Integral Equations and Operator Theory Vol.6 (1983)

TRANSPORT EQUATION ON A FINITE DOMAIN II. REDUCTION TO X- AND Y-FUNCTIONS

C.V.M. van der Mee

In this article the solution of the time-independent linear transport equation in a finite homogeneous and non-multiplying medium is expressed in Chandrasekhar's X- and Y-functions through the solution of two linear systems of equations of finite order. The existence of the X- and Y-functions is proved in general.

INTRODUCTION

Being a continuation of the first part [15] this article contains a rigorous study of the integro-differential equation

$$\mu \frac{\partial \psi}{\partial x}(x,\mu) + \psi(x,\mu) = \\ (0.1) = \int_{-1}^{+1} \left[\frac{1}{2\pi} \int_{0}^{2\pi} \hat{g}(\mu\mu' + \sqrt{1-\mu'2'} \sqrt{1-\mu'2'} \cos \alpha) d\alpha \right] \psi(x,\mu') d\mu' \\ (-1 \le \mu \le +1, \ 0 \le x \le \tau \le +\infty)$$

with boundary conditions

(0.2)
$$\psi(0,\mu) = \varphi(\mu) (0 \le \mu \le 1), \ \psi(\tau,\mu) = \varphi(\mu) (-1 \le \mu < 0).$$

This so-called "finite-slab problem" plays an important role in radiative transfer of unpolarized light (cf. [5,22,11]) and in neutron transport with uniform speed (cf. [6]). Given the nonnegative "phase function" $\hat{g} \in L_1[-1,+1]$ and the boundary value function $\varphi \in L_n[-1,+1]$ (1≤p<+ ∞), the problem is to

van der Mee

compute the solution ψ of the boundary value problem (0.1)-(0.2). More precisely, introducing the vector $\psi(x)$ in L_n [-1,+1], the operators T and B and the projections P_{+} and P_{-} on $L_{\rm p}[-1,+1]$ by $\begin{array}{ll} (\tilde{0}.2a) & \psi(x)(\mu) = \psi(x,\mu) &, & (Th)(\mu) = \mu h(\mu); \\ & & (-1 \le \mu \le \pm 1, 0 < x < \tau) \\ (0.3b) & (Bh)(\mu) = \int_{-1}^{+1} \left[\frac{1}{2\pi} \int_{0}^{2\pi} \hat{g}(\mu \mu' + \sqrt{1 - \mu^2} \sqrt{1 - \mu^2} \cos \alpha) d\alpha \right] h(\mu') d\mu'; \end{array}$ (0.3c) $(P_{\mu}h)(\mu) = \begin{cases} h(\mu), \mu \ge 0; \\ (P_{\mu}h)(\mu) = \begin{cases} 0, \mu \ge 0; \\ 0, \mu < 0; \end{cases} = \begin{cases} 0, \mu \ge 0; \\ h(\mu), \mu < 0, \end{cases}$ the problem is to find a vector-valued function $\psi:(0,\tau)$ + $L_{n}[-1,+1]$ such that Ty is strongly differentiable and ψ satisfies the equations $(T\psi)'(x) = -(I-B)\psi(x) \quad (0 < x < \tau);$ (0.4) $\lim_{x \neq 0} ||P_{+}\psi(x) - P_{+}\phi||_{p} = 0 , \lim_{x \neq \tau} ||P_{-}\psi(x) - P_{-}\phi||_{p} = 0.$ (0.5)Instead of (0.5) for $\chi \in L_p[-1,+1]$ one might also consider the more general boundary conditions $\lim_{x \neq 0} ||TP_{+}\psi(x) - P_{+}\chi||_{p} = 0, \lim_{x \neq \tau} ||TP_{-}\psi(x) - P_{-}\chi||_{p} = 0.$ (0.6)For p=2 the finite-slab problem was stated in the form (0.4)-(0.5) by Hangelbroek [8]. Assuming that $\hat{g} \in L_{p}[-1,+1]$ for some r>1, is nonnegative and fulfills $c = \int_{-1}^{+1} \hat{g}(t) dt \le 1$, on $L_{p}[-1,+1]$

 $(1 \le p < +\infty)$ the boundary value problems (0.4)-(0.5) and (0.4)-(0.6) were proved to have a unique solution (see [14]; for p=2 the problem (0.4)-(0.5) was shown to be well-posed in [12]).

In most practical situations one cuts off the Legendre series expansion of the phase function \hat{g} and confines the description to polynomial phase functions of the form

(0.7)
$$\hat{g}(t) = \sum_{n=0}^{N} a_n(n+\frac{1}{2})P_n(t)$$
 (-1 \leq t \leq +1),

where $P_n(t) = (2^n \cdot n!)^{-1} \left(\frac{d}{dt}\right)^n (t^2 - 1)^n$ is the usual Legendre polynomial. The constraints on \hat{g} imply that $0 \le a_0 \le 1$ and $-a_0 \le a_n \le a_0$ $(n=1,2,\ldots,N)$. The cases $0 \le a_0 \le 1$ and $a_0 = 1$ are usually called

the non-conservative and the conservative case. Astrophysicists are accustomed to write the solution of (0.1)-(0.2) (with $\varphi(\mu)=0$ for $-1\leq \mu<0$) in terms of the reflection and transmission functions S and T (resp. ρ and σ) of Chandrasekhar [5] (resp. Sobolev [22]). Recently symmetries of this problem induced Hovenier [9] to use the so-called exit function instead.

The article [15] and its present continuation aim at a synthesis of the rigorous theory in mathematics ([8,12,13,14], for instance) and the analytic expressions partly derived and partly stipulated by astrophysicists ([5,18,21,10], for instance). In [15] reflection and transmission operators were introduced; in terms of the unique solution of the boundary value problem (0.4)-(0.5) they were defined as follows:

$$\psi(0) = R_{+\tau}P_{+}\phi + T_{-\tau}P_{-}\phi$$
, $\psi(\tau) = R_{-\tau}P_{-}\phi + T_{+\tau}P_{+}\phi$.

The connection with Sobolev's reflection and transmission functions is given by

 $(R_{+\tau}\phi)(-\mu) = 2 \int_{0}^{1} v \rho(v,\mu)\phi(v)dv;$ $(0 \le \mu \le 1)$ $(T_{+\tau}\phi)(\mu) - e^{-\tau/\mu}\phi(\mu) = 2 \int_{0}^{1} v \sigma(v,\mu)\phi(v)dv.$

In [15] these operators were expressed in the 2N+2 auxiliary functions $R_{+\tau}^* P_n$ and $T_{+\tau}^* P_n$ (n=0,1,...,N) and these functions were related to functions studied in [5,18,21].

In this second part we shall reduce the operators $R_{+\tau}$ and $T_{+\tau}$ further by expressing $R_{+\tau}^* P_n$ and $T_{+\tau}^* P_n$ in X- and Y-functions through a pair of polynomials. For the isotropic case (N=0) the X- and Y-functions were introduced by Ambartsumian [1] and generalized to the anisotropic case by Chandrasekhar [5]. For nonnegative characteristic functions $\psi(\mu)$ their existence was established by Busbridge [2] and constraints on the equations they satisfy were derived by Mullikin [16,17] (also [3]). Inspired by partial results of Chandrasekhar [5] (for $N \leq 2$) and Mullikin [18] Sobolev [21] accomplished a complete

reduction of the reflection and transmission functions to Xand Y-functions. Hovenier [10] exploited the exit function to get formulas more expedient than the ones of Sobolev [21]. In the non-conservative case the polynomials appearing in the reduction formulas ([21,10]) are commonly believed to be uniquely specified by the equations given for them.

In this article we construct the physically relevant solutions X and Y of Chandrasekhar's X- and Y- equations by setting

$$X(\mu) \pm Y(\mu) = [(R_{+\tau}^* \pm T_{+\tau}^* J)p^*](\mu),$$

where p^{\pm} is some polynomial of degree $\leq N$ and $(Jp)(\mu) = p(-\mu)$, and derive reduction formulas of the type (0.8a) $(R_{+\tau}^*P_n)(\mu) = q_n(\mu)X(\mu)+(-1)^n s_n(-\mu)Y(\mu);$ $(0 \leq \mu \leq 1, n=0, 1, \dots, N)$ (0.8b) $(T_{+\tau}^*P_n)(\mu) = s_n(\mu)X(\mu)+(-1)^n q_n(-\mu)Y(\mu),$

where q_n and s_n are polynomials of degree $\leq N$. Up to notation these formulas were stipulated by Sobolev [21]. We exploit the Hölder continuity of the functions $R_{+\tau}^* P_n$ and $T_{+\tau}^* P_n$ on [0,1] (established in [15]) to construct their analytic continuations and these continuations in turn enable us to prove the existence of unique polynomials q_n and s_n such that (0.8) holds true. Further, we derive linear equations for the linear combinations $q_n^+(-1)^n s_n$ and $q_n^-(-1)s_n$; these equations were found by Hovenier [10] by decoupling related equations due to Sobolev [21]. Here we study the invertibility properties of these linear equations in detail and in the conservative case $a_0=1$ this analysis will produce additional constraints on the polynomials $q_n \pm (-1)^n s_n$.

This article draws back on [15], but it is of a less operator-theoretical nature. The first section is devoted to the analytic continuation of $R_{+\tau}^*P_n$ and $T_{+\tau}^*P_n$ and some of its consequences. The existence of the X- and Y-functions and their connection to solutions of a convolution equation make up the contents of Section 2. In Section 3 the representations (0.8) are deduced. A detailed study of the polynomial $t_n^{\pm}=q_n\pm(-1)^ns_n$ follows in Section 4.

We conclude the introduction with notational remarks. By J we denote the "inversion symmetry" $(Jh)(\mu) = h(-\mu)$, by φ_{∞} the Riemann sphere $\mathbb{CU}\{\infty\}$ and by P_n the usual Legendre polynomial (so that $P_n(1)=1$). The degree of a polynomial p is written as deg p; deg 0 = -1. All Hilbert and Banach spaces will be complex and <.,.> is the usual inner product on $L_2[-1,+1]$. The algebra of bounded linear operators on the Banach space H is written as L(H) and its unit element as I_H (or I). The spectrum, null space and range of an operator T are denoted by $\sigma(T)$, Ker T and ImT, respectively.

1. ANALYTIC CONTINUATION

In this section for phase functions of the form (0.7) we prove the following analytic continuation result and some corollaries.

THEOREM 1.1. Let $0 \le a_0 \le 1$ and $-a_n \le a_0 \le a_n$ (n=1,2,...,N). Then for every polynomial p the functions $\mathbb{R}^*_{+\tau}p$ and $\mathbb{T}^*_{+\tau}Jp$ on [0,1] can be extended to functions analytic on $\diamondsuit\{0\}$, uniformly Hölder continuous on bounded parts of the closed right halfplane and satisfying the following identities: (1.1a) $\lim_{\mu \neq 0} (\mathbb{R}^*_{+\tau}p)(\mu) = p(0)$, $\lim_{\mu \neq 0} (\mathbb{T}^*_{+\tau}Jp)(\mu) = 0;$ $\mu \neq 0$ (1.1b) $(\mathbb{R}^*_{+\tau}p)(-\mu) = e^{+\tau/\mu}(\mathbb{T}^*_{+\tau}Jp)(\mu)$ $(0 \neq \mu \in \mbox{(}).$

<u>Proof</u>. We recall the definitions of the polynomials H_0 , H_1 , H_2 ,..., the characteristic binomial $\psi(\nu,\mu)$, the dispersion function Λ (λ) and the function $\lambda(\nu)$ (cf.[15],(4.1)-(4.3)), various symmetry relations ([15],(4.4)), the limit relationship (4.6) of [15], the absence of common zeros of $\lambda(\nu)$ and $\psi(\nu)$ on (-1,+1) and the non-vanishing of the limit of $\Lambda(\lambda)$ as $\lambda \rightarrow \pm 1$ ([15], Proposition 4.1). These results will be used in the proof.

According to Theorem 5.1 of [15] there exists a right invertible operator $F^+: L_2[-1,+1] \rightarrow L_2(N)_{\sigma}$, with $N = [-1,+1] \cup \{v \notin [-1,+1]: \Lambda(v) = 0\}$ and σ a finite Borel measure on N, such that

(1.2)
$$(F^{+}P_{n})(v) = H_{n}(v) \quad (v \in \mathbb{N}, n=0,1,2,...).$$

In Section 1 of [15] a spectral decomposition of AT^{-1} was presented, where A = I - B; in terms of related concepts we have the diagonalization properties

(1.3a)
$$(F^+e^{-\tau AT^{-1}}P_p^*h)(v) = \begin{cases} e^{-\tau/v}(F^+h)(v), v \in \mathbb{N} \cup \{0, +\infty\}; \\ 0, v \in \mathbb{N} \cup \{-\infty, 0\}; \end{cases}$$

(1.3b)
$$(F^{+}e^{+\tau AT^{-1}}P_{m}^{*}h)(\nu) = \begin{cases} 0, \nu \in NU(0, +\infty); \\ e^{+\tau/\nu}(F^{+}h)(\nu), \nu \in NU(-\infty, 0); \end{cases}$$

(1.3c) $(F^{\dagger}P_{0}^{*}h)(\nu) \equiv 0$, $(F^{\dagger}(I-\tau AT^{-1})P_{0}^{*}h)(\nu) \equiv 0$; $\nu \in \mathbb{N}$.

These identities are immediate from the diagonalization

(1.3d)
$$(F^{+}h)(v) \equiv 0 \quad (h \in ImP_{0}^{*}), (F^{+}S^{+}h)(v) \equiv v(F^{+}h)(v) \quad (h \in KerP_{0}^{*}),$$

where S^+ is the unique bounded operator on KerP^{*}₀ such that $TP_0 + S^+A(I-P_0) = T$ ([15]; Th.5.1 and Eq.(5.4), also the definition of S^+ in Section 1). In terms of the inversion symmetry $(Jh)(\mu) = h(-\mu)$ we have

(1.3e)
$$(F^{\dagger}Jh)(v) = (F^{\dagger}h)(-v)$$
 $(v\in N).$

Let us recall how the reflection and transmission operators are defined ([15],(2.1),(2.2),(2.6)). For every $p \in L_2[-1,+1]$ formulas (1.3a)-(1.3c) imply that

$$(F^{\dagger}R^{*}_{+\tau}p)(\nu) = (F^{\dagger}(I-R^{\dagger}_{-\tau})p)(\nu) = (F^{\dagger}p)(\nu) - - -e^{-\tau/\nu}(F^{\dagger}T^{\dagger}_{-\tau}p)(\nu) = (F^{\dagger}p)(\nu) - e^{-\tau/\nu}(F^{\dagger}T^{*}_{-\tau}p)(\nu);$$

$$(F^{\dagger}T^{*}_{+\tau}Jp)(\nu) = (F^{\dagger}T^{\dagger}_{+\tau}Jp)(\nu) = e^{-\tau/\nu}(F^{\dagger}R^{\dagger}_{+\tau}Jp)(\nu) =$$

= $e^{-\tau/\nu}(F^{\dagger}(I-R^{*}_{-\tau})Jp)(\nu) = e^{-\tau/\nu}(F^{\dagger}Jp)(\nu) - e^{-\tau/\nu}(F^{\dagger}R^{*}_{-\tau}Jp)(\nu).$

Applying Eq.(3.2b) of [15] and (1.3e) we get

$$(F^{\dagger}R^{*}_{+\tau}p)(\nu) = (F^{\dagger}p)(\nu) -e^{-\tau/\nu}(F^{\dagger}T^{*}_{+\tau}Jp)(-\nu);$$

(F⁺T^{*}_{+\tau}Jp)(\nu) = e^{-\tau/\nu}(F^{\dagger}p)(-\nu) -e^{-\tau/\nu}(F^{\dagger}R^{*}_{+\tau}p)(-\nu).

Adding and subtracting these equations and abbreviating $\Gamma^{\pm} := R_{+\tau}^{*} \pm T_{+\tau}^{*} J$ we obtain

(1.4)
$$(F^{\dagger}r^{\dagger}p)(\nu) \pm e^{-\tau/\nu}(F^{\dagger}r^{\dagger}p)(-\nu) = (F^{\dagger}p)(\nu) \pm e^{-\tau/\nu}(F^{\dagger}p)(-\nu).$$

Observe that $\Gamma^{\pm}p = R_{+\tau}^{*}p \pm T_{+\tau}^{*}Jp \in H_{+}:= L_{2}[0,1]$ (i.e., $(\Gamma^{\pm}p)(\nu) = 0$ for $\nu \in [-1,0)$). So for $\nu \in \mathbb{N} \cup (0,+\infty)$ the substitution of an expression for F^{+} (i.e., Eq.(5.1) of [15]) into (1.4) yields

$$\lambda(\nu)(r^{\pm}p)(\nu) - \oint_{0}^{1} \nu(\mu-\nu)^{-1}\psi(\nu,\mu)(r^{\pm}p)(\mu)d\mu \pm$$
(1.5)
$$\pm e^{-\tau/\nu} \int_{0}^{1} \nu(\nu+\mu)^{-1}\psi(-\nu,\mu)(r^{\pm}p)(\mu)d\mu = (F^{\pm}p)(\nu) \pm e^{-\tau/\nu}(F^{\pm}p)(-\nu),$$

where $0 < v \le 1$ or v > 1 with $\Lambda(v) = 0$. If $p = P_n$ is a Legendre polynomial, then (1.2) yields that $(F^+p)(v) \pm e^{-\tau/v}(F^+p)(-v) = [1 \pm (-1)^n e^{-\tau/v}]H_n(v)$. Formula (1.5) will be crucial to the remaining part of this article.

Let us introduce the function $\Delta^{\pm}p$ implicitly by

$$\begin{array}{c} \Lambda(\lambda)(\Delta^{\pm}p)(\lambda) - \int_{0}^{1} \lambda(\mu - \lambda)^{-1} \psi(\lambda,\mu)(\Gamma^{\pm}p)(\mu) d\mu \pm \\ (1.6) \\ \pm e^{-\tau/\lambda} \int_{0}^{1} \lambda(\lambda + \mu)^{-1} \psi(-\lambda,\mu)(\Gamma^{\pm}p)(\mu) d\mu = (F^{\pm}p)(\lambda) \pm e^{-\tau/\lambda}(F^{\pm}p)(-\lambda), \end{array}$$

where p (and thus $F^{\dagger}p$) is a polynomial. This equation defines $(\Delta^{\dagger}p)(\lambda)$ uniquely for $\lambda \notin [-1,+1]$ as a meromorphic function whose poles could only be zeros of $\Lambda(\lambda)$. Because of Corollary 5.3 of [15] the function $\Gamma^{\dagger}p=R_{+\tau}^{*}p^{\pm}T_{+\tau}^{*}Jp$ is Hölder continuous on [0,1] of exponent $0<\alpha<1$ (i.e., $|\mu-\nu|^{-\alpha}|(\Gamma^{\dagger}p)(\mu)-(\Gamma^{\dagger}p)(\nu)|$ has a finite supremum for $0 \le \mu \ne \nu \le 1$). The Hölder continuity will be exploited to prove that $\Delta^{\pm}p$ is the analytic continuation of $\Gamma^{\pm}p$ to $(\{0})$.

Clearly, $\Delta^{\pm}p$ has its poles within the set of zeros of $\Lambda(\lambda)$. But from (1.5) (applied for $1 < v < +\infty$ with $\Lambda(v) = \lambda(v) = 0$) it follows that $\Delta(\lambda)(\Delta^{\pm}p)(\lambda) + 0$ as $\lambda + v$. As $\Lambda(\lambda)$ has simple zeros only (see Section 4 of [15] and the references given there), it follows that $\Delta^{\pm}p$ has an analytic continuation outside the set $[-1,+1]U\{\lambda \in (-\infty,-1):\Lambda(\lambda)=0\}.$

Recall that $\Gamma^{\pm}p$ is uniformly Hölder continuous on [0,1] (cf. Corollary 5.3 of [15]). It is well known (Proposition 4.1 of [15] and the references given there) that

 $\lim_{\epsilon \to 0} \Lambda(t \pm i\epsilon) = \lambda(t) \pm i\pi t \psi(t) \neq 0 \quad (-1 < t < +1).$

From (1.6) it is clear that the limits $\lim_{\epsilon \neq 0} \Gamma^{+}(t\pm i\epsilon)$ and $\lim_{\epsilon \neq 0} \Gamma^{-}(t\pm i\epsilon)$ exist (-1<t<+1,t≠0). Further, since obviously $\Delta^{\pm}(\lambda)$ and $\Delta^{\pm}(\overline{\lambda})$ are complex conjugates, the Cauchy-Schwarz reflection principle implies the existence of functions $\alpha^{\pm}, \beta^{\pm}:(-1,0)\cup(0,1)\rightarrow \mathbf{R}$ such that

- (1.7a) $\lim_{\epsilon \neq 0} \Gamma^{+}(t \pm i\epsilon) = \alpha^{+}(t) \pm i\beta^{+}(t);$
- (1.7b) $\lim_{\epsilon \neq 0} \Gamma^{-}(t \pm i\epsilon) = \alpha^{-}(t) \pm i\beta^{-}(t).$

To prove that $\alpha^{\pm}(t) = \Gamma^{\pm}(t)$ and $\beta^{\pm}(t) = 0$ (0<t<1), we substitute $\lambda = t + i \epsilon$ and $\lambda = t - i \epsilon$ into (1.6), compute the limits as $\epsilon + 0$ and add and subtract the resulting equations. Here we make use of the uniform Hölder continuity of $\Gamma^{\pm}p$ in an essential way. We obtain the following linear system of equations:

$$\begin{bmatrix} \lambda(t) & -\pi t \psi(t) \\ \pi t \psi(t) & \lambda(t) \end{bmatrix} \begin{bmatrix} \alpha^{\pm}(t) \\ \beta^{\pm}(t) \end{bmatrix} = \begin{bmatrix} c^{\pm}(t) \\ \pi t \psi(t) (\Gamma^{\pm}p)(t) \end{bmatrix}, 0 < t < 1,$$

where

van der Mee

$$c^{\pm}(t) = (F^{+}p)(t) \pm e^{-\tau/t}(F^{+}p)(-t) + \oint_{0}^{1} t(\mu-t)^{-1}\psi(t,\mu)(\Gamma^{\pm}p)(\mu)d\mu + F^{+}e^{-\tau/t}\int_{0}^{1} t(t+\mu)^{-1}\psi(-t,\mu)(\Gamma^{\pm}p)(\mu)d\mu = \lambda(t)(\Gamma^{\pm}p)(t)$$

(cf.(1.5) with v=t). As the determinant $\lambda^2(t) + \pi^2 t^2 \psi(t)^2 \neq 0$ (see Proposition 4.1 of [15] and the references given there), the linear system has a unique solution, namely $\alpha^{\pm}(t) = (\Gamma^{\pm}p)(t)$ and $\beta^{\pm}(t) = 0$. Hence, $\Delta^{\pm}p$ is the analytic continuation of $\Gamma^{\pm}p$ to the set $\{ \{-1,0\} \cup \{ \psi \in (-\infty,-1) : \Lambda(\nu) = 0 \} \}$.

To continue $\Gamma^{\pm}p$ to $\{\neg\{-1,0,1\}\$ analytically, we define α^{\pm} and β^{\pm} on (-1,0) (as in (1.7)) and derive in an analogous way the following linear system of equations:

$$\begin{bmatrix} \lambda(t) & - & \pi t \psi(t) \\ \pi t \psi(t) & & \lambda(t) \end{bmatrix} \begin{bmatrix} \alpha^{\pm}(t) \\ \beta^{\pm}(t) \end{bmatrix} = \begin{bmatrix} d^{\pm}(t) \\ \pm e^{-\tau/t} \pi t \psi(t) (\Gamma^{\pm}p) (-t) \end{bmatrix}, 0 < t < 1,$$

where

$$d^{\pm}(t) = (F^{+}p)(t) \pm e^{-\tau/t}(F^{+}p)(-t) - \int_{0}^{1} t(\mu-t)^{-1}\psi(t,\mu)(\Gamma^{\pm}p)(\mu)d\mu^{-1}$$

= $e^{-\tau/t} \oint_{0}^{1} t(t+\mu)^{-1}\psi(-t,\mu)(\Gamma^{\pm}p)(\mu)d\mu = \pm e^{-\tau/t}\lambda(t)(\Gamma^{\pm}p)(-t).$

Solving the system we get $\alpha^{\pm}(t) = \pm e^{-\tau/t}(\Gamma^{\pm}p)(-t)$ and $\beta^{\pm}(t)=0$, -1<t<0. Hence, the analytic continuation $\Delta^{\pm}p$ of $\Gamma^{\pm}p$ has the property

(1.8)
$$(\Delta^{\pm}p)(\lambda) = \pm e^{-\tau/\lambda} (\Delta^{\pm}p)(-\lambda).$$

So $\Delta^{\pm}p$ does not have poles in the left half-plane and is analytic on $\{-1,0,1\}$.

To show that the singularities of $\Delta^{\pm}p$ at +1 and -1 are removable, one has to distinguish between two cases. In case $\psi(1) = \sum_{n=0}^{N} a_n(n+\frac{1}{2})H_n(1)P_n(1) = 0$, $\Lambda(\lambda)$ has a finite and nonzero limit as $\lambda + 1$ and $\lambda \notin [0,1]$ (see Proposition 4.1 of [15] and the references given there). Now the right-hand side of (1.6) has a finite limit as $\lambda + 1$ and $\lambda \notin [0,1]$ (see Eq.(29.4) of [19]), and thus $\Delta^{\pm}p$ tends to a finite limit as $\lambda + 1$ and $\lambda \notin [0,1]$. Next assume $\psi(1) \neq 0$. If $\Delta^{\pm}p$ would not be analytic at $\lambda = 1$, it would have an essential singularity there (note that $(\Delta^{\pm}p)(\lambda) + (r^{\pm}p)$ as $\lambda + 1$). According to the Casorati-Weierstrass theorem, for every $c \in \P$ there would be a path Γ_c in $\P \setminus [0,1]$ such that $|(\Delta^{\pm}p)(\lambda)-c| + 0$ as $\lambda + 1$ along Γ_c . From (1.6) it is clear that for some function γ bounded on Γ_c Eq.(1.6) may be written as

$$c\psi(1)\log(\lambda-1)=\psi(1)(\Gamma^{*}p)(1)\log(\lambda-1)+\gamma(\lambda)$$
; $\lambda\in\Gamma_{\alpha}$

([19], Eq.(29.4)). Here the branch cut of $\log(\lambda-1)$ is chosen to be the half-line $(-\infty,1)$. For $c \neq (\Gamma^{\pm}p)(1)$ a contradiction arises. So in this case too the function $\Delta^{\pm}p$ is analytic at $\lambda=1$. By (1.8) it is analytic at $\lambda=-1$ too.

We now know that for any polynomial p the function $r^{\pm}p$ has an analytic continuation to $(\{0}\$. But $r^{\pm}p=R^{*}_{+\tau}p\pm T^{*}_{+\tau}Jp$. So $R^{*}_{+\tau}p$ and $T^{*}_{+\tau}Jp$ have analytic continuations to $(\{0}\$ too. Further, (1.8) implies (1.1b).

Finally, if $E \subset \{\lambda: \operatorname{Re}\lambda \geq 0\}$ is bounded, $[0,1] \subset E$ and $\overline{E} \cup \{\nu \in (1,+\infty): \Lambda(\nu)=0\}=\emptyset$, then $\Lambda(\lambda)$ is Hölder continuous and bounded away from zero on $E \setminus [0,1]$. Using this we easily prove that $\Gamma^{\pm}p$ (and thus $\operatorname{R}^{\ast}_{+\tau}p$ and $\operatorname{T}^{\ast}_{+\tau}Jp$) are uniformly Hölder continuous on E (cf.(1.6)). This completes the proof. \Box

COROLLARY 1.2. Let $0 < a_0 \le 1$ and $-a_0 \le a_n \le a_0$, and put $m=\max\{n:a_{n-1}=1\}$ for $a_0=1$ and m=0 for $0 < a_0 < 1$. Let s=m for even m and s=m+1 for odd m. Then the following identities are equivalent:

- (i) R^{*}₊p+T^{*}₊q=0;
- (ii) $R_{+\tau}p+T_{+\tau}q$ has an analytic continuation to a neighbourhood of $\lambda=0$;
- (iii) there exists $h_0 \in \text{span}\{P_0, P_1, \dots, P_{s-1}\}$ such that $p=Th_0$ and $q = -(\tau A+T)h$, where A=I-B and T and B are given by (0.3).

Here p and q are polynomials. In particular, if 0 < a < 1, there is a <u>one-to-one correspondence between pairs of polynomials</u> p, q and <u>functions</u> $R_{+\tau}^{*} + T_{+\tau}^{*} q$.

PROOF. (i)⇒(ii) Trivial.

(iii) \Rightarrow (i) Let p=Th₀ and q=-(τA +T)h₀ for some h₀ \in span {P₀,P₁, ...,P_{s-1}}. From Proposition 4.2 of [15] it appears that span {P₀,P₁,...P_{s-1}} is the "singular subspace" H₀. connected to the spectrum of T⁻¹A at λ =0. Using the definitions of R_{+ τ} and T_{+ τ} (i.e.,(2.2a)-(2.2b) in [15]) and the orthogonality properties (1.6a)-(1.6b) in [15] we obtain

$$\mathbf{R}_{+\tau}^{*}\mathbf{p}+\mathbf{T}_{+\tau}^{*}\mathbf{q}=\mathbf{P}_{+}\left(\mathbf{V}_{\tau}^{*}\right)^{-1}\left\{\left(\mathbf{U}_{p}^{\tau}\right)^{*}\mathbf{T}\mathbf{h}_{0}-\left(\mathbf{U}_{m}^{\tau}\right)^{*}\left(\tau\mathbf{A}+\mathbf{T}\right)\mathbf{h}_{0}\right\}=$$

$$= P_{+} \left[V_{\tau}^{*} \right]^{-1} \left\{ Th_{0} - \left(I - \tau A T^{-1} \right) \left(\tau A + T \right) h_{0} \right\} = 0,$$

where we have used Proposition III 3.2 of [12]. (ii) \Rightarrow (iii) If $R_{+\tau}^* + T_{+\tau}^* q$ has an analytic continuation at $\lambda=0$, it is an entire function (see Theorem 1.1). Since $\psi(v,\mu)$ is a binomial in v and μ , F^+p is a polynomial whenever p is a polynomial, and $\Lambda(\lambda)$ has a zero at infinity of order s (see Section 4 of [15]), formula (1.6) implies that

(1.9)
$$\left(\Delta^{\pm}p\right)\left(\lambda\right) = O\left(\lambda^{\max(N, \deg p)}\right) (\lambda \to \infty).$$

Hence, $R_{+\tau}^* p + T_{+\tau}^* q = \frac{1}{2}\Gamma^+(p+Jq) + \frac{1}{2}\Gamma^-(p-Jq)$ is a polynomial of degree at most max (N,deg p, deg q).

As derived at the beginning of the proof of Theorem 1.1,

$$(F^{\dagger}R^{*}_{+\tau}p)(\nu) = (F^{\dagger}p)(\nu) - e^{-\tau/\nu} (F^{\dagger}T^{*}_{-\tau}p)(\nu); (\nu \in [-1,+1] \cup \{\mu \notin [-1,+1]: \Lambda(\mu) = 0\}) (F^{\dagger}T^{*}_{+\tau}q)(\nu) = e^{-\tau/\nu} \{ (F^{\dagger}q)(\nu) - (F^{\dagger}R^{*}_{-\tau}q)(\nu) \}$$

So $(F^{\dagger}(q-R_{-\tau}^{*}q-T_{-\tau}^{*}p))(\tau) = e^{+\tau/\nu}r(\nu)$ for some polynomial r. But by Corollary 5.3 of [15] the left-hand side is Hölder continuous on [-1,+1] except for a jump at v=0, and therefore it is bounded in a neighbourhood of v=0. So $r(\nu)=0$, and thus

$$(I-R_{-\tau}^*)q-T_{-\tau}^*p\in KerF^{\dagger} = span\{TP_0,TP_1,\ldots,TP_{s-1}\}$$

(cf.[15], Theorem 5.1). Therefore, there exists a unique $k_0 \in H_0 = \text{span}\{P_0, P_1, \dots, P_{s-1}\}$ such that $(I-R^*_{-\tau})q-T^*_{-\tau}p=Tk_0$. Lemma 2.1 of [15] implies that

$$R_{+\tau}^{\dagger}q-T_{-\tau}^{\dagger}p = Tk_0.$$

Substitute Eq.(2.1) of [15], premultiply by P_p^* and P_m^* and conclude that

$$(V_{\tau}^{+})^{-1}(P_{+}q-P_{p}) = Tk_{0}.$$

But $TV_{\tau} = V_{\tau}^{+}T$ ([15],(1.10)). As p and q are polynomials, one has $p=Tp_0$ and $q=Tq_0$ for certain $p_0,q_0 \in \text{span} \{P_0,P_1,\ldots,P_{s-1}\}$. Note that $P_+q_0-P_-p_0=V_{\tau}k_0=P_+k_0 + P_-(I-\tau T^{-1}A) k_0$ ([15],(1.8b)). So $P_+q_0=P_+k_0$ and $-P_-p_0=P_-(I-\tau T^{-1}A)k_0$. As these equations concern polynomials, we conclude that $q_0=k_0$ and $-p_0=(I-\tau T^{-1}A)k_0$. Put $h_0=-(I-\tau T^{-1}A)k_0$. Then $p=Th_0$ and $-(\tau A+T)h_0=(\tau A+T)(I-\tau T^{-1}A)k_0$

= $\tau Ak_0 + Tk_0 - \tau Ak_0 - \tau^2 AT^{-1}Ak_0 = Tk_0 = q$, because $(T^{-1}A)^2k_0 = 0$ ([12], Proposition III3.2).

From the corollary it follows that $R_{+\tau}^* p$ and $T_{+\tau}^* J p$ have an essential singularity at $\lambda=0$ whenever $p \neq 0$. It is more complicated to find all polynomials p such that $r^{\pm}p=R_{\pm \tau}^{*}p\pm T_{\pm \tau}^{*}Jp$ =0. Such a polynomial p has the form $p=Th_0$ with deg $h_0 \le s-1$ and $\pm Jp=-(\tau A+T)h_0$ (thus (I $\pm J$)p=- τAh_0). If m=max{n:a_{n-1}=1} is even, then s=m and $T^{-1}Ah_0=0$ ([15], Proposition 4.2), and thus $(I \pm J)p=0$ (i.e., p is an odd resp. even polynomial; thus $h_0=0$ is an even resp. odd polynomial). If $m=\max\{n:a_{n-1}=1\}$ is odd, then $T^{-1}Ah_0 \in \text{span}\{T^{-1}P_m\}$ which is a set of even polynomials (cf.[15], Proposition 4.2). Then $r^+p=0$ and $p=Th_0$ imply that the even polynomial (I+J)p ϵ span{P_m}, and thus (I+J)p=0 (i.e., p is odd and therefore h_0 is even). On the contrary, for m odd $r^{p=0}$ and $p=Th_{0}$ imply that the odd polynomial (I-J)p \in span{P_m}. As deg $h_0 \le s-1=m$, we get $h_0 = \frac{1}{2}(I-J)h_0 + \frac{1}{2}(I+J)h_0 \in \text{span}\{P_1, P_3, \dots, P_n\}$ P_m } \oplus span { $T^{-1}P_m$ } and thus for $h_0 = \xi_1 P_1 + \xi_3 P_3 + \ldots + \varepsilon_m P_m + nT^{-1}P_m$ the identity $(I-J)Th_0=-\tau Ah_0$ (and thus $(I+J)h_0=-\tau T^{-1}Ah_0$) yields $2\eta T^{-1}P_m = -\tau \xi_m (1-a_m)T^{-1}P_m$. So $\eta = -\frac{1}{2}\tau (1-a_m)\xi_m$. Summarizing these results we get

 $\{p:r^{+}p = 0\} = \operatorname{span}\{TP_{0}, TP_{2}, \dots, TP_{s-2}\};$ (1.10) $\{p:r^{-}p = 0\} = \begin{cases} \operatorname{span}\{TP_{1}, TP_{3}, \dots, TP_{m-1}\} \text{ for even } m; \\ \operatorname{span}\{TP_{1}, TP_{3}, \dots, TP_{m-2}\} \oplus \\ \oplus \operatorname{span}\{TP_{m} - \frac{1}{2}\tau(1-a_{m})P_{m}\} \text{ for odd } m. \end{cases}$

Observe that $dim\{p:\Gamma^{\pm}p=0\}=\frac{1}{2}s$ in all cases.

We conclude this section with historical references. Eq. (1.5) (or (1.6)) is a linear singular integral equation for $r^{\pm}p=0$ and the problem is to find a solution that admits an analytic continuation to ($\{0\}$). Such linear singular equations appeared in [18,21,10]. Adding and subtracting Eq.(1.5) (for $r^{\pm}p$) and Eq.(1.5) (for $r^{\pm}p$) and using that $R^{*}_{\pm\tau}p=\frac{1}{2}(r^{\pm}p+r^{\pm}p)$

and $T_{+\tau}^* Jp = \frac{1}{2} (\Gamma^+ p - \Gamma^- p)$, one obtains a coupled system of linear singular integral equations for $R_{+\tau}^* p$ and $T_{+\tau}^* Jp$. For $p=P_n$ the identities $JP_n = (-1)^n P_n, F^+ P_n = H_n$ and $JH_n = (-1)^n H_n$ can be applied to obtain a coupled system of linear singular integral equations for $R_{+\tau}^* P_n$ and $T_{+\tau}^* P_n$. They were found by Mullikin ([18],(3.39)-(3.40)) and Sobolev ([21],(35)-(36)). For $p=P_n$ the same transformations applied to (1.5) lead to separate linear singular integral equations for $\Gamma^+ P_n$ and $\Gamma^- P_n$ ([10],(12)-(13)).

2. THE X- AND Y-FUNCTIONS

In astrophysics the X-.and Y-functions are very important, at least from a historical point of view. First introduced for the isotropic case by Ambartsumian [1], they were studied further and generalized for polynomial phase functions by Chandrasekhar [5]. In a first mathematical study Busbridge [2] found them in the form

(2.1)
$$X(\mu) = 1 + \int_{0}^{\tau} e^{-x/\mu} \xi(x) dx$$
, $Y(\mu) = e^{-\tau/\mu} + \int_{0}^{\tau} e^{-(\tau-x)/\mu} \xi(x) dx$,

where $\xi:(0,\tau) \rightarrow L_1(0,\tau)$ is the unique solution of the convolution equation

(2.2)
$$\xi(x) - \int_{0}^{\tau} \kappa(x-y)\xi(y)dy = \kappa(x)$$
 (0\tau)

and $\kappa: (-\tau, +\tau) \rightarrow \mathbb{R}$ is what we call the <u>dispersion</u> <u>kernel</u>

(2.3)
$$\kappa(\mathbf{x}) = \int_{0}^{1} z^{-1} \psi(z) e^{-|\mathbf{x}|/z} dz$$
 (0 $\neq \mathbf{x} \in \mathbb{R}$).

The dispersion kernel and the dispersion function are related as follows:

(2.4)
$$\Lambda(\lambda) = 1 - \int_{-\infty}^{+\infty} e^{X/\lambda} \kappa(x) dx , \quad \text{Re } \lambda=0.$$

In [13] (Theorem 5.1) it was proved that a solution ξ of Eq.(2.2) in L_1 (0, τ) is unique and for this solution the functions X and Y in (2.1) satisfy two systems of singular

integral equations: (1) the (<u>nonlinear</u>) X- <u>and</u> Y-<u>equations</u> (2.5a) $X(\mu)=1+\mu\int_{0}^{1} \frac{X(\mu)X(\nu)-Y(\mu)Y(\nu)}{\nu+\mu} \psi(\nu)d\nu;$ (2.5b) $Y(\mu)=e^{-\tau/\mu}+\mu\int_{0}^{1} \frac{X(\mu)Y(\nu)-Y(\mu)X(\nu)}{\nu-\mu} \psi(\nu)d\nu;$ (2) the <u>linear</u> X- <u>and</u> Y-<u>equations</u> (2.6a) $\Lambda(\mu)X(\mu)=1+\mu\int_{0}^{1} \frac{\psi(\nu)X(\nu)}{\nu-\mu} d\nu-e^{-\tau/\mu}\mu\int_{0}^{1} \frac{\psi(\nu)Y(\nu)}{\nu+\mu} d\nu;$

(2.6b)
$$\Lambda(\mu)Y(\mu) = e^{-\tau/\mu} + \mu \int_{0}^{1} \frac{\psi(\nu)Y(\nu)}{\nu-\mu} d\nu - e^{-\tau/\mu} \mu \int_{0}^{1} \frac{\psi(\nu)X(\nu)}{\nu+\mu} d\nu.$$

The linear equations (2.6) were first derived from Chandrasekhar's X- and Y-equations (2.5) by Busbridge ([2], Section 40). For nonnegative $\psi(\mu)$ Busbridge [2] proved Eq.(2.2) to have a solution ξ , provided $\int_{0}^{1} \psi(\mu) d\mu \leq \frac{1}{2}$.

PROPOSITION 2.1. Let $0 \le a_0 \le 1$ and $-a_0 \le a_n \le a_0$ (n=1,2,..,N). If either $\kappa(x)$ is nonnegative on $(0,\tau)$ or $\int_{0}^{1} |\psi(z)| dz \le \frac{1}{2}$, then Eq.(2.2) has a unique solution ξ in $L_1(0,\tau)$.

PROOF. If $0 \le a_0 \le 1$ and $-a_0 \le a_n \le a_0$ (n=1,2,...N), one has $1-2\int_{0}^{1} \psi(z)dz = \Lambda(\infty) \ge 0$ (cf.[15], Section 4), and therefore $\int_{0}^{1} \psi(z)dz \le \frac{1}{2}$. So if $\kappa(x) \ge 0$ on $(0,\tau)$ (and thus on $(-\tau,+\tau)$), then $\int_{0}^{+\tau} |\kappa(x)|dx=2\int_{0}^{\tau} \kappa(x)dx=2\int_{0}^{1} \psi(z)(1-e^{-\tau/z})dz < 1;$ $-\tau$ if $\int_{0}^{1} |\psi(z)|dz \le \frac{1}{2}$, then $\int_{-\tau}^{+\tau} |\kappa(x)|dx=2\int_{0}^{\tau} |\kappa(x)|dx \le 2\int_{0}^{1} |\psi(z)|(1-e^{-\tau/z})dz < 1.$ As the norm of the operator $(K_{\zeta})(x) = \int_{0}^{1} \kappa(x-y)\zeta(y)dy$ does not exceed $\int_{0}^{+\tau} |\kappa(x)|dx$, the norm of K is strictly less than +1, which completes the proof. \Box van der Mee

The generalization of this proposition is not straightforward. To prove the existence of a solution of Eq.(2.2) in general, we establish the following lemma first.

LEMMA 2.2. Let $0 \le a_0 \le 1$ and $-a_0 \le a_n \le a_0$ $(n=1,2,\ldots,N)$. Then there exists a unique pair of functions X and Y that are analytic on ϕ_{∞} (o) and satisfy the linear X- and Y-equations (2.6). For this pair of functions one can find polynomials p^{\dagger} such that

PROOF. Let us rewrite (1.6) using Eqs (4.2)-(4.3a) of [15] and obtain

(2.7)

$$\begin{array}{c} \lambda(\lambda)(\Delta^{\pm}p)(\lambda) - \lambda \int_{0}^{1} (\mu - \lambda)^{-1} \psi(\mu)(\Gamma^{\pm}p)(\mu) d\mu \pm \\ \psi(\mu)(\Gamma^{\pm}p)(\mu) d\mu = r^{\pm}(\lambda) \pm e^{-\tau/\lambda} r^{\pm}(-\lambda), \end{array}$$

where $r^{\pm}(\lambda)$ is the following polynomial of degree $\leq \max$ (N-s, deg p-s):

(2.8)
$$r^{\pm}(\lambda) = (F^{+}p)(\lambda) - \lambda \sum_{n=0}^{N} a_{n}(n+\frac{1}{2}) \int_{0}^{1} \frac{H_{n}(\lambda) - H_{n}(\mu)}{\lambda - \mu} P_{n}(\mu)(\Gamma^{\pm}p)(\mu) d\mu.$$

Next write $\Lambda(\lambda)=1+\lambda\int (\mu-\lambda)^{-1}\psi(\mu)d\mu-\lambda\int (\mu+\lambda)^{-1}\psi(\mu)d\mu$ (cf.[15], (4.3a)), substitute⁰(1.8) and rewrite (2.7) as follows:

$$(\Delta^{\pm}p)(\lambda) = \left\{ r^{\pm}(\lambda) \pm e^{-\tau/\lambda} r^{\pm}(-\lambda) \right\} + \lambda \int_{0}^{1} \frac{(\Delta^{\pm}p)(\mu) - (\Delta^{\pm}p)(\lambda)}{\mu - \lambda} \psi(\mu) d\mu = 0$$

(2.9)

$$\frac{1}{4}\lambda e^{-\tau/\lambda} \int_{0}^{1} \frac{(\Delta^{\pm}p)(\mu) - (\Delta^{\pm}p)(-\lambda)}{\mu+\lambda} \psi(\mu) d\mu.$$

Suppose p is a polynomial for which $r^{\pm} = 0$ (see (2.8)). Then p satisfies Eq.(2.9) with $r^{\pm}(\lambda) \pm e^{-\tau/\lambda} r^{\pm}(-\lambda) \equiv 0$. If $\Delta^{\pm} p$ would have an essential singularity at $\lambda = 0$, then, because of the identity $\lim(\Delta^{\pm}p)(\lambda) = (\Gamma^{\pm}p)(0)$ (as $\lambda \to 0$, Re $\lambda \ge 0$), for every $c \neq \Gamma^{\pm}(0)$ there would exist a path Γ_c in the open left halfplane such that $|(\Delta^{\pm}p)(\lambda)-c| \to 0$ as $\lambda \to 0$ along Γ_c . Then Eq.(2.9) (for $\lambda \to 0$ along Γ_c) would imply c=0, contradicting the free choice of c. So $\Delta^{\pm}p$ would be analytic at $\lambda = 0$ and therefore $\Gamma^{\pm}p$ would vanish. Conversely, if $\Gamma^{\pm}p=0$, then $F^{\pm}p=0$ (cf.(1.10)) and thus $r^{\pm}=0$ (cf.(2.8)).

If the non-conservative case s=0 we have $r^{\pm}=0$ if and only if p=0, and so a simple dimension argument involving the vector space of polynomials of degree $\leq N$ yields the existence of a unique polynomial p^{\pm} such that

$$r^{\pm}(\lambda) = (F^{+}p^{\pm})(\lambda) - \lambda \sum_{n=0}^{N} a_{n}(n+\frac{1}{2}) \int_{0}^{1} \frac{H_{n}(\lambda) - H_{n}(\mu)}{\lambda - \mu} P_{n}(\mu) (F^{\pm}p^{\pm})(\mu) d\mu \equiv 1.$$

Then $X = \frac{1}{2}(\Delta^+ p + \Delta^- p^-)$ and $Y = \frac{1}{2}(\Delta^+ p^+ - \Delta^- p^-)$ are analytic functions on \mathcal{C}_{∞} {0} that satisfy the linear equations (2.6). (To see this, add and subtract Eq.(2.7) for $\Delta^+ p^+$ and Eq.(2.7) for $\Delta^- p^-$, and use that $r^+ p = r^- p^- \equiv 1$). For general s we remark that $\mathcal{R}^\pm p = r^\pm$ maps the space of polynomials of degree $\leq N$ into the space of polynomials of degree $\leq N-s$, while {p: $\mathcal{R}^\pm p=0$ } is a space of dimension $\leq s$. Hence, \mathcal{R}^\pm is surjective, and so there exists a polynomial p^\pm of degree $\leq N$ such that $r^\pm(\lambda) \equiv 1$. In the same way as for s=0 we prove the existence of analytic functions X and Y on \mathcal{C}_{∞} {0} that satisfy Eqs(2.6).

It remains to prove the uniquness of solutions X and Y that are analytic on \mathfrak{C}_{∞} {0}. But this is clear from the uniqueness of a solution $\Delta^{\pm}p$ of Eq.(2.7) that is analytic on \mathfrak{C}_{∞} {0} and continuous on the closed right half-plane. The latter can be shown with the help of the argument of the second paragraph of this proof. \Box

THEOREM 2.4. Let $0 \le a_0 \le 1$ and $-a_0 \le a_n \le a_0$ $(n=1,2,\ldots,N)$. Then there exists a unique solution ξ of the convolution equation (2.2) in $L_1(0,\tau)$. The functions X and Y defined in terms of ξ by (2.1) satisfy Eqs(2.5) and (2.6).

PROOF. According to Lemma 2.2 there exist polynomials

p[±] such that

$$\begin{split} X(\mu) &= \frac{1}{2} \left[R_{+\tau}^{*}(p^{+}+p^{-}) \right] (\mu) + \frac{1}{2} \left[T_{+\tau}^{*}J(p^{+}-p^{-}) \right] (\mu); \\ Y(\mu) &= \frac{1}{2} \left[R_{+\tau}^{*}(p^{+}-p^{-}) \right] (\mu) + \frac{1}{2} \left[T_{+\tau}^{*}J(p^{+}+p^{-}) \right] (\mu). \end{split}$$

As the function X is uniformly Hölder continuous on any bounded subset E of the closed right half-plane (see Theorem 1.1), any Hölder exponent $0 < \alpha < 1$ may be taken (which appears from the proof) and X(0)=1, it follows that there exists $\frac{1}{2} < \alpha < 1$ such that $|(X(\mu)-1)/\mu|=0(|\mu|^{\alpha-1})(\mu+0)$, Re $\mu=0$). Therefore, $\int_{-i\infty}^{+i\infty} |X(\mu^{-1})-1|^2 d|\mu| < +\infty$. So there exists $\xi \in L_2(-\infty, +\infty)$ such that $X(\mu)-1=\int_{-\infty}^{+\infty} e^{-X/\mu}\xi(x)dx$, Re $\mu=0$. However, X has an essential singularity at $\mu=0$ of order $\leq \tau$ (see Corollary 1.2) and is analytic on the open right half-plane and continuous up to the imaginary line. The Paley-Wiener theorem implies that $\xi(x)=0$ for $x \notin (0, \tau)$, and therefore $\xi \in L_2(0, \tau) \subset L_1(0, \tau)$. This proves the first part of (2.1). The second part follows with the help of the symmetry $Y(\mu)=e^{-\tau/\mu}X(-\mu)$.

Using the first part of (2.1) one easily reduces $\Lambda(\mu)X(\mu)=\Lambda(-\mu)X(\mu) \mbox{ to }$

$$\Lambda(\mu)X(\mu)=1+\int_{-\infty}^{+\infty}e^{-x/\mu}\{\xi(x)-\int_{0}^{\tau}\kappa(x-y)\xi(y)dy-\kappa(x)\}dx,$$

where $\xi(x)=0$ for $x \notin (0,\tau)$. We have to show that

(2.10)
$$\Lambda(\mu)X(\mu) = 1 + \int_{-\infty}^{0} e^{-x/\mu} \ell(x) dx + e^{-\tau/\mu} \int_{\tau}^{+\infty} e^{(\tau-x)/\mu} \ell(x) dx, \operatorname{Re}_{\mu \geq 0},$$

where $l \in L_1(-\infty, +\infty)$. (We have put l(x)=0 for $0 \le x \le \tau$).

Consider the Wiener algebra A of functions h on the extended imaginary line of the form $h(\mu)=c+\int^{+\infty}e^{-X/\mu}z(x)dx$ with $c\in C$ and $z\in L_1(-\infty,+\infty)$ (see [7] for this algebra; however, in [7] the Fourier transform is used). Then $\Lambda(\mu)X(\mu)$ belongs to A for c=1 and z= ℓ . According to Eq.(2.6a) one can write

$$\Lambda(\mu)X(\mu)=1+g_{\mu}(\mu) + e^{-\tau/\mu}g_{\mu}(\mu)$$
 (Re $\mu=0$),

where $g_{(\mu)} = \mu \int (\nu - \mu)^{-1} \psi(\nu) X(\nu) d\nu$ is analytic on the open left half-plane and continuous up to the boundary, whereas $g_{+}(\mu) =$ $-\mu \int_{1}^{1} (\nu + \mu)^{-1} \psi(\nu) Y(\nu) d\nu$ is analytic on the open right half-plane and continuous up to the boundary. Hence, $\Lambda(\mu) X(\mu)$ admits the representation (2.10) and Eq.(2.2) is clear.

The derivation of the non-linear equations (2.5) from (2.1) and (2.2) is a standard argument that can be found in Section 5 of [13], for instance.

In many cases the functions X and Y in (2.1) do not provide the only solutions of Eqs (2.5) and (2.6). If the dispersion function A has zeros on \mathcal{C}_{∞} -[-1,+1], these equations have infinitely many solutions. However, imposing suitable constraints one may specify X and Y by Eqs (2.5) (or (2.6)) completely (cf. [16,17]; also the erratum in Astrophys. J. 147, 858, 1967).

3. REDUCTION TO X- AND Y-functions

In Section 3 of [15] the search for analytic expressions for the reflection and transmission operators was reduced to the computation of the 2N+2 functions $R_{+\tau}^*P_n$ and $T_{+\tau}^*P_n$ (n=0,1,...,N). In the present section a further reduction is accomplished, namely to X- and Y-functions.

THEOREM 3.1. Let $0 \le a_0 \le 1$ and $-a_0 \le a_n \le a_0$ $(n=1,2,\ldots,N)$. For n=0,1,...,N there exist unique polynomials q_n and s_n such that

(3.1a) $(R_{+\tau}^*P_n)(\mu) = q_n(\mu)X(\mu) + (-1)^n s_n(-\mu)Y(\mu);$

(3.1b)
$$(T^*_{+\tau}P_n)(\mu) = s_n(\mu)X(\mu) + (-1)^n_{-\eta}q_n(-\mu)Y(\mu).$$

<u>Here the degrees of q_n and s_n do not exceed max(N,n). The polynomials</u> $t_n^{\pm} = q_n \pm (-1)^n s_n$ satisfy the linear equation

$$t_{n}^{\pm}(\mu) = \mu \int_{0}^{1} \frac{\psi(\mu, \nu) t_{n}^{\pm}(\nu) - \psi(\gamma, \nu) t_{n}^{\pm}(\mu)}{\nu - \mu} X(\nu) d\nu \pm$$

van der Mee

(3.2)
$$t \mu \int_{0}^{1} \frac{\psi(\mu, \nu) t_{n}^{\sharp}(-\nu) - \psi(\gamma, \nu) t_{n}^{\sharp}(-\mu)}{\nu - \mu} Y(\nu) d\nu + H_{n}(\mu)$$

In the next section we shall investigate the properties of Eq.(3.2) further. Here we mainly aim at proving the representation (3.1).

PROOF OF THEOREM 3.1. Let P_n be the (n+1)-dimensional vector space of polynomials of degree n, and let $P = \sum_{n=0}^{+\infty} P_n$. First we show that for $p,q \in P$ the function pX+qY = 0 if and only if p=q=0. This will imply the uniqueness of the polynomials q_n and s_n in (3.1) once the representation (3.1) has been established. If q would be non-zero, then r=Y/X would be a rational function satisfying $r(\lambda) r(-\lambda)=1$ and $\lim_{\lambda \neq 0} r(\lambda)=0$ (this follows from the identities $X(-\mu)=e^{-\tau/\mu}Y(\mu)$, X(0)=1 and Y(0)=0, which in turn follow from (2.1)). Contradiction. So p=q=0. Hence, for n=0,1, 2,... the set

$$Z_n^{\pm} = \{tX \pm (Jt)Y : t \in P_n\}$$

is a complex vector space of dimension n+1.

Recall that $X \pm Y = R_{+\tau}^* p^{\pm} T_{+\tau}^* J p^{\pm}$ for some $p^{\pm} \in P_N$. So using the commutator relations (2.17a)-(2.17b) repeatedly, one proves the existence of polynomials q_1^{\pm} and q_2^{\pm} such that

(3.3a)
$$tX \pm (Jt)Y = R_{+\tau}^* q_1^{\pm} \pm T_{+\tau}^* J q_2^{\pm}$$

However, $f=tX\pm(Jt)Y$ satisfies the symmetry $f(\mu)=\pm e^{-\tau/\mu}f(-\mu)$. So using (1.1b) we get

(3.3b)
$$tX \pm (Jt)Y = R_{+\tau}^* q_2^{\pm} \pm T_{+\tau}^* J q_1^{\pm}.$$

Subtracting (3.3a) and (3.3b) and applying (1.10) yields that $q_1^{\pm}-q_2^{\pm}\in\{p\in P:\Gamma^{\pm}p=0\}$. Hence, for $n\geq N$ we have

$$Z_n^{\pm} \subset \{ \Gamma^{\pm} p : p \in P_n \} + \{ T_{+\tau}^* Jq : \Gamma^{+} q = 0 \}.$$

But the left-hand side is a space of dimension n+1, whereas the right-hand has dimension $\leq (n+1-\frac{1}{2}s)+\frac{1}{2}s=n+1$. So equality holds and therefore there exist polynomials q_n and s_n such that $R_{+\tau}^* P_n = \frac{1}{2}r^+P_n + \frac{1}{2}r^-P_n = q_nX + s_nY$. With the help of the symmetries (1.1b), $Y(\mu) = e^{-\tau/\mu}X(-\mu)$ and $JP_n = (-1)^n P_n$ we derive the other one of the representations (3.1). Furthermore, for $n\geq N$ we necessarily have deg $q_n\leq n$ and deg $s_n\leq n$.

Note that, for $t_n^{\pm} = q_n^{\pm} (-1)^n s_n$,

(3.4)
$$\Gamma^{\pm}P_{n} = t_{n}^{\pm}X \pm (Jt_{n}^{\pm})Y \in \mathbb{Z}_{\max(n,N)}.$$

Substituting this into (1.6) (with $p = P_n, F^+p = H_n$; see Section 4 of [15]) and employing the linear X- and Y-equation (2.6) one obtains

(3.5)
$$Q_n^{\pm}(\lambda) \pm e^{-\tau/\lambda} Q_n^{\pm}(-\lambda) = H_n(\lambda) \pm e^{-\tau/\lambda} H_n(-\lambda),$$

where Q_n^{\pm} is the following polynomial:

(3.6)
$$Q_{n}^{\pm}(\lambda) = t_{n}^{\pm}(\lambda) - \lambda \int_{0}^{1} \frac{\psi(\lambda,\mu)t_{n}^{\pm}(\mu) - \psi(\mu,\mu)t_{n}^{\pm}(\lambda)}{\mu - \lambda} X(\mu)d\mu^{\mp}$$
$$\frac{\varphi(\lambda,\mu)t_{n}^{\pm}(-\mu) - \psi(\mu,\mu)t_{n}^{\pm}(-\lambda)}{\mu - \lambda} Y(\mu)d\mu.$$

As Q_n^{\pm} and H_n are polynomials, (3.5) implies $Q_n^{\pm} = H_n \cdot \Box$

The representations (3.1) for $\varphi_n = R_{+\tau}^* P_n$ and $\psi_n = T_{+\tau}^* P_n$ were first stipulated by Sobolev ([21],(47)-(48)), but no information was given on the conditions under which (3.1) would be valid nor on the uniqueness of the polynomials q_n and s_n . The equations (3.2) were first obtained by Hovenier ([10],(35)-(36)) for the non-conservative case.

van der Mee

4. COEFFICIENT POLYNOMIALS AND THEIR CONSTRAINTS

In this section we study the "coefficient polynomials" t_n^{\ddagger} in detail.

PROPOSITION 4.1. Let $0 \le a_0 \le 1$ and $-a_0 \le a_n \le a_0$ $(n=1,2,\ldots,N)$. Then for certain $(\xi_n)_{n=0}^k$ the polynomial $\sum_{n=0}^{k} \xi_n t_n^{\pm} = 0$ if and only if $\sum_{n=0}^{k} \xi_n P_n$ belongs to the kernel of r^{\pm} . In particular, if $0 \le a_0 \le 1$, then the polynomials t_n^{\pm} $(n=0,1,2,\ldots)$ are linearly independent.

PROOF. If $\sum_{n=0}^{k} \xi_n t_n^{\pm} = 0$, then (3.4) yields $\Gamma^{\pm} \left(\sum_{n=0}^{k} \xi_n P_n \right) = 0$. Conversely, if $\Gamma^{\pm} \left(\sum_{n=0}^{k} \xi_n P_n \right) = 0$, then for $t = \sum_{n=0}^{k} \xi_n t_n^{\pm}$ we have $tX \pm (Jt) Y = 0$ (see(3.4)). Reasoning as in the beginning of the proof of Theorem 3.1 one gets t = 0.

Let V_m^{\pm} be the linear operator on P_m with property $V_m^{\pm}t_n^{\pm}=H_n$ (n=0,1,2,...,m). For m>N the linear span of H_0,H_1,\ldots,H_m has dimension m-s and the span of $t_0^{\pm},t_1^{\pm},\ldots,t_m^{\pm}$ dimension m- $\frac{1}{2}$ s. So dim Ker $V_m^{\pm} = \frac{1}{2}$ s for m>N. Hence, for $0 \le a_0 < 1$ Eq.(3.2) has t_n^{\pm} as a unique polynomial solution. For $a_0=1$ Eq.(3.2) does not specify t_n^{\pm} completely. To deduce additional constraints we first derive the following

LEMMA 4.2. Let $a_0=1$ and $f \in H_0$ with $Jf = \pm f$. If χ is a polynomial, then

(4.1)
$$\langle \Gamma^{\pm}\chi, f \rangle + \frac{1}{2}\tau \langle \Gamma^{\pm}\chi, T^{-1}Af \rangle = \langle \chi, f \rangle + \frac{1}{2}\tau \langle \chi, T^{-1}Af \rangle.$$

PROOF. According to Theorem 1.1 of [15] the solution of the boundary value problem (0.4)-(0.5) on L_2 [-1,+1] has the form

$$\psi(\mathbf{x}) = \left[e^{-\mathbf{x} T^{-1} A} P_{p} + e^{(\tau - \mathbf{x}) T^{-1} A} P_{m} + (\mathbf{I} - \mathbf{x} T^{-1} A) P_{0} \right] V_{\tau}^{-1} \varphi, 0 < \mathbf{x} < \tau.$$

With the help of formulas (1.7) of [15] one gets for $f \in H_0$:

$$\langle T\psi(x), f \rangle = \langle T(I - xT^{-1}A)P_0V_{\tau}^{-1}\phi, f \rangle = \langle TP_0V_{\tau}^{-1}\phi, f \rangle - \\ - x \langle TP_0V_{\tau}^{-1}\phi, T^{-1}Af \rangle.$$

For $\varphi \in L_2[-1,0]$ this implies

$$\begin{aligned} -\langle \mathrm{TR}_{-\tau} \varphi, \mathbf{f} \rangle + \langle \mathrm{TT}_{-\tau} \varphi, \mathbf{f} \rangle &= \langle \mathrm{T} \psi(0), \mathbf{f} \rangle - \langle \mathrm{T} \psi(\tau), \mathbf{f} \rangle \\ &= \tau \langle \mathrm{TP}_0 V_{\tau}^{-1} \varphi, \quad \mathrm{T}^{-1} \mathrm{A} \mathbf{f} \rangle &= \tau \langle \mathrm{TT}_{-\tau} \varphi, \mathrm{T}^{-1} \mathrm{A} \mathbf{f} \rangle. \end{aligned}$$

Note that $\langle TR_{\tau} \varphi, f \rangle = \langle TT_{\tau} \varphi, f \rangle$ whenever Af = 0. Using formulas (2.4) of [15], putting $\chi = T\varphi$ and extending continuous-ly to all $\chi \in L_2[-1,+1]$ one gets

$$- \langle \mathbf{R}_{-\tau}^{+} \chi, \mathbf{f} \rangle + \langle \mathbf{T}_{-\tau}^{+} \chi, \mathbf{f} \rangle = \tau \langle \mathbf{T}_{-\tau}^{+} \chi, \mathbf{T}^{-1} \mathbf{A} \mathbf{f} \rangle =$$
$$= \tau \langle \mathbf{R}_{-\tau}^{+} \chi, \mathbf{T}^{-1} \mathbf{A} \mathbf{f} \rangle.$$

Inserting Lemma 2.1 and formulas (3.2b) of [15] and specializing to $f \in H_0$ with $Jf = \pm f$ (and thus $JT^{-1}Af = \mp T^{-1}Af$) one obtains

$$< \left[R_{+\tau}^{*} \pm T_{+\tau}^{*} J \right] \chi, f > + \frac{1}{2} \tau < \left[R_{+\tau}^{*} \pm T_{+\tau}^{*} J \right] \chi, T^{-1} A f > =$$
$$= < \chi, f > + \frac{1}{2} \tau < \chi, T^{-1} A f > .$$

From this identity formula (4.1) is clear.

With the help of Lemma 4.2 two theorems are deduced concerning constraints on t_n^+ and t_n^- under which Eq.(3.2) has a unique solution.

THEOREM 4.3. Let $a_0=a_1=\ldots=a_{m-1}=1$, $-1\leq a_n<+1$ (n=m,m+1,..., N), s=m+1 for even m and s=m for odd m. Then

(4.2)
$$t_1^+ = t_3^+ = t_5^+ = \dots = t_{s-1}^+ = 0$$

and t_n^{\dagger} is the unique polynomial solution of Eq.(3.2) under the $\frac{1}{2}$ s constraints

(4.3)
$$\int_{0}^{1} \left\{ t_{n}^{+}(\mu) X(\mu) + t_{n}^{+}(-\mu) Y(\mu) \right\} P_{2k}(\mu) d\mu = \delta_{n,2k}(2k+\frac{1}{2})^{-1}$$

$$(k=0,1,\ldots,\frac{1}{2}s-1)$$

PROOF. The functions $P_0, P_2, \ldots, P_{s-2}$ belong to Ker A and satisfy Jf = f. According to (4.1) we have $\langle \Gamma^{\dagger} \chi, P_{2k} \rangle = \langle \chi, P_{2k} \rangle$. For $\chi = P_n$ we insert the inner product $\langle \ldots \rangle$ in $L_2[-1,+1]$ employ (3.4) and obtain (4.3). Formula (4.2) is clear from Proposition 4.1 and the form { $p \in P : \Gamma^{\dagger} p = 0$ } has (cf. 1.10)).

To prove the uniqueness of the solution t_n^+ of Eq.(3.2) under the constraints (4.3), it suffices to prove that a polynomial t=0 whenever V_m^+ t=0 and $\int_1^1 \{t(\mu)X(\mu)+t(-\mu)Y(\mu)\}P_{2k}(\mu)d\mu$ 0 (k=0,1,..., $\frac{1}{2}$ s=1). As an application of Proposition 4.1 we see that $n_0t_0^++n_2t_2^++\ldots+n_st_s^+=0$ if and only if $\Gamma^+(n_0P_0+n_2P_2+\ldots+n_sP_s)=$ 0. But {p $\in P:\Gamma^+p=0$ } consists of odd functions only (cf.(1.10)) and so $n_0=n_2=\ldots=n_s=0$. Thus $t_0^+, t_2^+,\ldots,t_s^+$ are linearly independen' In view of the constancy of H_0, H_2, \ldots, H_s (in fact, $H_{2k}(\mu)=P_{2k}(0)$ for k=0,1,... $\frac{1}{2}$ s) one derives that $\{t_{2k}^+-P_{2k}(0)t_0^+\}_{k=1}^{\frac{1}{2}s}$ is a basis of Ker V_m . So for certain coefficients $\zeta_1, \zeta_2, \ldots, \zeta_{\frac{1}{4}s}$ we have

(4.4)
$$t = \sum_{k=1}^{\frac{1}{2}s} \zeta_{k} (t_{2k}^{+} - P_{2k}(0)t_{0}^{+}).$$

The constraints (4.3), Eq.(4.4) and $\int \{t(\mu)X(\mu)+t(-\mu)Y(\mu)\}P_{2k}(\mu)d$ 0 (k=0,1,..., $\frac{1}{2}s-1$) together yield $t^0 = 0.\Box$

THEOREM 4.4. Let $a_0 = a_1 = \dots = a_{m-1} = 1$, $-1 \le a_n < +1$ (n=m,m+1,..., N). If m is even, then

(4.5)
$$t_2 = P_2(0)t_0$$
, $t_4 = P_4(0)t_0$,..., $t_m = P_m(0)t_0$,

while t_n is the unique polynomial solution of Eq.(3.2) under the $\frac{1}{2}m$ constraints

(4.6)
$$\int_{0}^{1} \{t_{n}(\mu)X(\mu) - t_{n}(-\mu)Y(\mu)\} P_{2k+1}(\mu)d\mu = \delta_{n,2k+1} \cdot (2k + \frac{3}{2})^{-1} \cdot (k = 0, 1, \dots, \frac{1}{2}m - 1)$$

If m is odd, then

(4.7a)
$$(k+1)t_{k+1}^{-} + k t_{k-1}^{-} = 0 (k = 1,3,5,...,m-2);$$

(4.7b)
$$(m+1)t_{m+1} + m t_{m-1} = \tau (m+\frac{1}{2})(1-a_m)t_m,$$

while t_n is the unique polynomial solution of Eq.(3.2) under the $\frac{1}{2}(m+1)$ constraints

$$(4.8a) \int_{0}^{1} \{t_{n}^{-}(\mu)X(\mu) - t_{n}^{-}(-\mu)Y(\mu)\}P_{2k+1}(\mu)d\mu = \delta_{n,2k+1} \cdot (2k+\frac{3}{2})^{-1} \cdot (k = 0, 1, \dots, \frac{1}{2}m - \frac{3}{2})$$

$$(4.8b) \int_{0}^{1} \{t_{n}^{-}(\mu)X(\mu) - t_{n}^{-}(-\mu)Y(\mu)\}(1 - \frac{1}{2}\tau(1-a_{m})/\mu)P_{m}(\mu)d\mu = \int_{0}^{+1}P_{n}(\mu)(1 - \frac{1}{2}\tau(1-a_{m})/\mu)P_{m}(\mu)d\mu.$$

-1
The proof is analogous to the one of Theorem 4.3 and will be
omitted. Let us work out the example m=1 (i.e.,
$$a_0=1$$
 and $a_1 \neq$

omitted. Let us work out the example m=1 (i.e., $a_0=1$ and $a_1 \neq 1$). Then s=2, and thus one constraint has to be considered only. From Theorem 4.3 one finds

(4.9)
$$t_1^+ = 0$$
, $\int_0^1 \{t_n^+(\mu)X(\mu) + t_n^+(-\mu)Y(\mu)\}d\mu = 2\delta_{n0}$

However, from Theorem 4.4 one derives that (4.10a) $2t_2^- + t_0^- = \frac{3}{2}\tau(1-a_1)t_1^-$;

(4.10b)
$$\int_{0}^{1} \{ \overline{t_{n}}(\mu) X(\mu) - \overline{t_{n}}(-\mu) Y(\mu) \} (\mu - \frac{1}{2}\tau(1-a_{1})) = \frac{2}{3} \delta_{n1} - \tau(1-a_{1}) \delta_{n0}.$$

For the half-space problem with $a_0 = 1$ (and $a_1 \neq 1$) one may derive the solution in terms of the H-function and a set of

polynomials; the latter ones are the unique solutions of Eq.(3.2) (with X replaced by H and Y by 0) under a constraint of the form (4.9). In physical literature such observation was made by Pahor [20] and by Busbridge and Orchard [4]. Clearly the conditions (4.9) may be viewed as generalizations. To see that the conditions (4.10) are generalizations also, one has to divide Eqs(4.10) by τ before taking the limit as $\tau \rightarrow +\infty$.

LITERATURE

- V.A. Ambartsumian: On the question of the diffuse reflection of light by an opaque medium. Dokl. Akad. Nauk SSSR 38(8), 257-262, 1943 (Russian).
- I.W. Busbridge: The mathematics of radiative transfer. Cambridge Tracts in Mathematics and Mathematical Physics, vol. 50, Cambridge University Press, 1960.
- 3. I.W. Busbridge: Conservative anisotropic scattering in a finite plane-parallel atmosphere. T.W. Mullikin's "constraints". The Astrophysical Journal 149, 195-199, 1967.
- 4. I.W. Busbridge, S.E. Orchard: Reflection and transmission of light by thick atmospheres of pure scatterers with a phase function 1 + Σ ω P_n (cosθ). The Astrophysical Journal 154, 729-739, 1968.
- 5. S. Chandrasekhar: Radiative transfer. Second revised edition. New York, Dover Publ. Inc., 1960.
- 6. J.J. Duderstadt, W.R. Martin: Transport theory. A Wiley-Interscience Publication, John Wiley & Sons, 1979.
- 7. I.C. Gohberg, I.A. Feldman: Convolution equations and projection methods for their solution. Transl. Math. Monographs; vol. 41, A.M.S., Providence, R.I., 1974=Moscow, "Nauka", 1971 (Russian).
- R.J. Hangelbroek: On the derivation of some formulas in linear transport theory for media with anisotropic scattering. Report 7720, University of Nijmegen, The Netherlands, 1978.
- 9. J.W. Hovenier: A unified treatment of the reflected and trans-

mitted intensities of a homogeneous plane-parallel atmosphere. Astron. Astrophys. 68, 239-250, 1978.

- J.W. Hovenier: Reduction of the standard problem in radiative transfer for a medium of finite optical thickness. Astron. Astrophys. 82, 61-72, 1980.
- 11. H.C. van de Hulst: Multiple light scattering, I. New York etc., Academic Press, 1980.
- 12. C.V.M. van der Mee: Semigroup and factorization methods in Transport Theory. Amsterdam, Mathematical Centre Tract 146, 1981.
- 13. C.V.M. van der Mee: Linearized BGK and neutron transport equations on finite domains. Transport Theory and Statistical Physics 10, 75-104, 1981.
- 14. C.V.M. van der Mee: Transport Theory in L_p-spaces. To appear in: Integral Equations and Operator Theory.
- C.V.M. van der Mee: Transport Equation on a finite domain.
 I. Reflection and transmission operators and diagonalization.
 Submitted at: Integral Equations and Operator Theory.
- 16. T.W. Mullikin: A complete solution of the X- and Y-equations of Chandrasekhar. The Astrophysical Journal 136, 627-635, 1962.
- 17. T.W. Mullikin: Chandrasekhar's X- and Y-functions. Trans. A.M.S. 112, 316-322, 1964.
- 18. T.W. Mullikin: Radiative transfer in finite homogeneous atmospheres with anisotropic scattering. II. The uniqueness problem for Chandrasekhar's ψ_{ℓ} and ϕ_{ℓ} equations. The Astrophysical Journal 139, 1267-1289, 1964.
- N.I. Muskhelishvili: Singular integral equations. Groningen (The Netherlands), Noordhoff, 1953=Moscow, "Nauka", 1967 (Russian).
- 20. S. Pahor: A new approach to half-space transport problems. Nuclear science and engineering 26, 192,197, 1966.
- 21. V.V. Sobolev: Diffuse reflection and transmission of light in an atmosphere with anisotropic scattering. Astrofizika 5(1),5-20, 1969 (Russian).

22. V.V. Sobolev: Light scattering in planetary atmospheres. Oxford, Pergamon Press, 1975=Moscow, "Nauka", 1972 (Russian).

> C.V.M. van der Mee Dept. of Physics and Astronomy Free University De Boelelaan 1081 1081 HV Amsterdam The Netherlands.

Submitted: October 20, 1982