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TRANSPORT EQUATION ON A FINITE DOMAIN:

I. REFLECTION AND TRANSMISSION OPERATORS AND
DIAGONALIZATION

C.V.M. van der Meel)

In this article we study the time-independent linear
transport equation in a finite homogeneous non-multiplying
medium with anisotropic scattering. For a polynomial phase function
the solution is expressed in finitely many auxiliary functions.
A diagonalization of an operator associate to the equation is

established. Reflection and transmission operators are intvoduced.

Introduction

In this article we study the integro-differential
equation
(0.1) U -g—}% (x,u) + v(x,u) =

= _1f+1[ %; 0f2Tr S(uy' + /1-u% VI-p?'cos a)da J¥(x,u')du.

(-1 sy s +1, 0 < X < T < +=)

In astrophysics Eg.(0.1) describes the time-independent
transfer of unpolarized radiation through a homogeneous plane-
parallel stellar or planetary atmosphere of finite optical
thickness t. Here ¢ denotes the azimuth-averaged intensity of
the radiation, x the optical depth and é the phase function
(with the albedo included as a factor). For physical reasons one

1) The main part of this paper was written while the author was
a research fellow at the Department of Mathematics of the

Free University of Amsterdam.
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nas @(t) > 0(-1 <t < +1) and ¢ = _1f+1 g(t)dt < 1. In neutron

physics Eq.(0.1) describes the stationary transport of undelayed
neutrons with uniform speed through a homogeneous plane-parallel
fuel plate of a nuclear reactor. Here ¢y denotes the angular density,
x a position coordinate, t the thickness of the plate (in units
of neutron mean free path) and é accounts for the scattering
properties of the medium. In a non-critical reactor one has
B(t) 2 0(-1 < t < +1) and ¢ = _,/*" §(t)at s 1. In Eq.(0.1)
arccos u is the angle describing the direction of propagation.
Given a nonnegative phase function g € Ll[_1’+1] with
c = _1f+1 @(t)dt < 1, the problem is to compute the unknown
function ¢ under suitable boundary conditions. For the physical
aspects we refer to various textbooks (see [2,1,19,3,91).
In physical applications one usually considers the
boundary conditions
(0.2) p(0,u) = ¢(u) (0 s uw < 1), p(t,u) = ¢(u) (-1 < u < 0),
where ¢ describes the azimuth-averaged intensity of the radiation
or angular density of the neutrons incident to the faces of the
medium. In practice mostly polynomial phase functions of the form
(0.3) B(t) =n§0 a (n+}) P (t) (-1 < t < +1)
are considered, where Pn is the usual Legendre polynomial of
degree n and N is finite. From the physical constraints é(t) >0
and ¢ = _1f+1 2(t)at < 1 it follows that 0 < ag < 1 and
“ag < a, < ag (n = 1,2,...,N). The cases 0 < ag < 1 and a; = 1
are usually named the non-conservative and conservative case,
respectively. Note that c¢ = ag.
In astrophysics the solution of the boundary value
problem (0.1)-(0.2) (with ¢(u) = 0 for -1 < u < 0) at x = O
and x = 1T is commonly written as

1 -1

$0,mw) = 4 St uTt suvemay = 2 0t ve(v,p)e(v)avs

(0 < p < 1)

(0.14) )
Wit - e VY () =

= 3 Of1 u_l T(u,v)d(v)dv Of1 vo(v,u)e{v)dv.

1
no
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Here S and T (resp. p and o) are reflection and transmission

functions appearing in the work of Chandrasekhar [2] (resp. Sobolev

[19]). Exploiting symmetries in the equation Hovenier [7]

expressed these functions in terms of one two-variable exit function.
In neutron physics non-rigorous aspects of Case's method

of eigenfunction expansion (see [1]) stimulated a mathematically

rigorous treatment of the "finite-slab problem" (0.1)-(0.2).

On the Hilbert space L2[-1,+1] of square integrable functions on

the interval -1 < u < +1, the boundary value problem (0.1)-(0.2)

may be formulated as the following operator differential equation
with boundary conditions:
(0.5a) (Ty) ' (x) = -(I-B)¥(x) (0 < x < 1);
(0.5b) lim||P w(x)-P ¢||= 0, Lim||P_v(x)-P_¢]|= 0.
x+0 X4T :
Here the vector ¢(x) in L2[—1,+1], the operators T and B and the
projections P, and P_ on L2[—1,+1] are defined by
(0.6a) Y(x) (W) = wlx,u), (Th)(u) = ph(u);-

(0.60)  (Bh)(p) = s*i[(em)?

2 ‘
1 o/ T (nt + /T;jpwl—u'zcosa)da]h(u')du"

(0.6¢)  (P,p)(w) = h(u)(u 2 0), (P,h)(w) = 0(u 5 0),

This statement of the "finite-slab problem" by Hangelbroek [6]
stimulated the author to investigate it. For non-multiplying media
and é € Lr[—1,+1] for some r > 1, the boundary value problem
(0.5) was proved to hgve a unique solution for every
¢ € L2[—1,+1] (see [127). Subsequently this result was obtained
for the analogous problem in Lp[-1,+1] (1 < p < +», including p = 1),
also for the more general type of boundary conditions
(0.7) lim [|TP ¢ (x)-P x [[= 0, lim ||TP_y(x)-P_x ||= O,

x40 X+T

where x € Lp[—1,+1](see [131).

Without much emphasis on mathematical rigour astro-
physicists have derived analytic expressions for the reflection

and transmission functions long before the bulk of mathematical
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literature on the subject appeared. Inspired by partial results
of Chandrasekhar [2](the cases N = 0,1,2) Mullikin reduced the
calculation of the reflection and transmission functions to the
computation of finitely many (namely 2N+2) auxiliary functions,
for which he found non-linear and linear singular integral
equations (see [15,161). Transforming to sums and differences of
Mullikins functions Hovenier [8] accomplished a decoupling of
the linear singular integral equations and wrote the non-linear
ones differently. \

This article aims %t a synthesis of the formulas of
astrophysicists and the rigofous approach of mathematicians.

It consists of two parts. In the first part we reduce the
solution of the boundary value problem (0.1)-(0.2) for the phase
function (0.3) to the computation of 2N+2 auxiliary functions.
To rely on the approach of [12,13] it is convenient to intro-
duce the reflection operators R, and R__ and the transmission

operators R_T and T__ by

T
v(0) = R, P o+T__P_¢, v(t) =T, P ¢+R__P_¢,

where ¢ 1is the boundary value function and P+ and P_ the

projections of (0.6c¢c). Using the adjoint operators R+; and T+;

we express R+T¢, R_T¢; T+r¢ and T_T¢ in the 2N+2 auxiliary

functions R+;Pn and T+:Pn, where P is the usual Legendre polynomial

of degree n (n=0,1,..,N). It appears that these functions are

the v, - and o, functions of Chandrasekhar [2]. The main result

of Mullikin [16], the non-linear singular equations referred to

N
above, derived by him for the case nZo an(n+£)Pn(u)Pn(u') 2 e > 0,

is obtained as a corollary. The second part of this article is
devoted to the analytic continuation of R+;Pn and T+;Pn and
their reduction to Chandrasekhar's X- and Y- functions.

For later use, to derive analytic continuations of and

linear singular integral equations for R+_’:Pn and T+:Pn, we

generalize a diagonalization of the operator (I—B)'I‘_1 to the
conservative case. For the non-conservative case this result

originates from Hangelbroek [6] and Lekkerkerker [10,11].



van der Mee 576

A recent result of Garcia and Siewert [51 on the zeros of
the so-called dispersion function plays an important role at
the generalization.

Let us describe the contents of the sections. After
Section 1 containing necessary concepts and results from [12,13], in
Section 2 the reflection and transmission operators are studied
in an abstract way. In Section 3 these operators are expressed
analytically in 2N+2 auxiliary functions. In Section 4, for later
use, we exposefunctions of Transport Theory and some properties
of the dispersion function in particular. In Section 5 we
diagonalize the operator (I—B)T_1 and prove the H&8lder continuity
of R+;Pn and T+:Pn as a corollary.

Finally we make some notational remarks. The inner
product of a Hilbert space is denoted bij <.,.> and the orthogonal
complement of a subset M by mt, By L(H) we mean the algebra of
bounded linear operators on the complex Banach space H;
by IH {(or I) we denote its identity element. The spectrum, null
space and range of an operator T are written as o(T), Ker T and
Im T, respectively.

1.STATEMENT OF THE PROBLEM

Radiative transfer and neutron transport may be described
by the integro-differential equation (0.1)with boundary conditions(0.2)
Here é isa real-valued function inLr[-1,+1] for some r > 1.

To sclve the system of equations (1.1) in the space
Lp[—1,+1](with 1 € p < +=) one introduces the vector y(x) in
Lp[-1,+1], the operators T and B and projections P+_and P_ of
unit norm on Lp[—1,+1] by Eqs. (0.6a)-(0.6c).

Now the problem can be written as the operator differential
equation (0.5a) with boundary conditions (0.5b).

Given x € Lp[—1,+1] one can also consider the more general boundary
conditions (0.7).

Given ¢ (resp.x ) in L_[-1,+1], by a solution ¢ of the finite-slab
problem (0,1)-(0.2) (resp. (0.1)-(0.7)) we mean a vector-
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valued function y¢:{(0,1) ~ Lp[—1,+1] such that T ¢ is strongly
differentiable on (0,1) and the equalities (0.1) and (0.2)
(resp. (0.7) ) are fulfilled.

In [12] the finite-slab problem in L2[-1,+1] has been
treated through the abstract notion of a semi-definite admissible
pair. By a semi-definite admissible pair on a Hilbert space H

we mean a pair of bounded linear operators T and B on H with the
following properties:
(C1) T is self-adjoint and has atrivial null space Ker T;
(C2) B is compact and A = I - B is positive (i.e.,
< Ah, h > > 0 for every h € H);
(C3) there exist 0 < a < 1 and a bounded operator D on
H such that
B = |T|* D.
If A = I - B is strictly positive (i.e., if < Ah, h > > 0 for
0 # h € H), then the pair (T,B) is positive definite; otherwise

it is called singular.

If E denotes the resolution of the identity of the
self-adjoint operator T, put P+=E((0,+w)) and P_=E((=»,0)).
As Ker T={0}, we have E({0})=0. By H+(H_) we denote the image of
P,(P_). So
(1.1) H=H_ ®H_.
Now on the Hilbert space H one can formulate the (abstract)
finite-slab problem (0.1)-(0.2) (resp.(0.1)-(0.7) ), where
¢ (resp. x) is taken in H.

Let us consider the pair (T,B) on L2[—1,+1] defined by
(0.€2)-(0.6b). If £ is a real-valued function in L [-1,+13 for
some r > 1, this pair (T,B) satifies (C1) and (C3) and the operator
B is compact and self-adjoint (c¢f.[12], Theorem VI 1.1). As known

([211, Appendix XII.8), one has

4+

(Bh) (u) = %, a, (n+1)P (w)_, /"

1 h(v)Pn(v)dv (-1 = u g +1),

where Pn(u) =(2n.n!)—1 (gﬁ)n (u2-1)n is the usual Legendre
+1 A

-l
polynomial of degree n and a_ = (n+i) 5_1f g(t)Pn(t)dt
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(n=0,1,2,..). It appears that o(B) = {an :n 20}y {0}; so for
a, s +1 (resp. a, < +1) for every n=0,1,2,..., the pair (T,B)

is a semi-definite (resp. positive definite) admissible pair on

L2[—1,+1]. The physical constraints @(t) 2 0 and _1 +1 A(t)dt < 1

imply that 0 = ag; < 1 and ~a; < a_ < a, (n=1,2,...), and in this

case the pair (T,B) is semi-definite; it is positive definite if

and only if 0 < ag < 1. If a, = 0 for n = N+1, the phase function

g is given by (0.3).
Let (T,B) be a semi-definite admissible palr on a
Hilbert space H and let A = I - B. Then there exist natural

decompositions of the spectra of the possibly unbounded operators

T 'a and AT '(see Section ITI.3 of [12]1), which we are about to

describe. If T is afositively oriented contour separating the
point =0 from the non-zero part of I={A € C: A-AT is not
invertiblel, put PO = —(2ni)_1fF(A - AT)_lT dx and

Po*= -(2nij s, T - a7

We call HO = Im PO the singular subspace and H1 = Ker P

dXx. Then PO is a projection and PO+=PO

0

the regular subspace. We have dim HO < 4% and

1 R T
12 1 s A[Hil = HO = T[Hll,
where Ker A HO and A acts as an invertible operator from H1
onto Hé. On H1 and HO = T[H ] one can deflne in a unlque way the
1
" H1 and S HO > HO such that

ASk = Tk (k € H ) and stak = Tk (k € H,); then S and st are

similar with similarity A H - Ho We call S the associate operator.

(1.2) H=HO ® H T[HO] = H

bounded linear operators S: H

It appears that S and S are self-adjoint with respect to the
equivalent inner products

(1.3) <k, ,ky> <Ak, ,ky> (on H,),<h, ,hy>,~12<A"'h

: 1
27A 27A hy>(on Hy),

12 12

respectively.

Continuing our description (¢f. Section III.3 of [1217)
we employ the self-adjointness of S and st with respect to the
inner products (1.5b) and denote by F(F+) the resolution of the
identity of S(s*). For h € H let Poh = F((0, +w))(I -Py)h,

P h = F((—m 0))(I- =P )h Pp *h = F* ((0,+42=)) (I~ Py n and
P *he FY((-=,0))(1- PO )h. Then P_, P, Pp+ and P ¥ are bounded
pr0Ject10ns on H. Their ranges we denote by Hp, Hm’ Hp+ and Hm+,
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respectively. It appears that

1.4 Yoo e nu)t = =T H T, pt=p*
( a) Hp+ ( - 0)l A[Hp] [ pis Fp -

— - - + _ %,
(1.4b) H = = (Hp ® Hy)” = A[H 1 = TOH T, P~ = P %;

(1.4c) H=H;®H @H.
P m

The projections satisfy the intertwining properties

(1.5a) TPO = Py

(1.5b) APO = PO

It is easily shown that T-lA(AT_l) can be defined as a bounded

*7, TPp Pp*T, TP, = P *7,

* * - *
A, AP = P *A, AP = P “A.

m
operator on the finite-dimensional space HO(T[HO]) and is
nilpotent of order at most 2 (see [12], Proposition IIT 3.2).
_ With the operator T—lA one associates three bounded
analytic semigroups

-tp1p

-1 -1
6 -tT ~A +£T A : s (T_rm—l .
(1.6) (e B.) (e Pm)tzo, e P, (I-tT A)PO,

p’'t20?
with the adjoint operator AT-1 one connects the bounded analytic
semigroups i
-1 1 ‘ -1

-tAT +EAT “tAT " _ (roram=lyn®
(1.7) (e ’ Pp)tZO’(e Pr)is02® Py = (I-tAT ")Pj.

For these semigroupé the analogues of the intertwining properties

(1.5a)-(1.55) hold true (see Section III.4 of [121). In case the

pair (T,B) is positive definite, one has H, = {0} and Py = 0.
THEOREM 1.1 (=Theorem IV2.2 of [12]). Let (T,B) be

a semi-definite admissible pair on H. Then the boundary value

problem (0.1) - (0.2) has a unique solution y, namely

' -1 -1 .
(1.8a) w(x)=[e_XT APp+e(T-X)T APm+(I—xT—1A)PO]VT1¢.
‘ (0 < x < 1)

Here VT is the invertible operator givén by

s 2p B Y

’ -1
(1.8b) Vt—P+[Pp+e P 1+P_[P +e Pp]+PO—TP_T AP

0

THEOREM 1.2.(cf.Theorem 6.1 of [13]). Let (T,B) be a
semi-definite admissible pair on H. Then the boundary value
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problem (0.1) - (0.7) has a unique solution ¢, namely

-1 -1
(1.9a) v (x)=T [ *AT PS+e(T"")AT P;+(I—XAT-1)P8](V:)_1

(0 < x < 1)

Here V: is the invertible operator given by

1

-1 -1
YTAT “TAT Pl+P¥- P_ATPY

* *
Pm]+P_[Pm+e o

(1.9b) V:=P+[P;+e

From the intertwining properties (1.5a)(and their semi-
group analogues) it is immediate that
(1.10) TV V T.

The compactness of the operator I- V can be proved in the same way
as the compactness of I- V (see [12], proof of Theorem IV 2.1),
&nd thus V has a closed range As V_ 1s invertible, (1.10)
implies the invertibility of V Now Theorem 1.2 can be derived by
employing the proof of Theorem IV 2.1 of [12] up to formula (2.9)
and by substituting the boundary conditions (0.7). Although not
within the context of semi-definite pairs, an analogue of Theorem
1.2 appears in Section 6 of [13].

By specifying the theory of semi-definite admissible pairs
for the specific pair (T,B) in (0.6a)-(0.6b) on L,[-1,+1] one
obtains statements on the unique solvability of the finite-slab
problem in non-multiplying media (i.e., when é(t) > 0 and
_1 +1 é(t)dt < 1), In [1%] it is shown that basically the same
results on unique solvability hold on L [~1,+11(1 < p < +=)
provided g € L [-1,+1] for some r > 1.

A few remarks of a historical nature are worthwhile,
The abstract statement (0.1) - (0.2) of the finite-slab problem
goes back to Hangelbroek [6] and triggered the author's research
on this problem. Independent of and parallel to the investigation
leading to [12] Hangelbroek proved the invertibility of VT
for a case when the pair (T,B) is positive definite. The
author's invertibility proof was subsequently generalized for
semi-definite pairs [12] and Lp[—1,+1] (ef.[131).
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2. REFLECTION AND TRANSMISSION OPERATORS

In this section we define and study reflection and
transmission operators. Let (T,B) be a semi-definite admissible
pair on the Hilbert space H and introduce the short-hand

notations
(2.1) ut=p +e+TT~1AP +P., U'=P +e-TT—1AP +(I-tT"ta)p
: PP m 0> "m m p 0°
Using these abbreviations we define the reflection operators
+ + N
R+T, R_T, R+T and R_T, and the transmission operators
m + + 0
T+T, T o» T+T and T_T as follows:
_ Tl _ T=1
(2.2a) R+T = Up VT P,> R_T = Um VT P_;
- T-1 - T—1
(2.2b) Typ = Up Ve By Top = U VITPS
+ Tygopty—1 + Tyeoyty-1
(2.2¢) R+T = (Up ) (VT) P> R'T = (Um ) (VT) P_;
+ Tyt —1 + Tyw/ty—1
(2.2d) Typ = (U )PV TR, T_oo= (U )MV TR,

where the invertible operators VT and V: are given by (1.8b) and

(1.9b). Theorems 1.1 and 1.2 justify the existence of the above operators.
Let us explain the terms "reflection operator" and

"transmission operator". From Theorem 1.1 it 1s clear that the

unique solution w¢ of the boundary value problem (0.1)-(0.2)

is continuous on [0,7] and satifies

(2.3a) w¢(0):R+TP+¢+T_TP_¢, ¢¢(T)=T+TP+¢+R_TP_¢.

The unique solution $X of the boundary value problem (0.1)-(0.7)

has the property- that T$X is continuous on [0,t] and satifies

A o + A om +
(2.3Db) (wa)(0)—R+TP+X+T_TP_x,(TwX)(T)—T+TP+x+R_TP_x.

Thinking of the specific example of radiative transfer, the operators
R, and R__ map the intensity of the radiaticn incident to the

faces x=0 and x=t into the sum of the intensities of incident

and reflected radiation; the operators T, and T__ map

the former intensity into the sum of the intensities of incident
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radiation and radiation transmitted from the opposite faces of
the medium. In this way our choice of terminology is justified.

With the help of (1.5a) and (1.10) one gets the inter-
twining properties

+T

+ +
(2.4) THtT-RtTT, TTiT-T T.

Using the definitions of VT and V: it is clear that

(2.5a) P,R =P, P.R__=P_, P T =0, P, T =03
+ +
(2.5b) P+R+T 4» P_R.I=P_, P_T =0, P T_ =0
+ + . . .
Thus R, BR_., R, and R__ are projections.

LEMMA 2.1. One has !

t_or_p % - M
(2.6a) R+T—I R_T, R__=I- R+r’

Yoo =T *.
(2.6b) T T-T . T_ =T -

In particular, one has the intertwining propertles

- ¥ - _ *
(2.7a) TR, =(I-R_¥})T, TR_ =(I-R )T;

- * - *
(2.7p)  TT, =T *T, TT__=T_*T.

PROOF. First we prove that (R_:)* R,.=0. To see this,
note that
e +yx1-1,T +\ % +yxq-1.7T
(R_T) -P_[(VT) ] Ups (T_T) -P_[(VT) ] Up'
With the help of (2.2a) and (2.2b) one obtains

-1 -1 -1 -1
+ + -1 -1tT "A +1T Ay T-1T TA)P ]V P.;
(R‘T)‘R"'T:P'[(VT)‘] [e Pp+e Pm ( 04Vr T+

-1 -1
tyrp - +yx-1p -TT "A +TT “A _om—1 -1
(r_*T, =P [(v)*] “[e P te P +(I-1T AP IV_ TP,
and thus (R_:)*R+T=(T_:)*T+ . But for every h, k € H we have

i _ + _ s
<(?_T) T+Th,k>-<T+Th, T_Tk>-<(I P_)T+Th, T_ k>=

+
=<T, h, P .T_k>= 0,
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where we used that P T =P T_:= 0 (see(2.5)). Therefore,

+
+yw - tyw -
(2.8) (R_T) R+T-(T_T) T, = 0.
Next we derive the intertwining formulas
~R *¥)y7= -R *ym-
(2.9) (1 R_T)T TR+T, (I R+T)T TR_T.

For every h, k € H one has

<(I-R_¥)Th, k>=<Th, (I-R_ )k>=

=<T(I—R+T)h, (I—R_T)k>+<TR+Th, k>-<TR, _h, R_ k>.

Since (I-R, )h € H_ and (I-R_ )k € H (of.(2.52)), the first
term at the right-hand side disappears. As TR+T=R+:T (cf.(2.4)) and

(2.8) the third term vanishes and the first identity of (2.9)
follows. The second identity of (2.9) follows by taking adjoints.
Egs (2.6a) are a corollary of (2.4) and (2.9).
To derive (2.6b), notice that
e tyw-1yT tyw tywq~1yT
(R, ) *=P,[(V))*] Uy (T, )*=p [(VO*] "U .
Using these expyressions one easily checks that
tyw - LAY
(2.10) (T+T) R+T-(R+T) T+T'
We compute that
+ - tywopo tye -
<T+TTh, k>=<Th, (T+T) (1 R+T)k>+<Th, (R+T) T+Tk>-

- + - + -

-<T+TTh, (1 R+T)k>+<R+TTh’ T+Tk>-

. + - -

-<T+TTh, P_(I R+T)k>+<TR+Th, P+T+Tk>-

- + - - *

—<P_T+TTh, (1 Rfr)k>+<TP+R+rh’ T+Tk>-<T+TTh, k>,
where we employed (2.4), (2.5a)-(2.5b) and (2.10). Hence,
T++T=T+*T and the first identity of (2.6b) is clear. The second
ideppity is proved likewise. Egs (2.7b) follow by incorporating

(2.4).0
THEOREM 2.2. The following commutator relations hold

true:
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; - — * - * .
(2.11a) R, T-TR,_ =R_YBR, T-T_'BT, T;

- =R * - %
(2.11b) T+TT TT+T R+TBT+TT T+TBR+TT.

PROOF. To establish (2.11a) we first note that
(I-R, )h € H_, (I—R_T)k € H, and thus <(I-R,_)h, (I~R_T)k>: 0.

- _p * - “(T-R *)— * "
So 0 = (I-R_})(I R, )=(I-R_2) R, *RB_IR, . However, for every
h, k € H one has
* - - - -
<T_TT+Th, k>—<T+Th, T_Tk>-<P+T+Th, T_Tk>-<T+Th, P+T_Tk>— 0
(ef.(2.5a)), and thus

—(T-R *)=R * -R * _m *
(2.12) Ry, ~(I-R_})=R_¥R__=R_*R _-T_*T .

* *
Next we calculate R_TAR+T and T_TAT+T. We have

* - N -1
RIAR, =P (VH)TH (U * . aulv e,

Using (1.5b) and its semigroup analogues we obtain

RS by NS 1

-1 ...1 -
P +e Pp+(I—rT A)PO]VT P,-

* - *
R_IAR, =P_(V2) “A[

In a similar way one computes T_:AT+T and discovers that

*» _m *
(2.13) R_IAR, =T_*AT__.
From (2.12), (2.13) and I-A=B one gets
- - *y - * - *
R+T (1 R-T) R—TBR+T T—TBT+T’

and the commutator relation (2.11a) follows with the help of (2.7a).
To establish (2.11b) we first compute that

-1 -1
1 T APp+e+TT A

* - *\ "
Ry JAT, =P (V¥) " a[e Pt
(2.14)

| “1y _;mo#
+(I-1T AP ]V P =T *aR__.

With the help of (2.5a) it is clear that

* - * o #
(2.15) R+TT+T°T+T’ T+TR+1'T+T'

Hence, employing (2.124) and (2.15) we obtain
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* om o - * T -
R+TBT+T T+TBR+T'{R+TT+T T+TR+T}

- * _m ¥ - -k
{R,*AT, -T *AR__}=T  -T %,
and formula (2.11b) follows with the help of (2.7b). O
Obviously, (-T,B) is a semi-definite admissible pair on
1
P

H. But now for this pair the roles of P, P_, P, P, , A, T “A
- p m 0 1

are played by the respective entities P_, P+, Pm’ Pp’ PO’ A, -T ~A.

Writing down (2.11a) and (2.11b) for the pair (-T,B) we get

- = * - * .
(2.16a) R__T-TR_ =R *BR_ T-T *BT_ T;

_ =R ¥ _m %
(2.16b)  T_ T-TT_ =R_*BT_ T-T_*BR__T.

T
Substituting (2.7a)-(2.7b) at the left-hand side of (2.16a) and
(2.11b) we get

*rm_ *_.p ¥ - ¥ .
(2.17a) R+TT ’I‘R+T R+TBR_TT T+TBT_TT,

*m_ *_m % _p ¥
(2.17b) T+TT TT+T T+TBR+TT R+TBT+TT.
The same operations may be applied to the left-hand sides of
(2.11a) and (2.16b).

PROPOSITION 2.3. Let (T,B) be a semi-definite admissible
pair on H. Then the following operators are compact:

* 7yl * :TT—l
(2.18) R, ~P,» RI-P,, T, -e P,, T} -e P,

belongs to the p~th Von Neumann—Sghatten class Cp(l £ p < +o),

then the operators (2.18) belong to the class Cp too.
PROOF. Let us simplify the above problem first. Let ¢
(1 < p < +») denote the p-th Von Neumann-Schatten class in L(H)

(of.[17] for the definition, examples and main properties of such
a class).

Using (2.2a)~(2.2b) and the fact that VT— IE€ Cp (see the proof
of Th.IV 2.1 together with Lemma III 5.3 of [12]), we see
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that in order to show that R+T'P+'€ Cp and T+T-e

. . Ty, _ Tp _.”
it suffices to prove that UpP+ P, € Cp and UmP+ e

_om=1 Com=1
Suppose we know that e T AP -e T P € Cp and

p +

-1 -1
+1T A - +TT
e P -e P_ € Cp' Then

-1 -1
Tp _p = _ +1T "A, __+1T
UpP+ P+-[Pp P 1P, +[e P _-e P_]P++POP+€Cp and

-1 -1 -1
o b -1T "A, __-1T =1
P+—[Pm P_]P, +[e Pp.e P, ]+ (I-1T A)POP+ECp

1 -1T
UmP+ e

(ef. Lemma III 5.3 of [12]). Therefore, R+T-P+ECp and

-1
-1T X
T,.”¢€ P+€Cp, and in the same way we get R__ P_ECp

-1
and T —e+TT P €C
. -“*p

It is sufficient to prove that for any semi-definite
pair (T,B) with B=|T|%D for some 0 < o < 1 and DECp the operator

-7 1a —r7l . .
e Pp-e P+ belongs to the class Cp. (By applying this

-1 ~1
property to the pair (-T,B) one gets et APm—e+TT P_€Cp).

Y —rpl

For this we only have to prove that e Pp—e P+A€Cp.

(Note that B:]T]uDECp). By Proposition III 1.4 of [12] we have

e 1T 1APp-e'TT 1P+A=-(2ni)"1rfe
where T is the positively oriented pentagon with vertices

0, (1-i)4v2, M-i, M+i and (1+i)}v2 for some M > max (| T ,|] S| );
here S is the associate operator of Section 2, Repeating the proof
of Lemma III 5.3 of [12] we eventually conclude that the operator

Forl

(2.19) AN TG IR VIREC SO VP

+T

of (2.1 - -
(2.19) belongs to Cp. Hence, R PtGCp and 'I‘lLT e
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Finally, one éasily proves that their adjoints belong to Cp
(ef. [171). O '

Let us return to the pair (T,B) in (1.2a)-(1.2b), where the
expansion coefficients satisfy a, 1 (n=0,1,2,...). For a

N
polynomial phase function é(u)=n§0 an(n+§)Pn(u) the conclusion of

Proposition 2.3 obviously holds for C1 being the ideal of trace

4o
class operators; the same conclusion is drawn if n}_:olanl<+°0 (cf.

(123, Proposition VI 1.3). More generally, if the phase function

400
33 L2[—1,+1] ( or equivalently, if n¥o |an|2<+w), then the same
p ition VI 1.3 of [127 impli fh 6 R, -P. and T, ~e*TT 'p
roposition .3 0 implies tha 1Py an t1 e N

are Hilbert-Schmidt operators. So for é € L2[—1,+1] there
exist functions S(u,v)(resp.p(v,u)) and T(u,v)(resp.o(v,u)) such that

(R, ) (1) =t s e vye (mav=2 Mo (v, ud e (v)avs
(2.20) (0 s us1)
(T+T¢)(u)-e-T/“¢(u)=%ofiuilT(u,v)¢(v)dvzzofivo(v,u)¢(v)dv,

where the four integral operators have square integrable kernels.
The functions S(u,v)(resp. p(v,u)) and T(u,v)(resp. o(v,u)) are
known as the reflection and transmiséion functions of Chandrasekhar
[2](resp. Sobolev [19]). As we shall see in the next section, for
polynomial phase functions these functions are continuous for

0 <p, v 1.

3. REDUCTION TO AUXILIARY FUNCTIONS

In this section we deal with the concrete semi-definite
admissible pair (T,B) of {¢.1) - (0.2) only. For the polynomial
phase function

N
é(t):ngo an(n+%)Pn(t); 0sajc<i, ~ag <a, < ao(n=1,2,..,N),
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we express the reflection operators R+T and R_T, the transmission
operators T+T and T_T and their adjoints in the 2N+2 auxiliary
functions R+;’Pn and T+;Pn (n=0,1,..,N). On L,[-1,+11(but also on

L [-1,+1] for other 1 < p < +») we define the "inversion symmetry"

J by (Jh)(u)=h(-u)(~1 < u < +1); this operator is an isometry
with J2=I and will be employed throughout this paper. It has the
following properties:
(3.1) TJ=-JT, JB=BJ.
In the context of semi-definite admissible pairs it was systematically
studied in [12](Sections III.6-III.7) and it was shown that

JP =P_J, JPp=PmJ, JP*=P;J, JP.=P.J;

p 0°0
-1 -1 -1 -1
3o BT TAp _o#tT TAp 5o 5 GATT oy +6AT T pa s
p m p m
Hence, it necessarily satisfies the 1identities
- +— + 3
(3.2a) JV_=V_J, IV =V1J;
_ _ +_ 4 +_, +
(3.2b) JR, =R_J, JT =T . J, JR_=R__J, JT T=T_1J.
. . . . + +
So 1t suffices to derive expressions for R+1’ T+T and R+r’ T+T.
THEOREM 3.1. For every ¢,y € Ll[—1,+1] one has
¢ (u) ,0 £ u <1 0 » =1 < u < 03
(R, ¢)(u)= (T, 8) ()=
1 1
2Of vp(v,-u)¢(v)dv; Eof vo(v,u)e(v)dv+

-1 < 0 -
( b 0) re M), 0 5w < 1

x (1) ,0 s u < 1; go ,-1 < u o< 03
(R,7x) (w)= (T, 2% ()=
2Of1uo(v,-u)x(v)dv; 'EOfluc(v,u)x(v)dv+

(-1 <y <0) _
+e T/ux(u), 0 < u < 1.

Here the reflection function p(v,)) and the transmission function

o(v,X) are given by
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E(v,A) +E(},v) E(v,\) - E(A,v)

(3-33-) p(\),)\) = > O(V’)‘) = >
2(x + v) 2(x - v)
where
1 N 1 n
(3.3b) E(,A) = 5 Iya (n+ 5)(-1)" p (Vo (A);

(REP)(v) - (~1)™(T2P Y(v);

(3.3¢) o, (V) +7Pn +7in

(3.3d) o, (A) = (REP IO + (-1)NTXP IO,

+T'n

PROOF. Because of the remarks made in the second last

paragraph of Section 2 we may take ¢,y « L2[-1,+1]. Since

. - o+ I .
we have the identities TR, =Ry, T and TT =T T (ef.(2.4)), it
suffices to deduce the formulas for R+T and T+T. First the
derivation of the one for R, . is given. Repeated application
of the commutator relation (2.11a) yields

k-1 . :
K_mkp k=1=3 o » ok j+1
Ry T -T'R, =:, T {(R%BR,_-T*BT _}T"", k €.

For k € IN and h€ L2[-1,+1] we rewrite this identity as

k-1 . s N
(R, T0) (W)= (ry ) oy g v (o) poa (e

CRZP) (V) (R_ZR) ()= (T, 2P ) (v) (T_*P ) (u) }av.

* * _ . .
As RiTPn and TiTPn belong to H+-L2[O,1], this formula remains

correct when the integration is performed over [0,1] instead of

k-1

[-1,+1]. Writing j§0 u

k_l_jfj=(vk—uk)/(v-u) and ¢(u)=uk one gets
(R, 40) (W)= (w) (R, _h) (n)+

(3.4 N
+of1v312%§%££lh(v)ngoan(n+%)
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As this identity is correct for ¢(u)=1, by linearity it is correct
if ¢ is a polynomial and h € L2[—1,+1]. As for h € L _[-1,+1]

the integral operator - in (3.4) is bounded, Eq.{(3.4) is correct for
all pairs ¢ € L2[—1,+1] and h € L _[-1,+1]. Define K by

(K£) (u)=(R, £)(u)-

(3.%5)

N (R*P )(v)(R +Fn Y(u)-(T* P )(v)(T Fn ) (w)
~of vf(v) ol (B+) T ! LA b av.

V=i

Then K—R+T is a compact operator from L2[O,1]; from (3.4)(with
#(u)=u) it follows that

TKh=KTh, h € L _[-1,+1],
and thus TK=KT. According to a classical result of Stone ([20],
Theorem 8.1) there exists a function x € L [-1,+1] such that

K=x(T)(i.e., K is the multiplication by x). Using that Ry,” Py

is compact (cf. Proposition 2.3), one sees that K-P, is a multi-
plyer by an Lw—function; such an operator is trivial (see the last
paragraph of the proof of Theorem VI 3.1 of [12]); thus K = P
Substituting the identities (3.2b) and noting that
(JPn)(u)=Pn('u)= (‘l)nPn(u) one obtains from (3.4) and (3.5)
a formula for R+Tf, in which

+°

N (R *P Y (VIR XP ) (A)-(T, *P Y(u) (T, *P ) ()
o(vsa)=} Ioe, (n+1) (= 1) +T n) V) +T n )= +T'n (

Aty

’

Defining o (v) and o, (A) by (3.3c)-(3.3d) one easily reduces
(3.6a) to the first part of (3.3%a) where E(v,A) is given by (3.3b).

The expression for T+T is derived analogously by first
applying (2.11b) repeatedly. Now one expleoits that

-1
T —e—TT P, is a compact operator, but formulas (%.2b) do not
+1

play a role. The result obtained reads

N (R *p )(X)(T+:Pn)(v)-(T+:Pn)(A)(R+:Pn)(v)
a(v,k)=%n§0an(n+%) I

A=V

Using (3.30)*(3.3&) one finds from (3.6b) the second part of (3.3a).
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In the notations of Sobolev [18] we have
¢n=R+;P and ¥ =T *P_; formulas (%.6) correspond to Eqs(30)-(31)

+t'n’
of [181]. Mulllkln [16] writes w R+1Pn and ¢ =T' P ns formulas (3.6)
correspond to Eqs(2.42) of [16] Substltutlng X=P (k 0,1,....,N)

into the formulas for R +7 X and T +7 X and employlng that

(R *Pk)(u) =P (w)-(- -1 (R, P )(-u)(see (2.6a),(3.2b)) and

(T, *P ) (w)=(T, P Y(u)(cf.(2.6b)) we obtain a coupled system of
2N+2 non- 11near 31ngular equations for the 2N+2 unknown R 'P and
T+T n (n=0,1,...,N) corresponding to Eqs(2.43)-(2.44) of [16].
Hovenier defines one two-variable exit function E(v,)) as
followsy
E(v,0)=(x+v)p(v,A)+(A=-v)o(v,A)
(ef.08]1, (2)). As p(v,M)=p(x,v) and o(v,A)=0(X,v)(cf.(3.6)), it is
clear that E(v,x) is given by Eqs(3.3a)-(3.3d)(cf. [81, (3)-(4);
also (10)-(11)).In this way Hovenier obtained a simplification of
formulas presented by Mullikin and Sobolev.

L. SPECIAL FUNCTIDNS OF TRANSPORT THEORY
For 1later use and to enhance the readibility of Section
5 we expose functions known to transport theorists and present
the structure of the singular and regular subspaces HO and H1
in the case of the semi-definite pair (T,B) in (0.1)-(0.2).
Consider the polynomials (H )n 0 satisfying the recurrence relation

(4.1a) (2n+1)(1-an)an(u)=(n+1)Hn+1(u)+n Ho ()
(4.1b) Hy(u)=1, Hy (u)=(1-a u.
For ag=a =...=0 these polynomials are just the usual Legendre
polynomials. Further, substituting u=0 one sees that
Hn(O)=Pn(O)(n > 0).

In terms of these and the Legendre polynomials one
defines the characteristic binomial ¥ (v,u) and the characteristic

function ¢ (u) by
N
(4.2) Vv,uw= 2o a (n+1)H (VP (W), ¥ (w)=b (u,u).

The dispersion function A is defined by either one of the expression
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(4.32) A =t e T aust-ag L M uGen T Ogean;
taking Cauchy principal values one gets

(1.30)  A(v)= Lin JIA (vrie)sA (v-ie)b=1-agt_ ¢ T -v) 7 (v,0du.
124

Due to symmetries in the polynomials in (4.1a) we have
(4.4a) P (=v,=1)=p (vyu), v (=v)=p (v,-u), W)= ()
(4.4b) A (=2)=A (}) s A(=v)=a(v).

The dispersion function A 1s analytic on ¢w cut along
[-1,+41]1 and continuous on the imaginary axis. Because in terms
of a determinant
(4.5) A (A)=det(T-AA)(T-x)'1 (A € €\[-1,+11)
for a polynomial phase function (cf.[6], Lemma 3.1;[11], Proposition
1; these results continuously extend to the conservative case),
outside [+=1,+1] the zeros of A (X) correspond to the spectrum of the
operator polynomial T-XA. In fact, for the associate operator we
have

0(S)=0(8¥)=[-1,+17u{} € C\[-1,+11:A (1)=0};
at infinity A (A) has a zero of multiplicity s=dim Hy, where Hg
is the singular subspace. The finite zeros of A (A) are real and
simple (see the second paragraph at page 238 of [41; later proofs
appear for 0 < ¢ < 1 in [6,111). Note that
(L.6) lim A (vtie)=a(v)+imvyp(v) (-1 < v < +1).

e+0
The next result has recently been proved in a clear way by Garcia
and Siewert [51].

PROPOSITION 4.1, For v € [-1,+1] thefunctions A (v)
and y(v) do not have common zeros. For v € (-1,+1) there are no
common zeros of A(v) and ¥(v). If ¥(+1)=0, then the limits

lim A (v) and lim A (v) exist and are non-zero.
vt vi=-1

In the non-conservative case 0 < ¢ < 1 the results of

this proposition are claimed by Hangelbroek [6] and Lekkerkerker
[117. At page 313 of [111a proof of the third statement is given.
In [6] the second statement is proved. Garcia and Siewert [5]
prove all three statements in a completely different way and their
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proof also applies to the conservative case c=1 and critical ¢ >
media.

As exposed in Section'l, to every semi-definite admissible
pair (T,B) on a Hilbert space H there exist a singular subspace

H0 and a regular subspace H1 such that HO @ H1 = H and
4.7 T[H,1=Hy, TCH,J=A[H,]=Hg

(ef. (1.2)). On Hl(resp.HS) the bounded operator S(resp.S+) is
uniquely defined by ASk=Tk=STAk for every k € Hi‘
PROPOSITION 4.2. (=special case of Th.VI 4.1 of [12]).

Let ag=a =...=a _,=1 and -1 < ay < +1 (n=m,m+1,...,N). Let s=m

for even m and s=m+1 for odd m; then s is the dimension of the

singular subspace Hy. In particular,

- _ - -1
(4.8a) HO'Span{PO’Pl""’Ps—l}’ Hi—spaﬁIPn.n > s+1}8 spani{T P,

(4.8b) T[Hyl=span{TPy,TP , ... ,TP__,1, TCH,J=span{P :n = s}.

1,' S

The formula for HO is immediate from Theorem VI 4,1 of
[12].The subspaces TTEZT=H3 and T[Ho] follow directly. Finally,
H1=(T[HO])~L is computed. For the case needed the elementary formul
(4.8a)-(4.8b) do not appear in literature.

5. DIAGONALIZATION OF THE ASSOCIATE OPERATOR

In this section we diagonalize the associate operators
S € L(Hl) and st € L(HO) and apply these results to prove the
Hélder continuity of the auxiliary functions R+:Pn and T+,’:Prl
(n=0,1,...,N). For the non-conservative case 0 < ag < 1 and the
conservative isotropic case (N=O,ao=1) these diagonalizations are
due to Hangelbroek [6] and Lekkerkerker ([10,11]. Here we present
them in a form inspired by Eq.(2.10) of [14], which is more suita
to our purposes, and generalize them to the conservative case
a0=1. In this way a non-routine extension of [6,10,11] is derived.

THEOREM 5.1. Let a0=i1=...=am_1
(n=m,m+1, ...,N), and put N=0(S"). Let s=m for even m and s=m+l

for odd m. Then there exists a finite Borel measure ¢ on N=o(s")

=1 égg -1 < an < +1
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+

and an operator F' from L2[-1,+1] onto the Hilbert space L2(N)

of o-square integrable functions on N with the following properties:
(i) Ker F+=T[H0]=span{TPn:O s ns s-1}, Im F+=L2(N)0;

1

(i1)  Sy(F'hy) (V) (F'h,) (V)da(v)=<A” h, ,h,>(hy,h,€TCH, 1)

1’
(ii1) (F'B ) (v)=H (v) (veEN;n=0,1,2,...).

In terms of a Cauchy principal value one has

(5.1)  (F') ()= (Wh(v)-_ £ v -v) Tl (v,mn ) au.
(VEN,h€L,[-1,+11)

The unique vector h_€TTH,J such that (F+hs)(v)=1 is given by
hS=PS/PS(O).

As A acts as-an invertible operator from H1 onto W’
the operator F Fia: L2[-1,+1] -+ L2(N)O has the property
(F*Th) (v)=v(F*Ah) (v)=v(Fh) (v) (VEN, he€l,[-1,+11); so it is given
by
(5.2)  (FR)(W=A(Wh()-_ ¢ u(u=v) T (v, b (W) dw.
The unique vector ksEHl such that (st)(v)sl is given by

ks={(28+1)(1—a3)Es(0)}—1(s+1)T—1PS+1. The properties of F are proved
in a straight”orward way once Theorem 5.1 is established.

PROOF OF THEOREM 5.1. Let us denote the right-hand side
of (5.1) by (Gh)(v). Then

(GPO)(v)=A(v)-_1¢+1v(u—v)-1w(v,u)du=1-ao+_1¢+1{(u—v)+v}(u-v)'1w(v,u)

-_1¢+1v(u—v)-1w(v,u)duzl-a

O+_1f+1¢(v,u)du=1=HO(v), VEN (cf.(4.3b),

(4.2)). Assume that (GPn)(v)=Hn(v) for n=0,1,..,k , and let us
compute (k+1)(GPk+1)(v). Inserting the recurrence prelation
(k+1)Pk+1=(2k+1)TPk—kPk_1 for the Legendre polynomials (cf.(4.1a)

with a0=a1=....=0), one gets (k+1)(GP Y(v)=(k+1)A(V)P

+1
-1f

k+1 ket (V)

v(u=v) T (v, 1) [ (2k+1) { (u=v) +v}P, (1) =k, _; (u) Jdu=

R+ DAIP, 4 (W)= (ke v_ S v, m Py () du- (ke v_ ¢ o (u

1
-v)_lw(v,u)Pk(u)du+k_1¢+1v(u—v)—1¢(v,u)Pk_l(u)du. Now we employ
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the induction hypothesis and the recurrence relation for the
Legendre polynomials to simplify this expression and get
+1
(k+1)(GPk+1)(v)=-(2k+1)v_1f w(v,u)Pk(u)du+(2k+1)ka(v)
-ka_l(v)=(2k+1)(1—ak)ka(v)—ka_1(v)=(k+1)Hk+1(v);
By induction we may conclude that (GPn)(v)zﬂn(v) for n=0,1,2,

From (4.1a)-(4.1b) it follows that

(5.3a) Hy= H3 ..... =Hg_ 1-0, deg H0=deg H2= .=deg HS=0;
(5.3b) deg H_,, =k (k 2 0) , 1im {n-deg Hy } =s.
n-++eo

So for a polynomial h we have (Gh){v)=0 (véN) if and only if

h € span{TPn: 0 <n < s—1}=T[HO]; further, G maps the polynomials
onto polynomials. If P is a polynomial, then {P:GP is constant}
={P:deg P.< s}, while deg P-deg GP=s whenever deg P = s+1.

J Note that h =P_/P_ (0) € —TH_T(see Proposition 4.2) and
(F h Y(v)= H (v)/P (0) H (v)/H (0)=1, As one easily checks from
(4. 1a), for,a polynom1a1 k € T[H TLH, I= A[Hl] we have

(5.4) (@s*h) (v)=v(Gh)(v), v€N=c(S+).

So G maps span {(S ) h :n 2 0} onto the set of polynomials (on H).
But on T[H 1 the operator st is self-adjoint with respect to a
suitable 1nner product {(cf. (1.3)). Since deg (S+)nhs=s+deg G(S+)n1
-s+n+deg Gh =s+n (n=0,1,2,...), it is clear that

span {(sH" h :n > 0} is a dense linear subspace of TTEIT. By Von
Neumann's spectral theorem for self-adjoint operators with a simple
spectrum ([20] Theorem 7.10) there exists a finite Borel measure
o on N=o(3*) and an invertible operator rt T[H T > LE(N)o’
has the property (F*s*n) (v)=v(F*n) (v) (veN; h € TTH, ]) and
the property (ii) of the theorem. It is clear that F extends

to a bounded operator rt L [- 1 ,+1] » L (N) by setting Fth=0 for
h € T(H,yJ. By (5.4) we have F*h=6h on the polynomlals h. Hence,
formula (5.1) and properties (i) and (iii) are clear.g

which

A complete orthogonal system of L2(N)O is the sequence

e ; it has the property

(Hs+n)n=0
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8
_ -1 _ n+k
(5.5) Nst+n(v)Hs+k(v)do(v)—<A Ps+n’Ps+k> o) (1o ).
2 8s+n
THEOREM 5.2. Let a0=31=...am_1=1 and -1 < a < +1
(n=m,m+1, ,N), and put N=o(s"). Let s=m for even m and s=m+l

for odd m. If ¢ is the measure and F¥ L [-1,+1] ~» L (N)

surjective operator of Theorem 5.1, then on the polynomlals p the

right inverse of F* with range T[Hlj-span{Pn.n > s} has the form

(5.68)  ((F)7'p) (w=p )y AR (v ydo(v) (-1 = w2 +1),
TR

where ¢s(v,u) is defined by

N-s
(5.6b) b (Vam) = Eg ag (stke DH L (VP (W)

Moreover, pt maps functions on [-1,+1] that are H8lder continuous

of exponent 0 < a < 1 except for a possible jump discontinuity at

u=0, onto functions on N of the same type.
PROOF. Recall that (Hs+k)k°:°O is a complete orthogonal
system of L2(N)U satisfying the recurrence relation
5.7 (25+2k+1)(1_as+k)TNHs+k=(S+k+1)Hs+k+1+(S+k)Hs+k—1’
where (TNp)(v)=vp(v) (VEN,p € LZ(N)G)‘ Let us denote by (Gp)(u)
the right-hand side of (5.6a). To prove (5.6a) it suffices to
check it for p=H s+k by induction on k.
As for h_=P_/P_(0) € TCH,] one has (et h,) (v)=1=H (v)/H_(0):
Hs(v)/Ps(O), formula (5 6a) is correct for p=H_. Suppose that
,H }. Using (5.7) one gets

(5.6a) is correct for p € {HS,H

s+1%° "' s+k

(s+k+1)(GHS+k+1)(u)=(S+k+1)Hs+k+1(u)+

(u)-H (v)

s+k

+(2S+2k+1)(1—as+k){uNIL stk pg (vouddo(v)+

H=v

sy MHy (W (Vo) do(v) -

s+k

Hs+k—1(u)_Hs+k-1(v)

—(S+k)Nfu

w_ (v,yu)do(v).
p=v Ch
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Using the induction hypothesis and the recurrence relation for the
Legendre polynomials it is clear that
(s+k+1) (GH

1)(u)=(s+k+1)P (u)+

s+k+
+(2s+2k+1)ufl-a

s+k+1

(W) +y/H (v)ws(v,u)dc(v)}.

s+k s+k s+k

Inserting (5.6b) and employing (5.5) one obtains GH_ . 41=P ) 0q5

and formula (5.6a) is clear for P=H pyqe

Given the phase function é(t)=ngo an(n+%)Pn(t) with
0 <ay <+1land -a; < a, < a, (n=1,2,..,N), we consider the non-
conservative phase functions c@ for c+1, If S is the operator on
the regular subspace H1 satisfying ASh=Th for h € Hl’ choose
M>|l s|| and let I' be the positively oriented circle with centre 0
and radius M. Then for 1 > ¢ = ¢y the number of zeros of the
dispersion function,Ac(A) of the phase function cé outside T equals
the multiplicity s=dim Hy of the zero of A(X) at infinity; this fol-
lows from Rouchd's theorem provided max{lA(A)-ltA(X):AC(A)]|:XEF}<1

N
for ¢, = ¢ < 1. Let (A h)(W)=h(w)-c Iy a_ (n+})P (u)_ f+1h(u')Pn(u')du'

“for -1

IA

# < +1, Define the projectioens P1 c and P * by
>

i,c

. sy =1 - -1 +__ - =1 - -1
Py S (2mi) Ff(Ac AT) TdA,Pl’c- (2mi) rfT(Ac AT) “da.

Then P, (resp Py ) tends to I-Po(resp.I-PS) in the norm as c+1,
while

_ + _ + +_ *,
TPl,c'Pl CT, AP -P1 cA, P1 c'Pi,c’ g £ ¢ < 1.
_ _ +_ — + _ +
Put Hl,c_ImPl,c’ 1,c ImP1 Lo then T H1 ,c Hl,c and A Hi,c 'Hl,c'

In the non-conservative case the Borel measure ¢ on N
is absolutely continuous on [-1,+1] with Radon-Nikodym derivative

(5.8) (A0/dv)=LA(V) 241292 P(v) 2172, =1 < v < +1
(ef.[6,11]). Let us extend this result to the conservative case
with the help of a stability argument. Let N=o(S)=o(s*) and
Nc={v€c(A;1T):|v]<M}, where ¢ < ¢ < 1. If p is a polynomial and
Cg s ¢ < 1 we have
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Sy P(v)do_(v)=<A] -1

-1 + * .
N, P, cp(S Yhy,hy>=<A “p(S )P, *h ,P, %h

1,¢0°%1,c%07>
where h (u) Po(n)/Py(0)el, g, is the Borel measure connected with
cf and S is the restrlctlon of TA, “1 o Hy Z. For c+1 the above
expre351on tends to <A p(S )(I- P*)h , (I~ P )hy>. But

hs-h0=(Ps/Ps(0))“(PO/PO(O))iTh for some polynomial h of degree s-1,

and so hs—hoe span{TPo,TPl,...,TPS_1}=T[HO]=Ker(I-PO). So for

every polynomial p one obtains

lim S

n (v)dcc(v)=<A‘1p<s+)hs,ns>=4qp(v)do<v).
ct

NP
In the same way, using the stability of the spectral subspace of
st corresponding to its spectrum on [-1,+1], one gets

éiT f[_1’+1]p(v)dcc(v)=f[_1,+1]p(V)d0(v)-
But for 0 < ¢ < 1 the measure 9 is absolutely continuous on
(-1,+1]. Further, A(v) and y(v) do not have common zeros for
v€E(-1,+1) and if ¥ (+1)=0, the 1limit of A(v) as v»>+1 does not vanish
(see Proposition 4.1). So the expression [)\2(\))+112\)2\p(\))2]"1 is
bounded and continuous on [~-1,+1] and therefore the measure o is
absolutely continuous on [-1,+11 with Radon-Nikodym derivative
(5.8). As A¥v)+m?v?y(v)? appears to be Hlder continuous on (-1,+1)
and is bounded away from zero, the function (5.8) is
H8lder continuous on (-1,+1). Now it is quite trivial to see that
for the measure ¢ the operator (F+)"1 of (5.6a) maps functions on
N that are H8lder continuous of exponent 0 < a < 1 except for a Jump
at v=0, into functions of the same type. From this and the similar
property of F* one easily gets the second part of the theorem.[

To determine the measure ¢ at its discrete points
VEN\[-1,+1] one may follow the same method as in [6,11]. We point
out that the first statement of Proposition 4.1 plays an indispensabl
role in the derivation and so does the simplicity of the zeros
ve€[-1,+11 of A(v). We get

s({vh)={v AT (VIp(v) I3, veN\[-1,+1].
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COROLLARY 5.3 Let 0 < ag s 1 and -3y < a, < a; (n=1,2,..,N).
Then for any polynomial p the functions R+; p and T+'

continuous of exponent 0 < a < 1 on [0,1].

. b are Holder

PROOF. Let N:G(S+). Then for every polynomial p one has

+ ( '_1f0V(U‘V)_1W(v,u)p(u)du,v>0;
[FF(P*P_)pl (V)= i
? 0 <0,

and thas, by the second part of Theorem 5.2, P;P_ and

analogously P;lP+ extend to a compact operator on Ha[-l,OJOHa[O,ll,
0 < a < 1. Here H [a,b]is the Banach space of HSlder continuous
functions h:fa,b]> € of exponent a. Also, by the second part of

-1 -1
Theorem 5.2, e CAT P; and ettAT P& are bounded on H [-1,0]

® Ha[0,1]. As in the proof of Theorem IV 2.2 of [12] one shows
the compactness of an operator; in this specific case we prove that
I-V:, with VI as in (1.9b), is a compact operator on
H [-1,0]1 8 H [ 0,11. As H,[-1,0] @ H [0,1] is densely embedded in
L2[-1,+1] and V: is invertible as an operator on L2[—1,+1], it is
also invertible as an operator on Ha[-l,O] ® Ha[O,l].

Next observe that for a polynomial. p the following
identity holds:

1

(F+p)(V)-e_T/v[F+(V:)_ P pl(v), v>0;

(F*R,*p) (v)=
*T F'p) (- FHwh) e pa(v), veo

(see (2.2¢),(2.6a)). Again by the second part of Theorem 5.2, we
get R+;p)EHa[~1,0] ® Ha[0,1]. In the same way one shows that

* -
T+TpEHa[ 1,01 @ Ha[O,ll.D
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