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Abstract

Some perturbation results for exponentially dichotomous operators are applied to prove the

existence of stable and anti-stable solutions of Riccati equations associated to block operators

on general Banach spaces, both for compact perturbations and for bisemigroups made up of

immediately norm continuous semigroups.
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1. Introduction

Exponentially dichotomous operators, i.e., direct sums A06ð�A1Þ in which A0
and A1 are generators of exponentially decaying C0-semigroups, have been
introduced to derive representations of solutions of vector-valued convolution
equations on intervals of the real line [2,3]. They also appear in the study of abstract
kinetic equations [13], Pritchard–Salamon systems [15], and block operators of
Hamiltonian type [18–20]. In all of these cases it is of major interest to study suitable
perturbations of exponentially dichotomous operators and, in fact, to prove that
certain perturbations of them are still exponentially dichotomous. Among these
perturbations one finds additive perturbations by a bounded linear operator [18–20],
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multiplicative perturbations by a compact perturbation of the identity [13], and
additive perturbations by an unbounded (but A06ð�A1Þ bounded [15] or self-
adjoint [19,20]) linear operator, and in all of these cases only Hilbert space operators
were considered. Only in [21] one finds a multiplicative perturbation analysis in
Lp-spaces, while in [13] it is indicated how the Hilbert space theory developed there is
to be modified in order to arrive at a Banach space theory.
In [18] an interesting new element has been introduced in the perturbation theory

of exponentially dichotomous operators. Specifying the results for 2� 2 block
operators where the unperturbed exponentially dichotomous operator is block
diagonal and the additive perturbation is block off-diagonal, a stable solution of an
operator Riccati equation and an antistable solution of another operator Riccati
equation showed up. However, a direct application of the perturbation result of [2],
which requires a condition on the domain of the square of the perturbed
exponentially dichotomous operator, would limit the generality of the result in an
artificial way. In [18] this was circumvented by putting extra conditions on the
exponentially dichotomous operator, which are met for instance if it generates an
analytic bisemigroup.
Algebraic Riccati equations play an important role in optimal control theory. We

refer to the books [4,14,17] for a good background. In a finite dimensional setting the
method of choice to find the stable and antistable solutions of algebraic Riccati
equations is to find the stable and antistable invariant subspaces of 2� 2 block
operators constructed from the coefficients of the Riccati equations. This approach
is outlined in detail in [17]. In contrast, in the infinite dimensional case the method of
choice for proving existence of a solution to the algebraic Riccati equation seems to
be to show that a Riccati differential equation on a finite interval has a solution, and
then to let the length of the interval increase. See, for instance [6,22]. In [18] the
invariant subspace approach to finding the stable solution of an algebraic Riccati
equation was extended to the infinite dimensional setting for a specific class of
systems.
In this article we shall generalize the results of [18] but adopt the basic strategy of

[13,21] to derive perturbation results. Introducing bisemigroups as in [2] as e�tA060
for t40 and 06ð�etA1Þ for to0; the bisemigroup generated by the additive
perturbation is sought as the solution of a full-line vector-valued convolution
equation whose right-hand side and convolution kernel contain the bisemigroup
generated by the unperturbed exponentially dichotomous operator as well as the
bounded perturbation. As in [13], the Bochner–Phillips theorem [5,12] on the
invertibility in noncommutative Banach function algebras of Wiener type is applied
to get the basic perturbation result under the natural condition that the perturbed
exponentially dichotomous operator does not have any spectrum in a sufficiently
narrow strip around the imaginary axis. Next, the perturbation theorem is related to
the left and right canonical factorizability of the fractional linear map composed of
the unperturbed and perturbed exponentially dichotomous operators, which by itself
leads to a generalization of the main result of [18]. Therefore, a specialization of our
results to block operators leads to a close connection between the existence of a
stable (anti-stable, resp.) solution of an operator Riccati equation having the block
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operator as its Hamiltonian matrix (see [17] for similar results in the matrix case) and
the left (right, resp.) canonical factorizability of the above fractional linear function.
For small additive perturbations we thus obtain existence results of solutions of
Riccati equations, even in the general Banach space setting where such results are a
rare commodity.

Let us introduce some notations. We let R7 stand for the right (left, resp.) half-
line, including the point at zero. For two complex Banach spaces X and Y; we let
LðX;YÞ stand for the Banach spaces of all bounded linear operators from X intoY:
We write LðXÞ instead of LðX;XÞ:
Let X be a complex Banach space and E an interval of the real line R: Then

LpðE;XÞ denotes the Banach space of all strongly measurable functions f :E-X
such that jjfð�ÞjjXALpðEÞ; endowed with the Lp-norm, and C0ðE;XÞ stands for the
Banach space of all bounded continuous functions f : E-X which vanish at infinity
if E is unbounded, endowed with the supremum norm. In particular,

C0ðR�;XÞ6C0ðRþ;XÞ is the Banach space of all bounded continuous functions
f :R-X which vanish at 7N and may have a jump discontinuity in zero.

2. Bisemigroups and their perturbations

2.1. Preliminaries on semigroups

A C0-semigroup ðTðtÞÞtX0 on a complex Banach space X is called uniformly

exponentially stable if

jjTðtÞjjpMe�et; tX0; ð2:1Þ

for certain M; e40: It is eventually norm continuous if there exists t040 such that
TðtÞ is norm continuous for tXt0; and immediately norm continuous if TðtÞ is norm
continuous for t40: Analytic semigroups, immediately compact semigroups (i.e.,
TðtÞ is a compact operator for t40), and immediately differentiable semigroups are
all special cases of immediately norm continuous semigroups [8, Chapter II, (4.26)].
The following result appears in Section II 4.20 of [8].

Theorem 1. Let X be a complex Hilbert space and let ðTðtÞÞtX0 be a uniformly

exponentially stable C0-semigroup on X: Then ðTðtÞÞtX0 is immediately norm

continuous if and only if the resolvent ðl� AÞ�1 of its infinitesimal generator A

vanishes in the norm as l-N along the imaginary line.

A closed linear operator A densely defined on a complex Banach space X is called
sectorial if there exists a d with 0odpðp=2Þ such that the sector

Sp
2
þd ¼ lAC : jarg ljop

2
þ d

n o/
f0g
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is contained in the resolvent set of A; and if for each eAð0; dÞ there exists MeX1
such that

jjðl� AÞ�1jjpMe

jlj ; 0alASp
2
þd�e:

According to [8, Theorem II 4.6] the sectorial operators are exactly the generators of
bounded analytic semigroups.

2.2. Main results

A closed and densely defined linear operator �S on a Banach space X is called
exponentially dichotomous [2] if for some projection P commuting with S; the restrictions
of S to Im P and of �S to Ker P are the infinitesimal generators of exponentially
decaying C0-semigroups. We then define the bisemigroup generated by �S as

Eðt;�SÞ ¼ e�tSðI � PÞ; t40;

�e�tSP; to0:

�

Its separating projection P is given by P ¼ �Eð0�;�SÞ ¼ IX � Eð0þ;�SÞ: One easily
verifies the existence of e40 such that flAC : jRe ljpeg is contained in the resolvent
set rðSÞ of S and for every xAX

ðl� SÞ�1x ¼ �
Z

N

�N

eltEðt;�SÞx dt; jRe ljpe: ð2:2Þ

As a result, for every xAX we have jjðl� SÞ�1xjj-0 as l-N in flAC : jRe ljpe0g
for some e0Að0; e
: We call the restrictions of e�tS to Ker P and of etS to Im P the
constituent semigroups of the exponentially dichotomous operator �S:

Observe that fxAX : ðl� SÞ�1x is analytic for Re lo0g ¼ Ker P; and fxAX :

ðl� SÞ�1x is analytic for Re l40g ¼ Im P:
We have the following perturbation results.

Theorem 2. Let �S0 be exponentially dichotomous, G a compact operator, and �S ¼
�S0 þ G; where DðSÞ ¼ DðS0Þ: Suppose the imaginary axis is contained in the

resolvent set of S: Then �S is exponentially dichotomous. Moreover, Eðt;�SÞ �
Eðt;�S0Þ is a compact operator, also in the limits as t-07:

Proof. There exists an e40 such thatZ
N

�N

eejtjjjEðt;�S0Þjj dtoN: ð2:3Þ

Using the resolvent identity

ðl� SÞ�1 � ðl� S0Þ�1 ¼ �ðl� S0Þ�1Gðl� SÞ�1; jRe ljpe;
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for some e40; we obtain the convolution integral equation

Eðt;�SÞx �
Z

N

�N

Eðt � t;�S0ÞGEðt;�SÞx dt ¼ Eðt;�S0Þx; ð2:4Þ

where xAH and 0atAR: In (2.4), the convolution kernel Eð�;�S0ÞG is continuous
in the norm except for a jump discontinuity in t ¼ 0; as a result of the strong
continuity (except for the jump) of Eð�;�S0Þ and the compactness of G: Further,
(2.3) implies that eej�jEð�;�S0ÞG is Bochner integrable.
The symbol of the convolution integral equation (2.4), which equals IH þ ðl�

S0Þ�1G ¼ ðl� S0Þ�1ðl� SÞ; tends to IH in the norm as l-N in the strip jRe ljpe
because ðl� S0Þ�1x-0 for all x and G is compact. Moreover, it is a compact
perturbation of the identity which, by definition, only takes invertible values on the
imaginary axis. Thus there exists e0Að0; e
 such that the symbol only takes invertible
values on the strip jRe ljpe0: By the Bochner–Phillips theorem [5], the convolution
equation (2.4) has a unique solution uð�; xÞ ¼ Eð�;�SÞx with the following
properties:

(1) Eð�;�SÞ is strongly continuous, except for a jump discontinuity at t ¼ 0;
(2)

R
N

�N
ee0jtjjjEðt;�SÞjj dtoN; hence Eð�;�SÞ is exponentially decaying,

(3) Eðt;�SÞ � Eðt;�S0Þ is a compact operator, also in the limits as t-07;
(4) identity (2.2) holds.

As a result [2], �S is exponentially dichotomous. &

Theorem 3. Let �S0 be exponentially dichotomous with immediately norm continuous

constituent semigroups, let G be a bounded operator, and let �S ¼ �S0 þ G; where

DðSÞ ¼ DðS0Þ: Suppose a strip flAC : jRe ljpeg is contained in the resolvent set of S.

Then �S is exponentially dichotomous with immediately norm continuous constituent

semigroups.

Proof. There exists e40 such that (2.3) is true. Using the resolvent identity we again
derive (2.4), where xAH and 0atAR: In (2.4), the convolution kernel Eð�;�S0ÞG is
continuous in the norm except for a jump discontinuity in t ¼ 0; as a result of the
immediate norm continuity of the constituent semigroups of �S0: Further, (2.3)

implies that eej�jEð�;�S0ÞG is Bochner integrable.
The symbol of the convolution integral equation (2.4), which equals IH þ ðl�

S0Þ�1G ¼ ðl� S0Þ�1ðl� SÞ; tends to IH in the norm as l-N in the strip jRe ljpe;
because, by Theorem 1, ðl� S0Þ�1 tends to zero in the norm as l-N in the strip.
Moreover, since there is a strip jRe ljpe contained in the resolvent of S; the symbol
only takes invertible values within this strip. By the Bochner–Phillips theorem [5], the
convolution equation (2.4) has a unique solution uð�; xÞ ¼ Eð�;�SÞx with the
following properties:

(1) Eð�;�SÞ is strongly continuous, except for a jump discontinuity at t ¼ 0;
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(2)
R
N

�N
ee0jtjjjEðt;�SÞjj dtoN for some e040; hence Eð�;�SÞ is exponentially

decaying,
(3) Eðt;�SÞ � Eðt;�S0Þ is a bounded linear operator which depends continuously

on tAR; and
(4) identity (2.2) holds.

Let us look more closely at item (3). First of all, jjEðt;�SÞjjpMe�e0jtj for all 0atAR:
Hence, (2.4) implies that FðtÞ ¼ Eðt;�SÞ � Eðt;�S0Þ satisfies

jjFðtÞ � FðsÞjjpMjjGjj
Z

N

�N

jjEðt � t;�S0Þ � Eðs � t;�S0Þjj de;

where de ¼ e�e0jtj dt: Fix ta0 and let s be close to t (and on the same side of 0). Let

Iðt; s; eÞ stand for the real interval of length 2e and midpoint 1
2
ðt þ sÞ: Then

t; sAIðt; s; eÞ whenever jt � sjo2e). We have

jjFðtÞ � FðsÞjjpMjjGjj
Z

N

�N

jjEðt � t;�S0Þ � Eðs � t;�S0Þjj de

¼MjjGjj
Z

Iðt;s;eÞ
þ
Z
R\Iðt;s;eÞ

 !
jjEðt � t;�S0Þ � Eðs � t;�S0Þjj de:

Applying uniform continuity we select d such that

jjEðx;�S0Þ � Eðy;�S0Þjjoe

whenever jx � yjod and jxj; jyj41
2 e:

Now take e so small that the distance of 0 to Iðt; s; eÞ is at least 1
2
e: For

jt � sjpminðd; 2eÞ we haveZ
R\Iðt;s;eÞ

jjEðt � t;�S0Þ � Eðs � t;�S0Þjj de

p
Z
R\Iðt;s;eÞ

ee�e0jtj dtp
Z

N

�N

ee�e0jtj dt ¼ e
2e0

(since jðt � tÞ � ðs � tÞj ¼ jt � sjod by assumption). Now choose M0 such that

jjEðt;�S0ÞjjpM0

for 0atAR: Then Z
Iðt;s;eÞ

jjEðt � t;�S0Þ � Eðs � t;�S0Þjj de

p
Z

Iðt;s;eÞ
2M0e

�e0jtj dt ¼ 4M0e:
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Then finally

jjFðtÞ � FðsÞjjpMjjGjje 4M0 þ
1

2e0

	 

;

which implies the norm continuity of FðtÞ in tAR:
As a result of items (1)–(4) [2], �S is exponentially dichotomous and its

constituent semigroups are norm continuous. &

Corollary 4. Let �S0 be exponentially dichotomous with resolvent ðl� S0Þ�1
vanishing in the norm as l-N along the imaginary line, let G be a bounded operator,
and let �S ¼ �S0 þ G; where DðSÞ ¼ DðS0Þ; defined on the complex Hilbert space X:
Suppose a strip flAC : jRe ljpeg is contained in the resolvent set of S. Then �S is

exponentially dichotomous and jjðl� SÞ�1jj-0 as l-N along the imaginary line.

Proof. Theorem 1 implies that the constituent semigroups of �S0 are immediately
norm continuous. Thus Theorem 3 implies that �S is exponentially dichotomous
with immediately norm continuous constituent semigroups. Then in the norm
topology we have

ðl� SÞ�1 ¼ �
Z

N

�N

eltEðt;�SÞ dt; Re l ¼ 0:

Thus the Riemann–Lebesgue lemma implies that jjðl� SÞ�1jj-0 as l-N along the
imaginary line. &

3. Canonical factorization and matching of subspaces

Let �S0 be exponentially dichotomous and G a bounded operator on a com-
plex Banach space X; and let �S ¼ �S0 þ G; where DðSÞ ¼ DðS0Þ and
flAC : jRe ljpegCrðSÞ for some e40: Then �S is exponentially dichotomous if
either �S0 has immediately norm continuous constituent semigroups or G is a
compact operator (cf. Theorems 2 and 3). The bisemigroup generated by �S is the
unique solution of the convolution equation (2.4). In this section we consider the
analogous vector-valued Wiener–Hopf integral equation

fðtÞ �
Z

N

0

Eðt � t;�S0ÞGfðtÞ dt ¼ gðtÞ; ð3:1Þ

where t40:
SupposeW is a continuous function from the extended imaginary axis iðR,fNgÞ

into LðXÞ: Then by a left canonical (Wiener–Hopf ) factorization of W we mean a
representation of W of the form

WðlÞ ¼ WþðlÞW�ðlÞ; Re l ¼ 0; ð3:2Þ
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in which W7ð7lÞ is continuous on the closed right half-plane (the point at N

included), is analytic on the open right half-plane, and takes only invertible values for l
in the closed right half-plane (the point at infinity included). Obviously, such an operator
function only takes invertible values on the extended imaginary axis. By a right canonical

(Wiener–Hopf ) factorization we mean a representation of W of the form

WðlÞ ¼ W�ðlÞWþðlÞ; Re l ¼ 0; ð3:3Þ

where W7ðlÞ are as above.
We first need the following crucial lemma.

Lemma 5. Let S0 be an exponentially dichotomous operator on a complex Banach

space X: Then the operator L defined by

ðLwÞðtÞ ¼
Z

N

�N

Eðt � t;�S0ÞwðtÞ dt; t40 ð3:4Þ

is bounded on LpðR;XÞ ð1ppoNÞ; C0ðR;XÞ; and C0ðR�;XÞ6C0ðRþ;XÞ:

Proof. Certainly, for every tAR the function t/Eðt � t;�S0ÞwðtÞ is strongly
measurable in tAR if w is a measurable X-valued step function. In this case we easily
prove that LwALpðR;XÞ ð1pppNÞ and that

jjLwjjLpðR;XÞpCjjwjjLpðR;XÞ;

where

C ¼
Z

N

�N

jjEðt;�S0ÞjjLðXÞ dt:

Since for 1ppoN the measurable step functions are dense in LpðR;XÞ (cf. [7]), we
obtain the lemma for LpðR;XÞ ð1ppoNÞ:
Now note that the integral in (3.4) is a Bochner integral (cf. [7]) if

wAC0ðR�;XÞ6C0ðRþ;XÞ: The Theorem of Dominated Convergence for Bochner

integrals then implies that the vector function LwAC0ðR�;XÞ6C0ðRþ;XÞ whenever
wAC0ðR�;XÞ6C0ðRþ;XÞ: &

If X is a Hilbert space and p ¼ 2; there is an alternative proof of Lemma 5 (cf. [9]).
Using that the Fourier transformF is a unitary operator on L2ðR;XÞ; we easily see
that FLF�1 is the premultiplication by the bounded operator function LðlÞ ¼
iðlþ iS0Þ�1 (cf. (2.2)), which settles the boundedness of L in this particular case.
We have the following fundamental result. Similar results in various different

contexts exist in the finite dimensional case [1], for equations with symbols analytic
in a strip and at infinity [3], for extended Pritchard–Salamon realizations [15], and
for abstract kinetic equations [13].

By EðRþ;XÞ we mean any of the spaces LpðRþ;XÞ ð1ppoNÞ or C0ðRþ;XÞ:
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Theorem 6. Suppose X is a complex Banach space. Let �S0 be exponentially

dichotomous, let G be a bounded operator, and let �S ¼ �S0 þ G; where DðSÞ ¼
DðS0Þ; have the property that flAC : jRe ljoegCrðSÞ for some e40: Assume that

either the constituent semigroups of �S0 are immediately norm continuous or that G is

a compact operator. Let P0 and P stand for the separating projections of �S0 and �S;
respectively. Then the following statements are equivalent:

(a) The operator function

WðlÞ ¼ ðl� S0Þ�1ðl� SÞ ¼ IX þ ðl� S0Þ�1G; jRe ljpe; ð3:5Þ

has a left canonical factorization with respect to the imaginary axis.
(b) We have the decomposition

Ker P6Im P0 ¼ X: ð3:6Þ

(c) For some (and hence every) EðRþ;XÞ; the vector-valued Wiener–Hopf equation

fðtÞ �
Z

N

0

Eðt � t;�S0ÞGfðtÞ dt ¼ gðtÞ; t40 ð3:7Þ

is uniquely solvable in EðRþ;XÞ for any gAEðRþ;XÞ:
(d) For some (and hence every) EðRþ;XÞ; the vector-valued Wiener–Hopf equation

cðtÞ �
Z

N

0

GEðt � t;�S0ÞcðtÞ dt ¼ hðtÞ; t40 ð3:8Þ

is uniquely solvable in EðRþ;XÞ for any gAEðRþ;XÞ:
(e) Consider G1ALðX0;XÞ and G2ALðX;X0Þ such that G ¼ G1G2: Then for some

(and hence every) EðRþ;X0Þ; the vector-valued Wiener–Hopf equation

jðtÞ �
Z

N

0

G2Eðt � t;�S0ÞG1jðtÞ dt ¼ f ðtÞ; t40 ð3:9Þ

is uniquely solvable in EðRþ;X0Þ for any gAEðRþ;X0Þ:

Proof. We first note that �S is exponentially dichotomous, as a result of Theorems 2
and 3.

ðcÞ3ðdÞ3ðeÞ: It follows immediately from Lemma 5 that the operator Lþ
defined by

ðLþwÞðtÞ ¼
Z

N

0

Eðt � t;�S0ÞwðtÞ dt; t40 ð3:10Þ

is bounded on all of the spaces EðRþ;XÞ: Further, (3.7)–(3.9) can be written in the
concise form

f� LþGf ¼ g; ð3:7aÞ

ARTICLE IN PRESS
A.C.M. Ran, C. van der Mee / Journal of Functional Analysis 210 (2004) 193–213 201



c� GLþc ¼ h; ð3:8aÞ

j� G2LþG1j ¼ f : ð3:9aÞ

A simple Schur complement argument then yields the equivalence of parts (c)–(e) in

each of the spaces EðRþ;XÞ:
ðbÞ ) ðaÞ: Suppose decomposition (3.6) is true. Let P denote the projection of X

onto Ker P along Im P0: Then (cf. [1])

WðlÞ ¼ ½IX þ ðl� S0Þ�1ðI �PÞG
½IX þPðl� S0Þ�1G
 ð3:11Þ

is a left canonical factorization of Wð�Þ: Indeed,

½IX þ ðl� S0Þ�1ðI �PÞG
�1 ¼ IX � ðI �PÞðl� SÞ�1G; ð3:12Þ

½IX þPðl� S0Þ�1G
�1 ¼ IX � ðl� SÞ�1PG: ð3:13Þ

The norm continuity of the factors as l-N along the imaginary axis follows from

the fact that jjðl� S0Þ�1jj-0 as l-N along the imaginary axis, in case �S0 is the
infinitesimal generator of a uniformly exponentially stable immediately norm

continuous semigroup [8, Corollary II 4.19], and from jjðl� S0Þ�1Gjj-0 as l-N

along the imaginary axis in case G is compact. The norm continuity of the inverses of
the factors as l-N along the imaginary axis follows in the same way, using
Theorems 2 and 3.

ðaÞ ) ðcÞ: Suppose the operator function Wð�Þ in (3.5) has a left canonical
factorization W ¼ W�Wþ with respect to the imaginary line and let

g7AL1ðRþ;LðXÞÞ be such that

WþðlÞ�1 ¼ IX þ
Z

N

0

eltgþðtÞ dt;

W�ðlÞ�1 ¼ IX þ
Z 0

�N

eltg�ð�tÞ dt:

Then standard methods (cf. [10, Section I.8], also [11, Chapter XIII]) show that

fðtÞ ¼ gðtÞ þ
Z

N

0

gðt; tÞgðtÞ dt;

where

gðt; tÞ ¼
gþðt � tÞ þ

R t
0 gþðt � aÞg�ðt� aÞ da; 0ptotoN;

g�ðt� tÞ þ
R t

0 gþðt � aÞg�ðt� aÞ da; 0ptotoN;

(

represents the unique solution of (3.7) in LpðRþ;XÞ for each gALpðRþ;XÞ: It is
evident that this solution belongs to C0ðRþ;XÞ whenever gAC0ðRþ;XÞ:
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ðcÞ ) ðbÞ: Now suppose (3.7) has a unique solution fAC0ðRþ;XÞ for every
gAC0ðRþ;XÞ: Consider the solution fð�; xÞ of (3.7) at t ¼ 0þ if gðtÞ ¼ Eðt;�S0Þx for
t40 and xAX: Let us define Px ¼ fð0þ; xÞ; i.e.,

Px ¼ ½ðI � LþGÞ�1Eð�;�S0Þx
ðt ¼ 0þÞ;

where xAX: For uX0; t40 and xAX we now compute

fðt þ u; xÞ �
Z

N

0

Eðt � t;�S0ÞGfðtþ u; xÞ dt

¼ fðt þ u; xÞ �
Z

N

u

Eðt þ u � t;�S0ÞGfðt; xÞ dt

¼ Eðt þ u;�S0Þx þ
Z u

0

Eðt þ u � t;�S0ÞGfðt; xÞ dt

¼ Eðt;�S0Þ Eðu;�S0Þx þ
Z u

0

Eðu � t;�S0ÞGfðt; xÞ dt
� 


¼ Eðt;�S0ÞðI � P0Þ Eðu;�S0Þx þ
Z u

0

Eðu � t;�S0ÞGfðt; xÞ dt
� 


:

Now note that ðI � P0Þ
R
N

u
Eðu � t;�S0ÞGfðt; xÞ dt ¼ 0; to see that

fðt þ u; xÞ �
Z

N

0

Eðt � t;�S0ÞGfðtþ u; xÞ dt

¼ Eðt;�S0Þ Eðu;�S0Þx þ
Z

N

0

Eðu � t;�S0ÞGfðt; xÞ dt
� 


¼ Eðt;�S0Þfðu; xÞ:

Hence

fðt þ u; xÞ ¼ fðt;fðu; xÞÞ:

Thus for every tX0 there exists PtALðXÞ; which is strongly continuous in t; such
that PtPu ¼ Ptþu for t; uX0 and P0 ¼ P: Hence P is a projection. Further, Px ¼ 0
iff Ptx ¼ 0 for all tX0 iff fðt; xÞ � 0 for all tX0 iff Eðt;�S0Þx ¼ 0 for all tX0 iff
ðI � P0Þx ¼ 0; so that KerP ¼ Im P0:
If yADðS0Þ ¼ DðSÞ (so that Eðt;�SÞyADðSÞ), we compute for t40

Eðt;�SÞy �
Z

N

0

Eðt � t;�S0ÞGEðt;�S0Þy dt

¼ Eðt;�SÞy �
Z t

0

þ
Z

N

t

	 

@

@t
fEðt � t;�S0ÞEðt;�SÞyg dt

¼ Eðt;�SÞy � Eð0þ;�S0ÞEðt;�SÞy
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þ Eð0�;�S0ÞEðt;�SÞy þ Eðt;�S0ÞEð0þ;�SÞy

¼ Eðt;�S0ÞEð0þ;�SÞy

¼ Eðt;�S0ÞðI � PÞy:

Hence for all yADðS0Þ ¼ DðSÞ
fðt; ðI � PÞyÞ ¼ Eðt;�SÞy: ð3:14Þ

By continuous extension, it is clear that (3.14) holds for every yAX: The latter
implies I � P ¼ PðI � PÞ; so that Ker PCImP:

To finish the proof, it remains to show that ImPCKer P: For zADðS0
0ÞCX0; we

have after some calculations

d

dt
/fðt; xÞ; zSþ/fðt; xÞ;S0

0zS ¼ /Gfðt; xÞ; zS;

so that

d

dt
/fðt; xÞ; zS ¼ �/fðt; xÞ;S0zS:

Laplace transforming the latter expression for Re lo0 we get

0 ¼
Z

N

0

elt d

dt
/fðt; xÞ; zSþ/fðt; xÞ;S0zS

� �
dt

¼ ½elt/fðt;xÞ; zS
Nt¼0 �
Z

N

0

elt/fðt; xÞ; ðl� S0ÞzS dt

¼ �/Px; zS�/ #fðl; xÞ; ðl� S0ÞzS:

It now follows that the map z// #fðl; xÞ; ðl� S0ÞzS is a bounded linear functional
on X0 (and in fact belongs to the canonical image of X in X00). Hence
#fðl; xÞADðS00Þ-X ¼ DðSÞ; and

/Px; zS ¼ �/ðl� SÞ #fðl; xÞ; zS; zADðS0Þ:

Since DðS0Þ is dense in X0; we have

Px ¼ ðl� SÞ #fðl; xÞ;

whence

#fðl; xÞ ¼ ðl� SÞ�1Px; Re lo0:

Now recall that S is exponentially dichotomous. Then the analyticity of #fðl; xÞ
for Re lo0 (which follows from the fact that fð�; xÞAC0ðRþ;XÞ) implies that
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PxAImðI � PÞ: In other words, ImPCKer P; which we set out to prove. This
proves part (b). &

The following analogous result is easily derived from Theorem 6 by applying
Theorem 6 to the operators �S0; �G and �S rather than to the operators S0;
G and S:
By EðR�;XÞ we mean any of the spaces LpðR�;XÞ ð1ppoNÞ or C0ðR�;XÞ:

Theorem 7. Suppose X is a complex Banach space. Let �S0 be exponentially

dichotomous, let G be a bounded operator, and let �S ¼ �S0 þ G; where DðSÞ ¼
DðS0Þ; have the property that flAC : jRe ljoegCrðSÞ for some e40: Assume that

either the constituent semigroups of �S0 are immediately norm continuous or that G is

a compact operator. Let P0 and P stand for the separating projections of �S0 and �S;
respectively. Then the following statements are equivalent:

(a) The operator function

WðlÞ ¼ ðl� S0Þ�1ðl� SÞ ¼ IX þ ðl� S0Þ�1G; jRe ljpe; ð3:15Þ

has a right canonical factorization with respect to the imaginary axis.
(b) We have the decomposition

Ker P06Im P ¼ X: ð3:16Þ

(c) For some (and hence every) EðR�;XÞ; the vector-valued Wiener–Hopf equation

fðtÞ �
Z 0

�N

Eðt � t;�S0ÞGfðtÞ dt ¼ gðtÞ; to0 ð3:17Þ

is uniquely solvable in EðR�;XÞ for any gAEðR�;XÞ:
(d) For some (and hence every) EðR�;XÞ; the vector-valued Wiener–Hopf equation

cðtÞ �
Z 0

�N

GEðt � t;�S0ÞcðtÞ dt ¼ hðtÞ; to0 ð3:18Þ

is uniquely solvable in EðR�;XÞ for any gAEðR�;XÞ:
(e) Consider G1ALðH0;HÞ and G2ALðH;H0Þ such that G ¼ G1G2: Then for some

(and hence every) EðR�;X0Þ; the vector-valued Wiener–Hopf equation

jðtÞ �
Z 0

�N

G2Eðt � t;�S0ÞG1jðtÞ dt ¼ f ðtÞ; to0 ð3:19Þ

is uniquely solvable in EðR�;X0Þ for any gAEðR�;X0Þ:

We recall that by EðR7;HÞ we mean any of the spaces LpðR7;HÞ ð1ppoNÞ or
C0ðR7;HÞ:
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Corollary 8. Let H be a complex Hilbert space. Suppose �S0 is exponentially

dichotomous, G is a bounded operator, and �S ¼ �S0 þ G; where DðSÞ ¼ DðS0Þ; have

the property that flAC : jRe ljoeg-sðSÞ ¼ | for some e40: Assume that either the

constituent semigroups of �S0 are immediately norm continuous or that G is a compact

operator. Let P0 and P be the separating projections of �S0 and �S; respectively.

Suppose there exists, for some complex Hilbert space H0; G1ALðH0;HÞ and

G2ALðH;H0Þ with G ¼ G1G2 such that one of the following conditions hold:

1. We have

sup
Re l¼0

jjG2ðl� S0Þ�1G1jjo1: ð3:20Þ

2. There exists d40 such that

/½IH0
þ G2ðl� S0Þ�1G1
x; xSXdjjxjj2 ð3:21Þ

for every xAH0:

Then all of the following statements are true:

(a) The operator function Wð�Þ in (3.5) has a left and a right canonical factorization

with respect to the imaginary axis.
(b) We have the decompositions (3.6) and (3.16).
(c) For some (and hence every) EðR7;HÞ; the vector-valued Wiener–Hopf equation

(3.7) ((3.17), respectively) is uniquely solvable in EðR7;HÞ for any gAEðR7;HÞ:
(d) For some (and hence every) EðR7;HÞ; the vector-valued Wiener–Hopf equation

(3.8) ((3.18), respectively) is uniquely solvable in EðR7;HÞ for any gAEðR7;HÞ:
(e) For some (and hence every) EðR7;H0Þ; the vector-valued Wiener–Hopf equation

(3.9) ((3.19), respectively) is uniquely solvable in EðR7;H0Þ for any

gAEðR7;H0Þ:

Proof. It suffices to prove part (e) of Theorem 6 for p ¼ 2: Since the Fourier
transform is (up to a constant factor) a unitary operator mapping L2ðR;H0Þ onto
itself (which is true, sinceH0 is a Hilbert space), it is easy to see that on L2ðRþ;H0Þ

jjLþjjp sup
Re l¼0

jjG2ðl� S0Þ�1G1jjo1:

Hence (3.9) is uniquely solvable in L2ðRþ;H0Þ for every fAL2ðRþ;H0Þ whenever
condition 1 holds. It is easily seen that condition 2 implies that condition 1 is true,
because (3.21) amounts to requiring that there is a c40 for which

jjcðIH0
þ G2ðl� S0Þ�1G1Þ � IH0

jjo1:

Then cW ð�Þ has a left canonical factorization with respect to the imaginary line and
hence so does Wð�Þ; which in turn implies all five statements. &
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4. Block operators

Suppose �S0 is exponentially dichotomous and G is a bounded linear operator on
a complex Banach space X: Define S by �S ¼ �S0 þ G; and put

X7 ¼ Im Eð07;�S0Þ;

i.e., Xþ ¼ ImðI � P0Þ ¼ KerP0 and X� ¼ Im P0: Assuming that G½X7
CX8; we
have the following block decompositions of S0 and S with respect to the direct sum

X ¼ Xþ6X�:

S0 ¼
A0 0

0 �A1

	 

; S ¼

A0 �D

�Q �A1

	 

; ð4:1Þ

where Q :Xþ-X� and D :X�-Xþ are bounded. Then S written in the form (4.1)
is called a block operator. In this section we shall reformulate Theorem 6 in terms
of solutions of Riccati equations and specialize the result obtained to the Hilbert
space setting.

4.1. Riccati equations

In this subsection we relate the equivalent conditions (a)–(e) of Theorems 6 and 7
to the existence of certain bounded solutions of operator Riccati equations. These
solutions are generated as angular operators pertaining to one of decompositions
(3.6) and (3.16), an idea going back to [1].

Theorem 9. Suppose X is a complex Banach space. Let �S0 be exponentially

dichotomous, G a bounded operator satisfying G½X7
CX8 and let �S ¼ �S0 þ G;
where DðSÞ ¼ DðS0Þ; have the property that flAC : jRe ljoegCrðSÞ for some e40:
Assume that either the constituent semigroups of �S0 are immediately norm continuous

or that G is a compact operator, and let P0 and P stand for the separating projections of

�S0 and �S; respectively. Then there exists a bounded linear operator Pþ from

X� into Xþ which maps DðA1Þ into DðA0Þ; has the property that B1 ¼ A1 þ QPþ
generates an exponentially stable semigroup on X�; and satisfies the Riccati equation

A0Pþx þPþA1x � Dx þPþQPþx ¼ 0; xADðA1Þ; ð4:2Þ

if and only if the equivalent statements (a)–(e) of Theorem 6 are true. Analogously,

there exists a bounded linear operator P� from Xþ into X� which maps DðA0Þ into

DðA1Þ; has the property that B0 ¼ A0 � DP� generates an exponentially stable

semigroup on Xþ; and satisfies the Riccati equation

P�A0x þ A1P�x �P�DP�x þ Qx ¼ 0; xADðA0Þ ð4:3Þ

if and only if the equivalent statements (a)–(e) of Theorem 7 are true.
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Proof. Suppose the equivalent conditions (a)–(e) of Theorem 6 are satisfied. Then we
have decomposition (3.6), where P0 ¼ �Eð0�;�S0Þ and P ¼ �Eð0�;�SÞ: Let P be
the projection of X onto Ker P along Im P0: Since

P0 ¼
IXþ 0

0 0

	 

; I � P0 ¼

0 0

0 IX�

	 

;

there exists an angular operator PþALðX�;XþÞ such that

P ¼
0 Pþ

0 IX�

	 

: ð4:4Þ

Because ImP is an S-invariant subspace of X; there exists a linear operator B1
defined on a dense domain in X� such that

A0 �D

�Q �A1

	 

Pþ

IX�

	 

¼

Pþ

IX�

	 

ð�B1Þ: ð4:5Þ

Then B1 ¼ A1 þ QPþ with DðB1Þ ¼ DðA1Þ; Pþ½DðA1Þ
CDðA0Þ; and the Riccati
equation (4.2) holds. Conversely, let Pþ be a bounded linear operator from X� into

Xþ which maps DðA1Þ into DðA0Þ and satisfies the Riccati equation (4.2). Put
B1 ¼ A1 þ QPþ; where DðB1Þ ¼ DðA1Þ: Then (4.5) is true and the operator P
defined by (4.4) is a bounded projection on X whose range is a closed complement of
Im P0: As a result, we have found decomposition (3.6).
In the same way we prove that the decomposition (3.16) is valid if and only if there

exists a bounded linear operatorP� fromXþ intoX� which mapsDðA0Þ intoDðA1Þ
and satisfies the Riccati equation (4.3). Indeed, the projection Q of X onto Im P

along Ker P0 is given by

Q ¼
IXþ 0

P� 0

	 

; ð4:6Þ

while (4.5) is replaced by

A0 �D

�Q �A1

	 

IXþ

P�

	 

¼

IXþ

P�

	 

B0; ð4:7Þ

where B0 ¼ A0 � DP� with DðB0Þ ¼ DðA0Þ: &

The proof of Theorem 9 shows that if both of the direct sum decompositions (3.6)
and (3.16) exist, then Pþ Q is a boundedly invertible operator on X such that

Im P06Ker P ¼ Im P6Ker P0 ¼ X; ð4:8Þ

which makes S similar to the direct sum B06ð�B1Þ; where B0 and B1 both have their
spectrum in the open left half-plane. In this case the inverse of Pþ Q is given by

½Pþ Q
�1 ¼ P0P þ ðI � P0ÞðI � PÞ: ð4:9Þ
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4.2. Expressions for the Wiener–Hopf factors

Substituting expression (4.4) into expressions (3.11)–(3.13) for the left Wiener–
Hopf factors of the symbol W and utilizing the Riccati equation (4.2) in the form

�Pþðlþ A1Þ�1 þ ðl� A0Þ�1Pþ þ ðl� A0Þ�1PþQPþðlþ A1Þ�1

¼ ðl� A0Þ�1Dðlþ A1Þ�1;

we obtain the following expressions for the factors:

WðlÞ ¼ IXþ ðl� A0Þ�1D
0 IX�

 !
W lðlÞ 0

0 IX�

 !
IXþ 0

ðlþ A1Þ�1Q IX�

	 

;

where

W lðlÞ ¼ ½IXþ � ðl� A0Þ�1PþQ
½IXþ þPþðlþ A1Þ�1Q
;

W lðlÞ�1 ¼ ½IXþ �Pþðlþ B1Þ�1Q
½IXþ þ ðl� B̃0Þ�1PþQ
:

Here B̃0 ¼ A0 þPþQ and B1 ¼ A1 þ QPþ are generators of exponentially stable

semigroups on Xþ:
On the other hand, if one replaces P by Q in (3.11)–(3.13), one obtains the

expressions of the right Wiener–Hopf factors of the symbol W : Substituting
expression (4.6) into these expressions for the right Wiener–Hopf factors and
utilizing the Riccati equation (4.3) in the form

�P�ðl� A0Þ�1 þ ðlþ A1Þ�1P� þ ðlþ A1Þ�1P�DP�ðl� A0Þ�1

¼ ðlþ A1Þ�1Qðl� A0Þ�1;

we obtain the following expressions for the factors:

WðlÞ ¼
IXþ 0

ðlþ A1Þ�1Q IX�

	 

IXþ 0

0 W rðlÞ

	 

IXþ ðl� A0Þ�1D
0 IX�

 !
;

where

W rðlÞ ¼ ½IX� � ðlþ A1Þ�1P�D
½IX� þP�ðl� A0Þ�1D
;

W rðlÞ�1 ¼ ½IX� �P�ðl� B0Þ�1D
½IX� þ ðlþ B̃1Þ�1P�D
:

Here B0 ¼ A0 � DP� and B̃1 ¼ A1 �P�D are generators of exponentially stable
semigroups on X�:
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4.3. Perturbation results if one of D and Q is compact

We restrict ourselves to the case in which D is compact. The case in which Q is
compact, can be reduced to it by replacing S0 and G by �S0 and �G and considering
the last two operators as block operators with respect to the decompositions

X�6Xþ ¼ X; which yields

�S0 ¼
A1 0

0 �A0

	 

; �G ¼

0 �Q

�D 0

	 

:

Solving the Lyapunov equation

ZA0 þ A1Z ¼ �Q where ZALðXþ;X�Þ and Z½DðA0Þ
CDðA1Þ; ð4:10Þ

which allows the unique solution represented by

Zx ¼
Z

N

0

e�tA1Qe�tA0x dt; xAXþ; ð4:11Þ

we obtain the two identities

IXþ 0

Z IX�

	 

A0 0

Q �A1

	 

IXþ 0

�Z IX�

	 

¼

A0 0

0 �A1

	 

; ð4:12Þ

IXþ 0

Z IX�

	 

A0 D

Q �A1

	 

IXþ 0

�Z IX�

	 

¼

A0 � DZ D

�ZDZ �A1 þ ZD

	 

: ð4:13Þ

Thus the right-hand sides of (4.12) and (4.13) differ by a compact operator, while the
right-hand side of (4.12) obviously is exponentially dichotomous.
We now have the following result.

Theorem 10. Suppose X is a complex Banach space. Let �S0 be exponentially

dichotomous, G a bounded operator, and �S ¼ �S0 þ G; such that the block

decomposition (4.1) is true. Suppose D is compact, and S does not have imaginary

eigenvalues. Then there exists a bounded linear operator Pþ from X� into Xþ which

maps DðA1Þ into DðA0Þ; has the property that B1 ¼ A1 þ QPþ generates an

exponentially stable semigroup on X�; and satisfies the Riccati equation (4.2) if and

only if the equivalent statements (a)–(e) of Theorem 6 are true. Analogously, there

exists a bounded linear operator P� from Xþ into X� which maps DðA0Þ into DðA1Þ;
has the property that B0 ¼ A0 � DP� generates an exponentially stable semigroup

on Xþ; and satisfies the Riccati equation (4.3) if and only if the equivalent statements

(a)–(e) of Theorem 7 are true.

Proof. What we have to check is the existence of a vertical strip around the
imaginary axis that is free of spectrum of S: However, there exists e40 such that
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flAC : jRe ljpegCrðS0Þ; while ðl� S0Þ�1 *G; where *G is the operator defined by

*G ¼
�DZ D

�ZDZ ZD

	 

¼

IXþ 0

0 Z

	 

D D

D D

	 
 �Z 0

0 IX�

	 

ð4:14Þ

vanishes in the operator norm as l-N within this strip. This follows from the

compactness of *G; which again follows from the compactness of D: Hence there
exists d40 such that

flAC : jRe ljpe; jIm lj4dgCr
A0 � DZ D

�ZDZ �A1 þ ZD

	 
	 

¼ rðSÞ:

Using the compactness of the imaginary interval i½�d; d
 one finds e040 (with
0oe0pe) such that

flAC : jRe ljpe0; jIm lj4dgCrðSÞ;

which completes the proof. &

4.4. The Hilbert space setting

Let us now consider the Hilbert space setting. Let A0 be the infinitesimal generator
of a uniformly exponentially stable C0-semigroup on a complex Hilbert space H;
and let D and Q be positive semidefinite (and bounded) selfadjoint operators onH:

Putting #H ¼ H"H; we consider the block operator

S ¼
A0 �D

�Q �A�
0

	 

: ð4:15Þ

Such matrices were studied in [18] under the condition that for some e40 and
b4ð1=2Þ we have jjðl� A0Þ�1jjpconst:ð1þ jljÞ�b: Some results in [18] were
obtained under the strengthened condition that A0 is m-sectorial in the sense of
[16]. We will consider �S as a bounded perturbation of �S0 ¼ ð�A0Þ"A�

0: In other
words, �S ¼ �S0 þ G; where

G ¼
0 D

Q 0

	 

: ð4:16Þ

Next, consider the factorization

G ¼ G1G2; G1 ¼
0 D1=2

Q1=2 0

 !
; G2 ¼

Q1=2 0

0 D1=2

 !
: ð4:17Þ
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Then

I #H þ G2ðl� S0Þ�1G1

¼ IH Q1=2ðl� A0Þ�1D1=2

D1=2ðlþ A�
0Þ

�1
Q1=2 IH

 !
; ð4:18Þ

which has I #H as its real part if l is purely imaginary. Thus the expression in (4.18)
has a left and a right canonical factorization with respect to the imaginary axis. As a
result of Theorem 10 we have

Im P06Ker P ¼ Im P6Ker P0 ¼ X; ð4:19Þ

provided either �A0 (and hence also �A�
0) generates an immediately strongly

continuous semigroup onH or one of D and Q is a compact operator. Furthermore,
the Riccati equations (4.2) and (4.3) both have bounded solutions.
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Operator Theory, Vol. 1, Birkhäuser, Basel and Boston, 1979.

[2] H. Bart, I. Gohberg, M.A. Kaashoek, Wiener–Hopf factorization, inverse Fourier transforms and

exponentially dichotomous operators, J. Funct. Anal. 68 (1986) 1–42.

[3] H. Bart, I. Gohberg, M.A. Kaashoek, Wiener–Hopf equations with symbols analytic in a strip,

in: I. Gohberg, M.A. Kaashoek (Eds.), Constructive Methods of Wiener–Hopf Factorization,

Operator Theory, Vol. 21, Birkhäuser, Basel, 1986, pp. 39–74.
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