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Abstract

Some perturbation results for exponentially dichotomous operators are applied to prove the
existence of stable and anti-stable solutions of Riccati equations associated to block operators
on general Banach spaces, both for compact perturbations and for bisemigroups made up of
immediately norm continuous semigroups.
© 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Exponentially dichotomous operators, i.e., direct sums A4 (—A4;) in which A4,
and A; are generators of exponentially decaying Cjy-semigroups, have been
introduced to derive representations of solutions of vector-valued convolution
equations on intervals of the real line [2,3]. They also appear in the study of abstract
kinetic equations [13], Pritchard—Salamon systems [15], and block operators of
Hamiltonian type [18-20]. In all of these cases it is of major interest to study suitable
perturbations of exponentially dichotomous operators and, in fact, to prove that
certain perturbations of them are still exponentially dichotomous. Among these
perturbations one finds additive perturbations by a bounded linear operator [18-20],
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multiplicative perturbations by a compact perturbation of the identity [13], and
additive perturbations by an unbounded (but 4o+ (—4;) bounded [15] or self-
adjoint [19,20]) linear operator, and in all of these cases only Hilbert space operators
were considered. Only in [21] one finds a multiplicative perturbation analysis in
LP-spaces, while in [13] it is indicated how the Hilbert space theory developed there is
to be modified in order to arrive at a Banach space theory.

In [18] an interesting new element has been introduced in the perturbation theory
of exponentially dichotomous operators. Specifying the results for 2 x 2 block
operators where the unperturbed exponentially dichotomous operator is block
diagonal and the additive perturbation is block off-diagonal, a stable solution of an
operator Riccati equation and an antistable solution of another operator Riccati
equation showed up. However, a direct application of the perturbation result of [2],
which requires a condition on the domain of the square of the perturbed
exponentially dichotomous operator, would limit the generality of the result in an
artificial way. In [18] this was circumvented by putting extra conditions on the
exponentially dichotomous operator, which are met for instance if it generates an
analytic bisemigroup.

Algebraic Riccati equations play an important role in optimal control theory. We
refer to the books [4,14,17] for a good background. In a finite dimensional setting the
method of choice to find the stable and antistable solutions of algebraic Riccati
equations is to find the stable and antistable invariant subspaces of 2 x 2 block
operators constructed from the coefficients of the Riccati equations. This approach
is outlined in detail in [17]. In contrast, in the infinite dimensional case the method of
choice for proving existence of a solution to the algebraic Riccati equation seems to
be to show that a Riccati differential equation on a finite interval has a solution, and
then to let the length of the interval increase. See, for instance [6,22]. In [18] the
invariant subspace approach to finding the stable solution of an algebraic Riccati
equation was extended to the infinite dimensional setting for a specific class of
systems.

In this article we shall generalize the results of [18] but adopt the basic strategy of
[13,21] to derive perturbation results. Introducing bisemigroups as in [2] as e~/ .0
for t>0 and 04 (—e™) for t<0, the bisemigroup generated by the additive
perturbation is sought as the solution of a full-line vector-valued convolution
equation whose right-hand side and convolution kernel contain the bisemigroup
generated by the unperturbed exponentially dichotomous operator as well as the
bounded perturbation. As in [13], the Bochner—Phillips theorem [5,12] on the
invertibility in noncommutative Banach function algebras of Wiener type is applied
to get the basic perturbation result under the natural condition that the perturbed
exponentially dichotomous operator does not have any spectrum in a sufficiently
narrow strip around the imaginary axis. Next, the perturbation theorem is related to
the left and right canonical factorizability of the fractional linear map composed of
the unperturbed and perturbed exponentially dichotomous operators, which by itself
leads to a generalization of the main result of [18]. Therefore, a specialization of our
results to block operators leads to a close connection between the existence of a
stable (anti-stable, resp.) solution of an operator Riccati equation having the block
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operator as its Hamiltonian matrix (see [17] for similar results in the matrix case) and
the left (right, resp.) canonical factorizability of the above fractional linear function.
For small additive perturbations we thus obtain existence results of solutions of
Riccati equations, even in the general Banach space setting where such results are a
rare commodity.

Let us introduce some notations. We let R* stand for the right (left, resp.) half-
line, including the point at zero. For two complex Banach spaces 2 and %, we let
ZL(Z,%) stand for the Banach spaces of all bounded linear operators from % into %.
We write £ (%) instead of L (2, %).

Let & be a complex Banach space and E an interval of the real line R. Then
LP(E; %) denotes the Banach space of all strongly measurable functions ¢ : E— %
such that ||¢(-)||, € LF (E), endowed with the LP-norm, and Cy(E;Z) stands for the
Banach space of all bounded continuous functions ¢ : E — % which vanish at infinity
if E is unbounded, endowed with the supremum norm. In particular,
Co(R™;2) 4+ Co(R*; ) is the Banach space of all bounded continuous functions
¢ : R— % which vanish at + oo and may have a jump discontinuity in zero.

2. Bisemigroups and their perturbations
2.1. Preliminaries on semigroups

A Cy-semigroup (7'(t)),», on a complex Banach space 2 is called uniformly
exponentially stable if

IT(n)]|<Me™™, >0, (2.1)

for certain M,e>0. It is eventually norm continuous if there exists ¢y >0 such that

T'(¢) is norm continuous for 1>1, and immediately norm continuous if T(t) is norm

continuous for #>0. Analytic semigroups, immediately compact semigroups (i.e.,

T(¢) is a compact operator for >0), and immediately differentiable semigroups are

all special cases of immediately norm continuous semigroups [8, Chapter II, (4.26)].
The following result appears in Section II 4.20 of [8].

Theorem 1. Let X be a complex Hilbert space and let (T(t)),~, be a uniformly
exponentially stable Cy-semigroup on 2. Then (T(t)),5, is immediately norm

continuous if and only if the resolvent (A—A)7l of its infinitesimal generator A
vanishes in the norm as A— o along the imaginary line.

A closed linear operator 4 densely defined on a complex Banach space %' is called
sectorial if there exists a 6 with 0<d<(n/2) such that the sector

Sp,,= {zec :Jarg 4| <g + 5}\{0}
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is contained in the resolvent set of A4, and if for each £€(0,0) there exists M,>1
such that

M,

-1 € 5

1= A<y, 0#2eT

According to [8, Theorem II 4.6] the sectorial operators are exactly the generators of
bounded analytic semigroups.

2.2. Main results

A closed and densely defined linear operator —S on a Banach space % is called
exponentially dichotomous [2] if for some projection P commuting with S, the restrictions
of S to Im P and of —S to Ker P are the infinitesimal generators of exponentially
decaying Cy-semigroups. We then define the bisemigroup generated by —S as

e S(I—P), t>0,
—e ISP, t<0.

E(t;-S)= {

Its separating projection P is given by P = —E(0~; —S) = Iy — E(0"; —S). One easily
verifies the existence of ¢ >0 such that {1€C : |Re A|<¢} is contained in the resolvent
set p(S) of S and for every xe &

0
u—a*xz—/ E(t—S)xdr, |Rei|<e. (22)

-
As a result, for every xe %" we have ||(A — ) 'x||>0 as 1— o0 in {1eC: |Re A|<¢'}

for some & €(0,¢]. We call the restrictions of ¢™* to Ker P and of ¢’ to Im P the
constituent semigroups of the exponentially dichotomous operator —S.

Observe that {xeZ : (A —S) 'x is analytic for Re A<0} = Ker P, and {xeZ :

(4 — 8)"'x is analytic for Re >0} = Im P.
We have the following perturbation results.

Theorem 2. Let —S, be exponentially dichotomous, I’ a compact operator, and —S =
—So+TI', where 2(S) = 2(Sy). Suppose the imaginary axis is contained in the
resolvent set of S. Then —S is exponentially dichotomous. Moreover, E(t; —S) —
E(t;—So) is a compact operator, also in the limits as t—0%.

Proof. There exists an ¢>0 such that

/ S E(t;—Sy)|| di < . (2.3)

0

Using the resolvent identity

Q=8 "—(=8)"'==-(1=8)"'r(A—9)", |Reil<e,
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for some £>0, we obtain the convolution integral equation

E(t; —S)x — /3C E(t —t;—So)l'E(t; —S)x dt = E(t; —So)x, (2.4)

o0

where xe # and 0#¢eR. In (2.4), the convolution kernel E(-; —Sy)I" is continuous
in the norm except for a jump discontinuity in # =0, as a result of the strong
continuity (except for the jump) of E(-; —Sj) and the compactness of I'. Further,
(2.3) implies that e*ll E(-; —Sp)I'" is Bochner integrable.

The symbol of the convolution integral equation (2.4), which equals I, + (1 —
So)'r=(j— So)fl() —S), tends to I in the norm as A— oo in the strip |[Re 4| <e
because (4 — Sp)~ 'x>0 for all x and I is compact. Moreover, it is a compact
perturbation of the identity which, by definition, only takes invertible values on the
imaginary axis. Thus there exists ¢ € (0, ¢] such that the symbol only takes invertible
values on the strip |Re 4| <¢&j. By the Bochner—Phillips theorem [5], the convolution
equation (2.4) has a unique solution u(-;x) = E(;—S)x with the following
properties:

(1) E(-;—=S) is strongly continuous, except for a jump discontinuity at = 0,
() 7 el||E(t;—S)|| di < o0; hence E(+;—S) is exponentially decaying,

3) E(t, —S) — E(t; —Sp) is a compact operator, also in the limits as 1—0%,
(4) identity (2.2) holds.

As a result [2], —S is exponentially dichotomous. [

Theorem 3. Let —Sy be exponentially dichotomous with immediately norm continuous
constituent semigroups, let I' be a bounded operator, and let —S = —Sy + I', where
2(S) = D(So). Suppose a strip {AeC : |Re A| <&} is contained in the resolvent set of S.
Then —S is exponentially dichotomous with immediately norm continuous constituent
semigroups.

Proof. There exists ¢>0 such that (2.3) is true. Using the resolvent identity we again
derive (2.4), where xe # and 0#¢eR. In (2.4), the convolution kernel E(-; —Sy)I is
continuous in the norm except for a jump discontinuity in ¢z = 0, as a result of the
immediate norm continuity of the constituent semigroups of —Sjy. Further, (2.3)
implies that e/ E(-; —So)I" is Bochner integrable.

The symbol of the convolution integral equation (2.4), which equals I, + (1 —
So) ' = (4 — So) ' (. — S), tends to I, in the norm as 21— oo in the strip |Re 4| <e,
because, by Theorem 1, (4 — S;)~" tends to zero in the norm as A— oo in the strip.
Moreover, since there is a strip |[Re 4| <¢ contained in the resolvent of S, the symbol
only takes invertible values within this strip. By the Bochner—Phillips theorem [5], the
convolution equation (2.4) has a unique solution u(-;x) = E(-;—S)x with the
following properties:

(1) E(-;—=S) is strongly continuous, except for a jump discontinuity at 1 = 0,
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@ 7 el|E(t;—S)||di< oo for some & >0; hence E(-;—S) is exponentially
decaying,

(3) E(t;—S) — E(t; —S)) is a bounded linear operator which depends continuously
on teR, and

(4) identity (2.2) holds.

Let us look more closely at item (3). First of all, ||E(t; —S)|| < Me~®/ for all 0 £ € R.
Hence, (2.4) implies that F(¢) = E(t; —S) — E(t; —S,) satisfies

[1F(2) —F(S)||<MHF||/_OO |E(t — 75 =S0) — E(s — ;. =S0)|| de,

where de = eIl dz. Fix 1#0 and let s be close to ¢ (and on the same side of 0). Let
I(1,5;¢) stand for the real interval of length 2¢ and midpoint (z+s). Then
t,se€l(t,s;¢) whenever |t — s|<2¢). We have

1F@) = Fll< MR [ 1B = w5-50) — B~ 5 -S0) ds

M||r||</ +/ >||E(Z—T;—So)—E(S—T;—So)||d8~
1(1,s53) R\ (2,s5:¢)

Applying uniform continuity we select ¢ such that
IE(x; —So) — E(y; =So)|| <&

whenever |x — y| <6 and |x],[y|>1e.
Now take & so small that the distance of 0 to I(,s;¢) is at least f&. For
|t — s| <min(0, 2¢) we have

/ |E(t —1;—S0) — E(s — 7;=S0)|| de
R\I(2,88)

o0
— _ &
</ ge~ ! drg/ ge ol gr =
R\I(1,8:¢) -0 280

(since |(t —7) — (s — 7)| = |t — 5| <0 by assumption). Now choose M| such that
|E(#; =So)|l < Mo
for 0#teR. Then
|50 - - sl e
1(t,5:¢)

< / 2M()€_£O‘T‘ dt = 4Me.
I(1,53¢)
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Then finally
1
||[F (1) — F(s)|<M||F||s<4M0 +2—8O>7

which implies the norm continuity of F(¢) in teR.
As a result of items (1)—(4) [2], —S is exponentially dichotomous and its
constituent semigroups are norm continuous. [

Corollary 4. Let —Sy be exponentially dichotomous with resolvent (1 — 50)71
vanishing in the norm as .— oo along the imaginary line, let I' be a bounded operator,
and let —S = —So + I, where 2(S) = 2(Sy), defined on the complex Hilbert space Z .
Suppose a strip {LeC : |Re A| <&} is contained in the resolvent set of S. Then —S is

exponentially dichotomous and ||(2 — S)'|| =0 as /— co along the imaginary line.

Proof. Theorem 1 implies that the constituent semigroups of —S; are immediately
norm continuous. Thus Theorem 3 implies that —S is exponentially dichotomous
with immediately norm continuous constituent semigroups. Then in the norm
topology we have

o

(h-8)"= —/ ME(t;—S)dt, Rel=0.
— 0

Thus the Riemann-Lebesgue lemma implies that [|(2 — S) ™|

imaginary line. [

| >0as A— oo along the

3. Canonical factorization and matching of subspaces

Let —S; be exponentially dichotomous and I' a bounded operator on a com-
plex Banach space %, and let —S=—-Sy+ I, where Z(S)=2(S)) and
{2€C:|Re A|<e} =p(S) for some ¢>0. Then —S is exponentially dichotomous if
either —S, has immediately norm continuous constituent semigroups or I’ is a
compact operator (cf. Theorems 2 and 3). The bisemigroup generated by —S is the
unique solution of the convolution equation (2.4). In this section we consider the
analogous vector-valued Wiener—-Hopf integral equation

(1) /OOOE(II;SO)Fd)(r) dt = g(1), (3.1)

where 7> 0.

Suppose W is a continuous function from the extended imaginary axis i(Ru{ oo })
into Z(Z). Then by a left canonical (Wiener—Hopf) factorization of W we mean a
representation of W of the form

W) =W, ()W_(2), Rel=0, (3.2)
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in which W, (+4) is continuous on the closed right half-plane (the point at oo
included), is analytic on the open right half-plane, and takes only invertible values for 4
in the closed right half-plane (the point at infinity included). Obviously, such an operator
function only takes invertible values on the extended imaginary axis. By a right canonical
(Wiener—Hopf) factorization we mean a representation of W of the form

W(i)=W_(A)W.(2), Rei=0, (3.3)

where W (1) are as above.
We first need the following crucial lemma.

Lemma 5. Let Sy be an exponentially dichotomous operator on a complex Banach
space X. Then the operator L defined by

(L)1) = /_ T B Syt dr, >0 (3.4)

0

is bounded on L7 (R; X)) (1<p<0), Co(R; Z), and Co(R™; Z) + Co(R™; Z).

Proof. Certainly, for every feR the function t+ E(t — 7;—S))y(t) is strongly
measurable in Te R if y is a measurable Z-valued step function. In this case we easily
prove that Lye L’(R; Z) (1<p< o) and that

Ll iy < Cll2l o iy

where

C= / 1Bt —S0)l [ d.
-0

Since for 1 <p< oo the measurable step functions are dense in L?(R; Z') (cf. [7]), we
obtain the lemma for I”(R; Z) (I<p< ).

Now note that the integral in (3.4) is a Bochner integral (cf. [7]) if
2€Co(R™; )+ Co(RT; ). The Theorem of Dominated Convergence for Bochner
integrals then implies that the vector function Lye Co(R™;Z) 4+ Co(R™; Z) whenever
1€ Co(R;Z)+ Co(RY; ). O

If 2 is a Hilbert space and p = 2, there is an alternative proof of Lemma 5 (cf. [9]).
Using that the Fourier transform .# is a unitary operator on L*(R; Z'), we easily see
that Z1L.Z ! is the premultiplication by the bounded operator function L(A) =
i(A+ z'So)f1 (cf. (2.2)), which settles the boundedness of L in this particular case.

We have the following fundamental result. Similar results in various different
contexts exist in the finite dimensional case [1], for equations with symbols analytic
in a strip and at infinity [3], for extended Pritchard—Salamon realizations [15], and
for abstract kinetic equations [13].

By E(R"; ') we mean any of the spaces L7 (R"; ) (1<p< ) or Co(RT; ).
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Theorem 6. Suppose ¥ is a complex Banach space. Let —Sy be exponentially
dichotomous, let I' be a bounded operator, and let —S = —Sy + I', where 2(S) =
2(80), have the property that {1€C : |Re i|<e} = p(S) for some ¢>0. Assume that
either the constituent semigroups of —Sy are immediately norm continuous or that I is
a compact operator. Let Py and P stand for the separating projections of —Sy and —S,
respectively. Then the following statements are equivalent:

(a) The operator function
W) ==8)"2=8)=1Ir+(A—S)"'T', |Reil<e, (3.5)

has a left canonical factorization with respect to the imaginary axis.
(b) We have the decomposition

Ker P4+Im Py = %. (3.6)
(c) For some (and hence every) E(R™; Z), the vector-valued Wiener—Hopf equation
b0~ [ Bl-n-s)retmde=glo), >0 (37)
0

is uniquely solvable in E(R"; ') for any ge E(R"; Z).
(d) For some (and hence every) E(R™; Z), the vector-valued Wiener—Hopf equation

W (o) _/ FE(t— 1 —So)y(c) dr = h(1), 150 (3.8)
0
is uniquely solvable in E(R"; ') for any ge E(R"; Z).

(e) Consider I'ye L (X0, %) and Tre L (X, %) such that I = T'\I">. Then for some
(and hence every) E(R™; %), the vector-valued Wiener—Hopf equation

o)~ [ aBl=s-SOTp( de =), >0 (39)
0
is uniquely solvable in E(R*; %) for any ge E(R™; Z).
Proof. We first note that —S is exponentially dichotomous, as a result of Theorems 2
and 3.

(c)<>(d)<>(e): It follows immediately from Lemma 5 that the operator L,
defined by

([L+;{)(l)Z/omE(Z—‘E;—SO)}((‘E)dT, (>0 (3.10)

is bounded on all of the spaces E(R"; Z'). Further, (3.7)~(3.9) can be written in the
concise form

$—LiTh—g, (3.7a)
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W—TLoy=h, (3.82)
§07F2|]_+F1q0:f. (393)

A simple Schur complement argument then yields the equivalence of parts (¢c)—(e) in
each of the spaces E(R'; %).

(b) = (a): Suppose decomposition (3.6) is true. Let 2 denote the projection of &
onto Ker P along Im Py. Then (cf. [1])

W (i) =y + (A= So)” (I = P)Iy + 24— o) 'T] (3.11)
is a left canonical factorization of W (-). Indeed,

U+ (A= So) U =2 =Ly — (I - 2)(h—S)"'T, (3.12)

Ly + 20— So) ' T =1, — (4—S)"'2r. (3.13)

The norm continuity of the factors as 4 — oo along the imaginary axis follows from
the fact that ||(1 — So)'||—>0 as 41— oo along the imaginary axis, in case —S; is the
infinitesimal generator of a uniformly exponentially stable immediately norm

continuous semigroup [8, Corollary II 4.19], and from ||(Z — So)~'I'|| >0 as A— oo
along the imaginary axis in case I" is compact. The norm continuity of the inverses of
the factors as 41— oo along the imaginary axis follows in the same way, using
Theorems 2 and 3.

(a) = (c): Suppose the operator function W(-) in (3.5) has a left canonical
factorization W = W_W, with respect to the imaginary line and let
7. e L'(R™; Z(Z)) be such that

w.() =1y —I—/ ey (1) dt,
0
0
w_()! :I,q-+/ ey (=) dt.

o0

Then standard methods (cf. [10, Section 1.8], also [11, Chapter XIII]) show that

b0 =)+ [ "y Dg(r) d,
where

() (=1 + [y (t—o)y_(t—a)do, 0<T<i<o0,
Wi, T) =
! y_(t—t)+ [y (t—a)y_(t—a)do, 0<t<t<o0,

represents the unique solution of (3.7) in LP(R*; %) for each ge L”(R";Z). It is
evident that this solution belongs to Co(R"; Z') whenever ge Co(R™; 7).
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(c) = (b): Now suppose (3.7) has a unique solution ¢e Cy(R*;Z) for every
ge Co(RT; ). Consider the solution ¢(-; x) of (3.7) at t = 0" if g(¢) = E(t; —So)x for
t>0 and xeZ. Let us define Zx = ¢(0";x), i.e
Px = [(I =L T)" E(—So)l(e = 0),
where xeZ. For u>=0, >0 and xeZ we now compute
ot +u; x) — / v E(t—1,—=S0)l'¢(t +u; x) dt
0
0
— gl uin) = [ E(tu— oSOl de
u
u
=E(t+u;—So)x+ / E(t+u—1,—So)l'¢(t;x)dr
0
u
= E(t; —S) [E(u, —So)x + / E(u—1;,—S0)I'¢(1; x) dr}
0
u
= E(t; —So)(I — Py) {E(u, —So)x + / E(u—1;—S0)T'¢(t;x) d‘c] .
0
Now note that (I — Py) [” E(u—t;—So)I'¢(t;x) dt = 0, to see that

be+uix) = [ E—s-S)ro(+ ) ds

0
= E(t; —So) {E(u; —So)x + / E(u—1;,—S0)I'd(z; x) dr}
0

= E(1; =S0) ¢ (u; x).

Hence
Pt +u; x) = P15 (u; X))

Thus for every =0 there exists 2,€ ¥ (%), which is strongly continuous in #, such
that 2,2, = #,., for t,u=0 and #, = #. Hence 2 is a projection. Further, Zx = 0
iff 2,x =0 for all =0 iff ¢(¢;x) =0 for all =0 iff E(t; —Sy)x = 0 for all >0 iff

(I — Py)x =0, so that Ker # = Im P,.
If ye2(So) = 2(S) (so that E(t; —S)ye 2(S)), we compute for >0

E(t; —S)y—/ocE(t—r —So)TE(t; —Sp)y dt

E(t; -5 y—(/ /) [E(t— t5—S0)E(s; —S)y} de

= E(t;=S)y — E(07; =So)E(t; —S)y
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+ E(07;=So)E(t; —S)y + E(t; —So)E(0*; —S)y
= E(; =So)E(0"; =S)y
= E(t;—S,)(I — P)y.

Hence for all ye 2(Sy) = 2(S)

¢(1; (I = P)y) = E(t; =S)y. (3.14)
By continuous extension, it is clear that (3.14) holds for every yeZ. The latter
implies I/ — P = Z(I — P), so that Ker PcIm 2.

To finish the proof, it remains to show that Im ?<Ker P. For ze 2(S)) =", we
have after some calculations

89620, 2> + <P13), 857> = <TP(6:3).2>,

so that

& CBlEx),2> = — (95, 82>,

Laplace transforming the latter expression for Re A <0 we get
© (4
0 [ {5 cown.o + ot b
0

:[e”<¢<t;x>,z>];‘;o—/0 (), (o~ Sz de
= —(Px,z) — {P(J5x), (A~ S§)z).

It now follows that the map z— { $(%; x), (A — §')z) is a bounded linear functional
on %' (and in fact belongs to the canonical image of % in 2”). Hence

A

(A x)e2(S")nZ = 2(S), and
(Px,zy ==L (h—S)p(J;x),z), zeD(S).
Since Z(S') is dense in 27, we have
Px = (= S)$ (i),
whence

d(2x) = (A —8)"'?x, Rei<O.

Now recall that S is exponentially dichotomous. Then the analyticity of ds(i;x)
for Re <0 (which follows from the fact that ¢(-;x)eCo(R*;Z)) implies that
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Pxelm(l — P). In other words, Im #cKer P, which we set out to prove. This
proves part (b). [

The following analogous result is easily derived from Theorem 6 by applying
Theorem 6 to the operators —Sy, —I" and —S rather than to the operators Sy,
I' and S.

By E(R™;2) we mean any of the spaces L”(R™; %) (1<p< ) or Co(R™; %).

Theorem 7. Suppose X is a complex Banach space. Let —S, be exponentially
dichotomous, let T be a bounded operator, and let —S = —Sy + I', where 2(S) =
2(So), have the property that {1€C : |Re 2| <e} =p(S) for some ¢>0. Assume that
either the constituent semigroups of —Sy are immediately norm continuous or that I is
a compact operator. Let Py and P stand for the separating projections of —Sy and —S,
respectively. Then the following statements are equivalent:

(a) The operator function
W)= (—8) " A=8)=1I,y+(A—S,)"'I', |Reil<e,  (3.15)

has a right canonical factorization with respect to the imaginary axis.
(b) We have the decomposition

Ker P+ ImP =% (3.16)

(c) For some (and hence every) E(R™; %), the vector-valued Wiener—Hopf equation

0
o) — [ E(t—1;,—So)l'¢p(t)dr = g(1), t<0 (3.17)

0

is uniquely solvable in E(R™; Z) for any ge E(R™; Z).
(d) For some (and hence every) E(R™; %), the vector-valued Wiener—Hopf equation

W(t) — /0‘ TE(t —1;—So)¥(t)dt = h(t), <0 (3.18)

o0

is uniquely solvable in E(R™; Z) for any ge E(R™; %).
(e) Consider I've L (Hy, H)and Tre L (A, H ) such that I = I'1I'>. Then for some
(and hence every) E(R™;2), the vector-valued Wiener—Hopf equation

0
o(1) —/_ ‘ DLE(t — 1, —S0) () dt = f(t), t<0 (3.19)

o0

is uniquely solvable in E(R™; Zy) for any ge E(R™; ).

We recall that by E(R*; #) we mean any of the spaces I/ (R*; #) (1<p< ) or
Co(RE; 7).
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Corollary 8. Let # be a complex Hilbert space. Suppose —Sy is exponentially
dichotomous, I is a bounded operator, and —S = —Sy + I, where 2(S) = 2(S), have
the property that {1eC : |Re 2| <e} na(S) = 0 for some ¢>0. Assume that either the
constituent semigroups of —Sy are immediately norm continuous or that I' is a compact
operator. Let Py and P be the separating projections of —Sy and —S, respectively.
Suppose there exists, for some complex Hilbert space #o, I'n€ L(H o, H) and
Tye L (A5 H) with I = I''T'y such that one of the following conditions hold:

1. We have

sup ||T2(4— So)~'Ii||<1. (3.20)
Re 7=0

2. There exists >0 such that
Ly + Ta(A = So) ™' Ti]x, x> =0 |x]1° (3.21)

for every xe #y.
Then all of the following statements are true:

(a) The operator function W(-) in (3.5) has a left and a right canonical factorization
with respect to the imaginary axis.

(b) We have the decompositions (3.6) and (3.16).

(¢) For some (and hence every) E(R*; #), the vector-valued Wiener—Hopf equation
(3.7) ((3.17), respectively) is uniquely solvable in E(R*; #) for any ge E(R*; #).

(d) For some (and hence every) E(R*; #), the vector-valued Wiener—Hopf equation
(3.8) ((3.18), respectively) is uniquely solvable in E(R*; #) for any ge E(R*; #).

(e) For some (and hence every) E(R*; #), the vector-valued Wiener—Hopf equation
(3.9) ((3.19), respectively) is uniquely solvable in E(R*;#,) for any
geE(RT; #y).

Proof. It suffices to prove part (¢) of Theorem 6 for p =2. Since the Fourier
transform is (up to a constant factor) a unitary operator mapping L*(R; #) onto
itself (which is true, since # is a Hilbert space), it is easy to see that on L*>(R*; #)

ILill< sup [IPai— So) ' 1ill<1.
Re 4=0
Hence (3.9) is uniquely solvable in L?>(R"; #) for every fe L>(R"; #,) whenever

condition 1 holds. It is easily seen that condition 2 implies that condition 1 is true,
because (3.21) amounts to requiring that there is a ¢>0 for which

HC(IJ/'O + Fz()“ - So)ilrl) - ]J’f’oll< L.

Then ¢W () has a left canonical factorization with respect to the imaginary line and
hence so does W (-), which in turn implies all five statements. [
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4. Block operators

Suppose — S is exponentially dichotomous and I' is a bounded linear operator on
a complex Banach space 2. Define S by —S = —Sy + I', and put

2t =Im E(0%;—S)),

ie, 2T =Im(I — Py) = Ker Py and X~ = Im Py. Assuming that I'|2F]c2*, we
have the following block decompositions of Sy and S with respect to the direct sum

X ="+
Ay 0 Ay -D
SO:( ‘ ) S:( 0 ) (4.1)
0 -4 -0 -4

where Q: 24t -2~ and D: 2~ — 2" are bounded. Then S written in the form (4.1)
is called a block operator. In this section we shall reformulate Theorem 6 in terms
of solutions of Riccati equations and specialize the result obtained to the Hilbert
space setting.

4.1. Riccati equations

In this subsection we relate the equivalent conditions (a)—(e) of Theorems 6 and 7
to the existence of certain bounded solutions of operator Riccati equations. These
solutions are generated as angular operators pertaining to one of decompositions
(3.6) and (3.16), an idea going back to [1].

Theorem 9. Suppose % is a complex Banach space. Let —S, be exponentially
dichotomous, T a bounded operator satisfying I'|Z*|cZF and let —S = —Sy + T,
where 9(S) = Z(S), have the property that {1€C : |Re A| <&} = p(S) for some &> 0.
Assume that either the constituent semigroups of —Sy are immediately norm continuous
or that T' is a compact operator, and let Py and P stand for the separating projections of
—So and —S, respectively. Then there exists a bounded linear operator Il from
A~ into X" which maps Z(A,) into D(Ao), has the property that By = Ay + QI ,
generates an exponentially stable semigroup on X~ , and satisfies the Riccati equation

Aol x+ 11 A\x — Dx+ 11, QI . x =0, xe%(4)), (4.2)

if and only if the equivalent statements (a)—(e) of Theorem 6 are true. Analogously,
there exists a bounded linear operator I1_ from X" into X~ which maps 9(Ay) into
9(Ay), has the property that By = Ay — DII_ generates an exponentially stable
semigroup on X, and satisfies the Riccati equation

I _Apx+ Al _x—H_DI_x+ 0Ox =0, xe2(A) (4.3)

if and only if the equivalent statements (a)—(e) of Theorem T are true.
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Proof. Suppose the equivalent conditions (a)—(e) of Theorem 6 are satisfied. Then we
have decomposition (3.6), where Py = —E(07; —S)) and P = —E(07; —S). Let # be
the projection of Z onto Ker P along Im P,. Since

(L? O) <0 0 )
P(]: ) I_P(): )
0 0 0 Ip-

there exists an angular operator I1, € (2, Z") such that

()

Because Im £ is an S-invariant subspace of %', there exists a linear operator B
defined on a dense domain in 2~ such that

(%o o)) =)o 45

Then By = A, + QI with 2(B)) = 2(A,), I1.[9(A41)]=Z(Ay), and the Riccati
equation (4.2) holds. Conversely, let IT, be a bounded linear operator from £~ into
2" which maps 2(A4;) into 2(A4y) and satisfies the Riccati equation (4.2). Put
By =A4,+ QIl;, where 2(B;) = Z(A,). Then (4.5) is true and the operator 2
defined by (4.4) is a bounded projection on Z whose range is a closed complement of
Im Py. As a result, we have found decomposition (3.6).

In the same way we prove that the decomposition (3.16) is valid if and only if there
exists a bounded linear operator IT_ from 2" into 2~ which maps Z(4,) into Z(A4;)
and satisfies the Riccati equation (4.3). Indeed, the projection 2 of 2 onto Im P

along Ker Py is given by
Iy« 0
Q(f ) (4.6)

while (4.5) is replaced by
A —-D Iy+ Lyt
) -(me
-0 —A4 II_ II_
where By = Ay — DII_ with 2(By) = 9(4y). O

The proof of Theorem 9 shows that if both of the direct sum decompositions (3.6)
and (3.16) exist, then 2 + 2 is a boundedly invertible operator on 2" such that

ImPy+KerP=ImPiKerPy=4%, (4.8)

which makes S similar to the direct sum By 4 (—Bj), where By and B; both have their
spectrum in the open left half-plane. In this case the inverse of 2 + 2 is given by

(2 + 2" = PoP+ (I — Py)(I — P). (4.9)
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4.2. Expressions for the Wiener—Hopf factors

Substituting expression (4.4) into expressions (3.11)—(3.13) for the left Wiener—
Hopf factors of the symbol W and utilizing the Riccati equation (4.2) in the form

— I (44D (A= Ag) Ty + (A — Ag) IO (4 + A1)
= (A—Ao) "D+ A1),

we obtain the following expressions for the factors:

Ly (A—dy)'D\ (W) 0 I+ 0
WU“)(o Ip- )( 0 Igv><(1+A1)‘lQ Lz>’

W(2) = Ly = (4= A0) " T Q)L + 1T (+ A1) O,

W)™ = Iy = T4+ B1) " QL + (2 — Bo) ' 11, Q).
Here By = Ay + 1.0 and B; = A, + QI are generators of exponentially stable
semigroups on Z'.

On the other hand, if one replaces # by 2 in (3.11)-(3.13), one obtains the
expressions of the right Wiener—Hopf factors of the symbol . Substituting
expression (4.6) into these expressions for the right Wiener—Hopf factors and
utilizing the Riccati equation (4.3) in the form

— (A=A '+ A+ A4) T+ (+4)'T_DIT_() — 4p)”"
= (A+4)"'00—4y)7",

we obtain the following expressions for the factors:

B Iy 0\ /Iy O L+ (A—40)"'D
0= (paro 1 (s W’w)(o I )

where
W) = Lo = (+ A1) D)L + (A= 40)”' D],
W (i) =Ly — (4~ Bo) 'Dllly + (3+ B))'11_D].

Here By = Ay — DII_ and B, = A, — II_D are generators of exponentially stable
semigroups on Z .
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4.3. Perturbation results if one of D and Q is compact

We restrict ourselves to the case in which D is compact. The case in which Q is
compact, can be reduced to it by replacing Sy and I' by —S; and —I" and considering
the last two operators as block operators with respect to the decompositions
X~ 34T =4, which yields

_SO:<A1 0 ) —F:(O —Q>'
0 —Ao -D 0

Solving the Lyapunov equation
ZAy+ A1 Z=—-Q where Ze L(X",27) and Z[Z(Ay)| = Z(A,), (4.10)

which allows the unique solution represented by
o0
Zx = / e~ Qe Moxdt, xed™, (4.11)
0

we obtain the two identities

1, 0 A 0 1, 0 A 0
(7)o )& )= (0 ) ew
VAR IS 0 —-A)\-Z Iy 0 -4

<1, 0>(A0 D>(L,1¢+ 0><A0—DZ D > @1
Z Iy 0 —-4)\-Z I,-) \ -ZDZ —A4,+ZD)’ ’

Thus the right-hand sides of (4.12) and (4.13) differ by a compact operator, while the
right-hand side of (4.12) obviously is exponentially dichotomous.
We now have the following result.

Theorem 10. Suppose % is a complex Banach space. Let —Sy be exponentially
dichotomous, I' a bounded operator, and —S = —Sy+ I', such that the block
decomposition (4.1) is true. Suppose D is compact, and S does not have imaginary
eigenvalues. Then there exists a bounded linear operator I1. from X~ into X" which
maps 9(A) into Z(Ay), has the property that By = A, + QII. generates an
exponentially stable semigroup on X, and satisfies the Riccati equation (4.2) if and
only if the equivalent statements (a)—(e¢) of Theorem 6 are true. Analogously, there
exists a bounded linear operator Il _ from X into X~ which maps %(Ay) into Z(A,),
has the property that By = Ay — DII _ generates an exponentially stable semigroup
on X, and satisfies the Riccati equation (4.3) if and only if the equivalent statements
(a)—(e) of Theorem 7 are true.

Proof. What we have to check is the existence of a vertical strip around the
imaginary axis that is free of spectrum of S. However, there exists ¢>0 such that



A.C.M. Ran, C. van der Mee | Journal of Functional Analysis 210 (2004) 193-213 211

{1eC : |Re 2| <e}<p(So), while (A — So) ' I, where I is the operator defined by

oz )= (0 2o )0 1) e

vanishes in the operator norm as A— oo within this strip. This follows from the

compactness of I', which again follows from the compactness of D. Hence there
exists 9 >0 such that

{/eC :|Re|<e, [Imi|>0} ((AO_DZ b )) (S)
eC:|Rei|<e, |ImA c = .
HSe P\ —zpz —4,+2p P

Using the compactness of the imaginary interval i[—d,0] one finds & >0 (with
0<¢&y<e) such that

{1€C :|Re | <ey, [ImA|>d}=p(S),

which completes the proof. [

4.4. The Hilbert space setting

Let us now consider the Hilbert space setting. Let 4y be the infinitesimal generator
of a uniformly exponentially stable Cy-semigroup on a complex Hilbert space .,
and let D and Q be positive semidefinite (and bounded) selfadjoint operators on 7.
Putting H = H @ A, we consider the block operator

S = (AOQ _/11)3)' (4.15)

Such matrices were studied in [18] under the condition that for some £¢>0 and

B>(1/2) we have ||(4— A4o)”'||<const.(1 +|4|)™". Some results in [18] were
obtained under the strengthened condition that A4, is u-sectorial in the sense of
[16]. We will consider —S as a bounded perturbation of —Sy = (—A4o) @ 4. In other

words, —S = =Sy + I', where
0 D
r= ( ) (4.16)
0 0

Next, consider the factorization

0 D1/2 Q1/2 0
=TI, FI:<Q1/2 . ) F2:< . o | (4.17)
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Then
I, + I(A— 50)7111

_ Lr Q'2(J.— Ao) D' (4.18)
DIR(i+ A7) QI Iy |

which has I, as its real part if 4 is purely imaginary. Thus the expression in (4.18)
has a left and a right canonical factorization with respect to the imaginary axis. As a
result of Theorem 10 we have

ImPy+KerP=ImPiKerPy=4%, (4.19)

provided either —4y (and hence also —A;) generates an immediately strongly
continuous semigroup on # or one of D and Q is a compact operator. Furthermore,
the Riccati equations (4.2) and (4.3) both have bounded solutions.
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