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Abstract. In this article we propose a method to easily generate infinite multi-index positive
definite self-adjoint matrices as well as Riesz bases in suitable subspaces of L2(Rd). The method is
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positive on �2(Zd). The condition number of some of these matrices is also computed.
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1. Introduction. Matrices with special properties are important tools for test-
ing numerical algorithms and software, while Riesz bases in different Hilbert spaces
are important for solving many problems in approximation theory. However, whereas
there are several methods for generating extensive classes of finite test matrices (see,
e.g., [16, 11]), we are not aware of methods for generating multi-index test matrices.
Similarly, whereas there are methods for generating Riesz bases in subspaces of L2(R)
and L2(R+) [13, 18], we are not aware of general methods for generating Riesz bases
in subspaces of L2(Rd) for d ≥ 2, except for grids of sampling points with, apart
from a positive constant factor, only integer coordinates [20, 2]. We note that there
is an increasing interest in this topic both from the theoretical and the applicational
points of view. Classes of multi-index positive definite test matrices could be used, in
particular, to compare the effectiveness of preconditioning techniques in solving linear
systems by the conjugate gradient method [22, 9, 23, 24].

In a recent joint paper [18] with Nashed on the sampling expansions of functions
defined on the real line which belong to unitarily translation invariant reproducing
kernel Hilbert spaces Hφ, we have developed a method to generate both infinite posi-
tive self-adjoint matrices and Riesz bases in suitable subspaces of Hφ. More precisely,

starting from a real function φ ∈ L1(R) ∩ L2(R) whose Fourier transform φ̂ defined

by φ̂(ω) = (2π)−d/2
∫

Rd e
iω·xφ(x)dx does not vanish, we have represented the Hilbert

space Hφ of all f such that (f̂/φ̂) ∈ L2(R) as a reproducing kernel Hilbert space with
reproducing kernel

kφ(t, u) = κφ(t− u) =

∫ ∞

−∞
φ(x− t)φ(x− u) dx.(1.1)

Assuming in addition that φ(·)(1 + (·)2)γ ∈ L2(R) for some γ > 1, and taking a
sequence of sampling points {tj}∞j=−∞ such that |ti− tj | ≥ ε > 0 for i �= j, it has been
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proved that for all f in a suitable closed subspace Xφ of Hφ we have the following
results:

(a) The Gram matrix

Gij = kφ(ti, tj), i, j ∈ Z,

is bounded and strictly positive self-adjoint on �2(Z).
(b) The sequence

{kφ(·, tj)}∞j=−∞

is a Riesz basis in Xφ.
(c) The sampling expansion

f(t) =
1

‖φ‖2
2

∞∑
j=−∞

f(tj)κφ(t− tj), t ∈ R,(1.2)

is valid for every f ∈ Xφ. Note that κφ(0) = ‖φ‖2
2.

Though the closure Xφ of the linear span of the functions {kφ(·, tj)}∞j=−∞ has not
been explicitly specified, in [18] various examples have been worked out in detail.

In [18] the main emphasis of the research has been on the development of sam-
pling expansions in unitarily translation invariant reproducing kernel Hilbert spaces.
Although in the present article we have generalized the main results in [18] on sam-
pling expansions for functions on the line to sampling expansions for functions on R

d,
the present authors are primarily interested in the multi-index Toeplitz matrices aris-
ing as Gram matrices of the Riesz bases involved in the case of equidistant sampling
points. These matrices are presently being used as test matrices in the development
of numerical methods for solving multi-index Toeplitz systems. We are, in particu-
lar, interested in comparing the effectiveness of recent preconditioning techniques in
solving linear systems by the conjugate gradient method with the most commonly
used preconditioning techniques. We are also interested in solving large multi-index
Toeplitz systems by using the solution of the corresponding infinite Toeplitz system.
For these reasons the present paper contains many explicit examples whose entries
have Gaussian, exponential, or algebraic decay away from the diagonal, including the
condition numbers of some of the Toeplitz matrices generated.

The outline of the paper is as follows. In section 2 we compile some useful defi-
nitions and results involving Gram matrices, Riesz bases, and frame inequalities. In
section 3 we illustrate the method proposed for generating positive definite multi-
index Toeplitz matrices. In section 4 we present various examples of strictly positive
self-adjoint multi-index Toeplitz matrices. Finally, in Appendix A we present a dupli-
cation formula for Bessel polynomials that has been used to generate a specific class
of multi-index Toeplitz matrices, while in Appendix B we compute the condition
numbers of some of the Toeplitz matrices introduced.

Throughout this article, | · | will stand for the Euclidean vector norm or the
absolute value of a real or complex number.

2. Preliminaries. Given a complex Hilbert space H, a sequence {fn}n∈J , J ⊆
Z
d and J infinite, of vectors in H is called a frame (cf. [10, 26]) if there exist positive

constants C1, C2 such that

C1‖f‖H ≤
[∑
n∈J

|〈f, fn〉H |2
]1/2

≤ C2‖f‖H , f ∈ H.
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These inequalities are called the frame inequalities. The frame is called an exact frame
if the removal of any vector from the frame causes it not to be a frame anymore. Given
a frame, the linear operator T defined by Tf =

∑
n∈J〈f, fn〉Hfn is a bounded linear

operator on H. Further, if {fn}n∈J is an exact frame, for every f ∈ H there exists a
unique sequence {an}n∈J such that

f =
∑
n∈J

anfn,

where
∑

n∈J |an|2 < ∞. A well-known result [10, 26] states that a sequence {fn}n∈J

in a separable Hilbert space H is an exact frame if and only if it is a Riesz basis in H
(i.e., if it can be obtained from an orthonormal basis in H by applying a boundedly
invertible operator).

Proposition 2.1. Let H be a complex Hilbert space and let {fj}j∈J , J ⊆ Z
d, be

a sequence of functions in H. Then the following statements are equivalent:
1. There exist positive constants C1, C2 such that

C1‖f‖H ≤

⎡
⎣∑
j∈J

|〈f, fj〉H |2
⎤
⎦

1/2

≤ C2‖f‖H , f ∈ H,(2.1)

holds for every f ∈ H and no such relation holds for any proper subset of functions
{fj}.

2. The sequence {fj}j∈J is a Riesz basis in H.
3. The sequence of functions {fj}j∈J is complete, and the Gram matrix Gij =

(〈fi, fj〉H)i,j∈J is bounded and strictly positive self-adjoint on �2(J).
Recall that by a reproducing kernel Hilbert space of functions supported on a set

S we mean a (complex) Hilbert space of functions on S, where all of the evaluation
functionals ξt(f) = f(t), for f ∈ H and each fixed t ∈ S, are continuous [3, 5, 17].
Then, by the Riesz representation theorem, for each t ∈ S there exists a unique
element kt ∈ H such that

f(t) = 〈f, kt〉, f ∈ H,

where 〈·, ·〉 is the scalar product on H. We then call k(t, u) = 〈kt, ku〉, for t, u ∈ S,
the reproducing kernel of H. Clearly, k(·, ·) is Hermitian and positive definite.

In [18], Proposition 2.1 has been applied more specifically to the situation in
which H is a reproducing kernel Hilbert space of complex-valued functions on a set S
with reproducing kernel k(t, s) and fj(t) = k(t, tj)/

√
k(tj , tj) for a sequence of points

{tj}j∈J in S. Then, under any of the conditions of Proposition 2.1, for every f ∈ H
we have the moment expansion

f(t) =
∑
j∈J

〈f, fj〉Hfj(t).(2.2)

When J = Z
d, the Gram matrix {Gij}i,j∈Zd is a multi-index Toeplitz matrix (i.e.,

Gij = Gi−j for i, j ∈ Z
d).

The following elementary result has been adapted from [18].
Proposition 2.2. Let J = Z

d. Then the statements of Proposition 2.1 and the
following two claims are equivalent:
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1. The sequence of functions {fj}j∈Zd is complete, and the multi-index Toeplitz
matrix (Gi−j)i,j∈Zd defined by

Gi−j = 〈fi, fj〉H

is bounded and strictly positive self-adjoint on �2(Zd).
2. The sequence of functions {fj}j∈Zd is complete, and the symbol

Ĝ(s) =
∑
j∈Zd

sjGj , s = (s1, . . . , sd), |s1| = · · · = |sd| = 1,

is positive, essentially bounded, and essentially bounded away from zero.
If any of these conditions holds and J = Z

d, the condition number of G equals

maxs∈Td Ĝ(s)

mins∈Td Ĝ(s)
,(2.3)

where T
d is the d-dimensional torus.

3. The method. Let φ be a real function in L1(Rd) ∩ L2(Rd) and let

kφ(t, u) = κφ(t− u) =

∫
Rd

φ(x− t)φ(x− u) dx =

∫
Rd

e−iω(t−u)|φ̂(ω)|2 dω.(3.1)

Then

κ̂φ(ω) = (2π)d/2|φ̂(ω)|2,(3.2)

where φ̂(ω) = (2π)−d/2
∫

Rd e
iω·xφ(x) dx. Now suppose {tj}j∈J , J ⊂ Z

d, is an infinite

sequence of sampling points in R
d and

(Gφ)ij := kφ(ti, tj) =

∫
Rd

φ(x− ti)φ(x− tj) dx, i, j ∈ J,

the associated Gram matrix. When the sampling points are equidistant (i.e., when
tj = αj for some α > 0), Gφ is a multi-index Toeplitz matrix whose symbol we define
by

Ĝ(s, α) =
∑
j∈Zd

sj
∫

Rd

φ(x)φ(x + αj) dx =
∑
j∈Zd

sjκφ(αj),

where the series converge uniformly and absolutely in s on the d-dimensional torus
T
d if the condition ∑

j∈Zd

|κφ(αj)| < ∞(3.3)

is satisfied.
The condition that φ̂(ω) �= 0 for every ω ∈ R

d is sufficient for kφ(·, ·) to be a
reproducing kernel on S = R

d. Indeed, let t1, . . . , tn be distinct points in R
d. Then

for every nontrivial n-tuple (ξ1, . . . , ξn) of complex numbers we have

n∑
i,j=1

kφ(ti, tj)ξiξj =

∫
Rd

|φ̂(ω)|2
n∑

i,j=1

ei(ti−tj)·ωξiξj dω

=

∫
Rd

|φ̂(ω)|2
∣∣∣∣∣

n∑
i=1

eiti·ωξi

∣∣∣∣∣
2

dω > 0,
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which proves that kφ(·, ·) is a reproducing kernel on S = R
d if φ̂(ω) �= 0 for every

ω ∈ R
d. As in [18], we now easily identify the corresponding reproducing kernel

Hilbert space Hφ (cf. [3, 5, 17] for reproducing kernel Hilbert spaces) with the complex

Hilbert space of all measurable functions f on R
d such that (f̂/φ̂) ∈ L2(Rd), endowed

with the norm

‖f‖Hφ
=

1

(2π)d/2

[∫
Rd

|f̂(ω)|2 dω

|φ̂(ω)|2

]1/2
.

The following result provides a general condition on φ and the sampling points
in order that the Gram matrix {κφ(ti, tj)}i,j∈J be bounded on �2(J). In the case of
equidistant sampling points, we actually prove that condition (3.3) holds. Note that
all of the examples given in the next section satisfy these conditions.

Theorem 3.1. Let the distinct sampling points {tj}j∈J , with J ⊆ Z
d an infinite

set, satisfy |ti − tj | ≥ ε > 0 for i �= j in J . Further, let φ have the property

∃γ > d :

∫
Rd

(1 + |x|2)γφ(x)2 dx < ∞.(3.4)

Then the Gram matrix {kφ(ti, tj)}i,j∈J is bounded on �2(J). In particular, if ti = αi
(i ∈ J = Z

d) for some α > 0, then (3.3) is satisfied.

Proof. Note that

sup
i∈J

∑
j∈J

|kφ(ti, tj)| = sup
i∈J

∑
j∈J

|κφ(ti − tj)|(3.5)

is an upper bound for the norm of the Gram matrix on �2(J). Therefore,

(1 + |t|)γ |κφ(t)| ≤
∫

Rd

(1 + |x|)γ |φ(x)| · (1 + |x + t|)γ |φ(x + t)| dx

≤
∫

Rd

(1 + |x|)2γφ(x)2 dx ≤ 2γ
∫

Rd

(1 + |x|2)γφ(x)2 dx,

which implies that (3.5) is bounded above when |ti − tj | ≥ ε for i �= j.

We now give sufficient conditions on φ and the sampling points for the Gram ma-
trix {κφ(ti, tj)}i,j∈J to be bounded below on �2(J) by a positive multiple of the iden-
tity. With Theorem 3.1, we then obtain sufficient conditions on φ and the sampling
points in order that this Gram matrix be bounded and strictly positive self-adjoint
on �2(J) and that the frame inequalities (2.1) be satisfied. All of the examples of the
next section satisfy these conditions. The two proofs we give are based in part on
ideas of Schaback [21, Theorem 3.1].

Theorem 3.2. Let (tj)j∈Zd be sampling points with t0 = 0 and

|tis − tjs| ≥ ε|is − js| > 0, i, j ∈ Z
d with tis �= tjs.

Let φ be a real function in L1(Rd) ∩ L2(Rd) satisfying the conditions of Theorem

3.1 whose Fourier transform φ̂(ω) �= 0 for max(|ω1|, . . . , |ωd|) ≤ M for any M >

π/ε
√

3(21/d − 1). Then the Gram matrix {κφ(ti − tj)}i,j∈Zd is bounded and strictly
positive self-adjoint on �2(Zd).
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Moreover, if φ̂(ω) �= 0 for all ω ∈ R
d and Xφ denotes the closed linear span of

κφj(x) = κφ(x − tj), j ∈ Z
d in Hφ, then there exist positive constants C1, C2 such

that the frame inequalities

C1‖f‖Hφ
≤

⎡
⎣∑
j∈Zd

|f(tj)|2
⎤
⎦

1/2

≤ C2‖f‖Hφ
, f ∈ Xφ,(3.6)

hold. Consequently, {κφj}j∈Zd is a Riesz basis in Xφ and for each f ∈ Xφ we have
the interpolating expansion

f(t) =
1

‖φ‖2
2

∑
j∈Zd

f(tj)κφ(t− tj).(3.7)

Proof. We present two proofs, the first one adapted to φ such that φ̂(ω) is zero

free for max(|ω1|, . . . , |ωd|) ≤ 2M , and the second one adapted to φ such that φ̂(ω) is
zero free for |ω| ≤ 2R, where M and R are specified in the first and second proofs,
respectively.

First proof. For N ∈ N and any set of N sampling points and arbitrary complex
numbers c1, . . . , cN , by Parseval’s theorem we have

N∑
j,r=1

cjcrκφ(tj − tr) =

∫
Rd

∣∣∣∣∣∣
N∑
j=1

cjφ(x− tj)

∣∣∣∣∣∣
2

dx =

∫
Rd

∣∣∣∣∣∣
N∑
j=1

cje
iω·tj φ̂(ω)

∣∣∣∣∣∣
2

dω

≥
(

inf
|ωs|≤2M, s=1,...,d

|φ̂(ω)|2
)∫ 2M

−2M

· · ·
∫ 2M

−2M

ΨM (ω)

N∑
i,j=1

cicje
iω·(ti−tj) dω,(3.8)

where

ΨM (ω) =

⎧⎪⎨
⎪⎩

(2M)−d

d∏
s=1

(2M − |ωs|), |ωs| ≤ 2M, s = 1, . . . , d,

0 otherwise.

Putting

B(u) =

∫ 1

−1

(1 − |ζ|)eiζu dζ =

⎧⎪⎨
⎪⎩
(

sin( 1
2u)

1
2u

)2

, u �= 0,

1, u = 0,

(3.9)

we obtain for tj = (tj1, . . . , tjd) (j = 1, . . . , N)

∫
Rd

∣∣∣∣∣∣
N∑
j=1

cjφ(x− tj)

∣∣∣∣∣∣
2

dx ≥
(

inf
|ωs|≤2M, s=1,...,d

|φ̂(ω)|2
) N∑

i,j=1

cicjAij ,

where

Aij =

d∏
s=1

B(2M(tis − tjs)).(3.10)
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Now choose ε > 0 such that |tis − tjs| ≥ ε|is − js| for tis �= tjs. Then in view of
(3.9)

0 <

d∏
s=1

B(2M(tis − tjs)) =

d∏
s=1

tis �=tjs

B(2M(tis − tjs))

≤
∏

s=1,...,d
tis �=tjs

1

(Mε(is − js))2
=
∏

s=1,...,d
is �=js

1

(Mε(is − js))2
.

We easily prove, by induction on d, that

∑
j∈Zd

d∏
s=1

B(2M(tis − tjs)) ≤ 1 +
∑
j∈Z

d

j �=i

d∏
s=1

B(2M(tis − tjs))

≤ 1 +
∑
j∈Z

d

j �=i

∏
s=1,...,d
is �=js

1

(Mε(is − js))2

≤ 1 +
∑

j∈Zd\{0}

∏
s=1,...,d
js �=0

1

(Mεjs)2
≤ (1 + 2S(Mε))d,

where

S(z) =
∞∑
i=1

1

(zi)2
=

π2

6z2
.

Using Gershgorin’s theorem [12, Theorem 8.1.3], it appears that the real symmetric
matrix (Aij)

N
i,j=1 with elements defined by the right-hand side of (3.10) has all of its

diagonal elements equal to 1, and hence all of its eigenvalues λ are real and satisfy

|1 − λ| ≤ max
i=1,...,N

N∑
j=1
j �=i

|Aij |.

Thus its eigenvalues can be found in the open interval from 2− (1+2S(Mε))d to (1+
2S(Mε))d whose endpoints do not depend on N . Thus if M > π/(ε

√
3(21/d − 1)1/2),

this matrix is positive definite. Therefore, for this choice of M the lower bound (3.8)
extends to arbitrary subsets of the set of the sampling points, and hence the Gram
matrix {κφ(ti− tj)}i,j∈Z is strictly positive self-adjoint. Its boundedness follows from
Theorem 3.1. The frame inequalities (3.6) now follow with the help of Proposition 2.1.
Finally, (3.7) is immediate from (2.2), (3.6), and kφ(tj , tj) = κφ(0) = ‖φ‖2

2.
Second proof. Let R be a positive real number and let χd

R(x) be the characteristic
function of the sphere in R

d with center the origin and radius R. Then

0 ≤
∫

Rd

dxχd
R(x− t)χd

R(x− s) ≤ RdVd, t, s ∈ R
d,

where Vd is the volume of the unit ball in R
d. Then for N ∈ N and any set of N
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sampling points and arbitrary complex numbers c1, . . . , cN , we have

N∑
j,r=1

cjcrκφ(tj − tr) =

∫
Rd

∣∣∣∣∣∣
N∑
j=1

cjφ(x− tj)

∣∣∣∣∣∣
2

dx =

∫
Rd

∣∣∣∣∣∣
N∑
j=1

cje
iω·tj φ̂(ω)

∣∣∣∣∣∣
2

dω

≥
(

inf
|ω|≤2R

|φ̂(ω)|2
)∫

|ω|≤2R

Ψd
R(ω)

N∑
i,j=1

cicje
iω·(ti−tj) dω

≥
(

inf
|ω|≤2R

|φ̂(ω)|2
) N∑

i,j=1

cicjFd(R, ti − tj),(3.11)

where φ̂(ω) is zero free for |ω| ≤ 2R,

Ψd
R(ω) =

1

RdVd

∫
Rd

χd
R(ξ)χd

R(ξ − ω) dξ,

and

Fd(R, t) =

∫
|ω|≤2R

Ψd
R(ω)eiω·t dω = (2π)d/2Ψ̂d

R(t) =
(2π)d

RdVd
|χ̂d

R(t)|2.

Using [14, 8.411(5) and 6.561(5)] and Sd−2 = 2π(d−1)/2/Γ((d−1)/2) we easily compute

χ̂d
R(t) = (2π)−d/2Sd−2

∫ R

0

drrd−1

∫ π

0

dϕ1(sinϕ1)
d−2eir|t| cosϕ1

= (2π)−d/2Rd

∫ 1

0

dρρd−1

∫ π

0

(sinϕ1)
d−2 cos(ρR|t| cosϕ1)

= R2

(
R

|t|

) d−2
2
∫ 1

0

dρρ
d
2 J d−2

2
(ρR|t|) =

(
R

|t|

) d
2

J d
2
(R|t|),

so that

Fd(R, t) =
(2π)d

Vd|t|d
J d

2
(R|t|)2 and hence Fd(R, 0) =

(πR)d

VdΓ(d+2
2 )2

.

According to [14, 8.479], for |t| ≥ (d/2R) we have the estimate

Fd(R, t) =
(2π)d

Vd|t|d
J d

2
(R|t|)2 ≤ 2

π

(2π)d

Vd|t|d
1√

(R|t|)2 − (d2 )2
,

and hence for |t| ≥ ((μd)/(2R)) with fixed μ > 1 we have

Fd(R, t) ≤ 1

πVdR
√
μ2 − 1

(
2π

|t|

)d+1

.

Now choose ε > 0 such that |ti − tj | ≥ ε[
∑d

s=1(is − js)
2]1/2. Then for ε ≥

((μd)/(2R)) and some μ > 1 we have for i �= j

Fd(R, ti − tj) ≤
(2π/ε)d+1

πVdR
√
μ2 − 1

1

[
∑d

s=1(is − js)2]
d+1
2

.
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Therefore, for |t| ≥ ((μd)/(2R)) with fixed μ > 1 we have

max
i=1,...,N

N∑
j=1
j �=i

Fd(R, ti − tj) ≤
(2π/ε)d+1

πVdR
√
μ2 − 1

S[d],

where S[d] =
∑

0 �=j∈Zd [j2
1 + · · · + j2

d ]−
d+1
2 . Using Gershgorin’s theorem [12, Theorem

8.1.3], it appears that the real symmetric matrix (F (ti− tj))
N
i,j=1, appearing in (3.11),

has its eigenvalues in the open interval of half-length (2π/ε)d+1S[d]/πVdR
√
μ2 − 1

centered about Fd(R, 0). Consequently, if ε strictly exceeds the number ε0(R, d, μ)
defined by

ε0(R, d, μ) = max

⎛
⎝ μd

2R
,

2

R

[
S[d]Γ(d+2

2 )2√
μ2 − 1

] 1
d+1

⎞
⎠

for some μ > 1, then the real symmetric matrix (F (ti− tj))
N
i,j=1 appearing in (3.11) is

positive definite, irrespective of the choice of finite subset of the sampling points. The
frame inequalities (3.6) now follow with the help of Proposition 2.1. Finally, (3.7) is
immediate from (2.2), (3.6), and kφ(tj , tj) = κφ(0) = ‖φ‖2

2.

Assuming φ̂(ω) �= 0 for all ω ∈ R
d and given the finite linear combination∑

j cjκφ(· − tj) in Xφ, we easily compute that

∥∥∥∥∥∥
∑
j

cjκφ(· − tj)

∥∥∥∥∥∥
2

Hφ

=
1

(2π)d

∫
Rd

∣∣∣∣∣∣
∑
j

cje
iω·tj

∣∣∣∣∣∣
2

|κ̂φ(ω)|2 dω

|φ̂(ω)|2

=

∫
Rd

∣∣∣∣∣∣
∑
j

cje
iω·tj

∣∣∣∣∣∣
2

|φ̂(ω)|2 dω.

Hence if t = {tj : j ∈ Z
d} denotes the set of sampling points, then the image F [Xφ]

of Xφ under the Fourier transformation F coincides with the completion APt,φ of the
vector space of d-variate almost periodic polynomials with spectrum within t with
respect to the scalar product

(f, g)Xφ
=

∫
Rd

f(ω)g(ω)|φ̂(ω)|2 dω.

Here by the spectrum of a d-variate almost periodic function f : R
d → C we mean the

set of all t ∈ R
n for which limT→+∞

1
Td

∫ T
0
· · ·
∫ T
0
e−ix·tf(x)dx �= 0, where we note

(cf. [6]) that

lim
T→+∞

1

T d

∫ T

0

· · ·
∫ T

0

eix·(u−t) dx1 . . . dxd =

{
1, t = u ∈ R

d,

0, t, u ∈ R
d and t �= u.

Denoting the Banach space of d-variate almost periodic functions with spectrum
within t with respect to the supremum norm by APt, one can also identify F [Xφ] with

the closure of φ̂[APt] in L2(Rd). Since φ̂[L∞(Rd)] is dense in L2(Rd) and APt is not
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dense in L∞[Rd], the space Xφ is a proper closed linear subspace of Hφ. Furthermore,
due to the estimate∥∥∥∥∥∥

∑
j

cjκφ(· − tj)

∥∥∥∥∥∥
Hφ

≤ ‖φ‖2 sup
ω∈Rd

∣∣∣∣∣∣
∑
j

cje
iω·tj

∣∣∣∣∣∣ ,
we see that

APt ⊂ APt,φ = F [Xφ].

When the sampling points form a rectangular grid in R
d containing the origin

(i.e., when there exists α > 0 such that tj = αj for j ∈ Z
d), the space APt coincides

with the Banach space of all bounded continuous functions f : R
d → C satisfying

f(ω + 2jπ
α ) = f(ω) for all ω ∈ R

d and j ∈ Z
d, endowed with the supremum norm.

4. Examples. Let us discuss the following examples of real functions. Here
we remark that if φ(t) depends only on |t|, then κφ(t) depends only on |t| and

φ̂(ω) depends only on |ω|. Consequently, expressing the Cartesian coordinates in
spherical coordinates by putting x1 = r cosϕ1, x2 = r sinϕ1 cosϕ2, . . . , xd−1 =
r sinϕ1 . . . sinϕd−2 cosϕd−1, xd = r sinϕ1 . . . sinϕd−2 sinϕd−1, where we have ϕj ∈
[0, π] (j = 1, . . . , d− 2) and ϕd−1 ∈ [−π, π], with Jacobian

J = rd−1(sinϕ1)
d−2(sinϕ2)

d−3 . . . sinϕd−2,

we obtain

φ̂(ω) = (2π)−d/2

(
2

|ω|

) d−2
2

Γ

(
d

2

)
Sd−1

∫ ∞

0

rd/2J d−2
2

(|ω|r)φ(r) dr,(4.1)

where Sd−1 is the surface measure of Sd−1, Sd−1 = Sd−2B(d−1
2 , 1

2 ), and B(p, q) and
Jν(z) stand for the Euler beta function and the Bessel function of order ν, respectively.

Example 4.1. A typical example involves the Gram matrix of the multinomial
distribution [19]. Let Σ be a positive definite real d× d matrix,

φ(x) =

(
det Σ

πd

)1/2

e−(Σx,x) = π−d/2(det Σ)1/2 exp

⎛
⎝−

d∑
i,j=1

Σijxixj

⎞
⎠ ,(4.2)

where x = (x1, . . . , xd) ∈ R
d and κφ(t, s) =

∫
Rd φ(x− t)φ(x− s)dx. Then

κφ(t) =

∫
Rd

φ(x)φ(x− t) dx = (2π)−d/2(det Σ)1/2e−
1
2 (Σt,t),(4.3)

where t ∈ R
d. In particular, for t, s ∈ R

d we have

φ̂(ω) = (2π)−d/2e−
1
4 (Σ−1ω,ω) �= 0

in R
d and

kφ(t, s) =

∫
Rd

φ(x− t)φ(x− s) dx = κφ(t− s) = κφ(s− t).
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Hence, if tj = αj, α > 0, j ∈ Z
d, the Toeplitz matrix

Gi−j(α) = kφ(α|i− j|),

whose entries have a Gaussian decay away from the diagonal elements, is bounded
and strictly positive self-adjoint on �2(Zd). Furthermore, as φ̂ has no zeros in R

d, the
expansion (3.7) holds with ‖φ‖2

2 = (2π)−d/2(det Σ)1/2.
Example 4.2. For σ > 0, consider φ(x) = e−σ|x|, where the length of x ∈ R

d is

its Euclidean vector norm. Then φ̂(ω) depends only on |ω| and κφ(x) depends only
on |x|. For d = 2 we use κφ(t) = kφ(− 1

2 |t|e1,
1
2 |t|e1), where e1 = (1, 0), and apply

the transformation x = 1
2 |t|(coshu cos v, sinhu sin v) to elliptical coordinates (u, v) in

(3.1) to find

κφ(t) =
π|t|2

4

∫ ∞

0

cosh(2u)e−σ|t| coshu du =
π|t|2

4
K2(σ|t|),

where K2 stands for McDonald’s function [14, 8.432(1)].
For d ≥ 3 we observe that (1) κφ(t) = kφ(− 1

2 |t|e1,
1
2 |t|e1), where e1 = (1, 0, . . . , 0),

and (2) the integrand does not change if the relative position of x in the two-
dimensional plane containing ± 1

2 |t| and x remains the same. Denoting the surface

measure of Sd−2 by Sd−2 and using the fact that Sd−1 = Sd−2B(d−1
2 , 1

2 ), we obtain
[1, 9.6.23 and 9.6.26]

κφ(t) =
Sd−1

2d
|t|d
∫ ∞

0

[
sinhd u +

d− 1

d
sinhd−2 u

]
e−σ|t| coshu du

=
Γ(d+1

2 )Sd−1√
π

(
|t|
2σ

)d/2 [
K d

2
(σ|t|) +

σ|t|
d

K d−2
2

(σ|t|)
]

=
σ2Γ(d+1

2 )Sd−1√
π

(
|t|
2σ

) d+2
2

K d+2
2

(σ|t|).

For d = 3, in particular, we have

κφ(t) =
π

2
|t|3
∫ ∞

1

(
ξ2 − 1

3

)
e−σ|t|ξ dξ =

π

σ3

(
2

3
σ2|t|2 + σ|t| + 1

)
e−σ|t|.

Moreover, for any d ≥ 2 we have

φ̂(ω) = (2π)−d/2Sd−2

∫ ∞

0

∫ π

0

rd−1 sind−2 θei|ω|r cos θe−σr dθdr

= (2π)−d/2Sd−2Γ

(
d− 1

2

)
Γ

(
1

2

)(
|ω|
2

)− d−2
2
∫ ∞

0

rd/2J d−2
2

(|ω|r)e−σr dr

= (2π)−d/2Sd−2B

(
d− 1

2
,
1

2

)
Γ(d)

F
(

d
2 ,−

1
2 ; d

2 ; |ω|2
σ2+|ω|2

)
(σ2 + |ω|2)d/2

= (2π)−d/2Sd−2B

(
d− 1

2
,
1

2

)
(d− 1)!σ

(σ2 + |ω|2) d+1
2

= (2π)−d/2Sd−1
(d− 1)!σ

(σ2 + |ω|2) d+1
2

,
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where we have used (4.1), [14, line 3 of 6.621(1)], and Sd−1 = Sd−2B(d−1
2 , 1

2 ), while
F stands for the hypergeometric function. For d = 3 we trivially find

φ̂(ω) =
4√
2π

σ

(σ2 + |ω|2)2 ,

which has no zeros in R. As a result, the Gram matrix G given by Gij = κφ(ti − tj),
i, j ∈ Z

d, whose entries decay exponentially away from the diagonal, is strictly positive
definite and the expansion (3.7) holds with kφ defined as above.

Example 4.3. For d ≥ 2 and σ > 0 consider the algebraically decaying function

φ(x) = (σ2 + |x|2)− d+1
2 . Then φ satisfies condition (3.4) for γ ∈ (d, d+ 1), while (4.1)

and [14, 6.565(3)] imply

φ̂(ω) = (2π)−d/2 Sd

2σ
e−σ|ω|,

where we have employed Sd−1B(d2 ,
1
2 ) = Sd. Thus

κ̂φ(ω) = (2π)d/2|φ̂(ω)|2 = (2π)−d/2 S2
d

4σ2
e−2σ|ω|.

Consequently,

κφ(t) =
Sd

σ

1

(4σ2 + |t|2) d+1
2

.

More generally, for d ≥ 2, σ > 0, and q = 0, 1, . . . consider φ(x) = (σ2+ |x|2)−( d+1
2 +q).

Then (4.1) and [14, 6.565(4)] imply

φ̂(ω) = (2π)−d/2

(
|ω|
2σ

)q+ 1
2 Γ(d2 )Sd−1

Γ(d+1
2 + q)

K−(q+ 1
2 )(σ|ω|)

= (2π)−d/2 θq(σ|ω|)
2q+1σ2q+1

Γ(d2 )Γ( 1
2 )

Γ(d+1
2 + q)

Sd−1e
−σ|ω|

= (2π)−d/2 θq(σ|ω|)Sd

2q+1σ2q+1(d+1
2 )q

e−σ|ω|,(4.4)

where we have used the Pochhammer symbol c0 = 1 and cs = c(c+1)(c+2) · · · (c+s−1)
for s = 1, 2, . . . and the expression (see [14, 8.486(14) and 8.486(16)], plus induction
on q)

K±(q+ 1
2 )(z) =

√
π

2z

θq(z)

zq
e−z

for the so-called Bessel polynomials θq(z) of degree q which satisfy the recurrence
relations (see [14, 8.486(14) and 8.486(10)])

θ0(z) = 1, θ1(z)= z + 1, θq+1(z) = z[θq(z) − θ′q(z)] + (2q + 1)θq(z),(4.5)

θ0(z) = 1, θ1(z)= z + 1, θq+1(z) = (2q + 1)θq(z) + z2θq−1(z)(4.6)

and have the explicit form (see [1, 10.2.15] and [15, Chap. 2, (7)–(8)])

θq(z) =

q∑
k=0

1

2q−k

(2q − k)!

k!(q − k)!
zk.
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Using the fact that κφ(t) is a linear combination of expressions of the type (4.4) with
σ replaced by 2σ as well as (A.1), we obtain

κφ(t) =
Sd

(2σ)2q+1[d + 1]q

2q∑
s=q

dq,sσ
2(s−q)[d + 2q + 1]s−q

(4σ2 + |t|2) d+1
2 +s

,

where dq,2q−n = (2n)!
2nn!

(
q
n

)
(n = 0, 1, . . . , q), [c]0 = 1, and [c]s = c(c + 2)(c + 4) · · · (c +

2s− 2) for s = 1, 2, . . . . In particular, for q = 1 we find

κφ(t) =
Sd

8(d + 1)σ3

[
1

(4σ2 + |t|2) d+3
2

+
σ2(d + 3)

(4σ2 + |t|2) d+5
2

]
.

Further, for q = 2 and q = 3 we find

κφ(t) =
Sd

32σ5(d + 1)(d + 3)

[
3

(4σ2 + |t|2) d+5
2

+
2(d + 5)σ2

(4σ2 + |t|2) d+7
2

+
(d + 5)(d + 7)σ4

(4σ2 + |t|2) d+9
2

]

and

κφ(t) =
Sd

128σ7(d + 1)(d + 3)(d + 5)

[
15

(4σ2 + |t|2) d+7
2

+
9σ2(d + 7)

(4σ2 + |t|2) d+9
2

+
3σ4(d + 7)(d + 9)

(4σ2 + |t|2) d+11
2

+
σ6(d + 7)(d + 9)(d + 11)

(4σ2 + |t|2) d+13
2

]
,

respectively. For q = 4 and q = 5 we obtain

κφ(t) =
Sd

512σ9(d + 1)(d + 3)(d + 5)(d + 7)

[
105

(4σ2 + |t|2) d+9
2

+
60σ2(d + 9)

(4σ2 + |t|2) d+11
2

+
18σ4(d + 9)(d + 11)

(4σ2 + |t|2) d+13
2

+
4σ6(d + 9)(d + 11)(d + 13)

(4σ2 + |t|2) d+15
2

+
σ8(d + 7)(d + 9)(d + 11)(d + 13)(d + 15)

(4σ2 + |t|2) d+17
2

]

and

κφ(t) =
Sd

2048σ11(d + 1)(d + 3)(d + 5)(d + 7)(d + 9)

[
945

(4σ2 + |t|2) d+11
2

+
525σ2(d + 11)

(4σ2 + |t|2) d+13
2

+
150σ4(d + 11)(d + 13)

(4σ2 + |t|2) d+15
2

+
30σ6(d + 11)(d + 13)(d + 15)

(4σ2 + |t|2) d+17
2

+
5σ8(d + 11)(d + 13)(d + 15)(d + 17)

(4σ2 + |t|2) d+19
2

+
σ10(d + 11)(d + 13)(d + 15)(d + 17)(d + 19)

(4σ2 + |t|2) d+21
2

]
,
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respectively. In this example the Gram matrix {kφ(ti, tj)}i,j∈Zd , whose entries decay
algebraically away from the diagonal, is strictly positive self-adjoint. Furthermore,
the expansion (3.7) holds with kφ as above, as φ̂ does not have zeros in R

d.
Example 4.4. Now consider the box spline

φ(x1, x2) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 − x2, 0 ≤ x1 ≤ x2 ≤ 1,

1 − x1, 0 ≤ x2 ≤ x1 ≤ 1,

1 − x1 + x2, 0 ≤ x1 ≤ 1, −1 + x1 ≤ x2 ≤ 0,

φ(−x1,−x2), −1 ≤ x1 ≤ 0, −1 ≤ x2 ≤ 1 + x1,

and zero elsewhere. Then

φ̂(ω1, ω2) =
1

π

sin(ω1) + sin(ω2) − sin(ω1 + ω2)

ω1ω2(ω1 + ω2)

=
1

2π

sin( 1
2ω1)

1
2ω1

sin( 1
2ω2)

1
2ω2

sin( 1
2 (ω1 + ω2))

1
2 (ω1 + ω2)

,

while φ̂(0, 0) = (1/2π) and

φ̂(ω1, 0) = φ̂(0, ω1) = φ̂(ω1,−ω1) =
1

π

1 − cos(ω1)

ω2
1

.

Thus

φ̂(ω1, ω2) > 0, max(|ω1|, |ω2|, |ω1 + ω2|) < 2π.

As a consequence, the Gram matrix {kφ(ti, tj)}i,j∈Zd is positive self-adjoint, but the

expansion (3.7) is not valid, because φ̂(ω1, ω2) has zeros in R
d.

Let us now employ (3.2) to get

κ̂φ(ω1, ω2) =
4

π

1 − cos(ω1)

ω2
1

1 − cos(ω2)

ω2
2

1 − cos(ω1 + ω2)

(ω1 + ω2)2
.(4.7)

Introducing ψ(x) = 1 − |x| for −1 ≤ x ≤ 1 and ψ(x) = 0 for |x| ≥ 1, so that

ψ̂(ω) =
√

2
π

1−cos(ω)
ω2 , we can write (4.7) in the form

κ̂φ(ω1, ω2) =
√

2πψ̂(ω1)ψ̂(ω2)ψ̂(ω1 + ω2),

which implies that

κφ(t1, t2) =
√

2π

∫ ∞

−∞
dω1e

−iω1t1 ψ̂(ω1)

∫ ∞

−∞
dzψ(t2 − z)eiω1zψ(z)

=

∫ ∞

−∞
dzψ(z)ψ(t1 − z)ψ(t2 − z)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
S(t2), 0 ≤ t1 ≤ t2 ≤ 2,

S(t1), 0 ≤ t2 ≤ t1 ≤ 2,

S(t1 − t2), 0 ≤ t1 ≤ 2, −2 + t1 ≤ t2 ≤ 0,

kφ(−t1,−t2), −2 ≤ t1 ≤ 0, −2 ≤ t2 ≤ 2 + t1,

(4.8)
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where

S(t) =

⎧⎪⎨
⎪⎩

1

12
t3 +

2

3
(1 − t) − 1

6
(1 − t)3, 0 ≤ t ≤ 1,

1

12
(2 − t)4, 1 ≤ t ≤ 2,

and zero outside [−2, 2]2.

Appendix A. Some expressions involving Bessel polynomials. In this
appendix we prove the following result of independent interest.

Theorem A.1. We have

22qθq(z)
2 =

q∑
n=0

(2n)!

2nn!

(
q

n

)
θ2q−n(2z).(A.1)

Proof. According to (5.6) of [8] we have the addition formula

θq(z + w) = 2q
q∑

r=0

(−1)q−r q!(2r + 1)

(q − r)!(q + r + 1)!
(zw)q−rθr(z)θr(w)(A.2)

and the inverse addition formula

θq(z)θq(w) =

q∑
r=0

(q + r)!

(q − r)!r!
2−r(zw)q−rθr(z + w),(A.3)

which follow from analogous expressions for the Laguerre polynomials [7]. From (A.3)
we have the duplication formula

22qθq(z)
2 =

q∑
r=0

(q + r)!

(q − r)!r!
2r(2z)2(q−r)θr(2z).(A.4)

Using (3.1) and (1.5) of [8], we see that

z2kθn(z) =

k∑
s=0

(−1)s
(
k

s

)
(2n + 2k + 1)!!

(2n + 2k − 2s + 1)!!
θn+2k−s(z),(A.5)

which generalizes (4.6). Substituting (A.5) into (A.4) (with 2z, r, and q − r instead
of z, n, and k) we get

22qθq(z)
2 =

q∑
r=0

(q + r)!

(q − r)!r!
2r

q−r∑
s=0

(−1)s
(
q − r

s

)
(2q + 1)!!

(2q − 2s + 1)!!
θ2q−r−s(2z)

=

q∑
n=0

n∑
s=0

(−1)s2n−s (q + n− s)!

s!(n− s)!(q − n)!

(2q + 1)!!

(2q − 2s + 1)!!
θ2q−n(2z)

=

q∑
n=0

(
q

n

)
B(q, n)θ2q−n(2z),
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where

B(q, n) =

n∑
s=0

(−1)s2n−s

(
n

s

)
(q + n− s)!

q!

(2q + 1)!!

(2q − 2s + 1)!!

= 2n(n!)

n∑
s=0

(−q − 1
2 )s(q + 1)n−s

s!(n− s)!
= 2n(n!)

((−q − 1
2 ) + (q + 1))n

n!

= 2n
(

1

2

)
n

=
(2n)!

2nn!
.(A.6)

In the penultimate equality of (A.6) we have applied a corollary of the Chu–Vander-
monde identity derived in Remark 2.2.1 of [4].

Appendix B. Condition numbers. In this appendix the condition numbers
cond(Gφ) of the multi-index Toeplitz matrix Gφ are listed in the case ti = αi (i ∈ Z

d)
for Examples 4.1–4.4 as far we have been able to compute them, in some cases only
for d = 1.

Example 4.1. For d = 1 we have φ(x) = e−σx2

and

Ĝ(s, α) =

√
π

2σ

⎛
⎝1 + 2

∞∑
j=1

e−σα2j2/2 cos(jθ)

⎞
⎠

=

√
π

2σ
ϑ3

(
1

2
θ, e−σα2/2

)

= G(α)

√
π

2σ

∞∏
j=1

{(
1 + e−(j− 1

2 )σα2

eiθ
)(

1 + e−(j− 1
2 )σα2

e−iθ
)}

,

where s = eiθ, ϑ3 denotes a Jacobian Theta function [25, sect. 21.11 and 21.3], and

G(α) =
∏∞

j=1(1 − e−jσα2

). Consequently,

cond(Gφ) =
Ĝ(1, α)

Ĝ(−1, α)
=

⎛
⎝ ∞∏

j=1

1 + e−(j− 1
2 )σα2

1 − e−(j− 1
2 )σα2

⎞
⎠

2

.

Example 4.2. For d = 1 we have φ(x) = e−σ|x| and

Ĝ(s, α) = α
p(ασ) + q(ασ)[s + s−1]

(1 − se−ασ)2(1 − s−1e−ασ)2
,

where p(β) = 1
β −4e−2β− 1

β e
−4β and q(β) = (1+ 1

β )e−3β +(1− 1
β )e−β . Consequently,

cond(Gφ) =
Ĝ(1, α)

Ĝ(−1, α)
=

p(ασ) + 2q(ασ)

p(ασ) − 2q(ασ)

(
1 + e−ασ

1 − e−ασ

)4

.

Example 4.3. For d = 1 and q = 0 we have φ(x) = 1/(σ2 + x2) and

Ĝ(s, α) =
π2

α

2

πσ2

⎛
⎝ α

4σ
+

2σ

α

∞∑
j=1

(−1)j cos{j(π − θ)}
j2 + (2σ/α)2

⎞
⎠

=
1

σ3

e2(π−θ)σ/α + e−2(π−θ)σ/α

e2πσ/α − e−2πσ/α
,



1148 C. V. M. VAN DER MEE AND S. SEATZU

where s = eiθ (cf. [25, Prob. 9 of Chap. IX]). Consequently,

cond(Gφ) =
Ĝ(1, α)

Ĝ(−1, α)
= cosh

(
2πσ

α

)
.

Example 4.4. We now compute the Toeplitz matrix G = (Gi−j)i,j∈Z2 where

Gi =

∫
R2

φ(x)φ(x− i) dx, i = (i1, i2) ∈ Z
2.

By using (4.8) it is immediate to obtain

Gi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2
, i1 = i2 = 0,

1

12
, i ∈ {(1, 0), (−1, 0), (0, 1), (0,−1)},

1

12
, i ∈ {(1, 1), (−1,−1)},

0 elsewhere.

The corresponding symbol is given by

Ĝ(s, α = 1) =
1

6
(3 + cosϑ1 + cosϑ2 + cos(ϑ1 + ϑ2)) > 0,

where s = (eiϑ1 , eiϑ2), from which we immediately have

cond(G) =
Ĝ(1, 1)

Ĝ(e2πi/3, e2πi/3)
= 4.
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