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TRANSPORT EQUATION ON A FINITE DOMAIN: 

!. REFLECTION AND TRANSMISSION OPERATORS AND 

DIAGONALIZATION 

C.V.M. van der Meel) 

In this article we study the time-independent linear 

transport equation in a finite homogeneous non-multiplying 

medium with anisotropic scattering. For a polynomial phase function 

the solution is expressed in finitely many auxiliary functions. 

A diagonalization of an operator associate to the equation is 

established. Reflection and transmission operators are int~sdu~ed. 

equation 

(0.1) 

Introduction 

In this article we study the integro-differential 

~¢ (x,~) + ¢(x,~) = 

: -1/+1[ 2-~1 O/2W o~(~' + ~ /l~-~cos a)d~ ]~(x,~')du 
(-1 < ~ -< +1, 0 < x < T < +~) 

In astrophysic ~ Eq.(0.1) describes the time-independe'nt 

transfer of unpolarized radiation through a homogeneous plane- 

parallel stellar or planetary atmosphere of finite optical 

thickness w. Here ~ denotes the azimuth-averaged intensity of 

the radiation, x the optical depth and ~ the phase function 

(with the albedo included as a factor). For physical reasons one 

I) The main part of this paper was written while the author was 
a research fellow at the Department of Mathematics of the 
Free University of Amsterdam. 
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_ _ _ i+1 [(t)dt < 1 In neutron has ~(t) > 0(-1 < t < +1) and c = -1 - " 

physics Eq.(0.1) describes the stationary transport of undelayed 

neutrons with uniform speed through a homogeneous plane-parallel 

fuel plate of a nuclear reactor. Here ~ denotes the angular density, 

x a position coordinate, x the thickness of the plate (in units 

of neutron mean free path) and [ accounts for the scattering 

properties of the medium. In a non-critical reactor one has 

_ _ _ f+l [(t)dt < 1 In Eq.(0.1) ~(t) > 0(-1 < t < +1) and c : -1 - " 

arccos U is the angle describing the direction of propagation. 

Given a nonnegative phase function ~ £ L1[-1,+1] with 

c = -lf+1 ~(t)dt _ ,< 1 the problem is to compute the unknown 

function @ under suitable boundary conditions. For the physical 

aspects we refer to various textbooks (see [2,1,19,3,9]). 

In physical applications one usually considers the 

boundary conditions 

( 0 . 2 )  ~ ( o , ~ )  : ~ ( ~ )  (o ~ ~ ~ I ) ,  ~ ( ~ , ~ )  : ¢ ( ~ )  ( - I  ~ ~ < o ) ,  

where @ describes the azimuth-averaged intensity of the radiation 

or angular density of the neutrons incident to the faces of the 

medium. In practice mostly polynomial phase functions of the form 

N 

(0.3) ~(t) :n~0 an(n+~) Pn (t) (-1 ~ t ~ +I) 

are considered, where Pn is the usual Legendre polynomial of 

degree n and N is finite. From the physical constraints ~(t) ~ 0 

: f+1 ~(t)dt ~ 1 it follows that 0 ~ a 0 ~ i and and c -i 

-a 0 < - a n . . . . .  < a 0 (n = 1,2, ,N) The cases 0 < a 0 < i and a 0 : 1 

are usually named the non-conservative and conservative case, 

respectively. Note that c = a 0. 

In astrophysics the solution of the boundary value 

problem (0.1)-(0.2) (with ¢(U) : 0 for -I ~ U < 0) at x : 0 

and x : • is commonly written as 

-1 S(U,v)¢(v)dv : 2 0/1 vp(v,U)@(v)dv; ~ ( o , - ~ )  : ~ o f l  
(0 ~ ~ ~ 1)  

(0.4) 
@ ( T , ~ )  - e - ~ / ~  ~ ( U )  : 

011 - 1  T(u,v)~(v)dv : 2 0/I va(v,~)@(v)dv. 
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Here S and T (resp. p and o) are reflection and transmission 

functions appearing in the work of Chandrasekhar [2] (resp. Sobolev 

[19]). Exploiting symmetries in the equation Hovenier [7] 

expressed these functions in terms of one two-variable exit function. 

In neutron physics non-rigorous aspects of Case's method 

ofeigenfunctionexpansion (see [i]) stimulated a mathematically 

rigorous treatment of the "finite-slab problem" (0.1)-(0.2). 

On the Hilbert space i2[-l,+l] of square integrable functions on 

the interval -1 ~ p ~ +1, the boundary value problem (0.1)-(0.2) 

may be formulated as the following operator differential equation 

with boundary conditions: 

(0.5a) (T~)'(x) : -(I-B)@(x) (0 < x < T); 

(0.5b) limllP+~(x)-P+¢ll: 0, limllP_~(x)-p,¢II: 0. 
x¢O x+T 

Here the vector ~(x) [2[-i,+i], the operators T and B and the in 

projections P+ and P_ on [2[-1,+1] are defined by 

(0.6a) @(x)(~) = ~(x,~), (Th)(~) = ~h(~); 

,-i /2~A , , (0.6b) (Bh)(~) :_II+i[(2~ 0 g(~' + /Y-7/~cos~)d~]h(~ )d~ ; 

(0.6c) (P+h)(u) = h(u)(~ ~ 0), (P+h)(u) = 0(~ ~ 0). 

This statement of the "finite-slab problem" by Hangelbroek [6] 

stimulated the author to investigate it. For non-multiplying media 

and ~ £ [r[-l,+l] for some r > i, the boundary value problem 

(0.5) was proved to have a unique solution for every 

£ [2[,1,+1] (see [12"]), Subsequently this result was obtained 

for the analogous problem in [p[-l,+l] (i ~ p < +~, including p = 1), 

also for the more general type of boundary conditions 

(0.7) limlITP+~(x)-P+× If: O, lim IITP_~(x)-P_× If: O, 
x~0 x+T 

where X E Lp[-l,+l](see [13]). 

Without much emphasis on mathematical rigour astro- 

physicists have derived analytic expressions for the reflection 

and transmission functions long before the bulk of mathematical 

r 

i 
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literature on the subject appeared. Inspired by partial results 

of Chandrasekhar [2](the cases N = 0,1,2) Mullikin reduced the 

calculation of the reflection and transmission functions to the 

computation of finitely many (namely 2N+2) auxiliary functions, 

for which he found non-linear and linear singular integral 

equations (see [15,16]). Transforming to sums and differences of 

Mullikins functions Hovenier [8] accompl~shed a decoupling of 

the linear singular integral equations and wrote the non-linear 

ones differently. ~ 

This article aims ~t a synthesis of the formulas of 

astrophysicists and the rigorous approach of mathematicians. 

It consists of two parts. In the first part we reduce the 

solution of the boundary value problem (0.1)-(0.2) for the phase 
. \ 

functlon (0.3) to the computation of 2N+2 auxiliary functions. 

To rely on the approach of [12,13] it is convenient to intro- 

duce the reflection operators R+T and R_T and the transmission 

operators R and T by 
-T -T 

~(0) = R+ P+~+T_TP_~ , ~(T) = T+ P+~+R_ P_~, 

where ~ is the boundary value function and P+ and P_ the 

projections of (0.6c). Using the adjoint operators R+T ~ and T+T 

we express R+~, R_T~; T+T~ and T_T~ in the 2N+2 auxiliary 

functions R ~P and T+$Pn, where P is the usual Legendre polynomial 
+~ n n 

of degree n (n=0,1,..,N). It appears that these functions are 

the @n- and ~n- functions of Chandrasekhar [2]. The main result 

of Mullikin [16], the non-linear singular equations referred to 

N 

above, derived by him for the case n~0 an(n+~)Pn(~)Pn(U') ~ e > 0, 

is obtained as a corollary. The second part of this article is 

devoted to the analytic continuation of R+$P n and T+~P n and 

their reduction to Chandrasekhar's X- and Y- functions. 

For later use, to derive analytic continuations of and 

linear ~ingular integral equations for R+~P n and T+~Pn, we 

generalize a diagonalization of the operator (I-B)T -I to the 

conservative case. For the non-conservative case this result 

originates from Hangelbroek [6] and Lekkerkerker [i0,!i]. 
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A recent result of Garcia and Siewert [5] on the zeros of 

the so-called dispersion function plays an important role at 

the generalization. 

Let us describe the contents of the sections. After 

Section 1 containing necessary concepts and results from [12,13], in 

Section 2 the reflection and transmission operators are Studied 

in an abstract Way. In Section 3 these operators are expressed 

analytically in 2N+2 auxiliary functions. In Section 4, for later 

use, wffexposefunctions of Transport Theory and some properties 

of the dispersion function in particular. In Section 5 we 

diagonalize the operator (I-B)T -1 and prove the H~ider continuity 

of R+~P n and T+~P n as a corollary. 

Finally we make some notational remarks. The inner 

product of a Hilbert space is denoted bij <.,.> and the orthogonal 

complement of a subset M by M ±. By L(H) we mean the algebra of 

bounded linear operators on the complex Banach space H; 

by I H (or I) we denote its identity element. The spectrum, null 

space and range of an operator T are written as o(T), Ker T and 

Im T, respectively. 

1.STATEMENT OF THE PROBLEM 

Radiative transfer and neutron transport may be described 

by the integro-differential equation (0.1)with boundary conditions(0.?) 

Here ~ isa real-valued function inLr[-l,+l] for some r > 1. 

To solve the system of equations (i.i) in the space 

Lp[-1,+l](with 1 ~ p < +~) one introduces the vector ~(x) in 

ip[-1,+l], the operators T and B and projections P+ and P of 

unit norm on LD[-1,+I] by Eqs. (0.6a)-(0.6c). 

Now the problem can be written as the operator differential 

equation (0.5a) with boundary conditions (0.Sb). 

Given X £ Lp[-l,+l] one can also consider the more general boundary 

conditions (0.7). 

Given ~ (resp. × ) in Lp[-1,+l], by a solution ~ of the finite-slab 

problem (0~i)-(0.2) (resp. (0.1)-(0.7)) we mean a vector- 



van der Mee 577 

valued function @:(0,T) + [p[-1,+1] such that T @ is strongly 

differentiable on (0,~) and the equalities (0.1) and (0.2) 

(resp. (0.7) ) are fulfilled. 

In [12] the finite-slab problem in [2[-1,+1] has been 

treated through the abstract notion of a semi-definite admissible 

pair. By a semi-definite admissible pair on a Hilbert space H 

we mean a pair of bounded linear operators T and B on H with the 

following properties: 

(C1 T is self-adjoint and has a trivial null space Ker T; 

(C2 B is compact and A : I - B is positive (i.e., 

< Ah, h > ~ 0 for every h £ H); 

(C3 there exist 0 < ~ < 1 and a bounded operator D on 

H such that 

B : JTr D. 

If A = I - B is strictly positive (i.e., if < Ah, h > > 0 for 

0 ~ h £ H), then the pair (T,B) is positive definite; otherwise 

it is called singular. 

If E denotes the resolution of the identity of the 

self-adjoint operator T, put P+:E((0,+~)) and P_:E((-~,0)). 

As Ker T:{0}, we have E({0}):0. By H+(H_) we denote the image of 

P+(P_). So 

(1.1) H : H+ ~ H_. 

Now on the Hilbert space H one can formulate the (abstract) 

finite-slab problem (0.1)-(0.2) (resp.(0.1)-(0.7) ), where 

(resp. X) is taken in H. 

Let us consider the pair (T,B) on [2[-1,+1] defined by 

(0,Ca)-(0.6b). If ~ is a real-valued function in ir[-1,+l] for 

some r > 1, this pair (T,B) satifies (C1) and (C3) and the operator 

B is compact and self-adjoint (cf.[12], Theorem VI 1.1). As known 

([21], Appendix XlI.8), one has 

+~ 

(Bh)(B) :n~O an (n+~)Pn(~)-i I+1 h(V)Pn(V)dv (-1 -< ~ -< +1)~ 

where Pn(~) =(2n.n~) -1 (d~) n (~2-1)n is the usual Legendre 

polynomial of degree n and an = (n+~)-~-11+1 ~(t)Pn(t)d t 
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(n=0,1,2,..). It appears that a(B) = {a n : n ~ 0} U {03; so for 

a g +1 (resp. a ~ +I) for every n=0,1,2,..., the pair (T,B) 
n n 

is a semi-definite (resp. positive definite) admissible pair on 

[2[-1,+1]. The physical constraints ~(t) ~ 0 and _I y+I ~(t)dt ~ 1 

< a 0 (n=1,2,...), and in this imply that 0 ~ a 0 ~ 1 and -a 0 ~ a n - 

case the pair (T,B) is semi-definite; ~it is positive definite if 
r 

_ = 0 for n > N+I, the phase function and only if 0 < a 0 < 1. If a n 

is given h~ (0.5). 
Let (T,B) be a semi-definite admissible pair on a 

Hilbert space H and let A = I B. Then there exist natural 

decompositions of the spectra of the possibly unbounded operators 

T-1A add AT-l(see Section III.3 of [12]), which we are about to 

describe. If F is a ~o$~tively oriented contour separating the 

point I:0 from the non-zero part of /:{I 6 C: A-IT is not 

invertible}~put P0 = -(2~i)-lfF (A - IT)-IT dl and 

P0 += -(2~i[I/F T(A - IT)-ldl. Then P0 is a projection and P0+:P0 ' 

We call H 0 = Im P0 the singular subspace and H i : Ker P0 

the regular subspace. We have dim H 0 < +~ and 

± A[H i] : ± = T[H~, (1.2) H:H 0 ~ H I , T[H 0] : H 1 , H 0 

where Ker A c H 0 and A acts as an invertible operator from H i 

~0 ± T[H I] one can define in a unique way the onto . On H 1 and H 0 = 

bounded linear operators S: H i ÷ H 1 and S + ± ± : H 0 ~ H 0 such that 

ASk = Tk (k 6 H I ) and S+Ak = Tk (k 6 H1) ; then S and S + are 
± 

similar with similarity A:H 1 + H 0. We call S the associate operator. 

It appears that S and S + are self-adjoint with respect to the 

equivalent inner products 
± 

(1.3) <kl,k2>A:<Akl,k2>(on Hl),<hl,h2>A-l:<A-lhl,h2>(on H0) , 

respectively. 

Continuing our descrfption (cf. Section 111.3 of [12]) 

we employ the self-adjointness of S and S + with respect to the 

inner products (1.5b) and denote by F~F +) the resolution of the 

identity of S(S+). For h £ H let P h = F((0,+~))(l-P0)h , 
p + 

P h = F((-~,0))(I-P^)h, p +h = F+((0,+~))(I-P0 )h and 

u+ p P ~+ + P~+h= F+((-~,0))(l-P0 )h. Then Pp, m' ~p and Pm are bounded 

projections on H. Their ranges we denote by Hp, Hm, Hp + and Hm +, 
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respectively. It appears that 

(l.4a) Hp + : (H m @ H0 )± = A[Hp] = T[Hp], Pp ÷ = Pp '', 

(1.4b) H m + = (Hp $ H0 )I = A[H m] = T[Hm] ~ Pm + = Pm '' 

(1.4c) H = H 0 0 Hp $ H m. 

The projections satisfy the intertwining properties 

: : : ~T (1.5a) TP 0 P0~T, TPp Pp~T, TP m Pm ; 

= P0~A = = ~A. (1.5b) AP 0 , APp Pp~A, AP m Pm 

It is easily shown that T-1A(AT -I) can be defined as a bounded 

operator on the finite-dimensional space H0(T[H0]) and is 

nilpotent of order at most 2 (see [12], Proposition III 3.2). 

With the operato,r T-1A one associates three bounded 

analytic semigroups 

(1.6) (e-tT-1AE) , (e+tT-1Ap -tT-1 
t~0 m)t~0 , e AP0:(I-tT-1A)P0; 

with the adjoint operator AT -I one connects the bounded analytic 

semigroups 

(e-tAT-1p~)t ~ ,(e+tAT -1 ~ -tAT -1 
(1.7) 1 p 0 Pm)t~0 'e P~ : (I-tAT-1)P0" 

J 

For these semigroups the analogues of the intertwining properties 

(l.5a)-(l.5b) hold true (see Sbction 111.4 of [12]). In case the 

pair (T,B) is positive definite, one has H 0 : {0} and P0 = 0. 

THEOREM 1.1 (:Theorem IV2,2 of [12]). Let (T,B) be 

a semi-definite admissible pair on H. Then the boundary value 

problem (0.1) - (0.2) has a unique solution ¢, namely 

(1.8a) ~(x):[e-XT-1App+e(T-x)T-1APm+(I-xT-IA)P0]V~I~. 

(0 < x < T) 

Here V T i_~s the invertible operator giv$n b_~y 

--1 (1.8b) V~:P+[Pp+e+TT-1APm]+P_[Pm+e-~T App]+P0-TP'T-1Ap 0. 

THEOREM 1.2.(of,Theorem 6.1 of [13]). Let (T,B) be a 

semi-definite admissible pair on H. Then the boundary value 
J 
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problem (0.1) - (0.7) has a unique solution 4, namely 

(1.9a) ¢(x)=T-I[e-XAT-1p'+e(~-x)AT-Ip~+(I-xAT-I)Pg](V~)-Ix. 
P 

(0 < x < T) 

Here V + is the invertible operator given by 
T 

(1.9b) V+:P+[P~+e+~AT-1p~]+P-[P~ + e - ~ A T - 1 P ' ] + P ~ - T  p u P-AT-1p~ " 

From the intertwining properties (l.5a)(and their semi- 

group analogues) it is immediate that 

(1.10) TV =V+T. 
T T 

The compactness of the operator I-V~ can be proved in the same way 

as the compactness of I-V T (see [12], proof of Theorem IV 2.1), 

and thus V + has a closed range. As V~ is invertible, (1.10) 
T 

implies the invertibility of V +. Now Theorem 1.2 can be derived by 
T 

employing the proof of Theorem IV 2.1 of [12] up to formula (2.9) 

and by substituting the boundary conditions (0.7). Although not 

within the context of semi-definite pairs, an analogue of Theorem 

1.2 appears in Section 6 of [13]. 

By specifying the theory of semi-definite admissible pairs 

for the specific pair (T,B) in (0.6a)-(0.6b) on L2[-1,+1] one 

obtains statements on the unique solvability of the finite-slab 

problem in non-multiplying media (i.e., when ~(t) ~ 0 and 

f+l ~(t)dt ~ 1). In [13] it is shown that basically the same 
-1 
results on unique solvability hold on L [-1,+1](1 ~ p < +~) 

P 
provided ~ £ Lr[-1,+l] for some r > 1. 

A few remarks of a historical nature are worthwhile, 

The abstract statement (0.1) - (0.2) of the finite-slab problem 

goes back to Hangelbroek [6] and triggered the author's research 

on this problem. Independent of and parallel to the investigation 

leading to [12] Hangelbroek proved the invertibility of V 

for a case when the pair (T,B) is positive definite. The 

author's invertibility proof was subsequently generalized for 

semi-definite pairs [12] and L [-1,+1] (cf.[13]). 
P 
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2. REFLECTION AND TRANSMISSION OPERATORS 

In this section we define and study reflection and 

transmission operators. Let (T,B) be a semi-definite admissible 

pair on the Hilbert space H and introduce the short-hand 

notations 

-TT-IApp+( (2.1) U~:P +e +~T-1A U~:P +e I-~T-1A)P0 . p p Pm+P0 ' m m 

Using these abbreviations we define the reflection operators 
+ 

R+~, R_~, R+~ + and R_T, and the transmission operators 

_ T ÷ and T + T+~, T T' +~ -~ as follows: 

Up~V$1p+, Um~V$1p ; (2.2a) R+T : R_~ : _ 

UmTV~Ip+, ~V-1p_ (2 2b) T+~ = T_T : Up T ; 

(2.2c) R + : (Up~)$(V~)-IP , R + : (Um~)'(V~)-IP • 
+T + -~ -~ 

(2.2d) T + = (Um~)'(V$)-IP+, T + = (Up~)'(V~)-IP +y -y -~ 

where the invertible operators V and V + are given by (l.8b) and 
T T 

(l.9b). Theorems i.I and 1.2 justify the existence of the above operators. 

Let us explain the terms "reflection operator" and 

"transmission operator". From Theorem i.I it is clear that the 

unique solution ¢~ of the boundary value problem (0.1)-(0.2) 

is continuous on [0,~] and satifies 

(2.3a) ~0(0):R+ P+~+T_ P_~, ¢~(~):T+ P+~+R_~P_0. 

The unique solution @× of the boundary value problem (0.1)-(0.7) 

has the property that T~ X is continuous on [0,~] and satifies 

+ + 

( 2 . 3 b )  (TCx)(0)=R+~P+×+T-~P-x'(T¢')(~)=T+~P+X+R-~P-x'x 

Think ing  o f  the  s p e c i f i c  example o f  r a d i a t i v e  t r a n s f e r ,  the  o p e r a t o r s  

R+~ and R_~ map the  i n t e n s i t y  o f  the  r a d i a t i o n  i n c i d e n t  to  the  

faces x=0 and x=~ into the sum of the intensities of incident 

and reflec~e~ radiation; the operators T+~ and T_~ map 

the former intensity into the sum of the intensities of incident 
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radiation and radiation transmitted from the opposite faces of 

the medium. In this way our choice of terminology is justified. 

With the help of (l.5a) and (1.10) one gets the inter- 

twining properties 
+ + 

(2.4) TR+T=R+TT , TT+T=T+ T. 

Using the definitions of V T and V +~ it is clear that 

(2.5a) P+R+ =P+, P_R_T:P_, P_T+T=0, P+T_T:0; 

+ , P_R_T+:P, P T++:0, P+T +:0 (2.5b) P+R+T=P + _ _ _ • 

Thus R+T , R_z, R + and R + +T -T are projections. 

LEMMA 2.1. One has 

(2.6a) R.+=I-R ' R +:I-R '; 
• T -T ' -T +T 

(26b) T+$:T+$ T +:T ' " -T -T " 

In particular, one has the intertwining properties 

(2.7a) TR+T=(I-R_~)T , TR_ =(I-R+~IT; 

~T. (2.7b) TT÷ =T+~T, TT_T=T_~ 

PR00F. First we prove that (R_~) ~_ R+~:0. To this, see 

note that 

(R E<<).11u+ <T + 
- - J m' - - p 

With the help of (2.2a) and (2.2b) one obtains 

(R_~)+R+T:p_[(V~)']-I[e-~T-IApp+e+~T-IAPm+(I-~T-IA)P0]V~ IP+; 

(T +)'T+T=P [(V+)']-I[e-TT-IAP +e+~T-IAP + I-~T-IA)P0]V~Ip+ 
- - p m ' 

and thus (R_~)'R+T=(T_~)~T + But for every h, k £ H we have 

<(T +)~T h,k>:<T h T +k>=<(l-P )T+ h T +k>= 
• -T ÷~ tT ' -T - ' -T 

:<T+Th , P+T_~k>: 0, 
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that P_T+T=P+T_~= 0 (see(2.5)). Therefore, where we used 

(2 .8)  0.  

Next we d e r i v e  the  i n t e r t w i n i n g  formulas  

(2.9) (I-R ~)T=TR+~, (I-R+~)T=TR_ . 

For every h, k £ H one has 

<(I-R_~)Th, k>=<Th, (I-R_T)k>: 

-- , k> =<T(I-R+T)h , (I-R T)k>+<TR+Th k>-<TR+ h, R_T . 

Since (I-R+~)h £ H_ and (l-R_~)k £ H+ (of.(2.5a)), the first 
+ 

term at the right-hand side disappears. As TR+ =R+TT (cf.(2.4)) and 

(2.8) the third term vanishes and the first identity of (2.9) 

follows. The second identity of (2.9) follows by taking adjoints. 

Eqs (2.6a) are a corol!a~y of (2.4) and (2.9). 

To derive (2.6b), notice that 

+ + (< ']-lu+ (R+~)+:P+[ . p (T+~)+=P+[ ) 
' " m" 

Using these expressions one easily checks that 

+ R + (2.10) (T+T)'R+T:( +~)'T+ . 

We compute that 
; + <T+ Th, k>=<Th, (T+T)'(I-R+~)k>+<Th , (R+~)~T+~k >: 

:<T+~Th, (I-R+~)k>+<R+~Th, T+Tk>: 

=<T+~Th, P_(I-R+T)k>+<TR+Th , P+T+Tk>= 

:<P_T+~Th, (I-R+T)k>+<TP+R+Th, T+ k>=<T+~Th, k', 

where we employed (2.4), (2.5a)-(2.5b) and (2.10). Hence, 
+ 

T+ T=T++T and the first identity of (2+6b) is clear. The second 

identity is proved likewise. Eqs (2.7b) follow by incorporating 

(2.4).U 

THEOREM 2.2. The followin~ commutator relations hold 

true: 
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(2.11a) R+~T-TR+ =R_~BR+TT-T_~BT+TT; 

(2.11b) T T-TT. =R *BT T-T *BR T. 
+T ÷T +T +T +Y +T 

PROOF. To establish (2.11a) we first note that 

(I-R+T)h £ H_, (I-R_T)k £ H+ and thus <(I-R+T)h , (I-R_~)k>= 0. 

So 0 = (I-R_T*)(I-R+T)=(I-R_~)-R+T+R_~R+T. However, for every 
h, k [ H one has 

k> h, T - P+T Tk>= 0 <T_~T+Th, k>:<T+Th, T_T =<P+T+~ _Tk>-<T+Th, _ 
(cf.(2.5a)), and thus 

(2.12) R+T-(I-R_~):R ~R+ :R 'R -T 'T 
- - T  + T  - T  + T "  

Next  we c a l c u l a t e  R_~AR+T and  T_~AT+ . We h a v e  

Using (1.5b) and its semigroup analogues we obtain 

R_ AR÷:P +e- T-IAp +(I_ T-1A)P0]vTtL 
- m p • 

In a similar way one computes T *AT 
-T +T 

and discovers that 

(2.13) R_ AR+:<'ATt. 
From (2.12), (2.13) and I-A=B one gets 

R+T-(I-R J):R_~BR+T-T_~BT+~, 

and the commutator relation (2.11a) follows with the help of (2.7a). 

To establish (2.11b) we first compute that 

R+~AT+T=P+(V~)-IA[e-TT-1A P +e+TT-1APm p + 

+(I-TT-1A)P0]V[1p+=T+~AR+T. 

(2.14) 

With the help of (2.5a) it is clear that 

(2.15) R+*T , T *R =T * T +T:T+T +T +T +T" 

Hence, employing (2.14) and (2.i5) we obtain 
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and formula (2.11b) follows with the help of (2.7b). 0 

Obviously, (-T,B) is a semi-definite admissible pair on 

H. But now for this pair the roles of P+, P_, Pp, Pm' P0' A, T-1A 

are played by the respective entities P_, P+' Pm' Pp' P0' A, -T-IA. 

Writing down (2.11a) and (2.11b) for the pair (-T,B) we get 

(2.16a) R_TT-TR_T=R+~BR_TT-T+~BT_TT; 

(2.16b) T T-TT =R *BT T-T *BR T. 
-T -T -T -T -T -T 

Substituting (2.Ta)-(2.Tb) at the left-hand side of (2.16a) and 

2.11b) we get 

2.17a) R+*T-TR *=R *BR T-T *BT T; 
T +T  +T  - T  +T  - T  

2 17b) T *T-TT *:T *BR T-R ~BT T 
• +T + T  +T + T  + T  + T  " 

The same operations may be applied to the left-hand sides of 

(2.11a) and (2.16b). 

PROPOSITION 2.3. Let (T,B) be a semi-definite admissible 

pair on H. Then the following operators are compact: 

e ~TT-1 , T* e ~TT-I (2.18) R+ -P+, R:T-P+, T+T- P+ +T- P+. 

In particular, if for some 0 < ~ < i we have B:ITIaD and D 

belongs to the p'th Von Neumann-Schatten class Cp(l s p < +~), 

then the operators (2.18) belong to the class C too. 
P 

PROOF. Let us simplify the above problem first. Let C 
P 

(1 ~ p < +~) denote the p-th Von Neumann-Schatten class in [(H) 

(of.[17] for the definition, examples and main properties of such 

a class). 

Using (2.2a)-(2.2b) and the fact that V T- I 6 Cp (see the proof 

of Th. IV 2.1 together with Lemma III 5.3 of [12]), we see 
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_e-~T -1 that in order to show that R+T-P+ £ Cp and T+~ P+ £ Cp 

it suffices to prove that U~P+-P+ £ Cp and U~P+ e -~T-I - P+ £ C 

P 
e-TT-IAp _e-TT-I Suppose we know that p P+ £ Cp and 

+TT-1Ap +TT -I 
e -e P £ C . Then m - p 

-I 

m-e P_]P++PoP+£Cp and 

U~p e-TT-1p+=[pm_p ]p++[e-TT-iAp _e-TT -I m +- - p P+]+(I-~T-1A)PoP+£Cp 

(cf. Lemma III 5.5 of [12]). Therefore, R+T-P+£C p and 

T+T-e-TT-Ip+£Cp, and in the same way we get R_-P_6Cp 

and T -e+TT-Ip 6C 
-T - p 

It is sufficient to prove that for any semi-definite 

pair (T,B) with B=ITIaD for some 0 < a < 1 and D£C the operator 
P 

e-TT-IAp _e-~T -I P P+ belongs to the class Cp. (By applying this 

iAp +~T -I +~T- -e P £¢ ). property to the pair (-T,B) one gets e m - p 

-~T-IAp _e-TT-I For this we only have to prove that e P P+AECp. 

(Note that B=ITI~D£C ). By Proposition III 1.4 of [12] we have 
P 

(2 19) e-~T-1Ap -e-TT-1p A=-(2~i)-IF/e-T/X[(T-~A)-I-(T-X)-I]Ad~ 
• p + 

where F is the positively oriented pentagon with vertices 

0, (i-i)~/2, M-i, M+i and (I+i)½/2 for some M > max (II TII ,N SII ); 

here S is the associate operator of Section 2. Repeating the proof 

of Lemma III 5.3 of [12] we eventually conclude that the operator 

• -e~TT-Ip+6Cp. of (2.19) belongs to Cp Hence, R~T -Pz£Cp and T+~ 
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Finally, one easily proves that their adjoints belong to C 
P 

(cf. [17]). B 

Let us return to the pair (T,B) in (1.2a)-(1.2b), where the 

expansion coefficients satisfy a n • 1 (n=0,1,2,...). For a 

N 

polynomial phase function ~(p)=nX__0 an(n+~)Pn(p) the conclusion of 

Proposition 2.3 obviously holds for C 1 being the ideal of trace 

÷oo 

class operators; the same conclusion is drawn if nX_0Jan <+~ (cf. 

[12], Proposition VI 1.3). More generally, if the phase function 

+oo 

£ L2[-I,+1] ( or equivalently, if n__Z0 an 2<+~), then the same 

~TT -I Proposition VI 1.3 of [12] implies that R+T-P + and T+ -e P+ 

are Hilbert-Schmidt operators. So for ~ E L2[-I,+1] there 

exist functions S(~,v)(resp.p(v,~)) and T(p,v)(resp.a(v,~))such that 

(R+~¢) (-p) = ½bflu-ls (p,v)¢ (v)dv:20/lvp (v,p)¢ (v)dv ; 

(2.20) (0 -< ~ -< 1) 

- fl~-iT(p,v) ¢ (v)dv=20/ivo (v,p)¢ (v)dv, (T+T¢) (p) e-T/~¢(~) :½0 

where the four  i n t e g r a l  opera tors  have square i n t e g r a b l e  ke rne ls .  
The func t i ons  S ( p , v ) ( r e s p .  D(v ,p) )  and T ( ~ , v ) ( r e s p .  a ( v , p ) )  are 

known as the reflection and transmission functions of Chandrasekhar 

[2](resp. Sobolev [19]). As we shall see in the next section, for 

polynomial phase functions these functions are continuous for 

0 -< p, v -< 1. 

3. REDUCTION TO AUXILIARY FUNCTIONS 

In this section we deal with the concrete semi-definite 

admissible pair (T,B) of [0.1) (0.2) only. For the polynomial 

phase function 

N 

~- - =~(t)=nX 0 an(n+$)Pn(t) ; .  .- - - 0 ~ a 0 ~ 1, -a 0 ~ a n ~ a0(n=l,2,..,N~ , .  . 
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we express the reflection operators R+~ and R_z , the transmission 

operators T+~ and T_~ and their adjoints in the 2N+2 auxiliary 

'Pn (n=0,1, N) On L2[-1,+i](but also on functions R+~P n and T+~ .., . 

Lp[-1,+1] for other I < p < +~) we define the "inversion symmetry" 

J by (Jh)(M)=h(-M)(-1 < M < +i); this operator is an isometry 

with j2=l and will be employed throughout this paper. It has the 

following properties: 

(3.1) TJ=-JT, JB=BJ. 

In the context of semi-definite admissible pairs it was systematically 

studied in [12](Sections 111.6-111.7) and it was shown that 

JP+=P_J, JPp=Pm J, JPp=P~J, JP0=PoJ; 

je-tT-IAp =e+tT-iAp j, je-tAT-ip~=e+tAT-1plj. 
p m p m 

Hence, it necessarily satisfies the ~dentities 

(5.2a) JVT :VTJ , JV::V:J ; 

(3.2b) JR+T=R J, JT+T=T J, JR +=R +J, JT +=T +J 
- - + T  - T  + T  - T  " 

+ T + So it suffices to derive expressions for R+~, T+~ and R+T , + . 

THEOREM 3.1. For every #,X £ L1[-1,+1] one has 

f 
]~(~) ,0 ~ ~ ~ 1; 

(R+~¢)(~)= 

I 20Ilvp(v,-~)~(v)dv; (-1 ~ ~ < O) 

(T+T¢)(~ 

r 
: ]  0 , -1 _< ~ < O; 

20/ira (v,U)~ (v)dv+ 

+e-'r /~(~(~),  0 s !a < 1; 

+ | X ( l J )  ,0 < ~ < 1; 

(R+Tx) (u ) :  1 2 0 / l ~ j P ( V ' - U ) X ( V ) d v ;  

(-1 -< ~ < O) 

0 ,-i < ~ < 0; 

(T+~x ) (~ ) 
: 1~'~ 20 I1~O" (V 'W )X (V)dr+ 

/ 

~+e-T/~JX(~J) , 0 < ~ < 1. 

Here the reflection function p(v,l) and the transmission function 

~(v,l) are ~iven by 
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(3.3a) 

where 

(3.3b) 

E(v,I) +E(l,v) E(v,;~) - E(I,v) 
p(v,~) = , o(~,~) = 

2 ( t  + v )  2 ( t  - v )  

N 1 1 
E(v,I) : ~ n=Z0 an(n + ~)(-1) n pn(V)On(~); 

(3.3c) Pn(V) : (R~TPn)(V) - (-1)n(T~TPn](V); 

(3.3d) On(1) : (R~Pn)(I) + (-I)n(T~TPn)(1). 

PROOF. Because of the remarks made in the second last 

paragraph of Section 2 we may take ~,X e i2[-i,+1]. Since 

we have the identities TR+ :R+$T and TT+T=T+:T (cf.(2.4)), it 

suffices to deduce the formulas for R+T and T+T. First the 

derivation of the one for R+T is given. Repeated application 

of the commutator relation (2.11a) yields 

k-1 
R+~Tk-TkR+T=j_Z_0 Tk-I-J{R_~BR+T-T_ITBT+T}TJ+I , k £ ~. 

For k £ IN and h£ 62[-1,+1] we rewrite this identity as 

~+ik- -i k-l-j~,j N 
(R+TTkh)(~)=~k(R+~h)(~)+ 1 J j_a0~ v +lh(v)n~0an(n+½) 

{(R+$Pn)(V)(R-~P')(~)-(T+$Pn)(V)(T~, -~'Pn)(~)}dv" 

As R+~P n and T+~P n belong to H+=L2[0,i] , this formula remains 

correct when the integration is performed over [0,1] instead of 

k-1 
[-1,+1]. Writing jZ=0 ~k-l-j~J=(vk-~k)/(v-~) and ¢(~)= k one gets 

(3.4) 
(R+~¢h)(~)=~(~)(R+ h)(~)+ 

N 

+0/lv%(v)-¢(~)h(V)n~0an(n+~ 
v-~ 
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As this identity is correct for ¢(W)--1, by linearity it is correct 

if ¢ is a polynomial and h E L2[-I,+1]. As for h £ L [-i,+1] 

the integral operator in (3.4) is bounded, Eq.(3.4) is correct for 

all pairs ¢ E L2[-I,+I] and h £ A [-1,+1]. Define K by 

(Kf)(w)=(R+ f)(p)- 
(3.5) 

N (R+IPn)(V) ~ P (,~ n )(U)-(Tj P n)(v)(T* P n)(p) 
- 01 l v f ( V ) n~0~n (~I÷-~i ~) " dr. 

Then K-R+~ is a compact operator from L2[0,1] ; from (3.4)(with 

¢(W)=U) it follows that 

TKh:KTh, h £ [ [-1,+I], 

and thus TK=KT. According to a classical result of Stone ([20], 

Theorem 8.1) there exists a function X £ L [-1,+1] such that 

K=x(T)(i.e., K is the multiplication by X). Using that R+ - P+ 

is compact (cf. Proposition 2.3), one sees that K-P+ is a multi- 

plyer by an L -function; such an operator is trivial (see the last 

paragraph of the proof of Theorem VI 3.1 of [12]); thus K = P+. 

Substituting the identities (3.2b) and noting that 

(JPn)(U)=Pn(-U)= (-1)nPn(U) one obtains from (3.4) and (3.5) 

a formula for R+ f, in which 

N (R.'P)(v}(R+~Pn)(1)-(T ~P )(V)(T+~P )(l) 
p(v,~]:~nZ0~n(n+~)(_.1:)m. +T n +w n T n 

: ~+V 

Defining On(V) and an(k) by (3.3c)-(3.3d) one easily reduces 

(3.6a) to the first part of (3.3a) where E(v,k) is given by (3.3b). 

The expression for T+x is derived analogously by first 

applying (2.11b) repeatedly. Now one exploits that 

T+T-e -~T-I P+ is a compact operator, but formulas (3.2b) do not 

play a role. The result obtained reads 

~p (X) ' (v)-(T+~Pn)(~)(R ~P )(v) N (R+T n ) (T+TP n) +~ n . 

a(v'l):~n~0an (n+~) X-V 

. _ro:, (~ 6b) the second ~art of (3.3a) Using (3.3c)-() 3d) one finds ~ ~ • . • 
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In the notations of Sobolev [18] we have 

¢n=R+~P n and ~ =T 'P ; formulas (3~6) correspond to Eqs(30)-(31) n +T n 
-T ~ of [18]. Mullikin [16] writes ~n=R+'TPn and ~n- +TPn ; formulas (3.6) 

correspond to Eqs(2.42) of [16]. Substituting ×=Pk(k=0,1, .... ,N) 

into the formulas for R + T + +T × and +T × and employing that 

(R+~Pk)(W)=Pk(~)-(-1)k(R++Pk)(-~)(see (2.6a) (3.2b)) and 
T 

(T+T'Pk)(W)=(T+~Pk)(~)(cf.(2.65)) we obtain a coupled system of 

2N+2 non-linear singular equations for the 2N+2 unknown R 'P and 
+T n 

T+~P n (n=0,q,...,N) corresponding to Eqs(2.43)-(2.44) of [16]. 

Hovenier defines one two-variable exit function E(v,k) as 
follows | 

E(v,k): (k+v)p(v,k)+ (k-v)~Cv,k) 

(cf.[8], (2)). As p(v,k):p(k,v) and o(v,k):o(k,v)(cf.(3.6)), it is 

clear that E(v,~) is given by Eqs(3.3a)-(3.3d)(cf. [8], (3)-(4); 

also (10)-(ll)).In this way Hovenier obtained a simplification of 

formulas presented by Mullikin and Sobolev. 

4. SPECIAL FUNCTIDNS OF TRANSPORT THEORY 

For later use and to enhance the readibility of Section 

5 we expose functions known to transport theorists and present 

the structure of the singular and regular subspaces H 0 and H i 

in the case of the semi-definite pair (T,B) in (0.1)-(0.2). 

Consider the polynomials (Hn)~ 0 satisfying the recurrence relation 

(4.1a) (2n+l)(1-an)~Hn(~)=(n+l)Hn+l(~)+ n Hn_l(~); 

(4.1b) H0(~)~I , Hl(~)=(l-a0)~ . 

For a0=al=...=0 these polynomials are just the usual Legendre 

polynomials. Further, substituting p=0 one sees that 

Hn(0)=Pn(0)(n ~ 0). 

In terms of these and the Legendre polynomials one 

defines the characteristic binomial ~(v,U) and the characteristic 

function ~ (~) by 

N 

(4.2) ~(v,W)= n~0 an(n+~)Hn(V)Pn(U), ~(W)=~(U,U). 

The dispersion function A is defined by either one of the expression 
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(4.3a) A (~):1+~ lI+l(P-~)-1~'(~)dp:l-a0 +'II+lp(P-A)-I~(A,P )dp; 

taking Cauchy principal values one gets 

(4.3b) k(v)= lim ~{A (v+ie)+A (v-ie)}=l-a0+_l~+ip(p-v)-l@(v,P)dP • 
e+0 

Due to symmetries in the polynomials in (4.1a) we have 

(4.4a) @(-v,-P)=@(v,P), ~(-v,P)=@(v,-~), @ (-W)=@ (P); 

(4.4b) A (-~)=A (~) , ~(-v)=~(v). 

The dispersion function A is analytic on ~) cut along 

[-1,+1] and continuous on the imaginary axis. Because in terms 

of a determinant 

(4.5) A (k)=det(T-kA)(T-k) -1 (k £ C\[-1,+1]) 

for a polynomial phase function (cf.[6], Lemma 3.1;[11], Proposition 

1; these results continuously extend to the conservative case), 

outside [al,+l] the zeros of A (k) correspond to the spectrum of the 

operator polynomial T-kA. In fact, for the associate operator we 

have 

~(S):~(S+):[-1,+I]U{~ £ ~\[-1,+I]:A (~):0}; 

at infinity A (~) has a zero of multiplicity s=dim H0, where H 0 

is the singular subspace. The finite zeros of A (~) are real and 

simple (see the second paragraph at page 238 of [4]; later proofs 

appear for 0 ~ c < 1 in [6,11]). Note that 

(4.6) lim A (v±iE)=~(v)3i~v~(v) (-1 < v < +1). 

The next result has recently been proved in a clear way by Garcia 

and Siewert [5]. 

PROPOSITION 4.1. For v £ [-1,+1] thefunctions A (v) 

and @(v) do not have common zeros. For v E (-1,+1) there are no 

common zeros of A(v) and ~(v). If @(±1)=0, then the limits 

lim A (v) and lim A (v) exist and are non-zero. 
v~l v÷-i 

In the non-conservative case 0 ~ c < 1 the results of 

this proposition are claimed by Hangelbroek [6] ~nd Lekkerkerker 

[11]. At pa~e 313 of [11]a proof of the third statement is given. 

In [6] the second statement is proved. G~cia and Siewert [5] 

prove all three statements in a completely different way and their 
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proof also applies to the conservative case c:I and critical c > 

media. 

As exposed inSection~ to every semi-definite admissible 

pair (TjB) on a Hilbert space H there exist a singular subspace 

H 0 and a regular subspace H i such that H 0 @ H I = H and 
i 

(4.7) T[H0]:H ~, T[HI]=A[HI]=H0 

(cf. (1.2)). On Hl(resp.H ~) the bounded operator S(resp. S +) is 

unlquely deflned by ASk=Tk:S Ak for every k g H 1. 

PROPOSITION 4.2. (=special case of Th.VI 4.1 of [12]). 

Let a0=al=...:am_l=l and -1 ~ a n < +i (n=m,m+l,...,N). Let s=m 

for even m and s:m+l for odd m; then s is the dimension of the 

singular subspace H 0. In particular, 

(4.8a) H0=span{P0,P 1 .... ,Ps_l }, Hl:span{Pn:n ~ s+l}~ span{T-Ip 

(4.8b) T[H0]:span{TP0,TP1,...,TPs_I} , T[H1]=span{Pn:n ~ s}. 

The formula for H 0 is immediate from Theorem VI 4.1 of 

[12].The subspaces T[H1]:H ~ and T[H 0] follow directly. Finally, 

HI:(T[H0]) ~ is computed. For the case needed the elementary formu] 

14.8a)-(4.8b) do not appear in literature. 

5. DIAGONALIZATION OF THE ASSOCIATE OPERATOR 

In this section we diagonalize the associate operators 

S £ L(H 1) and S + 6 L(H 0) and apply these results to prove the 

H~ider continuity of the auxiliary functions R *P+T n and T+~P n 

(n=0,1,...,N). For the non-conservative case 0 < a 0 < 1 and the 

conservative isotropic case (N=0,a0=l) these diagonalizations are 

due to Hangelbroek [6] and Lekkerkerker [10,11]. Here we present 

them in a form inspired by Eq.(2.10) of [14], which is more suita 

to our purposes, and generalize them to the conservative case 

a0=l. In this way a non-routine extension of [6,10,11] is derived. 

< +i THEOREM 5.1. Let a0=al=...=am_1=l and -1 ~ a n 

(n=m,m+1,...,N), an d put N=a(S+). Let s=m for even m and s=m+l 

for odd m. Then there exists a finite Borel measure ~ on N=o(S +) 
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and an operator F + from L2[-1,+1 ] onto the Hilbert space L2(N)o 
o_ff e-square inte~rable functions on N with the followin~ properties: 

(i) Ker F+=T[H0]=span{TPn:0 ~ n ~ s-l}, Im F+=L2(N)o; 

(ii) /N(F+hl)(v)(F+h2)(v)do(v)=<A-lhl,h2>(hl,h2£T[Hl]); 

(iii) (F+Pn)(V)=Hn(V) (v£N;n=0,1,2,...). 

In terms of a Cauchy principal value one has 

+i I~ (5.1) (F+h)(v):l(v)h(v)-_l ~ v(p-~)- (v,~)h(~)d~. 

(v£N,h£[2[-l,+l]) 

The unique vector hsET[H I] such that (F+hs)(~)E1 is given by 

hs=Ps/Ps(0). 
As AactSas'aninvertible operator from H 1 onto T[H1] , 

the operator F F+A: i2[-l,+l] ÷ L2(N) ° has the property 

(F+Th)(v)=v(F+Ah)(v)=v(Fh)(v) (yEN, h£[2[-i,+i]) ; so it is given 

by 

(5.2) (Fh)(v):l(v)h(v)-_l~+ip(~-v)-l~(v,p)h(p)dp. 

The unique Vector ksEH ! such that (Fks)(V)El is given by 

ks={(2s+l)(i-a~)ps(0)}-l(s+l)T-1Ps+l . The properties of F are proved 

in a straightforward way once Theorem 5.1 is established. 

PROOF OF THEOREM 5.1. Let us denote the right-hand side 

of (5.1) by (Gh)(v). Then 

(GPo)(V)=~(v)-_l~+lv(~-v)-l~(v,~)d~=l-ao+_l~+l{(~-v)+v}(~-v)-l~(v,~), 
-_l~+lv(p-v)-l,~(v,~)d~=l-a0+_l/+l~(v,~)d~=l=H0(v), v£N (cf.(4.3b), 

(4.2)). Assume that (GPn)(V)=Hn(V) for n=0,1,..,k , and let us 

compute (k+l)(GPk+l)(V). Inserting the recurrence relation 

(k+l)Pk+l=(2k+l)TPk-kPk_ 1 for the Legendre polynomials (cf.(4.1a) 

with a0=a I ...... 0), one gets (k+l)(GPk+l)(V)=(k+l)k(V)Pk+l(V) 

-_l~+iv(p-v)-l~(v,p)[(2k+l){(p-v)+V}Pk(~)-kPk_l(~)]dp: 

(k+l)k(V)Pk+l(V)-(2k+l)V_lf+l~(v,~)Pk(~)d~-(Rk+l)V_l~+lv(~ 

-v)-l~(v,p)Pk(P)dp+k_l~+lv(p-v)-l~(v,p)Pk_l(P)dp. Now we employ 
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the induction hypothesis and the recurrence relation for the 

Legendre polynomials to simplify this expression and get 

(k+l)(GPk+i)(v)=-(2k+l)v_ll+l#(v,p)Pk(P)du+(2k+l)gHk(9) 

-kHk_l(V)=(2k+l)(1-ak)VHk(V)-kHk_1(v)=(k+i)Hk+1(v); 

By induction we may conclude that (GPn)(V)=Hn(9) for n=0,1,2,.. 

From (4.1a)-(4.1b) it follows that 

(5.3a) HI=H3=...=Hs_I=0, deg H0=deg H2= .... =deg Hs=0 ; 

(5.5b) deg Hs+k=k (k ~ 0) , lim {n-deg H n} =s. 
n÷+~ 

So for a polynomial h we have (Gh)(v)=0 (yEN) if and only if 

h E span{TPn: 0 g n ~ s-i}=T[H0] ; further, G maps the polynomials 

onto polynomials. If P is a polynomial, then {P:GP is constant} 

={P:deg P ~ s}, while deg P-deg GP=s whenever deg P ~ s+1. 

i Note that hs:Ps/Ps(0) £ T[Hl~(see Proposition 4.2) and 

+h (F s)(~)=Hs(~)/Ps(0)=Hs(V)/Hs(0)-1. As one easily checks from 

(4.1a), for a polynomial k £ T[HI]=A[H 1] we have 

(5.4) (GS+h)(v):v(Gh)(9), 9£N=~(S+). 

So G maps span {(s+)nhs:n ~ 0} onto the set of polynomials (on H). 

But on T[H 1] the operator S + is self-adjoint with respect to a 

suitable inner product (cf. (I.5)). Since deg (s+)nhs=s+deg G(S+) n] 

=s+n+deg Gh =s+n (n=0,1,2,...), it is clear that 

span {(s+)n~ :n ~ 0} is a dense linear subspace of [~i ]. By Von 
s 

Neumann's spectral theorem for self-adjoint operators with a simpl~ 

spectrum ([20], Theorem 7.10) there exists a finite Borel measure 

o on N=o(S +) and an invertible operator F+:T[HI] ÷ £2(N)~, which 

has the property (F+S+h)(~)=v(F+h)(v) (vEN; h £ T[HI]) and 

the property (ii) of the theorem. It is clear that F + extends 

to a bounded operator F +:L2[-1,+i] + i2(N)g by setting F+h=0 for 

h £ T[H0]. By (5.4) we have F+h=Gh on the polynomials h. Hence, 

formula (5.1) and properties (i) and (iii) are clear.0 

A complete orthogonal system of L2(N) 

(Hs+n)n=0; it has the property 

is the sequence 
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6n+ k 
(5.5) N/Hs+n(V)Hs+k(V)do(v):<A-iPs+n,Ps+k >- 

(s+n+~)(1-as+ n) 

THEOREM 5.2. get a0:a i .... am_l:1 and -1 ~ a n < +i 

(n:m,m+l,...,N), and put N:o(S+). Let s:m for even m and s:m+l 

for odd m. If o is the measure and F+:[2[-I,+I] + i2(N) o th__~e 

surjective operator of Theorem 5.1, then on the polynomials p the 

right inverse of F + with range T[Hl]:span{Pn:n ~ s} has the form 

(5.6a) ((F+)-Ip)(~):p(~)+N/~P(~)-P(V) ~s(V,~)do(v)(-1 ~ ~ ~ +i), 

where @s(V,U) is defined by 

(5.6b) 
N-s 

~s (v,U) :k~0 as+k (s+k+ ~ )Hs+k (v) Ps+k (U)- 

Moreover, F + maps functions on [-i,+1] that are H61der continuous 

of exponent 0 < ~ < i except for a possible jump discontinuity a_~t 

~:0, onto functions on N of the same type. 

PROOF. Recall that (Hs+k)k: 0 is a complete orthogonal 

system of [2(N)o satisfying the recurrence relation 

(5.7) (2s+2k+l)(1-as+k)TNHs+M:(s+k+l)Hs+k+l+(S+k)Hs+k- 1, 

where (TNP)(V):vp(v) (v£N,p £ [2(N)o). Let us denote by (Gp)(~) 

the right-hand side of (5.6a). To prove (5.6a) it suffices to 

check it for P:Hs+ k by induction on k. 

As for hs:Ps/Ps(0) £ T[HI~ one has (F+hs)(V)~i:Hs(V)/Hs(0) : 

Hs(V)/Ps(0) , formula (5.6a) is correct for p=H s. Suppose that 

(5.6a) is correct for p £ {Hs,Hs+1,...,Hs+k}. Using (5.7) one gets 

(s+k+i) (GHs+k+ i) (U) = (s+k+i)Hs+k+ i (~) + 

[ Hs+k(U)-Hs+k (v) 
+ (2s÷2k+1) (1-as÷k)l NI  

+VN/Hsek(~.)¢s(V;~)do(v) I- 

H (~)-H s l(V) 
_ (s+k)N/~ s+k-i +k- 

]]-'o 

@s(V,u)dO(V)+ 
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Using the induction hypothesis and the recurrence relation for the 

Legendre polynomials it is clear that 

(s+k+l)(GHs+k+l)(~)=(s+k+l)Ps+k+l(~) + 

+(2s+2k+l)~{-as+kPs+k(~)+N/Hs+k(V)~s(V,W) de(v)). 

Inserting (5.6b) and employing (5.5) one obtains GHs+k+1=Ps+k+l , 

and formula (5.6a) is clear for P=Hs+k+ 1. 

N 
Given the phase function ~(t):n~ 0 an(n+½)Pn(t) with 

0 < a 0 ~ +1 and -a 0 ~ a n ~ a 0 (n:l,2,..,N), we consider the non- 

conservative phase functions c~ for c÷1. If S is the operator on 

the regular subspace H 1 satisfying ASh=Th for h £ H1, choose 

M>II SIl and let r be the positively oriented circle with centre 0 

and radius M. Then for 1 > c ~ c O the number of zeros of the 

dispersion functionAc(l) of the phase function c~ outside r equals 

the multiplicity s:dim H 0 of the zero of A(I) at infinity; this fol- 

lows from Rouch@'s theorem provided max{IA(l)-l[A(l)fAc(l)]l:l£F}<l 

N 

for c O ~ c < 1. Let (Ach)!(~):h(~)-Cn~ 0 an(n+½)Pn!~)_l/+lh(~')Pn(~')d~ ' 

+ by '~or -1 ~ ~ ~ +1. Define the projections Pl,c and Pl,c 

Then Pl,c 

while 

Pl,c=- (2wi)-lr/(Ac -~T)-ITd~'PI,c =-(+ 2wi)-iF/T(Ac-~T)-Id~" 

+) tends to l-P0(resp.l-P ~) in the norm as c÷1, (resp.P1, c 

TPI,c=P1 +T AP1, +A +-P ~" ,c ' c=PI,c ' PI,c- 1,c' CO ~ c < 1. 

+ and A + +:IMP 1 +" then T Hi, c :HI, c HI, c :HI, c. Put Hl,c:ImPl,c, H1, c ,c' 

In the non-conservative case the Borel measure ~ on N 

is absolutely continuous on [-I,+1] with Radon-Nikodym derivative 

(5.8) (dc/dv):[~(v)2+~2v2~(v)2] -1 -1 < v < +1 

(cf.[6,11]). Let us extend this result to the conservative case 

with ~hehelp of a stability argument. Let N:a(S):o(S +) and 

Nc={V£o(A~lT):IvI<M) , where c O ~ c < 1. If p is a polynomial and 

c O ~ c < 1 we have 



van der Mee 598 

,C 0 ,C 0 ' 

where hn(~):Pn(~)/Pn(O).l , o~ is the Borel measure connected with 
~+ ~ ~ • ~ -1 + c~ and S is the restrictlon of TA to H~ For c÷1 the above 

C ~ C IjC" 
expression tends to <A-Ip(S+)(I-P~)h0,(I-P~)h0>. But 

hs-h0=(Ps/Ps(0))-(P0/F0(0))=Th for some polynomial ~ of degree s-l, 

azd so hs-h0£ span{TP0,TP1,...,TPs_I}=T[H0]=Ker(I-P0 ). So for 

every polynomial p one obtains 

c÷llim SNcP(U)dOc(~)=<A-ip(S+)hs,hs>: ~ p(v)do(~). 

In the same way, using the stability of the spectral subspace of 

S + corresponding to its spectrum on [-1,+1], one gets 

lim /[_l,+l]p(v)dOc(V):/[_l,+l]p(u)do(v). 
c÷1 

But for 0 < c < 1 the measure o is absolutely continuous on 
c 

[-1,+1]. Further, I(9) and @(9) do not have common zeros for 

~£(-1,+I) and if ~(~I)=0, the limit of ~(9) as v+~l does not vanish 

(see Proposition 4.1). So the expression [12(9)+w2~2@(~)2]-i is 

bounded and continuous on [-1,+1] and therefore the measure o is 

absolutely continuous on [-i,+1] with Radon-Nikodym derivative 

(5.8). AS k2(V)÷~2V2@(V) 2 appea~s to be N61~e~ continuous on (-I,+I) 

and is bounded away from zero, the function (5.8) is 

HSlder continuous on (-1,+i). Now it is quite trivial to see that 

for the measure ~ the operator (F+) -I of (5.6a) maps functions on 

N that are H61der continuous of exponent 0 < a < 1 except for a jump 

at ~=0, into functions of the same type. From this and the similar 

property of F + one easily gets the second part of the theorem.~ 

To determine the measure a at its discrete points 

v£N\[-1,+l] one may follow the same method as in [6,11]. We point 

out that the first statement of Proposition 4.1 plays an indispensabl 

role in the derivation and so does the simplicity of the zeros 

v~[-l,+l] of A(v). We get 

o((~})={~A,(~)~(~)) -1 yeN\E-I,+1] 
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COROLLARY 5.3 Let 0 < a 0 ~ 1 and -a 0 ~ a n ~ a0 (n=l,2,..,N). 

Then for any polynomial p the functions R+, c p and T+T p are HSlder 

continuous of exponent 0 < a < 1 o_n_n [0,I]. 

PROOF. Let N=q(S+). Then for every polynomial p one has 

I - lO~(p-~)-l$(~,p)p(p)dp,9>O; 
[F+(P~P_)p] ( v ) :  ~ - 1  

t 0 ,V<0, 

and th~s, by %Re second part ef Theorem 5.2, P'P and p - 
analogously P~P+ extend to a compact operator on Ha[-l,0]$Ha[0,1] , 

0 < a < 1. Here Ha[a,b]i~ ~e Ba~c~ ~ace of H61der continuous 

functions h:[a,b]÷C of exponent a. Also, by the second part of 

Theorem 5.2, e-tAT-1p ' and e+tAT-1p ' are bounded on H [-1,0] 
p m a 

Ha[0,1]. As in the proof of Theorem IV 2.2 of [12] one shows 

the compactness of an operator; in this specific case we prove that 

I-V~, with V + as in (1.9b), is a compact operator on 

Ha[-l,0] @ Ha[ 0,1]. As Ha[-1,0] @ H [0,1] is densely embedded in 

L2[-1,+1] and V+T is invertible as an operator on L2[-1,+1] , it is 

also invertible as an operator on Ha[-1,0] @ Ha[0,1]. 

Next observe that for a polynomial p the following 

identity holds: 

I (F+P)(~) e-TI~[F+ V + _ , v> _ ( ~)-ip p](v) 0; 

(F+R+~ p)(~)= V+ _ , 
(F+P)(~) - [F+( T)-IP p](v) ~<0 

(see (2.2c),(2.6a)). Again by the second part of Theorem 5.2, we 

' £Ha[-1,0] @ Ha[0,1]. In the same way one shows that get R+T p 

T+~P£Ha[-1,0] @ H [0,1].0 
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