TRANSPORT EQUATION ON A FINITE DOMAIN
II. REDUCTION TO X- AND Y-FUNCTIONS
C.V.M. van der Mee

In this article the solution of the time-independent linear transbort equation in a finite homogeneous and non-multiplying medium is expressed in Chandrasekhar's X - and Y-functions through the solution of two linear systems of equations of finite order. The existence of the X - and Y-functions is proved in general.

INTRODUCTION

Being a continuation of the first part [15] this article contains a rigorous study of the integro-differential equation

$$
\mu \frac{\partial \psi}{\partial x}(x, \mu)+\psi(x, \mu)=
$$

$$
\begin{array}{r}
=\int_{-1}^{+1}\left[\frac{1}{2 \pi} \int_{0}^{2 \pi} \hat{g}\left(\mu \mu^{\prime}+\sqrt{1-\mu^{2}} \sqrt{1-\mu^{\prime 2}} \cos \alpha\right) \mathrm{d} \alpha\right] \psi\left(\mathrm{x}, \mu^{\prime}\right) \mathrm{d} \mu^{\prime} \tag{0.1}\\
(-1 \leq \mu \leq+1, \quad 0<\mathrm{x}<\tau<+\infty)
\end{array}
$$

with boundary conditions

$$
\begin{equation*}
\psi(0, \mu)=\varphi(\mu)(0 \leq \mu \leq 1), \psi(\tau, \mu)=\varphi(\mu)(-1 \leq \mu<0) . \tag{0.2}
\end{equation*}
$$

This so-called "finite-slab problem" plays an important role in radiative transfer of unpolarized light (cf. [5,22,11]) and in neutron transport with uniform speed (cf. [6]). Given the nonnegative "phase function" $\hat{\mathrm{g}} \in L_{1}[-1,+1]$ and the boundary value function $\varphi \varepsilon L_{p}[-1,+1](1 \leq p<+\infty)$, the problem is to
compute the solution ψ of the boundary value problem (0.1)(0.2). More precisely, introducing the vector $\psi(x)$ in $L_{p}[-1,+1]$, the operators T and B and the projections P_{+}and P_{-}on
$L_{p}[-1,+1]$ by
(0.2a) $\psi(x)(\mu)=\psi(x, \mu) \quad, \quad(T h)(\mu)=\mu h(\mu) ;$ $(-1 \leq \mu \leq+1,0<x<\tau)$
(0.3b)

$$
(\mathrm{Bh})(\mu)=\int_{-1}^{+1}\left[\frac{1}{2 \pi} \int_{0}^{2 \pi} \hat{g}\left(\mu \mu^{\prime}+\sqrt{1-\mu^{2}} \sqrt{1-\mu^{\prime}} \cos \alpha\right) \mathrm{d} \alpha\right] \mathrm{h}\left(\mu^{\prime}\right) \mathrm{d} \mu^{\prime} ;
$$

(0.3e)

$$
\left(P_{+} h\right)(\mu)=\left\{\begin{array}{ll}
h(\mu), \mu \geq 0 ; \\
0 & ,, \mu<0 ;
\end{array}\left(P_{-} h\right)(\mu)= \begin{cases}0 & , \mu \geq 0 ; \\
h(\mu), \mu<0,\end{cases}\right.
$$

the problem is to find a vector-valued function $\psi:(0, \tau) \rightarrow$ $L_{p}[-1,+1]$ such that $T \psi$ is strongly differentiable and ψ satisfies the equations
(0.4) $\quad(T \psi)^{\prime}(x)=-(I-B) \psi(x) \quad(0<x<\tau)$;
(0.5) $\quad \lim _{x \neq 0}| | P_{+} \psi(x)-P_{+} \varphi| |_{p}=0, \lim _{x \uparrow \tau}| | P_{-} \psi(x)-P_{-} \varphi| |_{p}=0$.

Instead of (0.5) for $x \in L_{p}[-1,+1]$ one might also consider the more general boundary conditions
(0.6) $\quad \lim _{x \neq 0}| | T P_{+} \psi(x)-P_{+} x| |_{p}=0, \lim _{x \uparrow \tau}| | T P_{-} \psi(x)-P_{-} x| |_{p}=0$.

For $\mathrm{p}=2$ the finite-slab problem was stated in the form (0.4)(0.5) by Hangelbroek [8]. Assuming that $\hat{g} \in L_{r}[-1,+1]$ for some $r>1$, is nonnegative and fulfills $c=\int_{-1}^{+1} \hat{g}(t) d t \leq 1$, on $L_{p}[-1,+1]$ $(1 \leq p<+\infty)$ the boundary value problems (0.4)-(0.5) and (0.4)(0.6) were proved to have a unique solution (see [14]; for $p=2$ the problem (0.4)-(0.5) was shown to be well-posed in [12]).

In most practical situations one cuts off the Legendre series expansion of the phase function \hat{g} and confines the description to polynomial phase functions of the form

$$
\begin{equation*}
\hat{g}(t)=\sum_{n=0}^{N} a_{n}\left(n+\frac{1}{2}\right) P_{n}(t) \quad(-1 \leq t \leq+1), \tag{0.7}
\end{equation*}
$$

where $P_{n}(t)=\left(2^{n} \cdot n!\right)^{-1}\left(\frac{d}{d t}\right)^{n}\left(t^{2}-1\right)^{n}$ is the usual Legendre polynomial. The constraints on \hat{g} imply that $0 \leq a_{0} \leq 1$ and $-a_{0} \leq a_{n} \leq a_{0}$ $(n=1,2, \ldots, N)$. The cases $0 \leq a_{0}<1$ and $a_{0}=1$ are usually called
the non-conservative and the conservative case. Astrophysicists are accustomed to write the solution of (0.1)-(0.2) (with $\varphi(\mu)=0$ for $-1 \leq \mu<0)$ in terms of the reflection and transmission functions S and T (resp. ρ and σ) of Chandrasekhar [5] (resp. Sobolev [22]). Recently symmetries of this problem induced Hovenier [9] to use the so-called exit function instead.

The article [15] and its present continuation aim at a synthesis of the rigorous theory in mathematics ([8,12,13,14], for instance) and the analytic expressions partly derived and partly stipulated by astrophysicists ([5,18,21,10], for instance). In [15] reflection and transmission operators were introduced; in terms of the unique solution of the boundary value problem (0.4)-(0.5) they were defined as follows:

$$
\psi(0)=R_{+\tau} P_{+} \varphi+T_{-\tau} P_{-} \varphi \quad, \quad \psi(\tau)=R_{-\tau} P_{-} \varphi+T_{+\tau} P_{+} \varphi
$$

The connection with Sobolev's reflection and transmission functions is given by

$$
\begin{align*}
& \left(R_{+\tau} \varphi\right)(-\mu)=2 \int_{0}^{1} v \rho(v, \mu) \varphi(v) d v ; \\
& \left(\mathbb{T}_{+\tau} \varphi\right)(\mu)-e^{-\tau / \mu} \varphi(\mu)=2 \int_{0}^{1} v \sigma(v, \mu) \varphi(v) d v .
\end{align*}
$$

In [15] these operators were expressed in the $2 N+2$ auxiliary functions $R_{+\tau}^{*} P_{n}$ and $T_{+\tau}^{*} P_{n}(n=0,1, \ldots, N)$ and these functions were related to functions studied in $[5,18,21]$.

In this second part we shall reduce the operators $R_{+\tau}$ and $T_{+\tau}$ further by expressing $R_{+\tau}^{*} P_{n}$ and $T_{+\tau}^{*} P_{n}$ in X - and Y-functions through a pair of polynomials. For the isotropic case ($\mathrm{N}=0$) the $X-$ and Y-functions were introduced by Ambartsumian [1] and generalized to the anisotropic case by Chandrasekhar [5]. For nonnegative characteristic functions $\psi(\mu)$ their existence was established by Busbridge [2] and constraints on the equations they satisfy were derived by Mullikin [16,17] (also [3]). Inspired by partial results of Chandrasekhar [5] (for $\mathrm{N} \leq 2$) and Mullikin [18] Sobolev [21] accomplished a complete
reduction of the reflection and transmission functions to X and Y-functions. Hovenier [10] exploited the exit function to get formulas more expedient than the ones of Sobolev [21]. In the non-conservative case the polynomials appearing in the reduction formulas ([21,10]) are commonly believed to be uniquely specified by the equations given for them.

In this article we construct the physically relevant solutions X and Y of Chandrasekhar's X - and Y - equations by setting

$$
X(\mu) \pm Y(\mu)=\left[\left(R_{+\tau}^{*} \pm T_{+\tau}^{*} J\right) p^{ \pm}\right](\mu),
$$

where $p^{ \pm}$is some polynomial of degree $\leq N$ and $(J p)(\mu)=p(-\mu)$, and derive reduction formulas of the type

$$
\begin{aligned}
(0.8 a) & \left(R_{+\tau}^{*} P_{n}\right)(\mu)=q_{n}(\mu) X(\mu)+(-1){ }^{n} s_{n}(-\mu) Y(\mu) ; \\
& \\
(0.8 b) & \left(T_{+\tau}^{*} P_{n}\right)(\mu)=s_{n}(\mu) X(\mu)+(-1){ }^{n} q_{n}(-\mu \leq 1, n=0,1, \ldots(\mu),
\end{aligned}
$$

where q_{n} and s_{n} are polynomials of degree $\leq N$. Up to notation these formulas were stipulated by Sobolev [21]. We exploit the Holder continuity of the functions $R_{+\tau}^{*} P_{n}$ and $T_{+\tau}^{*} P_{n}$ on $[0,1]$ (established in [15]) to construct their analytic continuations and these continuations in turn enable us to prove the existence of unique polynomials q_{n} and s_{n} such that (0.8) holds true. Further, we derive linear equations for the linear combinations $q_{n}+(-1)^{n} s_{n}$ and $q_{n}-(-1) s_{n}$; these equations were found by Hovenier [10] by decoupling related equations due to Sobolev [21]. Here we study the invertibility properties of these linear equations in detail and in the conservative case $a_{0}=1$ this analysis will produce additional constraints on the polynomials $q_{n} \pm(-1){ }^{n} s_{n}$.

This article draws back on [15], but it is of a less operator-theoretical nature. The first section is devoted to the analytic continuation of $\mathrm{R}_{+\tau}^{*} \mathrm{P}_{\mathrm{n}}$ and $\mathrm{T}_{+\tau}^{*} \mathrm{P}_{\mathrm{n}}$ and some of its consequences. The existence of the X - and Y -functions and their connection to solutions of a convolution equation make up the contents of Section 2. In Section 3 the representations (0.8) are deduced. A detailed study of the polynomial $t_{n}^{ \pm}=q_{n} \pm(-1)^{n} s_{n}$ follows in Section 4.

We conclude the introduction with notational remarks. By J we denote the "inversion symmetry" $(\mathrm{Jh})(\mu)=h(-\mu)$, by ϕ_{∞} the Riemann sphere $\mathbb{T U \{ \infty \}}$ and by P_{n} the usual Legendre polynomial (so that $P_{n}(1)=1$). The degree of a polynomial p is written as deg p; deg $0=-1$. All Hilbert and Banach spaces will be complex and <.,.> is the usual inner product on $L_{2}[-1,+1]$. The algebra of bounded linear operators on the Banach space H is written as $L(H)$ and its unit element as I_{H} (or I). The spectrum, null space and range of an operator T are denoted by $\sigma(T)$, Ker T and ImT, respectively.

1. ANALYTIC CONTINUATION

In this section for phase functions of the form (0.7) we prove the following analytic continuation result and some corollaries.

THEOREM 1.1. Let $0 \leq a_{0} \leq 1$ and $-a_{n} \leq a_{0} \leq a_{n}(n=1,2, \ldots, N)$. Then for every polynomial p the functions $R_{+}^{*} p$ and $T_{+\tau}^{*} J p$ on $[0,1]$ can be extended to functions analytic on $\phi \cdot\{0\}$, uniformly Holder continuous on bounded parts of the closed right halfplane and satisfying the following identities: (1.1a) $\quad \lim _{\mu \neq 0}\left(R_{+\tau}^{*} p\right)(\mu)=p(0), \lim _{\mu \downarrow 0}\left(\mathbb{T}_{+\tau}^{*} J p\right)(\mu)=0 ;$
(1.1b) $\quad\left(R_{+\tau}^{*} p\right)(-\mu)=e^{+\tau / \mu}\left(T_{+\tau}^{*} J p\right)(\mu) \quad(0 \neq \mu \in \emptyset)$.

Proof. We recall the definitions of the polynomials $H_{0}, H_{1}, H_{2}, \ldots$, the characteristic binomial $\psi(\nu, \mu)$, the dispersion function $\Lambda(\lambda)$ and the function $\lambda(v)(c f .[15],(4.1)-(4.3))$, various symmetry relations ([15],(4.4)), the limit relationship (4.6) of [15], the absence of common zeros of $\lambda(\nu)$ and $\psi(\nu)$ on $(-1,+1)$ and the non-vanishing of the limit of $\Lambda(\lambda)$ as $\lambda \rightarrow \pm 1$ ([15], Proposition 4.1). These results will be used in the proof.

According to Theorem 5.1 of [15] there exists a right invertible operator $F^{+}: L_{2}[-1,+1] \rightarrow L_{2}(N)_{\sigma}$, with $N=[-1,+1] \cup\{\nu \notin[-1,+1]$: $\Lambda(\nu)=0\}$ and σ a finite Borel measure on N, such that
(1.2) $\left(F^{+} P_{n}\right)(v)=H_{n}(v) \quad(v \in N, n=0,1,2, \ldots)$.

In Section 1 of [15] a spectral decomposition of $A T^{-1}$ was presented, where $A=I-B$; in terms of related concepts we have the diagonalization properties
(1.3a) $\quad\left(F^{+} e^{-\tau A T^{-1}}{ }_{P}^{*}{ }_{\mathrm{P}}\right)(v)=\left\{\begin{array}{c}\mathrm{e}^{-\tau / v}\left(\mathrm{~F}^{+} \mathrm{h}\right)(\nu), v \in \mathrm{NU}(0,+\infty) ; \\ 0 \quad, v \in N U(-\infty, 0) ;\end{array}\right.$

$$
\left(F^{+} e^{+\tau A T^{-1}} \mathrm{P}_{\mathrm{m}}^{*} \mathrm{~h}\right)(v)=\left\{\begin{array}{cc}
0 & , v \in N \cup(0,+\infty) ; \tag{1.3b}\\
e^{+\tau / v}\left(\mathrm{~F}^{+} h\right)(v), v \in N U(-\infty, 0) ;
\end{array}\right.
$$

(1.3c) $\quad\left(F^{+} P_{0}^{*} h\right)(v) \equiv 0, \quad\left(F^{+}\left(I-\tau A T^{-1}\right) P_{0}^{*} h\right)(v) \equiv 0 ; v \in N$.

These identities are immediate from the diagonalization
(1.3d) $\quad\left(F^{+} h\right)(v) \equiv 0\left(h \in \operatorname{ImP} P_{0}^{*}\right),\left(F^{+} S^{+} h\right)(v)=v\left(F^{+} h\right)(v)\left(h \in K \operatorname{erP}{ }_{0}^{*}\right)$,
where S^{+}is the unique bounded operator on KerP* such that $T P_{0}+S^{+} A\left(I-P_{0}\right)=T([15] ; T h .5 .1$ and Eq. (5.4), also the definition of S^{+}in Section 1). In terms of the inversion symmetry (Jh) $(\mu)=h(-\mu)$ we have
(1.3e) $\quad\left(F^{+} \mathrm{Jh}\right)(v)=\left(\mathrm{F}^{+} \mathrm{h}\right)(-v) \quad(v \in N)$.

Let us recall how the reflection and transmission operators are defined ([15],(2.1),(2.2),(2.6)). For every $p \in L_{2}[-1,+1]$ formulas (1.3a)-(1.3c) imply that

$$
\begin{aligned}
\left(F^{+} R_{+\tau}^{*} p\right)(v) & =\left(F^{+}\left(I-R_{-\tau}^{+}\right) p\right)(v)=\left(F^{+} p\right)(v)- \\
& -e^{-\tau / v}\left(F^{+} T_{-\tau}^{\dagger} p\right)(v)=\left(F^{+} p\right)(v)-e^{-\tau / v}\left(F^{+} T_{-\tau}^{*} p\right)(v) ;
\end{aligned}
$$

$$
\begin{aligned}
& \left(F^{+} T_{+\tau}^{*} J p\right)(v)=\left(F^{+} T_{+\tau}^{+} J p\right)(v)=e^{-\tau / v}\left(F^{+} R_{+\tau}^{+} J p\right)(v)= \\
& =e^{-\tau / v}\left(F^{+}\left(I-R_{-\tau}^{*}\right) J p\right)(v)=e^{-\tau / \nu}\left(F^{+} J p\right)(v)-e^{-\tau / v}\left(F^{+} R_{-\tau}^{*} J p\right)(v) .
\end{aligned}
$$

Applying Eq.(3.2b) of [15] and (1.3e) we get

$$
\begin{array}{ll}
\left(F^{+} R_{+\tau}^{*} p\right)(v)=\left(F^{+} p\right)(v) & -e^{-\tau / v}\left(F^{+} T_{+\tau}^{*} J p\right)(-v) ; \\
\left(F^{+} T_{+\tau}^{*} J p\right)(v)=e^{-\tau / v}\left(F^{+} p\right)(-v)-e^{-\tau / v}\left(F^{+} R_{+\tau}^{*} p\right)(-v)
\end{array}
$$

Adding and subtracting these equations and abbreviating $\Gamma^{ \pm}:=R_{+\tau}^{*} \pm T_{+\tau}^{*} J$ we obtain

$$
\begin{equation*}
\left(F^{+} \Gamma^{ \pm} p\right)(v) \pm e^{-\tau / v}\left(F^{+} \Gamma^{ \pm} p\right)(-v)=\left(F^{+} p\right)(v) \pm e^{-\tau / v}\left(F^{+} p\right)(-v) . \tag{1.4}
\end{equation*}
$$

Observe that $\Gamma^{ \pm} p=R_{+\tau}^{*} p \pm T_{+\tau}^{*} J p \in H_{+}:=L_{2}[0,1]$ (i.e., $\left(\Gamma^{ \pm} p\right)(v)=0$ for $v \in[-1,0)$). So for $v \in N U(0,+\infty)$ the substitution of an expression for F^{+}(i.e., Eq.(5.1) of [15]) into (1.4) yields

$$
\begin{gather*}
\lambda(v)\left(\Gamma^{ \pm} p\right)(v)-f_{0}^{1} v(\mu-v)^{-1} \psi(v, \mu)\left(\Gamma^{ \pm} p\right)(\mu) d \mu \pm \\
\pm e^{-\tau / v} \int_{0}^{1} v(v+\mu)^{-1} \psi(-v, \mu)\left(\Gamma^{ \pm} p\right)(\mu) d \mu=\left(F^{+} p\right)(v) \pm e^{-\tau / v}\left(F^{+} p\right)(-v), \tag{1.5}
\end{gather*}
$$

where $0<v \leq 1$ or $v>1$ with $\Lambda(v)=0$. If $p=P_{n}$ is a Legendre polynomial, then (1.2) yields that $\left(F^{+}{ }^{n}\right)(v) \pm e^{-\tau / v}\left(F^{+} p\right)(-v)=$ $\left[1 \pm(-1)^{n} e^{-\tau / v}\right] H_{n}(v)$. Formula (1.5) will be crucial to the remaining part of this article.

Let us introduce the function $\Delta^{ \pm} p$ implicitly by

$$
\begin{align*}
& \Lambda(\lambda)\left(\Delta^{ \pm} p\right)(\lambda)-\int_{0}^{1} \lambda(\mu-\lambda)^{-1} \psi(\lambda, \mu)\left(\Gamma^{ \pm} p\right)(\mu) d \mu \pm \tag{1.6}\\
& \pm e^{-\tau / \lambda} \int_{0}^{1} \lambda(\lambda+\mu)^{-1} \psi(-\lambda, \mu)\left(\Gamma^{ \pm} p\right)(\mu) d \mu=\left(F^{+} p\right)(\lambda) \pm e^{-\tau / \lambda}\left(F^{+} p\right)(-\lambda),
\end{align*}
$$

where p (and thus $\mathrm{F}^{+} \mathrm{p}$) is a polynomial. This equation defines $\left(\Delta^{ \pm} p\right)(\lambda)$ uniquely for $\lambda \notin[-1,+1]$ as a meromorphic function whose poles could only be zeros of $\Lambda(\lambda)$. Because of Corollary 5.3 of [15] the function $\Gamma^{ \pm} p=R_{+\tau}^{*} p T_{+_{\tau}}^{*} J p$ is Hölder continuous on [0,1] of exponent $0<\alpha<1$ (i.e., $|\mu-\nu|^{-\alpha}\left|\left(\Gamma^{ \pm} p\right)(\mu)-\left(\Gamma^{ \pm} p\right)(\nu)\right|$ has a finite
supremum for $0 \leq \mu \neq v \leq 1$). The Hölder continuity will be exploited to prove that $\Delta^{ \pm} p$ is the analytic continuation of $\Gamma^{ \pm} p$ to $\left.\mathbb{Q} \backslash 0\right\}$. Clearly, $\Delta^{ \pm} p$ has its poles within the set of zeros of $\Lambda(\lambda)$. But from (1.5) (applied for $1<v<+\infty$ with $\Lambda(v)=\lambda(v)=0$) it follows that $\Delta(\lambda)\left(\Delta^{ \pm} p\right)(\lambda) \rightarrow 0$ as $\lambda \rightarrow v$. As $\Lambda(\lambda)$ has simple zeros only (see Section 4 of [15] and the references given there), it follows that $\Delta^{ \pm} \mathrm{p}$ has an analytic continuation outside the set $[-1,+1] \cup\{\lambda \in(-\infty,-1): \Lambda(\lambda)=0\}$.

Recall that $\Gamma^{ \pm} p$ is uniformly Hölder continuous on $[0,1]$ (cf. Corollary 5.3 of [15]). It is well known (Proposition 4.1 of [15] and the references given there) that

$$
\lim _{\epsilon \downarrow 0} \Lambda(t \pm i \epsilon)=\lambda(t) \pm i \pi t \psi(t) \neq 0 \quad(-1<t<+1)
$$

From (1.6) it is clear that the limits $\lim _{\epsilon+0} \Gamma^{+}(t \pm i \epsilon)$ and $\underset{\epsilon}{\boldsymbol{1} \downarrow 0} \Gamma^{-}(t \pm i \epsilon)$ exist $(-1<t<+1, t \neq 0)$. Further, since obviously $\Delta^{ \pm}(\lambda)$ and $\Delta^{ \pm}(\bar{\lambda})$ are complex conjugates, the Cauchy-Schwarz reflection principle implies the existence of functions $\alpha^{ \pm}, \beta^{ \pm}:(-1,0) U(0,1) \rightarrow(R$ such that

To prove that $\alpha^{ \pm}(t)=\Gamma^{ \pm}(t)$ and $\beta^{ \pm}(t)=0(0<t<1)$, we substitute $\lambda=t+i \epsilon$ and $\lambda=t-i \epsilon$ into (1.6), compute the limits as $\epsilon+0$ and add and subtract the resulting equations. Here we make use of the uniform Hölder continuity of $\Gamma^{ \pm} p$ in an essential way. We obtain the following linear system of equations:

$$
\left[\begin{array}{lc}
\lambda(t) & -\pi t \psi(t) \\
\pi t \psi(t) & \lambda(t)
\end{array}\right]\left[\begin{array}{c}
\alpha^{ \pm}(t) \\
\beta^{ \pm}(t)
\end{array}\right]=\left[\begin{array}{c}
c^{ \pm}(t) \\
\pi t \psi(t)\left(r^{ \pm} p\right)(t)
\end{array}\right], 0<t<1,
$$

where

$$
\begin{aligned}
& c^{ \pm}(t)=\left(F^{+} p\right)(t) \pm e^{-\tau / t}\left(F^{+} p\right)(-t)+f_{0}^{1} t(\mu-t)^{-1} \psi(t, \mu)\left(\Gamma^{ \pm} p\right)(\mu) d \mu \overline{+} \\
& \mp e^{-\tau / t} \int_{0}^{1} t(t+\mu)^{-1} \psi(-t, \mu)\left(\Gamma^{ \pm} p\right)(\mu) d \mu=\lambda(t)\left(\Gamma^{ \pm} p\right)(t)
\end{aligned}
$$

(cf.(1.5) with $v=t$). As the determinant $\lambda^{2}(t)+\pi^{2} t^{2} \psi(t)^{2} \neq 0$ (see Proposition 4.1 of [15] and the references given there), the linear system has a unique solution, namely $\alpha^{ \pm}(t)=\left(\Gamma^{ \pm} p\right)(t)$ and $\beta^{ \pm}(t)=0$. Hence, $\Delta^{ \pm} p$ is the analytic continuation of $\Gamma^{ \pm} p$ to the $\operatorname{set} \mathbb{A} \backslash\{[-1,0] \cup\{u \in(-\infty,-1): \Lambda(v)=0\}\}$.

$$
\text { To continue } r^{ \pm} p \text { to } \mathbb{\{}\{-1,0,1\} \text { analytically, we define }
$$ $\alpha^{ \pm}$and $\beta^{ \pm}$on ($-1,0$) (as in (1.7)) and derive in an analogous way the following linear system of equations:

$$
\left[\begin{array}{lr}
\lambda(t) & - \\
\pi t \psi(t) & \lambda(t)
\end{array}\right]\left[\begin{array}{l}
\alpha^{ \pm}(t) \\
\beta^{ \pm}(t)
\end{array}\right]=\left[\begin{array}{c}
\alpha^{ \pm}(t) \\
\pm e^{-\tau / t} \pi t \psi(t)\left(\Gamma^{ \pm} p\right)(-t)
\end{array}\right], 0<t<1,
$$

where

$$
\begin{aligned}
& d^{ \pm}(t)=\left(F^{+} p\right)(t) \pm e^{-\tau / t}\left(F^{+} p\right)(-t)-\int_{0}^{1} t(\mu-t)^{-1} \psi^{\prime}(t, \mu)\left(\Gamma^{ \pm} p\right)(\mu) d \mu^{+} \\
& \mp e^{-\tau / t} f_{0}^{1} t(t+\mu)^{-1} \psi(-t, \mu)\left(\Gamma^{ \pm} p\right)(\mu) d \mu= \pm e^{-\tau / t} \lambda(t)\left(\Gamma^{ \pm} p\right)(-t)
\end{aligned}
$$

Solving the system we get $\alpha^{ \pm}(t)= \pm e^{-\tau / t}\left(\Gamma^{ \pm} p\right)(-t)$ and $\beta^{ \pm}(t)=0$, $-1<t<0$. Hence, the analytic continuation $\Delta^{ \pm} p$ of $\Gamma^{ \pm} p$ has the property

$$
\begin{equation*}
\left(\Delta^{ \pm} p\right)(\lambda)= \pm e^{-\tau / \lambda}\left(\Delta^{ \pm} p\right)(-\lambda) \tag{1.8}
\end{equation*}
$$

So $\Delta^{ \pm} p$ does not have poles in the left half-plane and is analytic on $\mathbb{1} \backslash\{-1,0,1\}$.

To show that the singularities of $\Delta^{ \pm} p$ at +1 and -1 are removable, one has to distinguish between two cases. In case $\psi(1)=\sum_{n=0}^{N} a_{n}\left(n+\frac{1}{2}\right) H_{n}(1) P_{n}(1)=0, \Lambda(\lambda)$ has a finite and nonzero limit as $\lambda \rightarrow 1$ and $\lambda \notin[0,1]$ (see Proposition 4.1 of [15] and the references given there). Now the right-hand side of (1.6) has a finite limit as $\lambda \rightarrow 1$ and $\lambda \notin[0,1]$ (see Eq.(29.4) of [19]), and thus $\Delta^{ \pm} p$ tends to a finite limit as $\lambda \rightarrow 1$ and $\lambda \notin[0,1]$. Next assume $\psi(1) \neq 0$. If $\Delta^{ \pm} p$ would not be analytic at $\lambda=1$, it would have an essential singularity there (note that $\left(\Delta^{ \pm} p\right)(\lambda) \rightarrow\left(\Gamma^{ \pm} p\right)$ as $\lambda \uparrow 1$). According to the Casorati-Weierstrass theorem, for every $c \in \mathbb{C}$ there would be a path Γ_{c} in $\left.\mathbb{C} \backslash 0,1\right]$ such that $\left|\left(\Delta^{ \pm} p\right)(\lambda)-c\right| \rightarrow 0$ as $\lambda \rightarrow 1$ along Γ_{c}. From (1.6) it is clear that for some function γ bounded on Γ_{c} Eq.(1.6) may be written as

$$
c \psi(1) \log (\lambda-1)=\psi(1)\left(\Gamma^{ \pm} p\right)(1) \log (\lambda-1)+\gamma(\lambda) \quad ; \quad \lambda \in \Gamma_{c}
$$

([19], Eq. (29.4)). Here the branch cut of $\log (\lambda-1)$ is chosen to be the half-line $(-\infty, 1)$. For $c \neq\left(\Gamma^{ \pm} p\right)(1)$ a contradiction arises. So in this case too the function $\Delta^{ \pm} p$ is analytic at $\lambda=1$. By (1.8) it is analytic at $\lambda=-1$ too.

We now know that for any polynomial p the function $r^{ \pm} p$ has an analytic continuation to $\mathbb{q} \backslash\{0\}$. But $\Gamma^{ \pm} p=R_{+\tau}^{\boldsymbol{*}} p \pm T_{+\tau}^{\boldsymbol{*}} J p$. So $R_{+\tau}^{\boldsymbol{*}} p$ and $T_{+\tau}^{*} J p$ have analytic continuations to $\mathbb{A} \backslash\{0\}$ too. Further, (1.8) implies (1.1b).

Finally, if $\operatorname{Ec}\{\lambda: \operatorname{Re} \lambda \geq 0\}$ is bounded, $[0,1] \subset E$ and $\bar{E} \cup\{\nu \in(1,+\infty): \Lambda(\nu)=0\}=\emptyset$, then $\Lambda(\lambda)$ is Hollder continuous and bounded away from zero on $E \backslash[0,1]$. Using this we easily prove that $\Gamma^{ \pm} p$ (and thus $R_{+\tau}^{*} p$ and $T_{+\tau}^{*} J p$) are uniformly Hölder continuous on E (cf.(1.6)). This completes the proof.a

COROLLARY 1.2. Let $0<a_{0} \leq 1$ and $-a_{0} \leq a_{n} \leq a_{0}$, and put $m=\max \left\{n: a_{n-1}=1\right\}$ for $a_{0}=1$ and $m=0$ for $0<a_{0}<1$. Let $s=m$ for even m and $s=m+1$ for odd m. Then the following identities are equivalent:
(i) $\mathrm{R}_{+\tau}^{*} \mathrm{p}+\mathrm{T}_{+\tau}^{*} \mathrm{q}=0$;
(ii) $R_{+\tau} p+T+\tau$ has an analytic continuation to a neighbourhood of $\lambda=0$;
(iii) there exists $h_{0} \in \operatorname{span}\left\{P_{0}, P_{1}, \ldots P_{S-1}\right\}$ such that $p=T h_{0}$ and $\mathrm{q}=-(\tau \mathrm{A}+\mathrm{T}) \mathrm{h}$, where $\mathrm{A}=\mathrm{I}-\mathrm{B}$ and T and B are given by (0.3).
Here p and q are polynomials. In particular, if $0<a<1$, there is a one-to-one correspondence between pairs of polynomials p, q and functions $R_{+\tau}^{*}+T_{+\tau}^{*} q$.

PROOF. (i) \Rightarrow (ii) Trivial.
(iii) $\Rightarrow(i)$ Let $p=T h_{0}$ and $q=-(\tau A+T) h_{0}$ for some $h_{0} \in \operatorname{span}\left\{P_{0}, P_{1}\right.$, \ldots, P_{s-1}. From Proposition 4.2 of [15] it appears that span $\left\{P_{0}, P_{1}, \ldots P_{s-1}\right\}$ is the "singular subspace" H_{0}. connected to the spectrum of $\mathrm{T}^{-1} A$ at $\lambda=0$. Using the definitions of $\mathrm{R}_{+_{\tau}}$ and $T_{+\tau}$ (i.e., (2.2a)-(2.2b) in [15]) and the orthogonality properties (1.6a)-(1.6b) in [15] we obtain

$$
\begin{gathered}
R_{+\tau}^{*} p+T_{+\tau}^{*} q=P_{+}\left(V_{\tau}^{*}\right)^{-1}\left\{\left(U_{p}^{\tau}\right)^{*} T_{0}-\left(U_{m}^{\tau}\right)^{*}(\tau A+T) h_{0}\right\}= \\
=P_{+}\left(V_{\tau}^{*}\right)^{-1}\left\{T h_{0}-\left(I-\tau A T^{-1}\right)(\tau A+T) h_{0}\right\}=0
\end{gathered}
$$

where we have used Proposition III 3.2 of [12]. (ii) \Rightarrow (iii) If $R_{+T}^{*}+T_{+\tau}^{*} q$ has an analytic continuation at $\lambda=0$, it is an entire function (see Theorem 1.1). Since $\psi(v, \mu)$ is a binomial in v and $\mu, F^{+} p$ is a polynomial whenever p is a polynomial, and $\Lambda(\lambda)$ has a zero at infinity of order s (see Section 4
of [15]), formula (1.6) implies that

$$
\begin{equation*}
\left(\Delta^{ \pm} p\right)(\lambda)=O\left(\lambda^{\max (N, \operatorname{deg} p)}\right)(\lambda \rightarrow \infty) . \tag{1.9}
\end{equation*}
$$

Hence, $R_{+\tau}^{*} p+T_{+\tau}^{*} q=\frac{1}{2} \Gamma^{+}(p+J q)+\frac{1}{2} \Gamma^{-}(p-J q)$ is a polynomial of degree at most $\max (N, \operatorname{deg} p, \operatorname{deg} q$).

As derived at the beginning of the proof of Theorem 1.1,

$$
\begin{aligned}
&\left(\mathrm{F}^{+} \mathrm{R}_{+\tau}^{*} \mathrm{p}\right)(\nu)=\left(\mathrm{F}^{+} \mathrm{p}\right)(\nu)-\mathrm{e}^{-\tau / \nu}\left(\mathrm{F}^{+} \mathrm{T}_{-\tau}^{*} \mathrm{p}\right)(\nu) ; \\
&(\nu \in[-1,+1] \cup\{\mu \notin[-1,+1]: \Lambda(\mu)=0\}) \\
&\left(\mathrm{F}^{+} \mathrm{T}_{+\tau}^{*} q\right)(\nu)=e^{-\tau / \nu}\left\{\left(\mathrm{F}^{+} \mathrm{q}\right)(\nu)-\left(\mathrm{F}^{+} \mathrm{R}_{-\tau}^{*} q\right)(\nu)\right\}
\end{aligned}
$$

So ($\left.F^{+}\left(q-R_{-\tau}^{*} q-T_{-\tau}^{*} p\right)\right)(\tau)=e^{+\tau / v_{r}(v)}$ for some polynomial r. But by Corollary 5.3 of [15] the left-hand side is Holder continuous on $[-1,+1]$ except for a jump at $\nu=0$, and therefore it is bounded in a neighbourhood of $v=0$. So $r(v) \equiv 0$, and thus

$$
\left(I-R_{-\tau}^{*}\right) q-T_{-\tau}^{*} p \in K_{-r F}{ }^{+}=\operatorname{span}\left\{T P_{0}, T P_{1}, \ldots, T P_{S-1}\right\}
$$

(cf.[15], Theorem 5.1). Therefore, there exists a unique $k_{0} \in H_{0}=\operatorname{span}\left\{P_{0}, P_{1}, \ldots, P_{S-1}\right\}$ such that $\left(I-R_{-\tau}^{*}\right) q-T_{-\tau}^{*} p=T k_{0}$. Lemma 2.1 of [15] implies that

$$
R_{+\tau}^{+} q-T_{-\tau}^{+} p=T k_{0}
$$

Substitute Eq. (2.1) of [15], premultiply by P_{p}^{*} and P_{m}^{*} and conclude that

$$
\left(V_{\tau}^{+}\right)^{-1}\left(P_{+} q_{-} P_{-} p\right)=T k_{0}
$$

But $\mathrm{TV}_{\tau}=\mathrm{V}_{\tau}^{+} \mathrm{T}([15],(1.10))$. As p and q are polynomials, one has $p=T p_{0}$ and $q=T q_{0}$ for certain $p_{0}, q_{0} \in \operatorname{span}\left\{P_{0}, P_{1}, \ldots, P_{s-1}\right\}$. Note that $P_{+} q_{0}-P_{-} p_{0}=V_{\tau} k_{0}=P_{+} k_{0}+P_{-}\left(I-\tau T^{-1} A\right) k_{0}([15],(1.8 b))$. So $P_{+} q_{0}=P_{+} k_{0}$ and $-P_{-} p_{0}=P_{-}\left(I-\tau T^{-1} A\right) k_{0}$. As these equations concern polynomials, we conclude that $q_{0}=k_{0}$ and $-p_{0}=\left(I-\tau T^{-1} A\right) k_{0}$. Put $h_{0}=-\left(I-\tau T^{-1} A\right) k_{0}$. Then $p=T h_{0}$ and $-(\tau A+T) h_{0}=(\tau A+T)\left(I-\tau T^{-1} A\right) k_{0}$
$=\tau A k_{0}+T k_{0}-\tau A k_{0}-\tau^{2} A T^{-1} A k_{0}=T k_{0}=\dot{q}$, because $\left(T^{-1} A\right)^{2} k_{0}=0 \quad$ ([12], Proposition III3.2).ם

From the corollary it follows that $R_{+\tau}^{*} p$ and $T_{+\tau}^{*} J p$ have an essential singularity at $\lambda=0$ whenever $p \neq 0$. It is more complicated to find all polynomials p such that $\Gamma^{ \pm} p=R_{+\tau}^{*} p \pm T_{+\tau}^{*} J p$ $=0$. Such a polynomial p has the form $p=T h_{0}$ with deg $h_{0 \leq s-1}$ and $\pm J p=-(\tau A+T) h_{0}\left(\right.$ thus $\left.(I \pm J) p=-\tau A h_{0}\right)$. If $m=\max \left\{n: a_{n-1}=1\right\}$ is even, then $s=m$ and $T^{-1} A h_{0}=0$ ([15], Proposition 4.2), and thus $(I \pm J) p=0$ (i.e., p is an odd resp. even polynomial; thus $h_{0}=0$ is an even resp. odd polynomial). If $m=\max \left\{n: a_{n-1}=1\right\}$ is odd, then $\mathrm{T}^{-1} \mathrm{Ah}_{0} \in \operatorname{span}\left\{\mathrm{~T}^{-1} \mathrm{P}_{\mathrm{m}}\right\}$ which is a set of even polynomials (cf.[15], Proposition 4.2). Then $\Gamma^{+} p=0$ and $p=$ Tho imply that the even polynomial $(I+J) p \in \operatorname{span}\left\{P_{m}\right\}$, and thus $(I+J) p=0$ (i.e., p is odd and therefore h_{0} is even). On the contrary, for m odd $\Gamma^{-} p=0$ and $p=T h_{0}$ imply that the odd polynomial (I-J)p $\in \operatorname{span}\left\{P_{m}\right\}$. As deg $h_{0} \leq s-1=m$, we get $h_{0}=\frac{1}{2}(I-J) h_{0}+\frac{1}{2}(I+J) h_{0} \in \operatorname{span}\left(P_{1}, P_{3}, \ldots\right.$, $\left.P_{m}\right\} \oplus \operatorname{span}\left\{T^{-1} P_{m}\right\}$ and thus for $h_{0}=\xi_{1} P_{1}+\xi_{3} P_{3}+\ldots+\varepsilon_{m} P_{m}+n T^{-1} P_{m}$ the identity ($I-J$) $T h_{0}=-\tau A h_{0}$ (and thus ($\left.I+J\right) h_{0}=-\tau T-1 A h_{0}$) yields $2 n T^{-1} P_{m}=-\tau \xi_{m}\left(1-a_{m}\right) T^{-1} P_{m}$. So $n=-\frac{1}{2} \tau\left(1-a_{m}\right) \xi_{m}$. Summarizing these results we get

$$
\left\{p: \Gamma^{+} p=0\right\}=\operatorname{span}\left\{T P_{0}, T P_{2}, \ldots, T P_{s-2}\right\}
$$

(1.10)

$$
\left\{p: \Gamma^{-} p=0\right\}=\left\{\begin{array}{l}
\operatorname{span}\left\{T P_{1}, \mathrm{TP}_{3}, \ldots, \mathrm{TP}_{m-1}\right\} \text { for even } m \\
\operatorname{span}\left\{T P_{1}, \mathrm{TP}_{3}, \ldots, \mathrm{TP}_{m-2}\right\} \oplus \\
\oplus \operatorname{span}\left\{\mathrm{TP}_{\dot{m}}-\frac{1}{2} \tau\left(1-a_{m}\right) \mathrm{P}_{\mathrm{m}}\right\} \text { for odd } \mathrm{m}
\end{array}\right.
$$

Observe that $\operatorname{dim}\left\{p: \Gamma^{ \pm} p=0\right\}=\frac{1}{2} s$ in all cases.
We conclude this section with historical references. Eq. (1.5) (or (1.6)) is a linear singular integral equation for $\Gamma^{ \pm} p=0$ and the problem is to find a solution that admits an analytic continuation to $\mathbb{A}\{0\}$. Such linear singular equations appeared in $[18,21,10]$. Adding and subtracting Eq.(1.5) (for $\Gamma^{+} p$) and Eq. (1.5) ' (for $\Gamma^{-} p$) and using that $R_{+\tau}^{*} p=\frac{1}{2}\left(\Gamma^{+} p+\Gamma^{-} p\right)$
and $T_{+\tau}^{*} J p=\frac{1}{2}\left(\Gamma^{+} p-\Gamma^{-} p\right)$, one obtains a coupled system of linear singular integral equations for $R_{+\tau}^{*} p$ and $T_{+}^{*} J p$. For $p=P_{n}$ the identities $J P_{n}=(-1)^{n} P_{n}, F^{+} P_{n}=H_{n}$ and $J H_{n}=(-1)^{n} H_{n}$ can be applied to obtain a coupled system of linear singular integral equations for $R_{+\tau}^{*} P_{n}$ and $T+{ }_{+\tau}^{*} P_{n}$. They were found by Mullikin ([18],(3.39)(3.40)) and Sobolev ([21],(35)-(36)). For $p=P_{n}$ the same transformations applied to (1.5) lead to separate linear singular integral equations for $\Gamma^{+} P_{n}$ and $\Gamma^{-} P_{n}([10],(12)-(13))$.
2. THE X- AND Y-FUNCTIONS

In astrophysics the $X-$-and Y-functions are very important, at least from a historical point of view. First introduced for the isotropic case by Ambartsumian [1], they were studied further and generalized for polynomial phase functions by Chandrasekhar [5]. In a first mathematical study Busbridge [2] found them in the form

$$
\text { (2.1) } X(\mu)=1+\int_{0}^{\tau} e^{-x / \mu} \xi(x) d x, Y(\mu)=e^{-\tau / \mu}+\int_{0}^{\tau} e^{-(\tau-x) / \mu} \xi(x) d x,
$$

where $\xi:(0, \tau) \rightarrow L_{1}(0, \tau)$ is the unique solution of the convolution equation

$$
\begin{equation*}
\xi(x)-\int_{0}^{\tau} \kappa(x-y) \xi(y) d y=\kappa(x) \quad(0<x<\tau) \tag{2.2}
\end{equation*}
$$

and $k:(-\tau,+\tau) \rightarrow \mathbb{R}$ is what we call the dispersion kernel
(2.3) $k(x)=\int_{0}^{1} z^{-1} \psi(z) e^{-|x| / z} d z \quad(0 \neq x \in \mathbb{R})$.

The dispersion kernel and the dispersion function are related as follows:

$$
\begin{equation*}
\Lambda(\lambda)=1-\int_{-\infty}^{+\infty} e^{x / \lambda} k(x) d x \quad, \quad \operatorname{Re} \lambda=0 \tag{2.4}
\end{equation*}
$$

In [13] (Theorem 5.1) it was proved that a solution ξ of Eq. (2.2) in $L_{1}(0, \tau)$ is unique and for this solution the functions X and Y in (2.1) satisfy two systems of singular
integral equations:
(1) the (nonlinear) X - and Y-equations

$$
\begin{equation*}
X(\mu)=1+\mu \int_{0}^{1} \frac{X(\mu) X(\nu)-Y(\mu) Y(\nu)}{\nu+\mu} \psi(\nu) d \nu ; \tag{2.5a}
\end{equation*}
$$

$$
\text { (2.5b) } \quad Y(\mu)=e^{-\tau / \mu}+\mu \int_{0}^{1} \frac{X(\mu) Y(\nu)-Y(\mu) X(\nu)}{\nu-\mu} \psi(\nu) d \nu \text {; }
$$

(2) the linear X - and Y-equations
(2.6a) $\quad \Lambda(\mu) X(\mu)=1+\mu \int_{0}^{1} \frac{\psi(v) X(v)}{v-\mu} d v-e^{-\tau / \mu} \mu \int_{0}^{1} \frac{\psi(v) Y(v)}{v+\mu} d v$;
(2.6b) $\quad \Lambda(\mu) Y(\mu)=e^{-\tau / \mu}+\mu \int_{0}^{1} \frac{\psi(v) Y(\nu)}{v-\mu} d v-e^{-\tau / \mu} \int_{0}^{1} \frac{\psi(\nu) X(\nu)}{\nu+\mu} d v$.

The linear equations (2.6) were first derived from
Chandrasekhar's X - and Y-equations (2.5) by Busbridge ([2], Section 40). For nonnegative $\psi(\mu)$ Busbridge [2] proved Eq. (2.2) to have a solution ξ, provided $\int_{0}^{1} \psi(\mu)$ d $\mu \leq \frac{1}{2}$.

PROPOSITION 2.1. Let $0 \leq a_{0} \leq 1$ and $-a_{0} \leq a_{n} \leq a_{0} \quad(n=1,2, \ldots, N)$. If either $k(x)$ is nonnegative on $(0, \tau)$ or $\int_{0}^{1}|\psi(z)| d z \leq \frac{1}{2}$, then Eq. (2.2) has a unique solution ξ in $L_{1}(0, \tau\}$.

PROOF. If $0 \leq a_{0} \leq 1$ and $-a_{0} \leq a_{n} \leq a_{0}(n=1,2, \ldots N)$, one has
$1-2 \int_{0}^{1} \psi(z) d z=\Lambda(\infty) \geq 0(c f .[15]$, Section 4$)$, and therefore
$\int_{0}^{1} \psi(z) d z \leq \frac{1}{2}$. So if $k(x) \geq 0$ on $(0, \tau)$ (and thus on $\left.(-\tau,+\tau)\right)$, then

$$
\int_{-\tau}^{+\tau}|\kappa(x)| d x=2 \int_{0}^{\tau} \kappa(x) d x=2 \int_{0}^{1} \psi(z)\left(1-e^{-\tau / z}\right) d z<1 ;
$$

$$
\begin{gathered}
-\tau \\
1
\end{gathered}
$$

if $\int_{0}|\psi(z)| d z \leq \frac{1}{2}$, then

$$
\int_{-\tau}^{+\tau}|\kappa(x)| d x=2 \int_{0}^{\tau}|\kappa(x)| d x \leq 2 \int_{0}^{1}|\psi(z)|\left(1-e^{-\tau / z}\right) d z<1 .
$$

As the norm of the operator $\left(K_{\zeta}\right)(x)=\int \kappa(x-y) \zeta(y) d y$ does not exceed $\int^{+t}|k(x)| d x$, the norm of K is sfrictly less than +1 , which conpletes the proof. \quad

The generalization of this proposition is not straightforward. To prove the existence of a solution of Eq.(2.2) in general, we establish the following lemma first.

LEMMA 2.2. Let $0 \leq a_{0} \leq 1$ and $-a_{0} \leq a_{n} \leq a_{0}(n=1,2, \ldots, N)$. Then there exists a unique pair of functions X and Y that are analytic on $\Phi_{\infty} \sim\{0\}$ and satisfy the linear $X-$ and Y-equations (2.6). For this pair of functions one can find polynomials $p^{ \pm}$such that

$$
X(\mu) \pm Y(\mu)=\left(\Gamma^{ \pm} p^{ \pm}\right)(\mu), \quad 0 \leq \mu \leq 1 .
$$

PROOF. Let us rewrite (1.6) using Eqs (4.2)-(4.3a) of [15] and obtain

$$
\Lambda(\lambda)\left(\Delta^{ \pm} p\right)(\lambda)-\lambda \int^{b}(\mu-\lambda)^{-1} \psi(\mu)\left(\Gamma^{ \pm} p\right)(\mu) \mathrm{d} \mu \pm
$$

$$
\begin{equation*}
\pm \lambda e^{-\tau / \lambda} \int_{0}^{1}(\mu+\lambda)^{-1} \psi(\mu)\left(\Gamma^{ \pm} p\right)(\mu) d \mu=r^{ \pm}(\lambda) \pm e^{-\tau / \lambda} r^{ \pm}(-\lambda), \tag{2.7}
\end{equation*}
$$

where $r^{ \pm}(\lambda)$ is the following polynomial of degree $\leq \max$ (N-s, $\operatorname{deg} p-s)$:
(2.8) $\quad r^{ \pm}(\lambda)=\left(F^{+} p\right)(\lambda)-\lambda \sum_{n=0}^{N} a_{n}\left(n+\frac{1}{2}\right) \int_{0}^{1} \frac{H_{n}(\lambda)-H_{n}(\mu)}{\lambda-\mu} P_{n}(\mu)\left(\Gamma^{ \pm} p\right)(\mu) d \mu$. Next write $\Lambda(\lambda)=1+\lambda \int(\mu-\lambda)^{-1} \psi(\mu) d \mu-\lambda \int(\mu+\lambda)^{-1} \psi(\mu) d \mu$ (cf.[15], (4.3a)), substitute ${ }^{0}(1.8)$ and rewrife (2.7) as follows:
$\left(\Delta^{ \pm} p\right)(\lambda)=\left\{r^{ \pm}(\lambda) \pm e^{-\tau / \lambda} r^{ \pm}(-\lambda)\right\}+\lambda \int_{0}^{1} \frac{\left(\Delta^{ \pm} p\right)(\mu)-\left(\Delta^{ \pm} p\right)(\lambda)}{\mu-\lambda} \psi(\mu) d \mu \overline{+}$ (2.9)

$$
\bar{f}^{\lambda} e^{-\tau / \lambda} \int_{0}^{1} \frac{\left(\Delta^{ \pm} p\right)(\mu)-\left(\Delta^{ \pm} p\right)(-\lambda)}{\mu+\lambda} \psi(\mu) d \mu .
$$

Suppose p is a polynomial for which $r^{ \pm}=0$ (see (2.8)). Then p satisfies Eq. (2.9) with $r^{ \pm}(\lambda) \pm e^{-\tau / \lambda} r^{ \pm}(-\lambda) \equiv 0$. If $\Delta^{ \pm} p$ would have an essential singularity at $\lambda=0$, then, because of
the identity $\lim \left(\Delta^{ \pm} p\right)(\lambda)=\left(\Gamma^{ \pm} p\right)(0)($ as $\lambda \rightarrow 0$, Re $\lambda \geq 0$), for every $c \neq \Gamma^{ \pm}(0)$ there would exist a path Γ_{c} in the open left halfplane such that $\left|\left(\Delta^{ \pm} p\right)(\lambda)-c\right| \rightarrow 0$ as $\lambda \rightarrow 0$ along Γ_{c}. Then $E q .(2.9)$ (for $\lambda \rightarrow 0$ along Γ_{c}) would imply $c=0$, contradicting the free choice of c. So $\Delta^{ \pm} p$ would be analytic at $\lambda=0$ and therefore $\Gamma^{ \pm} p$ would vanish. Conversely, if $\Gamma^{ \pm} p=0$, then $F^{+} p=0$ (cf. (1.10)) and thus $r^{ \pm}=0(c f .(2.8))$.

If the non-conservative case $s=0$ we have $r^{ \pm}=0$ if and only if $p=0$, and so a simple dimension argument involving the vector space of polynomials of degree $\leq N$ yields the existence of a unique polynomial $p^{ \pm}$such that
$r^{ \pm}(\lambda)=\left(F^{+} p^{ \pm}\right)(\lambda)-\lambda \sum_{n=0}^{N} a_{n}\left(n+\frac{1}{2}\right) \int_{0}^{1} \frac{H_{n}(\lambda)-H_{n}(\mu)}{\lambda-\mu} P_{n}(\mu)\left(r^{ \pm} p^{ \pm}\right)(\mu) d \mu \equiv 1$.
Then $X=\frac{1}{2}\left(\Delta^{+} p+\Delta^{-} \mathrm{p}^{-}\right)$and $Y=\frac{1}{2}\left(\Delta^{+} \mathrm{p}^{+}-\Delta^{-} \mathrm{p}^{-}\right)$are analytic functions on $\mathbb{T}_{\infty} \backslash\{0\}$ that satisfy the linear equations (2.6). (To see this, add and subtract Eq. (2.7) for $\Delta^{+} \mathrm{p}^{+}$and Eq. (2.7) for $\Delta^{-} \mathrm{p}^{-}$, and use that $r^{+} p=r^{-} p^{-} \equiv 1$). For general s we remark that $R^{ \pm} p=r^{ \pm}$maps the space of polynomials of degree $\leq N$ into the space of polynomials of degree $\leq N-s$, while $\left\{p: R^{ \pm} p=0\right\}$ is a space of dimension $\leq s$. Hence, $R^{ \pm}$is surjective, and so there exists a polynomial $\mathrm{p}^{ \pm}$of degree $\leq \mathrm{N}$ such that $\mathrm{r}^{ \pm}(\lambda) \equiv 1$. In the same way as for $s=0$ we prove the existence of analytic functions X and Y on $\mathbb{T}_{\infty} \backslash\{0\}$ that satisfy $\operatorname{Eqs}(2.6)$.

It remains to prove the uniquness of solutions X and Y that are analytic on $\mathbb{C}_{\infty} \backslash\{0\}$. But this is clear from the uniqueness of a solution $\Delta^{ \pm} p$ of Eq. (2.7) that is analytic on $\mathbb{Q}_{\infty} \backslash\{0\}$ and continuous on the closed right half-plane. The latter can be shown with the help of the argument of the second paragraph of this proof.o

THEOREM 2.4. Let $0 \leq a_{0} \leq 1$ and $-a_{0} \leq a_{n} \leq a_{0} \quad(n=1,2, \ldots, N)$.
Then there exists a unique solution ξ of the convolution equation (2.2) in $L_{1}(0, \tau)$. The functions X and Y defined in terms of ξ by (2.1) satisfy Eqs (2.5) and (2.6).

PROOF. According to Lemma 2.2 there exist polynomials
$p^{ \pm}$such that

$$
\begin{aligned}
& X(\mu)=\frac{1}{2}\left[R_{+\tau}^{*}\left(p^{+}+p^{-}\right)\right](\mu)+\frac{1}{2}\left[T_{+\tau}^{*} J\left(p^{+}-p^{-}\right)\right](\mu) ; \\
& Y(\mu)=\frac{1}{2}\left[R_{+\tau}^{*}\left(p^{+}-p^{-}\right)\right](\mu)+\frac{1}{2}\left[T_{+\tau}^{*} J\left(p^{+}+p^{-}\right)\right](\mu) .
\end{aligned}
$$

As the function X is uniformly Hölder continuous on any bounded subset E of the closed right half-plane (see Theorem 1.1), any Hölder exponent $0<\alpha<1$ may be taken (which appears from the proof) and $X(0)=1$, it follows that there exists $\frac{1}{2}<\alpha<1$ such that $|(X(\mu)-1) / \mu|=O\left(|\mu|^{\alpha-1}\right)(\mu+0$, Re $\mu=0)$. Therefore, $\int_{-i \infty}^{+i \infty}\left|X\left(\mu^{-1}\right)-1\right|^{2} d|\mu|<+\infty$. So there exists $\xi \in L_{2}(-\infty,+\infty)$ such that $X(\mu)-1=\int^{+\infty} e^{-x / \mu} \xi(x) d x$, Re $\mu=0$. However, X has an essential singularity at $\mu=0$ of order $\leq \tau$ (see Corollary 1.2) and is analytic on the open right half-plane and continuous up to the imaginary line. The Paley-Wiener theorem implies that $\xi(x)=0$ for $\mathrm{x} \notin(0, \tau)$, and therefore $\xi \in L_{2}(0, \tau) \subset L_{1}(0, \tau)$.
This proves the first part of (2.1). The second part follows with the help of the symmetry $Y(\mu)=e^{-\tau / \mu} X(-\mu)$.

Using the first part of (2.1) one easily reduces $\Lambda(\mu) X(\mu)=\Lambda(-\mu) X(\mu)$ to

$$
\Lambda(\mu) X(\mu)=1+\int_{-\infty}^{+\infty} e^{-x / \mu}\left\{\xi(x)-\int_{0}^{\tau} k(x-y) \xi(y) d y-\kappa(x)\right\} d x,
$$

where $\xi(x)=0$ for $x \notin(0, \tau)$. We have to show that
(2.10) $\Lambda(\mu) X(\mu)=1+\int_{-\infty}^{0} e^{-x / \mu} \ell(x) d x+e^{-\tau / \mu} \int_{\tau}^{+\infty} e^{(\tau-x) / \mu} \ell(x) d x, \operatorname{Re} \mu \geq 0$,
where $\ell \in L_{1}(-\infty,+\infty)$. (We have put $\ell(x)=0$ for $0 \leq x \leq T$).
Consider the Wiener algebra A of functions h on the extended imaginary line of the form $h(\mu)=c+\int^{+\infty} e^{-x / \mu} z_{z}(x) d x$ with $c \in \mathbb{C}$ and $z \in L_{1}(-\infty,+\infty)$ (see [7] for this algebra; however, in [7] the Fourier transform is used). Then $\Lambda(\mu) X(\mu)$ belongs to A for $c=1$ and $z=\ell$. According to Eq.(2.6a) one can write

$$
\Lambda(\mu) X(\mu)=1+g_{-}(\mu)+e^{-\tau / \mu} g_{+}(\mu) \quad(\operatorname{Re} \mu=0),
$$

where $g_{-}(\mu)=\mu \int^{1}(\nu-\mu)^{-1} \psi(\nu) X(\nu) d v$ is analytic on the open left half-plane and Continuous up to the boundary, whereas $g_{+}(\mu)=$ $-\mu \int_{0}^{1}(\nu+\mu)^{-1} \psi(v) Y(\nu) d v$ is analytic on the open right half-plane and continuous up to the boundary. Hence, $\Lambda(\mu) X(\mu)$ admits the representation (2.10) and Eq. (2.2) is clear.

The derivation of the non-linear equations (2.5) from (2.1) and (2.2) is a standard argument that can be found in Section 5 of [13], for instance.

In many cases the functions X and Y in (2.1) do not provide the only solutions of Eqs (2.5) and (2.6). If the dispersion function Λ has zeros on $\mathbb{\Phi}_{\infty} \backslash[-1,+1]$, these equations have infinitely many solutions. However, imposing suitable constraints one may specify X and Y by Eqs (2.5) (or (2.6)) completely (cf. [16,17]; also the erratum in Astrophys. J. 147, 858, 1967).
3. REDUCTION TO X- AND Y-functions

In Section 3 of [15] the search for analytic expressions for the reflection and transmission operators was reduced to the computation of the $2 N+2$ functions $R_{+\tau}^{*} P_{n}$ and $T_{+\tau}^{*} P_{n}(n=0,1, \ldots, N)$. In the present section a further reduction is accomplished, namely to X - and Y-functions.

THEOREM 3.1. Let $0 \leq a_{0} \leq 1$ and $-a_{0} \leq a_{n} \leq a_{0} \quad(n=1,2, \ldots, N)$.
For $n=0,1, \ldots, N$ there exist unique polynomials q_{n} and s_{n} such that

$$
\begin{align*}
& \left(R_{+\tau}^{*} P_{n}\right)(\mu)=q_{n}(\mu) X(\mu)+(-1)^{n_{n}} S_{n}(-\mu) Y(\mu) ; \tag{3.1a}\\
& \left(T_{+\tau}^{*} P_{n}\right)(\mu)=S_{n}(\mu) X(\mu)+(-1)^{n} q_{n}(-\mu) Y(\mu) \tag{3.1b}
\end{align*}
$$

Here the degrees of q_{n} and s_{n} do not exceed $\max (N, n)$. The polynomials $t_{n}^{ \pm}=q_{n} \pm(-1)^{n_{s}}{ }_{n}$ satisfy the linear equation

$$
t_{n}^{ \pm}(\mu)=\mu \int_{0}^{1} \frac{\psi(\mu, v) t_{n}^{ \pm}(\nu)-\psi(\gamma, v) t_{n}^{ \pm}(\mu)}{v-\mu} X(\nu) d \nu \pm
$$

$$
\begin{equation*}
\pm \mu \int_{0}^{1} \frac{\psi(\mu, v) t_{n}^{ \pm}(-v)-\psi(\gamma, v) t_{n}^{ \pm}(-\mu)}{v-\mu} Y(v) d \nu+H_{n}(\mu) . \tag{3.2}
\end{equation*}
$$

In the next section we shall investigate the properties of Eq. (3.2) further. Here we mainly aim at proving the representation (3.1).

PROOF OF THEOREM 3.1. Let P_{n} be the ($n+1$)-dimensional
 we show that for $p, q \in P$ the function $p X+q Y=0$ if and only if $p=q=0$. This will imply the uniqueness of the polynomials q_{n} and s_{n} in (3.1) once the representation (3.1) has been established. If q would be non-zero, then $r=Y / X$ would be a rational function satisfying $r(\lambda) r(-\lambda) \equiv 1$ and $\lim _{\lambda \downarrow 0} r(\lambda)=0$ (this follows from the identities $X(-\mu)=e^{-\tau / \mu} Y(\mu), X(0)=1$ and $Y(0)=0$, which in turn follow from (2.1)). Contradiction. So $p=q=0$. Hence, for $n=0,1$, 2,... the set

$$
z_{n}^{ \pm}=\left\{t X \pm(J t) Y: t \in P_{n}\right\}
$$

is a complex vector space of dimension $n+1$.
Recall that $X \pm Y=R_{+\tau}^{*} p^{ \pm} \pm T_{+\tau}^{*} J^{ \pm}$for some $p^{ \pm} \in P_{N}$. So using the commutator relations (2.17a)-(2.17b) repeatedly, one proves the existence of polynomials $q_{1}^{ \pm}$and $q_{2}^{ \pm}$such that

$$
\begin{equation*}
t X \pm(J t) Y=R_{+\tau}^{*} q_{1}^{ \pm} \pm T_{+\tau}^{*} \mathrm{Jq}_{2}^{ \pm} . \tag{3.3a}
\end{equation*}
$$

However, $f=t X \pm(J t) Y$ satisfies the symmetry $f(\mu)= \pm e^{-\tau / \mu_{f}(-\mu)}$. So using (1.1b) we get

$$
\begin{equation*}
t X \pm(J t) Y=R_{+\tau}^{*} q_{2}^{ \pm} \pm T_{+\tau}^{*} J q_{1}^{ \pm} \tag{3.3b}
\end{equation*}
$$

Subtracting (3.3a) and (3.3b) and applying (1.10) yields that $q_{1}^{ \pm}-q_{2}^{ \pm} \in\left\{p \in P: \Gamma^{\dagger} p=0\right\}$. Hence, for $n \geq N$ we have

$$
Z_{n}^{ \pm} \subset\left\{\Gamma^{ \pm} p: p \in P_{n}\right\}+\left\{T_{+\tau}^{*} J q: \Gamma^{\mp} q=0\right\}
$$

But the left-hand side is a space of dimension $n+1$, whereas the right-hand has dimension $\leq\left(n+1-\frac{1}{2} s\right)+\frac{1}{2} s=n+1$. So equality holds and therefore there exist polynomials q_{n} and s_{n} such that $R_{+\tau}^{*} P_{n}=$ $\frac{1}{2} \Gamma^{+} P_{n}+\frac{1}{2} \Gamma^{-} P_{n}=q_{n} X+s_{n} Y$. With the help of the symmetries (1.1b), $Y(\mu)=e^{-\tau / \mu_{X}(-\mu)}$ and $J P_{n}=(-1)^{n} P_{n}$ we derive the other one of the representations (3.1). Furthermore, for $n \geq N$ we necessarily have $\operatorname{deg} q_{n} \leq n$ and $\operatorname{deg} s_{n} \leq n$.

Note that, for $t_{n}^{ \pm}=q_{n} \pm(-1)^{n} s_{n}$,

$$
\begin{equation*}
\Gamma^{ \pm} P_{n}=t_{n}^{ \pm} X \pm\left(J t_{n}^{ \pm}\right) Y \in Z_{\max }(n, N) \cdot \tag{3.4}
\end{equation*}
$$

Substituting this into (1.6) (with $p=P_{n}, F^{+}{ }_{p}=H_{n}$; see Section 4 of [15]) and employing the linear X - and Y-equation (2.6) one obtains

$$
\begin{equation*}
Q_{n}^{ \pm}(\lambda) \pm e^{-\tau / \lambda} Q_{n}^{ \pm}(-\lambda)=H_{n}(\lambda) \pm e^{-\tau / \lambda} H_{n}(-\lambda), \tag{3.5}
\end{equation*}
$$

where $Q_{n}^{ \pm}$is the following polynomial:

$$
\begin{align*}
Q_{n}^{ \pm}(\lambda) & =t_{n}^{ \pm}(\lambda)-\lambda \int_{0}^{1} \frac{\psi(\lambda, \mu) t_{n}^{ \pm}(\mu)-\psi(\mu, \mu) t_{n}^{ \pm}(\lambda)}{\mu-\lambda} X(\mu) d \mu \mp \\
& \mp \int_{0}^{1} \frac{\psi(\lambda, \mu) t_{n}^{ \pm}(-\mu)-\psi(\mu, \mu) t_{n}^{ \pm}(-\lambda)}{\mu-\lambda} Y(\mu) d \mu . \tag{3.6}
\end{align*}
$$

As $Q_{n}^{ \pm}$and H_{n} are polynomials, (3.5) impiies $Q_{n}^{ \pm}=H_{n}$ 。 0
The representations (3.1) for $\varphi_{n}=R_{+T}^{*} P_{n}$ and $\psi_{n}=T_{+T}^{*} P_{n}$ were first stipulated by Sobolev ([21],(47)-(48)), but no information was given on the conditions under which (3.1) would be valid nor on the uniqueness of the polynomials q_{n} and s_{n}. The equations (3.2) were first obtained by Hovenier ([10],(35)(36)) for the non-conservative case.
4. COEFFICIENT POLYNOMIALS AND THEIR CONSTRAINTS

In this section we study the"coefficient polynomials" $t_{n}^{ \pm}$ in detail.

PROPOSITION 4.1. Let $0 \leq a_{0} \leq 1$ and $-a_{0} \leq a_{n} \leq a_{0} \quad(n=1,2, \ldots, N)$. Then for certain $\left(\xi_{n}\right){ }_{n=0}^{k}$ the polynomial $\sum_{n=0}^{k} \xi_{n} t_{n}^{ \pm}=0$ if and only if $\sum_{n=0}^{K} \xi_{n} P_{n}$ belongs to the kernel of $\Gamma^{ \pm}$. In particular, if $0 \leq a_{0}<1$, then the polynomials $t_{n}^{ \pm}(n=0,1,2, \ldots)$ are linearly independent.

PROOF. If $\sum_{n=0}^{K} \xi_{n} t_{n}^{ \pm}=\dot{0}$, then (3.4) yields $\Gamma^{ \pm}\left(\sum_{n=0}^{k} \xi_{n} P_{n}\right)=0$. Conversely, if $r^{ \pm}\left(\sum_{n=0}^{k} \xi_{n} P_{n}\right)=0$, then for $t=\sum_{n=0}^{k} \xi_{n} t_{n}^{ \pm}$we have $t X \pm(J t) Y=0$ (see(3.4)). Reasoning as in the beginning of the proof of Theorem 3.1 one gets $t=0.0$

Let $V_{m}^{ \pm}$be the linear operator on P_{m} with property $v_{m}^{ \pm} t_{n}^{ \pm}=H_{n}$ $(n=0,1,2, \ldots, m)$. For $m \geq N$ the linear span of $H_{0}, H_{1}, \ldots, H_{m}$ has dimension $m-s$ and the span of $t_{0}^{ \pm}, t_{1}^{ \pm}, \ldots, t_{m}^{ \pm}$dimension $m-\frac{1}{2} s$. So dim Ker $V_{m}^{ \pm}=\frac{1}{2} s$ for $m \geq N$. Hence, for $0 \leq a_{0}<1 \mathrm{Eq}$. (3.2) has $t_{n}^{ \pm}$as a unique polynomial solution. For $a_{0}=1 \mathrm{Eq}$. (3.2) does not specify $t_{n}^{ \pm}$completely. To deduce additional constraints we first derive the following

LEMMA 4.2. Let $a_{0}=1$ and $f \in H_{0}$ with Jf $= \pm f$. If x is a polynomial, then
(4.1) $\left\langle\Gamma^{ \pm} \chi, f\right\rangle+\frac{1}{2} \tau\left\langle\Gamma^{ \pm} \chi, T^{-1} A f\right\rangle=\left\langle\chi, f^{\prime}\right\rangle+\frac{1}{2} \tau\left\langle\chi, T^{-1} A f\right\rangle$.

PROOF. According to Theorem 1.1 of [15] the solutiors of the boundary value problem (0.4)-(0.5) on $L_{2}[-1,+1]$ has the form

$$
\psi(x)=\left[e^{-x T^{-1} A_{P}} p_{p}+e^{(\tau-x) T^{-1} A_{P}}{ }_{m}+\left(I-x T^{-1} A\right) P_{0}\right] V_{\tau}^{-1} \varphi, 0<x<\tau
$$

With the help of formulas (1.7) of [15] one gets for $f \in \mathrm{H}_{0}$:

$$
\begin{aligned}
\langle T \psi(x), f\rangle= & \left\langle T\left(I-x T^{-1} A\right) P_{0} V_{\tau}^{-1} \varphi, f\right\rangle=\left\langle T P_{0} V_{\tau}^{-1} \varphi, f\right\rangle- \\
& \left.-x<\mathrm{TP}_{0} V_{\tau}^{-1} \varphi, T^{-1} A f\right\rangle .
\end{aligned}
$$

For $\varphi \in L_{2}[-1,0]$ this implies

$$
\begin{gathered}
-\left\langle T R_{-\tau} \varphi, f\right\rangle+\left\langle T T_{-\tau} \varphi, f\right\rangle=\langle T \psi(0), f\rangle-\langle T \psi(\tau), f\rangle= \\
=\tau\left\langle T P_{0} V_{\tau}^{-1} \varphi, \quad T^{-1} A f\right\rangle=\tau\left\langle T T_{-\tau} \varphi, T^{-1} A f\right\rangle .
\end{gathered}
$$

Note that $\left\langle T R_{-\tau} \varphi, f\right\rangle=\left\langle T T_{-\tau} \varphi, f\right\rangle$ whenever $A f=0$. Using formulas (2.4) of [15], putting $x=T \varphi$ and extending continuously to all $x \in L_{2}[-1,+1]$ one gets

$$
\begin{aligned}
-\left\langle R_{-\tau}^{+} x, f\right\rangle+\left\langle T_{-\tau}^{+} x, f\right\rangle & =\tau\left\langle T_{-\tau}^{+} x, T^{-1} A f\right\rangle= \\
& =\tau\left\langle R_{-\tau}^{+} x, T^{-1} A f\right\rangle
\end{aligned}
$$

Inserting Lemma 2.1 and formulas (3.2b) of [15] and specializing to $\mathrm{f} \in \mathrm{H}_{0}$ with $\mathrm{Jf}= \pm \mathrm{f}$ (and thus $\mathrm{JT}^{-1} \mathrm{Af}=\bar{\mp}^{-1} \mathrm{Af}$) one obtains

$$
\begin{gathered}
\left.\left\langle\left[R_{+\tau}^{*} \pm T_{+\tau}^{*} J\right] x, f\right\rangle+\frac{1}{2} \tau<\left[R_{+\tau}^{*} \pm T_{+\tau}^{*} J\right] x, T^{-1} A f\right\rangle= \\
\left.=\langle x, f\rangle+\frac{1}{2} \tau<x, T^{-1} A f\right\rangle .
\end{gathered}
$$

From this identity formula (4.1) is clear.a

With the help of Lemma 4.2 two theorems are deduced concerning constraints on t_{n}^{+}and t_{n}^{-}under which Eq. (3.2) has a unique solution.

THEOREM 4.3. Let $a_{0}=a_{1}=\ldots=a_{m-1}=1,-1 \leq a_{n}<+1 \quad(n=m, m+1, \ldots$, $N), s=m+1$ for even m and $s=m$ for odd m. Then

$$
\begin{equation*}
t_{1}^{+}=t_{3}^{+}=t_{5}^{+}=\ldots=t_{s-1}^{+}=0 \tag{4.2}
\end{equation*}
$$

and t_{n}^{+}is the unique polynomial solution of Eq. (3.2) under the $\frac{1}{2} s$ constraints

$$
\begin{gather*}
\int_{0}^{1}\left\{t_{n}^{+}(\mu) X(\mu)+t_{n}^{+}(-\mu) Y(\mu)\right\} P_{2 k}(\mu) d \mu=\delta_{n, 2 k}\left(2 k+\frac{1}{2}\right)^{-1} \tag{4.3}\\
\left(k=0,1, \ldots, \frac{1}{2} s-1\right)
\end{gather*}
$$

PROOF. The functions $P_{0}, P_{2}, \ldots, P_{s-2}$ belong to Ker A and satisfy $\mathrm{Jf}=\mathrm{f}$. According to (4.1) we have $\left\langle\mathrm{F}^{+}{ }_{x,}, \mathrm{P}_{2 k}\right\rangle=\left\langle\chi, \mathrm{P}_{2 k}\right\rangle$. For $x=P_{n}$ we insert the inner product $\langle, .$,$\rangle in L_{2}[-1,+1]$ employ (3.4) and obtain (4.3). Formula (4.2) is clear from Proposition 4.1 and the form $\left\{p \in P: \Gamma^{+} p=0\right\}$ has (cf. 1.10)).

To prove the uniqueness of the solution t_{n}^{+}of Eq. (3.2) under the constraints (4.3), it suffices to prove that a polynomial $t=0$ whenever $V_{m}^{+} t=0$ and $\int_{0}^{1}\{t(\mu) X(\mu)+t(-\mu) Y(\mu)\} P_{2 k}(\mu) d t$ $0\left(k=0,1, \ldots, \frac{1}{2} s-1\right)$. As an application of Proposition 4.1 we see that $n_{0} t_{0}^{+}+n_{2} t_{2}^{+}+\ldots+n_{S} t_{s}^{+}=0$ if and only if $\Gamma^{+}\left(n_{0} P_{0}+n_{2} P_{2}+\ldots+n_{S} P_{s}\right)=$ 0 . But $\left\{p \in P: \Gamma^{+} p=0\right\}$ consists of odd functions only (cf.(1.10)) and so $\eta_{0}=\eta_{2}=\ldots=n_{S}=0$. Thus $t_{0}^{+}, t_{2}^{+}, \ldots, t_{S}^{+}$are linearly independen In view of the constancy of $H_{0}, H_{2}, \ldots, H_{S}$ (in fact, $H_{2 k}(\mu) \equiv P_{2 k}(0)$ for $\left.k=0,1, \ldots \frac{1}{2} s\right)$ one derives that $\left\{t_{2 k}^{+}-P_{2 k}(0) t_{0}^{+}\right\}_{k=1}^{\frac{1}{2} s}$ is a basis of Ker v_{m}. So for certain coefficients $\zeta_{1}, \zeta_{2}, \ldots, \zeta_{\frac{1}{2} s}$ we have

$$
\begin{equation*}
t=\sum_{k=1}^{\frac{1}{2} s} \zeta_{k}\left(t_{2 k}^{+}-P_{2 k}(0) t_{0}^{+}\right) \tag{4.4}
\end{equation*}
$$

The constraints (4.3), Eq. (4.4) and $\int^{1}\{t(\mu) X(\mu)+t(-\mu) Y(\mu)\} P_{2 k}(\mu) d$ $0\left(k=0,1, \ldots, \frac{1}{2} s-1\right)$ together yield $t^{0}=0.0$

THEOREM 4.4. Let $a_{0}=a_{1}=\ldots=a_{m-1}=1,-1 \leq a_{n}<+1 \quad(n=m, m+1, \ldots$, N). If m is even, then

$$
\begin{equation*}
t_{2}^{-}=P_{2}(0) t_{0}^{-}, t_{4}^{-}=P_{4}(0) t_{0}^{-}, \ldots, t_{m}^{-}=P_{m}(0) t_{0}^{-}, \tag{4.5}
\end{equation*}
$$

while t_{n}^{-}is the unique polynomial solution of Eq. (3.2) under the $\frac{1}{2} \mathrm{~m}$ constraints
(4.6) $\quad \int_{0}^{1}\left\{t_{n}^{-}(\mu) X(\mu)-t_{n}^{-}(-\mu) Y(\mu)\right\} P_{2 k+1}(\mu) d \mu=\delta_{n, 2 k+1} \cdot\left(2 k+\frac{3}{2}\right)^{-1}$.

$$
\left(k=0,1, \ldots, \frac{1}{2} m-1\right)
$$

If m is odd, then
(4.7a) $(k+1) t_{k+1}^{-}+k t_{k-1}^{-}=0(k=1,3,5, \ldots, m-2) ;$

$$
\begin{equation*}
(m+1) t_{m+1}^{-}+m t_{m-1}^{-}=\tau\left(m+\frac{1}{2}\right)\left(1-a_{m}\right) t_{m}^{-} \tag{4.7b}
\end{equation*}
$$

while t_{n}^{-}is the unique polynomial solution of Eq. (3.2) under the $\frac{1}{2}(m+1)$ constraints
(4.8a) $\quad \int_{0}^{1}\left\{\mathrm{t}_{\mathrm{n}}^{-}(\mu) X(\mu)-\mathrm{t}_{\mathrm{n}}^{-}(-\mu) Y(\mu)\right\} \mathrm{P}_{2 \mathrm{k}+1}(\mu) \mathrm{d} \mu=\delta_{\mathrm{n}, 2 \mathrm{k}+1} \cdot\left(2 \mathrm{k}+\frac{3}{2}\right)^{-1}$.

$$
\left(k=0,1, \ldots, \frac{1}{2} m-\frac{3}{2}\right)
$$

(4.8b) $\quad \int_{0}^{1}\left\{t_{n}^{-}(\mu) X(\mu)-t_{n}^{-}(-\mu) Y(\mu)\right\}\left(1-\frac{1}{2} \tau\left(1-a_{m}\right) / \mu\right) P_{m}(\mu) d \mu=$

$$
=\int_{-1}^{+1} P_{n}(\mu)\left(1-\frac{1}{2} \tau\left(1-a_{m}\right) / \mu\right) P_{m}(\mu) d \mu
$$

The proof is analogous to the one of Theorem 4.3 and will be omitted. Let us work out the example $m=1$ (i.e., $a_{0}=1$ and $a_{1} \neq 1$). Then $s=2$, and thus one constraint has to be considered only. From Theorem 4.3 one finds
(4.9) $t_{1}^{+}=0, \int_{0}^{1}\left\{t_{n}^{+}(\mu) X(\mu)+t_{n}^{+}(-\mu) Y(\mu)\right\} d \mu=2 \delta_{n}$.

However, from Theorem 4.4 one derives that
(4.10a) $2 t_{2}^{-}+t_{0}^{-}=\frac{3}{2} \tau\left(1-a_{1}\right) t_{1}^{-}$;
(4.10b) $\quad \int_{0}^{1}\left\{t_{n}^{-}(\mu) X(\mu)-t_{n}^{-}(-\mu) Y(\mu)\right\}\left(\mu-\frac{1}{2} \tau\left(1-a_{1}\right)\right)=\frac{2}{3} \delta_{n 1}-\tau\left(1-a_{1}\right) \delta_{n o}$.

For the half-space problem with $a_{0}=1$ (and $a_{1} \neq 1$) one may derive the solution ' in terms of the H -function and a set of
polynomials; the latter ones are the unique solutions of Eq.(3.2) (with X replaced by H and Y by 0) under a constraint of the form (4.9). In physical literature such observation was made by Pahor [20] and by Busbridge and Orchard [4]. Clearly the conditions (4.9) may be viewed as generalizations. To see that the conditions (4.10) are generalizations also, one has to divide Eqs(4.10) by τ before taking the limit as $t \rightarrow+\infty$.

LITERATURE

1. V.A. Ambartsumian: On the question of the diffuse reflection of light by an opaque medium. Dok1. Akad. Nauk SSSR 38(8), 257-262, 1943 (Russian).
2. I.W. Busbridge: The mathematics of radiative transfer. Cambridge Tracts in Mathematics and Mathematical Physics, vol. 50, Cambridge University Press, 1960.
3. I.W. Busbridge: Conservative anisotropic scattering in a finite plane-parallel atmosphere. T.W. Mullikin's "con-. straints". The Astrophysical Journal 149, 195-199, 1967.
4. I.W. Busbridge, S.E. Orchard: Reflection and transmission of light by thick atmospheres of pure scatterers with a phase function $1+\sum_{n=1}^{N} \bar{\omega}_{n} P_{n}(\cos \theta)$. The Astrophysical Journal 154, 729-739, 1968. ${ }^{\mathrm{n}=1}$
5. S. Chandrasekhar: Radiative transfer. Second revised edition. New York, Dover Publ. Inc., 1960.
6. J.J. Duderstadt, W.R. Martin: Transport theory. A WileyInterscience Publication, John Wiley \& Sons, 1979.
7. I.C. Gohberg, I.A. Feldman: Convolution equations and projection methods for their solution. Transl. Math. Monographs; vol. 41, A.M.S., Providence, R.I., $1974=$ Moscow, "Nauka", 1971 (Russian).
8. R.J. Hangelbroek: On the derivation of some formulas in linear transport theory for media with anisotropic scattering. Report 7720, University of Nijmegen, The Netherlands, 1978.
9. J.W. Hovenier: A unified treatment of the reflected and trans-
mitted intensities of a homogeneous plane-parallel atmosphere. Astron. Astrophys. 68, 239-250, 1978.
10. J.W. Hovenier: Reduction of the standard problem in radiative transfer for a medium of finite optical thickness. Astron. Astrophys. 82, 61-72, 1980.
11. H.C. van de Hulst: Multiple light scattering, I. New York etc., Academic Press, 1980.
12. C.V.M. van der Mee: Semigroup and factorization methods in Transport Theory. Amsterdam, Mathematical Centre Tract 146, 1981.
13. C.V.M. van der Mee: Linearized $B G K$ and neutron transport equations on finite domains. Transport Theory and Statistical Physics 10, 75-104, 1981.
14. C.V.M. van der Mee: Transport Theory in I_{p}-spaces. To appear in: Integral Equations and Operator Theory.
15. C.V.M. van der Mee: Transport Equation on a finite domain. I. Reflection and transmission operators and diagonalization. Submitted at: Integral Equations and Operator Theory.
16. T.W. Mullikin: A complete solution of the X - and Y-equations of Chandrasekhar. The Astrophysical Journal 136, 627-635, 1962.
17. T.W. Mullikin: Chandrasekhar's X - and Y-functions. Trans. A.M.S. 112, 316-322, 1964.
18. T.W. Mullikin: Radiative transfer in finite homogeneous atmospheres with anisotropic scattering. II. The uniqueness problem for Chandrasekhar's ψ_{ℓ} and φ_{ℓ} equations. The Astrophysical Journal 139, 1267-1289, 1964.
19. N.I. Muskhelishvili: Singular integral equations. Groningen (The Netherlands), Noordhoff, 1953=Moscow, "Nauka", 1967 (Russian).
20. S. Pahor: A new approach to half-space transport problems. Nuclear science and engineering $26,192,197,1966$.
21. V.V. Sobolev: Diffuse reflection and transmission of light in an atmosphere with anisotropic scattering. Astrofizika 5(1),5-20, 1969 (Russian).
22. V.V. Sobolev: Light scattering in planetary atmospheres. Oxford, Pergamon Press, 1975=Moscow, "Nauka", 1972 (Russian).

C.V.M. van der Mee
Dept. of Physics and Astronomy
Free University
De Boelelaan 1081
1081 HV Amsterdam
The Netherlands.

Submitted: October 20, 1982

