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In this article the existence and uniqueness theory of stationary kinetic equations
in Ll-spaces is developed for collision terms dominated in the norm by the collision
frequency.

1. Introduction

In this article we study boundary value problems of the type

v - % +a(z,v) - g% + h(z,v)u(z,v) = (Ju)(z,v) + f(z,v), (z,v)€Z;
(1)

u_(z,v) = (Kuy)(z,v) + 9-(z,v), (z,v) €
(2)

where the position € (£ an open subset of R™), the velocity v € V
(V a subset of R™ equipped with a positive Borel measure pg such that all
bounded Borel sets in R™ have finite po-measure), and ¥ = Q x V equipped
with the product measure dp(z,v) = dzduo(v). We assume that a{z,v) is
real and continuous in (z,v) and Lipschitz continuous in v on the closure
of ¥, introduce the vector field

0 0
X_v-z);—ka(a:,v)-%,
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and suppose that for any C!-function ¢ of compact support in &

/ Xddur =0,
3

meaning that X is divergence free. Then through every point of 3 there
passes exactly one integral curve of X. The left endpoints form the incoming
boundary ¥_ and the right endpoints the outgoing boundary ¥,. We
assume in addition that no maximal integral curve of X can have a left or
right endpoint in 0% where v = a(z,v) = 0.

Next, we assume that (1) the function h(z,v) is nonnegative and locally
u-integrable, (2) the operator J is real and satisfies

[ Jully < bl[hulx (3)

for some é € (0,1), and (3) the operator K has norm strictly less than 1.
If J and K are positive operators (in lattice sense), then we shall allow K
to have unit norm and ¢ to equal 1.

A comprehensive theory of the existence and uniqueness of the time
dependent counterpart of Egs. (1)-(2) has been developed by Beals and
Protopopescu 3 (also Chapter XI of Greenberg et al.%) to cover situations
where the operator J is bounded. It has recently been extended by Van der
Mee 5 to deal with situations where J is the sum of a bounded operator
and one satisfying (3). We mention that important earlier work on the
time dependent problem was done by Voigt 2! for the case where a = 0 and
J = 0 and Ukai ?° for J = 0. In addition to these papers, the literature
is littered with treatments of particular examples, but discussing them is
beyond the scope of this article.

Let us outline the basic method of Beals and Protopopescu,® Greenberg
et al., and Van der Mee.'® Assuming a phase space ¥ equipped with a
Borel measure p and a vector field independent of ¢ and writing

X:v~%+a(x,v}-%,

the fact that the vector field is divergence free may be expressed through
the Green’s identity

/ZXqﬁdu: o ¢du+—/z_ ¢du_

for ¢ in a suitable test function space, where pi are suitable measures on
Y+. After constructing the boundary measures u* and the test function
space pertaining to the vector field Y = —(%—FX, Egs. (1)-(2) with J = 0 and
K = 0 reduce to ordinary first order differential equations along the integral
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curves of Y which can be solved trivially. Two perturbation arguments then
allow one to incorporate a bounded J and K with | K|| < 1 into the theory.
If J and K are positive operators, a monotonicity argument allows one to
extend the existence and uniqueness result to operators K of unit norm.

When developing existence and uniqueness theory for the stationary ki-
netic boundary value problem (1)-(2), there are essentially two approaches.
One approach, favored by the French school in kinetic theory, is to prove
that the corresponding time evolution semigroup has a negative spectral
bound and hence has A = 0 in its resolvent set. This immediately im-
plies that Eq. (1) with the homogeneous boundary condition (2) (i.e., with
g— = 0) is uniquely solvable in the functional setting to which the spectral
result pertains. The case g_ # 0 can be dealt with by subtracting a solu-
tion of Egs. (1)-(2) for exactly that g_ but possibly different J and f and
solving a boundary value problem with homogeneous boundary condition.

The second approach is restricted to plane-parallel homogeneous spatial
domains without external forces. This approach in fact boils down to the
study of vector-valued differential equations of the type

(Ty) (z) = —Ad(z) + f(z), =€ (0,7), (4)

on a finite interval or on the half-line under boundary conditions involving
projected boundary data. Starting from the operator-theoretic formula-
tion of the one-speed neutron transport equation with isotropic scattering
by Hangelbroek and Lekkerkerker,!® one can in fact distinguish two major
subapproaches. In the subapproach launched by Beals ! the solutions (z)
are sought in an extended Hilbert space for which two natural scalar prod-
ucts are proven to be equivalent and to yield existence and uniqueness as
a corollary. This subapproach, originally developed for positive selfadjoint
operators A, has been made to apply also to indefinite Sturm-Liouville
boundary value problems 2 and bounded and accretive A.1 In the sec-
ond subapproach, initiated by Van der Mee,!? by assuming compactness of
B =1 — A one is able to (1) seek solutions within the given Hilbert space,
and (2) convert Eq. (4) with boundary conditions into a vector-valued
convolution equation of the form

Wiz) - / "Mz —y)BY)dy = w(z), ze(0,7), (5)

where Fredholm techniques can be applied to either the given boundary
value problem or the convolution equation (5). An up-to-date account of
the two subapproaches can be found in Chapters II-1X of Greenberg et al.”
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In problems where the natural functional space is L!(%;du) and some
equilibrium condition demands that

/ {hu — Ju}du =0, u € LY(Z;dp) N LY(Z; hdp). (6)
b>

a theory in an Ll-setting for J satisfying (3) comes to mind in a natural
way. To mention a few applications with unbounded h > 0 and positive
J satisfying ||Jul|1 < d|hully for some § € [0,1], just consider (1) neu-
tron transport where the collision frequency dominates the collision ker-
nel integrated over outgoing velocities if the medium is nonmultiplying,*
(2) radiative transfer where the phase function integrated over postscatter-
ing directions is dominated by the extinction coefficient,® 1% (3) cell growth
modeling,'® 1 (4) electron transport in weakly ionized gases,® (5) rarefied
gas dynamics,’ (6) electron-phonon interaction in semiconductors,!! 12 and
(7) the linearized Boltzmann equation with infinite range forces.!” 7 In
many (if not all) of these applications, the integrated (nonnegative) colli-
sion kernel is exactly equal to the collision frequency. In fact, Eq. (6) is
the linear counterpart of the balance condition involved in the nonlinear
Boltzmann equation.

In the time dependent counterpart of Egs. (1)-(2) the vector field to
consider on the spatial-velocity-time phase space Ar = 3 x (0,T), namely
Y = (8/6t) 4+ X, has only integral curves on which the travel time does not
exceed T and which have both a left and right endpoint.? This allows us to
parametrize the points of ¥ x (0,T) as (z, s), where z is a left endpoint of a
maximal integral curve of Y and s € (0, £(2)) is the travel time parameter,
¢(z) standing for the total travel time along this curve. We may then write
the initial-boundary value problem as an elementary initial value problem
by combining the initial data go and the boundary data g_ into one initial
data g~ = (go, 9—) on the incoming boundary (A7)~ and solve the resulting
initial value problem in L!(Ar,dur), where dup = dudt is the product
measure. This can be done explicitly if K = 0 and J = 0 and by contraction
mapping and monotonicity arguments for more general K and .J.

The more extensive variety of integral curve parametrizations compli-
cates the study of the stationary Eqs. (1)-(2) in comparison to their time
dependent counterpart. Integral curves may or may not have a left and/or
a right endpoint, may be closed loops and may allow an infinite travel time.
Thus when parametrizing them using the travel time parameter s, the do-

2One also assumes that the integral curves of Y do not run off to infinity in finite time.
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main of parametrization is either a finite interval, a left half-line, a right
half-line, the full real line, or a circle. In this article we shall limit ourselves
to the case in which all of the integral curves have a left endpoint. We can
then parametrize ¥ as

Y={(z,8):z€X_, s€(0,4(2))}

and identify the measure p with the product measure du_ds.

We now briefly describe the organization of the paper. In Sec. 2 we
discuss the Green’s identity for the vector field X in the case in which
all integral curves of X have a left endpoint. We also derive solutions in
LY(Z; hdp) if J = 0 and K = 0. In Sec. 3 we obtain solutions in L}(Z; hdy)
for general J and K with §, x € [0, 1) and explore extension to the case § < 1
and k = 1. In Sec. 4 we explore the stationary problems for which X has
only closed loop integral curves.

2. The Green’s Identity

Let us define L°¢(%; dp) as the linear space of all u-measurable functions
u on Y which are p-integrable on every bounded p-measurable subset of
Y on which #(z,s) = #(z) is bounded away from zero. Further, let &7
be the test function space of all Borel functions u on ¥ such that (i) u is
continuously differentiable on each integral curve of X, (ii) v and Xwu are
bounded, and (iii) the support of v is bounded and the travel time along
the integral curves meeting the support of u is bounded away from zero.
Then if u, Xu € LY(Z;dy), we define a trace for u as a pair of functions
ug € L11°¢(24;duy ) such that for each ¢ €

<Xu,¢>+<u,X¢>:/ u+¢5d,u+—/ u_pdu_.
Ty 3

Then if {u, (X + h)u} C LY(Z,dp), u has a unique trace uy. Moreover, if
u_ € LY(Z_;du_), then uy € LY (Z4;duy), hu and Xu are p-integrable
and

/z+ IU+|du++/Z hluldMZA Iu-ldu_+/): sgn(u)(X + Ryudu. (7)

Observing that

u(z, s) = exp [— /Osh(z,&) d&} u_(z)+/osexp [— /a h(z,&)d&] #(z,0) do,
(8)

we now immediately have
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Proposition 2.1. Given f € L1(%,du) and g— € LY (E_,du_), the unique
solution u = S(f,g_) of the boundary value problem

v- gg +a(z,v) - g% + h{z,v)u(z,v) = f(z,v), (z,v) €L (9)
u_(z,v) = g-(z,v), {z,v) € ¥_; (10)

satisfies
hully + lluslln < 1F 1+ g1y, (11)

where the equality sign holds if f > 0 and g.. > 0.

We remark that the above solution u of Eqs. (9)-(10) belongs to

L1(3;du) whenever h is essentially bounded away from zero (i.e., if A1 €
L*(Z; dp)).

3. Using the Method of Characteristics
In this section we shall prove the unique solvability of Eqs. (1)-(2).

Theorem 3.1. Given f € LY(X,du) and g € LY ($_,du_), the boundary
value problem (1)-(2) has a unique solution u € LY(Z; hdu) having trace
uy € LY(Zy;dpy), provided there exist 6,k € [0,1) such that

[Jully < é[lhully, [ Kusll < sllusls
Further, u is nonnegative if J, K, f and g. are nonnegative. Finally,
u € LY(T; du) whenever h is essentially bounded away from zero.
Proof. Suppose J = 0 and « € [0,1). Then any solution of Egs. (1)-(2)
satisfies u = S(f, Kuy + g-), where

uy =S50, Kuy )t +5(f,9-)+

Since ||S(0, Kuy )i |1 < |Kusllr < &lluslls, a contraction mapping argu-
ment yields uy € L'(X,;duy) uniquely. Denoting the so-obtained solution
by u = Z(f,g-), we have

IhZ(7,9l1s +1Z(F, =)ol < Il + WK Z(F,g-)4 + 91l
<1+ o+ RIZ G0l < 1= (F Tl + o ll).

Let us now consider Eqs. (1)-(2) for J and K with § + £ < 1. Then any
solution u satisfies

w=Z(Ju+f,9-) = Z(Ju,0) + Z(f,9-).
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Moreover, since
1 )
1h2(Tu, 0)lls < —=— Tl < T [hul,

a contraction mapping argument yields the existence of u if § + k < 1.
Denoting the so-obtained solution by u = W(f,g..), we get

IR (£, 9-) I + W ()l < Dt 71+ o=

1—k
[l + [lg-1Ts
< .
- 1-6-k (12)
Applying (7) to Egs. (1)-(2) we find
Ihully + lurll < NEwpll + llg-ll + [ Tulls + [ £l (13)

where the equality sign occurs if J and K are positive operators, f > 0 and
g > 0. Hence

1 = O)lhulls + (1 = K)lluells < 11+ llg-l1, (14)

which suggests that the restriction to §,x € [0,1) with § + x < 1 is not
necessary.

Let us now extend the above estimates for W(f,g_) to the case where
6 < 1 and & < 1, without assuming that § + « < 1. Now choose kg, K €
[0,1) such that K = Ko+ 1 and 6+ ko < 1, and let u = V(f, g_) denote the
solution of Eqs. (1)-(2) with K replaced by (ko/&)K and J = J. Replacing
K by (ko/k)K and observing that the latter boundary operator has norm
ko and that § + kg < 1, we obtain from Eq. (12) the bound

IRV (£, 9-)l + IV (£, 9-)+4lh < M;_IIL}M‘
- o

Now observe that the solution of Egs. (1)-(2) has the form
u=V(f,(k1/k)Kuy +9-) = V(0,(r1/r)Kuy) + V(f,9-).

Since Eq. (14) (applied for (ko/x)K instead of K, and hence with kg taking
the place of k) implies that

K1 (£1/8)| Ky |y K1
v,k ]] < <
[veo, 2 ru | < AR < B,
and since (£1/(1 — Ko)) < 1, a contraction argument yields the existence of
the solution u of Eqgs. (1)-(2). As a result of Eq. (14), we now obtain the
estimate
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valid under the hypothesis that §,x € [0,1). O

Using the monotonicity argument of Beals and Protopopescu ® and Sec.
X1.5 of Greenberg et al.,? we obtain

Theorem 3.2. The boundary value problem (1)-(2) has a unique solution
u € LY(Z; hdp) for every f € LY(Z;du) and g— € LY _;du_), provided J
and K are positive operators and

[Jully < dl[hully,  [IKugll < sl s,

for certain § € [0,1) and k € [0,1]. Finally, u € L*(X;du) whenever h is
essentially bounded away from zero.

In general, under the conditions of Theorem 3.2 the solution u of Eqgs.
(1)-(2) need not satisfy uy € LY (E1;dpg) if § = 1.

4. Closed Loop Integral Curves

To illustrate the pitfalls of having X with closed loop integral curves, we
consider the vector field

X=y——-z— (16)

on ¥ = R? equipped with the Lebesgue measure and the nonnegative mea-
surable function h on R2?. Defining (z,y) = +/z2 4+ y2(coss,sins) and
2(z,y) = (/22 + y2,0), we see that any solution of Eq. (7) must satisfy
(8), where

u(z,0) = exp [— /0 " h(z,6) d&] u(z,0)
+ /0 - exp [— /,, ” h(z,6) d&} f(z,0)do,

allowing one to compute u(z,0) uniquely from f € L!(R?), provided
h(z,0) # 0 on the integral curve passing through (z,0). Integrating along
integral curves, one obtains the estimate

hully < I £l1, (17)

where equality holds whenever f > 0. Thus Eq. (7) has a unique solution
u € LY(R? hdxdy) for every f € L'(R?;dzdy), unless h vanishes a.e. on
some annulus about the origin.
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Instead of defining the vector field X on R?, we can also define it on 3 =
R2\ {(z,0) : > 0} endowed with Lebesgue measure. Then every integral
curve is a circle about the origin with left and right endpoint on the “cut”
Yy = {(z,0) : z > 0}, which is equipped with the measure du+(z) = zdz.
Using the “periodic” boundary operator K : L*(X4;duy) — LY (E_;du_)
which acts as the identity on L(R*;zdz), we convert the problem de-
scribed in the preceding paragraph into a problem as treated in Sec. 3,
where g¢_ =0 and J =0.
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