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Abstract. In this article sufficient conditions are derived for the existence and the nonex-
istence of a dead core for at least one of the solutions {u,v) of a nonlinear parabolic
reaction-diffusion gystem with Robin boundary conditions. Simplifying assumptions on
the diffusion coefficients allow one to decouple the system and to use super and subsolu-
tion methods to guarantee or to exclude the existence of a dead core.
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1 Introduction

In chemical engineering, one studies reaction-diffusion equations which have
the form of the coupled system

% — pAu = g™ et (tev) (L.1)
y% — Av = fu™ e/ (tev), (1.2)

Zero or negative depending on whether the reaction is exothermic, isothermic
or endothermic [11]. Depending on the specific chemical applications, various
QUndary conditions are imposed. The function e¥/(1+2¥} can be replaced by
g e=7/Y for some v > 0 [10].
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for u(z,t) and v(z,1):

v — Lu=—Af(u)g(v)  inQ=0xRH (1.3

v — Lv=—kAf(u)g(v) inQ=0xRt (1.4)

% +ou(z,t) = x(z) inl'= 00 xR, | {1.5)
g% +ov(z,t) = n(z) in =800 xRT, (1.6}
u(z, 0} = up(z) in €, (1.7
v{z, 0) = wo(z) in 2, (1.8)

where the domain  is a bounded open connected set in RY (N > 1) whose
boundary is a surface of class C°, n is the unit outer normal to 92, &, X are
positive constants, the Robin boundary conditions (1.5) and (1.6) with the
same o > {) are imposed, the differential operator L defined by

n

Lu= Y 6—2 (Afj(m,t);—;) (1.9)

Hi=1

has coeficients A;;(z,?) which are bounded and continuous on @, are con-
tinuously differentiable in « for every ¢, and satisfy the uniform ellipticity .
condition

Awil€? <37 Aij(e,1)6:85 < AP (1.10)
1,7=1 ‘

for certain Apin, Amax > 0, x{(z) and n(z) are continuous and nonnegative on

9%, ug(z) and vo(z) can be extended to nonnegative continuous functions on

2, and :
f,9€Cl0,00)N 02(03 00},
F(0) = ¢(0) = O(s), 5 — 0%,
f'(s) >0, g'(s) > 0 (s > 0).

In other words, we study a class of initial-boundary value problems mod
elling reaction-diffusion where the chemical reaction is endothermic and th
dlffusmn coeflicients of the two types of reactants are equal.

The existence and nonexistence of a dead core (i.e., of a region Where a.n
otherwise nontrivial solution vanishes identically) have been studied in man)
papers. To mention just a few key results, Bandle and Stakgold [3] h?_l*i'
studied such a problem for a single parabolic equation of the type u: — Lt
~Af(u) in @ with initial condition (1.7) and a Dirichlet condition instead ©
(1.5), whereas Bobisud and Stakgold [4] have tackled the stationary problemt
corresponding to the system of equations (1. 3) (1.8), where (1.5) and (1.6
are replaced by a Dirichlet condition and I is the Laplacian. In [12],'%
methods developed in [3, 4] have been applied to the parabolic counterpa
of the problem studied in [4]. In particular, in {12] the differential operato
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% is the Laplacian and Dirichlet conditions are imposed. In this article we seek
sufficient conditions on f,g, k, A, L, o in order that the system of equations
(1.3)-(1.8) has or does not have a dead core. In contrast to the previous
papers, we impose Robin boundary conditions.

The basic technique underlying the analysis of (1.3)-(1.8} is to introduce
the auxiliary function w = —v+ku, to subtract (1.4), {1.6) and (1.8) from the
respective equations (1.3), (1.5) and (1.7), and to arrive at a linear parabolic
system for w and uncoupled systems of equations for u and ». Once the tele-
vant properties of w are known, super and subsolution methods are applied
to the resulting system for u if w < 0 and to the resulting system for v if
w > 0. The necessary upper and lower solutjons are to be generated as solu-
tions of either the stationary problem (where t-dependence is absent) or the
lumped problem (where z-dependence is absent). We will employ this tech-
nique in the present situation, relying on estimates by Diaz [5] to deal with
an arbitrary uniformly elliptic operator L and existence results for parabolic
systems with Robin boundary conditions 6, 8].

PP VIR

2 Uncoupling the Parabolic System

Following [12], we introduce

w= —u + ku. (2.1)

From (1.3)-(1.8) we then obtain the initial-boundary value problem

wy — Lw =10 , in J,
%:i + ow(z,t) = —n(z) + kx(z) mT, (2.2)
w(z, 0) = —vo(z) + kuo(z) in Q.

Problem (2.2) has a unique classical solution and has been studied in [6, 8, 9].
Eliminating either v or u, we obtain the initial-boundary value problems

uy — Lu = —Af{u)g(ku —w) in @,

{;—: + ou(z,t) = x(=) in T, (2.3)
u{z, 0) = uo(x) in Q,

and
v — Lo = —kAF(22) g(v) inQ,
g—: + ov(z,t) = n(z) inT, (2.4)
v{z,0) = vo(x) in Q.

~ Let us define a supersolution (,7) (resp. subsolution (u,v}) of (1.3)-(1.8)
o be a pair of functions (u, v) such that (1.3)-(1.8) hold with the inequality

sign > (resp. <) instead of the equality sign.
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Comparison theorems

3.1. Following (2, 12], we obtain the following comparison results for the
solutions of problem (1.3)-(1.8):

(a) Let {u1,v1) and (uz,vs) be the solutions corresponding to Ay and A,
respectively, with A1 < Aq; then ug <y and vy < w1 In Q.

(b) If f1 < f2, g1 < g2 and wy < wy <0, then uz < Uy in (). Analogously,
if f1 < fay g1 < g2 and 0 < wy < wy, then va < 01 in .

(c) If any of the initial and/or boundary data is decreased while w remains
the same, either of the solutions v and v is decreased.

The comparison results (a)-(c) can easily be proved by standard Suﬁél' _
and subsolution techniques (cf. e.g. [1, 12]).

3.2. Prior to analyzing the existence of dead cores of {u, v}, we make the
following observations. Consider the unique solution {z,y) of the so-callec
lumped problem :

ze = —Af(z)g(y) inR7,

v = —kAf(z)gly) inRT,

Z(O) = Z0s

y(O) = Yo, 7
which is obtained from (1.3)-(1.8) by dropping the z-dependent diffus
term. Then it is easily seen that (&, %) with |

a(z,t) = z(t}, #(z,t) = y(t)

is the unique solution of (1.3)-(1.8), where @i|,q = 20, Ul;=o = 20, lan
and #|,_, = wo- In other words, if the initial and boundary values of ¢
v) are equal to the same positive constant zo {resp. yo), then u and v d
depend on z. B

Since the lumped problem does not depend on the diffusion term,.
employ one of its solutions as either a supersolution or a subsoluti
system of equations (1.3)-(1.8). Therefore, the first two parts of Theor
of [12] still hold. '

Then the following statements are true:

1. Ifx =n=0indQ and _[01 f—(s% < oo (strong abSG?’PtiOH);-
is simultaneous extinclion of both species in finile té?f:”-;

= v{z,t) = 0 fort > 1. and ¢ € Q, where ty = + 1o
Zg = maXg up-

. If ming vg = kming ug > 0 and fol ﬂs—f;@ =
then v(z,t) = ku(z,t) > 0 for all (z,t) € Q.




Dead Cores for Parabolic Problemns 143

4 Dead core for the associated steady-state
problem

Let us associate to (2.3) the corresponding steady-state problem

‘ —Lu = —Ah(u) in Q,
Gu +ou{z) = x{z) in I0 .1
on ’
where h(u) = f(u)g(ku — w) whenever w < 0 is fixed, or let us asso-
ciate to (2.4) a steady-state problem of the same form for », where A(v) =
kf(X%)g(v) whenever w > 0 is fixed. Here x € C(#Q2) and is nonnegative.
In particular, h € C[0,c0) N C*(0, 0}, A(0} = 0, and A'(s) > 0 for s > 0.
Moreover, recall that T is defined to be a supersolution of (4.1} if

~ra> -, (5 +on)

> X-
= an X

1719

Similarly, if we reverse the inequalities, u > 0 is a subsolution of {4.1). In
order to find the existence of a subregion of Q where the solution of the
associated steady-state problem vanishes identically, we prove the following £

Theorem 4.1 Let vy = kug in Q be nonnegative. Put H(s) = [ h(t)di

such that the integral f; H(t)"Y/2dt < co. Then every classical solution of
the steady-state problem (4.1} has a dead core, i.e., there exists a nonempty
open subset D C ) on which it vanishes identically.

Proof. Let u be a weak solution of (4.1). Then it is classical when re-
stricted to any open connected subregion (g with C* boundary such that
Qo C Q (cf. [T])-

Let us now consider

| {—Lu = —Ah{u) in Do,

ulyq, = u(z) in 900, (42)

and construct a supessolution of (4.2) with a dead core.
With no loss of generality, we consider the following ball:

Br(0) = {z € R" : |z| < R} C Qo.

Further, we extend h to an odd function defined on R. For any radially sym-
~ metric function n € C[0, RN C*(0, R), we compute (Ln)(z) as in Appendix
A and obtain

!
() = A7)~ T, re (0, )
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where Mg is sorme constant. Put M; = Mo/Amex- Then, if n(r) satisfies
n(r) = 0 for 0 < r < R/2, then

)+ D0 = r € (R/2,R),
2R/ = (R[2) = 0

(4.3)

Then ¢{z) = n(jz|) is a supersolution of (4.1) with x{z} = 0. Indeed,

I

L) > —Awat” — MyL = —Nh{n) = - Ah(3).

According to [5], the condition f H(t)~Y/2 dt < oo implies the existence of
a dead core of the solution 5 of (4. 3) Wthh is nonnegative. Since g(r} =0
for 0 < r < R/2 and 0 < u < n, we have u(jz|) = 0 for 0<r<R/2

As a result, the solution u of (4.1} on Q has a dead core.

5 Dead core for the solution (u(x,t), v(x,t))

In this section we study the behavior of the solution (u{z,1),v(z,%})) in c
parison with the dead cores of the associated lumped and steady-state
lerns. We derive two results, one where vg = kug and 7 = kx are nounega
so that the auxiliary function w solving (2.2) vanishes idenfically,
where g, vo, ¥ and 7 are nonnegative but ve Z kuo and n Z kx.

Theorem 5.1 Let (u,v) be the solution of (1.3)-(1.8) with v —{—.ku
in QT and —y + kx = 0 in 89, so that v = ku. Put h(u) = flu)g(ku).
we have the following: :

< oo (dead core for steady-state), I = fo HO) g(k.s) :

1. Iffoﬁ

(dead core for the lumped problem), and Ao = infy{#(%o, A) = =10
fized zo € §1, then we have a dead core for both u(zo,t) and v(
t>1/ (A — Ao). |
2. If fe \/d_ < oo, and ] = oo, and ming vo(z ) = min—é—kug(m
then v(z,t) = ku(z,t) > 0 for all (z,1) € Q.
Proof. To prove the first part of the theorem, under the above hy
we will introduce a supersolution i(z,¢) of (1.3)-(1.8) such that #(z

for t > I/(A — Xo). Following [1], let e{z,?) = z2(t) + ¢(z}, wher_e t,
solution of the lumped problem '

zy = —vh(z), t>0,
z{0) = 7 = maxg uo (),
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for some v > 0, and ¢(z) is the solution of the steady-state problem

_L(4(x)) = —doh(8(z)), zE,
—(z) + o¢(z) = x{z}), =z €.

‘We then have

a(zo,t) = z(t) + Blzo) = 0,  t> (I/7)-

Moreover, a{z,t) > max(z(t), ¢(z)). Now a(z,0) > up(z) and

% @)+ 0d(z) 2 x(z), = €00

Now we determine the value of v such that « is a supersolution. To this end,
let us recall that

ay =z = —yh{z),
at — Lo+ Ah{a) = —vh(z) — Lé + Ah{a) > (—v — Ao+ A)h(a) = 0,

if we choose v = A — Ag. Thus, if ¥ = A — Ag, we can write

oy — La > —Ah{a) in @,

da
. +oe(z) > x(x) on T,

a(z,0) > uofz) in Q.

Since ¢ is a supersolution of (1.3)-(1.8) which has a dead core, also v = ku
has a dead core.
To prove the second part, we construct positive subsolutions, following
the second part of Theorem 3.1. : O .

The final result of this paper can be proved as Theorem 3.2 of [12].

Theorem 5.2 Let —vg+kug Z 0 in Q and be nonnegative there. Put G(s) =

Iy g(t)dt, let Ig = fol ?;(s) < oo, and let w be the solution of the boundary

_value problem

Lw=0 in Q,

5.1
?%—5—0'10:—17-}—}:)( in OS2. (5-1)

Then the following statements are true:

'_1, IfI, = 01 g_d(g)' < oo, then for all zo € Q there exists Ao such that

v(zo,t) = 0 whenever (A — Ag)t > I,.

_:2- If I; = oo, then u(z,t) > 0 and v(z,t) > 0 for all (x,t) € Q), where
v~ (w/k) end v — 0 ast — oo.
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Analogously, let —wvg + kuo 2% 0 in Q and be nonpositive there. Pul F(s) =
fo t)dt, let Ir = fo 48 . & oo, and let w be as in (5.1). Then the

/F(s}

foliowmg statements are true:
Vo If Iy = 01 f( iy < 0, then for all zo € S there exists Ao such that
u(zg,t) = 0 whenever (A — Ag)t > Iy.

¥, If I; = oo, then u(z,t) > 0 and v(z,t) > 0 for all (z,t) € (), where
-0 andv—o —wast— oo,

ity i

A Differentiating Spherically Symmetric Func-
tions

Let us compute (Lu)(z) where u = n{r) is spherically symmetry. Using that
(8n/dz;) = 7/ (r)(z;/r), we obtain

(Ln)(z Z Az t)a az:, +:Z (;;J ai, U(a:,t))
= ; Asi(z, 1) Irf" (n”(?’; - ”’ﬁ"))
+ZA,,a:t [ (r)-l»( _g) H'E‘r)]
N n’?(nr) Z fai (2,1)

i,

=7"(r) Z Azj(z, 1)

i

BT 7} S
=3 Asle ) Y Aulat) + ) mig - Ai(at
iy i i ' "

z,wj,

Now note that, due to {1.10),

Apin < Z Ajj(z,
iJ

where

g o
max3 Z mja—m:Aij (I,’ﬁ) < nMry

1/2

a 2
—_— A,-j(:c,t) < M, (:ﬁ,t) = Q

Gz;

n
=1

Thus for any nondecreasing convex function n € C[0, RN C 3(0, B) we

—(Ln)(z) > —Anen(r) — Mo——
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where Mo = nM R+ A, +sap |3, Az, 1)
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