Ωβ,s = {(t1ex1 , . . . , tdse
xds , 0, . . . , 0) : tk ∈ T, (x1, . . . , xds) ∈ Ks} ,(5.10)

Ωβ,0 = {0}, and

Ω+
β,s = {(t1ex1 , . . . , tdse

xds , 0, . . . , 0) : tk ∈ T, (x1, . . . , xds) ∈ Ks,ps} .(5.11)
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It is easy to see that Ωβ,s ⊂ Ω+
β,s and clos Ω+

β,s = Ω+
β,s ∪Ωβ,s−1 for all s = 1, . . . , µ.

The sets Ωβ,s are closed, and Ωβ,0,Ω+
β,1, . . . ,Ω

+
β,µ are mutually disjoint. Put

Ω+
β = Ωβ,0 ∪Ω+

β,1 ∪ · · · ∪Ω+
β,µ.(5.12)

Theorem 5.2. The maximal ideal space of WN+
β is homeomorphic to the set Ω+

β

endowed with the topology induced by Cd. In fact, for z ∈ Ω+
β,s the corresponding

multiplicative linear functional Tz is defined by

Tz : a = {ai}i∈n 7→
∑

i=(i1,...,ids ,0,...,0)∈Cs

aiz
i1
1 · · · z

ids
ds

(5.13)

and by T0 : a 7→ a0 for z = 0 ∈ Ωβ,0.

Proof. In order to prove that the maximal ideal space ofWN+
β is equal to Ω+

β , let us
first remark that there is a one-to-one correspondence between the maximal ideals of
WN+
β and the sequences h = {hi}i∈N+ of complex numbers hi satisfying hi+j = hihj

(i, j ∈ N+), h0 = 1 and supi∈N+
(|hi|/βi) < ∞. In fact, to each such h, there

corresponds the multiplicative linear functional Th given by Th : a 7→
∑

i∈N+
aihi.

Now let h be such a sequence. Assume that hi = 0 for a certain i ∈ Cs+1 \ Cs.
Then for each j ∈ N+ \ Cs, there exists n ∈ N such that nj � i. Thus hnj =
hnj−ihi = 0 and hence hj = 0. Choosing a particular i as above in such a way
that s is as small as possible, we can conclude that for each h there exists a unique
s ∈ {0, . . . , µ} such that hi 6= 0 for all i ∈ Cs and hi = 0 for all i ∈ N+ \ Cs.

Each i ∈ Cs can be represented in the form i =
∑ds
t=1 itet. Putting zt := het 6= 0,

it follows that hi = zi11 · · · z
ids
ds

. Here we use that hi 6= 0 for i ∈ Cs. Moreover,

sup
i=(i1,...,ids ,0,...,0)∈Cs

|z1|i1 · · · |zds |ids
βi

<∞.(5.14)

From this we see that there is indeed a one-to-one correspondence between the
maximal ideal space and the set Ω+

β and that the multiplicative linear functionals
specifying the maximal ideals are given by (5.13).

In order to prove that the natural topology of the maximal ideal space coincides
with the topology of Ω+

β induced by Cd, we rely on the result used in the proof of
Theorem 3.4. First note that the sets Ω+

β,s∪Ωβ,s−1 are compact subsets of Cd, and

Ω+
β =

µ⋃
s=1

(
Ωβ,s−1 ∪ Ω+

β,s

)
.(5.15)

Hence Ω+
β is compact, too.

It remains to prove that the mapping z ∈ Ω+
β 7→ Tz(a) ∈ C is continuous for

each fixed a ∈ WN+
β . Since supz∈Ω+

β
|Tz(a)| ≤ ‖a‖WN+

β

, it suffices to prove the

continuity only for the elements a = ei, i ∈ N+, whose linear span is dense in
WN+
β . Moreover, since, by (5.15), Ω+

β is the finite union of compact subsets of Cd,
it is enough to prove the continuity of the restrictions of the functions z 7→ Tz(ei)
to each of the sets Ωβ,s−1 ∪ Ω+

β,s for each s = 1, . . . , µ and each i ∈ N+.
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Let us first recall that

Tz(ei) =


zi11 · · · zisds if z ∈ Ω+

β,s and i ∈ Cs,
zi11 · · · z

is−1
ds−1

if z ∈ Ωβ,s−1 and i ∈ Cs−1,

0 if (z ∈ Ω+
β,s and i /∈ Cs) or (z ∈ Ωβ,s−1 and i /∈ Cs−1).

The continuity is trivial apart from the case where i ∈ Cs \ Cs−1. In this case, we
have to prove that Tz(ei)→ 0 if z ∈ Ω+

β,s tends to a point in Ωβ,s−1.
Indeed, let us write z = (z1, . . . , zds , 0, . . . , 0) ∈ Ω+

β,s in the form zk = tk exp(xk),
1 ≤ k ≤ ds−1, and zds−1+k = tds−1+k exp(xds−1+k − λps,k), 1 ≤ k ≤ σs. Note that
ps,k > 0. Since x∗ = (x1, . . . , xds) is taken from the bounded set Ks, z converges
to a point in Ωβ,s−1 if and only if λ→ +∞. Now

log |Tz(ei)| = 〈x∗, i∗〉 − λ〈ps, is〉,(5.16)

where i = (i∗, 0) = (i1, . . . , is, 0, . . . , 0), tends to −∞ since φs(is) = 〈ps, is〉 > 0.

Corollary 5.3. The compact space Ω+
β is contractible to the point 0 ∈ Ωβ,0.

Proof. Let Ω̂+
β,0 = {0} and Ω̂+

β,s = Ωβ,0 ∪ Ω+
β,1 ∪ · · · ∪ Ω+

β,s. Since Ω̂+
β,µ = Ω+

β , it
suffices to prove that all the spaces Ω̂+

β,s are homotopically equivalent.
In fact, we can even be more specific. For each s = 1, . . . , µ, Ω̂+

β,s−1 is a strong
deformation retract of Ω̂β,s (cf. [13]). The retracting deformation is given by

Fr : (z1, . . . , zs−1, zs, 0, . . . , 0) ∈ Ω̂+
β,s 7→ (z1, . . . , zs−1, zs(r), 0, . . . , 0) ∈ Ω̂+

β,s,

where [zs(r)]k := [zs]k(1−r)ps,k (k = 1, . . . , σs; r ∈ [0, 1]). Notice that ps,k > 0.

Second proof of the implication (a)⇒ (b) of Theorem 2.1. By Corollary 5.3 the co-
homotopy group π1(Ω+

β ) is trivial. Hence from Theorem 5.2 and Theorem 3.5 it

follows that G(A) = G0(A) for A =WN+
β where N = Zd is an ordered group. The

corresponding statement holds also for A =WN−
β . Now the proof can be completed

in the same way as the first proof of this implication given in Section 4.
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