STEINER PROBLEM - See Steiner tree problem.
MSC1991: 05C35, 51M16

STEINNESS - The property of a manifold or domain
1o be Stein {cf. Stein manifold; Stein space).

MSC1991: 32E10

STEP HYPERBOLIC CROSS — A summation do-
main of multiple Fourier series. Like a hyperbolic
cross, it is used for good approximation in the space of
functions with bounded mixed derivative (in Ly).

Let f(z) be an integrable periodic function of n vari-
ables defined on T™. It has a PFourier series expan-
sion Yy e®*, k = (ky, ..., k), x = (31,..., 20},
k-x =k +---+ kpzn. Unlike in the one-dimensional
case, there is no natural ordering of the Fourler coef-
ficients, so the choice of the order of suramation is of
great importance. .

Tetr = {ri,...,rp) € R™ with all coordinates posi-

tive, r; > 0. Let
Aulf)= Y cuetx
, 27 | <2
o i=lan
be a dyadic ‘block’ of the Fourler series. The siep hyper-
balic partial sums - S

> Awl(f)

(m-rfSN

where introduced by B. Mityagin [2] for problems in
approximation theory. They have approximately the
same number of harmonics as & hyperbolic cross, but
structurally they fit the Marcinliewicz multiplier the-
orem {cf. also Interpolation of operators). It im-
plies that the operator of taking step hyperbolic partial
Fourier sums is bounded in each L7, 1 < p < oc. This
means that step hyperbolic partial sums give the best
approximation among ali hyperbolic cross trigonomet-
ric polynomials in Iy, 1 < p < co. In the limit cases
p = 1 and p = oo, the Lebesgue constants of step
hyperbolic partial sums have only logarithmic growth,
while for hyperbolic partial Fourier sums they grow as
a power of .
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STOKES PARAMETERS

STOKES PARAMETERS - To characterize the ra-
diance (intensity) or flux and siate of polarization of
a beam of electromagnetic radiation {cf. also Electro-
magnetism) one can use four real parameters which
have the same physical dimension. These so-called
Stokes parameters were first introduced by G.C. Stokes
[7] in 1852, It took about a hundred years before Stokes
parameters were used on a large scale in optics and the-
ories of light scattering by molecules and small particles.
(See, e.g., [1], {2}, [3], [4], [5], [6], [8].}

To define the Stokes parameters, I, @, U, and V, one
first considers a monochromatic beam of eectromag-
netic radiation. One defines two orthogonal unit vectors
I and r such that the direction of propagation of the
beam is the direction of the vector product r x 1. The
components of the electric field vectors at a point, O, in
the beam can be written as

& = &) sin(wt —g;), £, = Esin{wt —¢,), (1)

where w is the circular frequency, ¢ is time, and £ and
£ are (non-negative) amplitudes. One now defines the
Stokes parameters by

I= [P+, @

Q=g - &7, (3
U = 2608 cosle; —~ &), (4}
V= 2£00in(s; — £, (5)

The end point of the electric vector at a point, O, in
the beam describes an ellipse, the so-called polarization
ellipse, whose ellipticity and orientation with respect to
land r follow from Q, U and V. If V > 0, the electric
vector at O maoves clockwise, as viewed by an observer
looking in the direction of propagation. Clearly, the fol-
lowing relation holds:

I=(Q*+U*+ V%2, ()

where ¥V = 0 for linearly polarized radiation and @ =
7 = 0 for circularly polarized radiation.

In general, electromagnetic waves are nof exactly
monochromatic, but the amplitudes £ and ¢,, as well
as the phase differences g; — -, may vary slowly in thne.
In this case the Stokes parameters are defined as be-
fore, with one exception, namely time averages must
be taken on the right-hand sides of (2)-(5). The po-
larization may now be partial and the beam can be de-
composed in a completely unpolarized and a completely
polarized beam. The orientation and shape of the po-
larization ellipse of the latter beam is again given by 2,
U and V., The identity of (6) is now replaced hy the
inequality

I> Q- U? + V2 | (7)
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and the ratio p = [Q? + U? + V2)L/2/T is called the de-
gree of pelarization. For completely polarized radiation
p = 1, for partially polarized radiation 0 < p < 1, and
for unpolarized (natural) radiation p = 0.

The Stokes parameters can be combined into a col-
umn vector with elements I, G, U, and V', called a Stokes
vector. Stokes vectors of constituent beams are added to
obtain the Stokes vector of a composite beam if no inter-

ference effects occur. Optical devices and processes like

scattering and ahsorption can be described by real 4 x4

{(Mueller} matrices that traasform the Stokes vectors of

primary beams into those of secondary beams.

The Stokes parameters as defined above are one of

many possible representations of polarized radiation,
several of which are only slight modifications of each
other (see, e.g., [1]). Stokes parameters are also used in
quantum mechanics in connection with polarization of
elementary particles.
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STRONG STIELTIES MOMENT PROBLEM — The
strong Stieltjes moment problem for a given sequence
{€a}2_ of real munbers is concemed with finding
reai-valued, bounded, menotone non-decreasing func-
tions ¢{¢) with infinitely many points of increase for
0 < ¢ < oc such that

that
= [
0

This problem, which generalizes the classical Stieltjes
moment problem (where the given sequence is {cn }32.0;
cf. also Krefin condition), was first studied by W.B.
Jones, W.J. Thron and H. Waadeland {3}.

n=0,41,+2,.... (1)
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Let A, 4 be the complex linear space spanned by the
set of functions {27}4__ with p < g, and define Ag,,, =
A,.mm and Agm_p = A_ (mt1),m form = 0, 1,..., and
A=U2A,. An element of A is called a Laurent poly-
nomial. For a given sequence {c,}22 .., & necessary
and sufficient condition for the strong Stielijes moment
problem to be solvable is that the linear operator A/
defined on the base elements 2™ of A by

Mz n=0,x1,+2, ..., (2)
is positive on (0,00), le. for any L € A such that
I{z) > 0 for z € (0,00) and L{z) Z 0, then M[L] > 0.
An equivalent condition is that if :

B <1, M =detlemr)iity (3)
form =0,%1,+2,...,k=1,2,..., are the Hankel deter-
minants associated with {cz} {cf. also Hankel matrix),
then

H™ >0,
Orthogonal Laurent polynomials {J.{z) € As:n =

]=Cns

m=0,+1,4+2,..., k=12,.... (4)

0,1,...} may be defined with respect to the inner
product {7, Q) = M[P{z)Q(z)] and are given by:
_ C_a2n c.; 27
Qenle) = s | SR O
2piZ LTS ’ o ' ' E
Hzng ) C_31 . ' Cop_9 Pl
co Gy "
n=12,...,
and
C-2p—1 .y T
1 :
Qans1(z) = ——=5 N
41 C.y Cap—1 2
Ca P Con =P
(6)
n=40,1,...,
and @g(z) = 1. Corresponding associated orthogonal
Laurent polynemials {P,} are defined by
o[BG gy
—z

The rational functions (—z)Fn(—2)/Qn{—2) are the
convergents ol the positive T-fraction [5],
iz Fyz §o
1+G13+1+G2Z+1+G32‘+
(Fn >0, G, >0),

(8)

where
" H—ﬂ»n)H (—n+3)
" H(—ﬂ'i‘Q)H{—ﬂ-f-l} :
H( R}H( n+2)
(€%
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