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1. Introduction and the main result

Let G be a (multiplicative) connected compact abelian group and let Γ be its
(additive) character group. Recall that Γ consists of continuous homomorphisms
of G into the group of unimodular complex numbers. Since G is compact, Γ is
discrete. In applications, often Γ is an additive subgroup of R, the group of real
numbers, or of Rk, and G is the Bohr compactification of Γ. The group G can be
also thought of as the character group of Γ, an observation that will be often used.

The group G has a unique invariant measure ν satisfying ν(G) = 1, while
Γ is equipped with the discrete topology and the (translation invariant) counting
measure. It is well known [17] that, because G is connected, Γ can be made into
a linearly ordered group. So let � be a linear order such that (Γ,�) is an ordered
group, i. e., if x, y, z ∈ Γ and x � y, then x+z � y+z. Throughout the paper it will
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be assumed that Γ is ordered with a fixed linear order �. The notations ≺, �, �,
max, min (with obvious meaning) will also be used. We put Γ+ = {x ∈ Γ : x � 0}
and Γ− = {x ∈ Γ : x � 0}.

For any nonempty set M , let �1(M) stand for the complex Banach space of
all complex-valued M -indexed sequences x = {xj}j∈M having at most countably
many nonzero terms that are finite with respect to the norm

‖x‖1 =
∑

j∈M

|xj |.

Then �1(Γ) is a commutative Banach algebra with unit element with respect to
the convolution product (x∗y)j =

∑
k∈Γ xk yj−k. Further, �1(Γ+) and �1(Γ−) are

closed subalgebras of �1(Γ) containing the unit element.
Given a = {aj}j∈Γ ∈ �1(Γ), by the symbol of a we mean the complex-valued

continuous function â on G defined by

â(g) =
∑

j∈Γ

aj〈j, g〉, g ∈ G, (1)

where 〈j, g〉 stands for the action of the character j ∈ Γ on the group element
g ∈ G (thus, 〈j, g〉 is a unimodular complex number), or, by Pontryagin duality,
of the character g ∈ G on the group element j ∈ Γ. The set

σ(â) := {j ∈ Γ : aj 
= 0}
will be called the Fourier spectrum of â given by (1). Since Γ is written additively
and G multiplicatively, we have

〈α + β, g〉 = 〈α, g〉 · 〈β, g〉, α, β ∈ Γ, g ∈ G,

〈α, gh〉 = 〈α, g〉 · 〈α, h〉, α ∈ Γ, g, h ∈ G.

We will use the shorthand notation eα for the function eα(g) = 〈α, g〉, g ∈ G.
Thus, eα+β = eαeβ, α, β ∈ Γ.

The set of all symbols of elements a ∈ �1(Γ) forms an algebra W (G) of
continuous functions on G. The algebra W (G) (with pointwise multiplication and
addition) is isomorphic to �1(Γ). Denote by W (G)+ (resp., W (G)−) the algebra
of symbols of elements in �1(Γ+) (resp., �1(Γ−)).

We have the following result. For every unital Banach algebra A we denote
its group of invertible elements by G(A).

Theorem 1. Let G be a compact abelian group with character group Γ, and let
W (G)n×n be the corresponding Wiener algebra of n × n matrix functions. Then
Â ∈ G(W (G)n×n) if and only if Â(g) ∈ G(Cn×n) for every g ∈ G.

This is an immediate consequence of Theorem A.1 in [8] (also proved in [1],
and see [14]).

We now consider the discrete abelian subgroup Γ′ of Γ and denote its char-
acter group by G′. Then we introduce the annihilator

Λ = {g ∈ G : 〈j, g〉 = 1 for all j ∈ Γ′}, (2)
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which is a closed subgroup of G and hence a compact group. According to Theorem
2.1.2 in [17], we have G′ � (G/Λ).

Let us now introduce the natural projection π : G → G/Λ. We observe
that the above theorem also applies to W (G′)n×n. Given A ∈ �1(Γ)n×n with its
Fourier spectrum restricted to Γ′ (i.e., Aj = 0 for j ∈ Γ \Γ′), we have two symbol
definitions:

ÂΓ(g) =
∑

j∈Γ′
Aj〈j, g〉, g ∈ G,

ÂΓ′(g) =
∑

j∈Γ′
Aj〈j, g〉, g ∈ G′,

where we have taken into account that Aj = 0 for j ∈ Γ \ Γ′. The latter can be
replaced by

ÂΓ′([g]) =
∑

j∈Γ′
Aj〈j, g〉, [g] ∈ (G/Λ),

where [g] = π(g) for g ∈ G. Obviously, 〈j, g〉 only depends on [g] = π(g) if j ∈ Γ′.
(If [g1] = [g2], then g1g

−1
2 ∈ Λ and hence 〈j, g1g

−1
2 〉 = 1 for all j ∈ Γ′, which implies

the statement.) Thus the two symbol definitions are equivalent in the sense that
the value of “the” symbol Â on g ∈ G only depends on [g] = π(g).

Theorem 2. Let Γ′ be a subgroup of the discrete abelian group Γ, let G and G′

be the character groups of Γ and Γ′, respectively, and let Λ be defined by (2). If
Â ∈ W (G)n×n is an element which has all of its Fourier spectrum within Γ′, then
Â ∈ G(W (G′)n×n) if and only if Â(g) ∈ G(Cn×n) for every g ∈ G.

For the proof see [14].
We now consider factorizations. A (left) factorization of A ∈ (W (G))n×n is a

representation of the form

A(g) = A+(g) (diag (ej1(g), . . . , ejn(g)))A−(g), g ∈ G, (3)

where A+ ∈ G((W (G)+)n×n), A− ∈ G((W (G)−)n×n), and j1, . . . , jn ∈ Γ. Here
and elsewhere we use diag (x1, . . . , xn) to denote the n × n diagonal matrix with
x1, . . . , xn on the main diagonal, in that order. The elements jk are uniquely
defined (if ordered j1 � j2 � · · · � jn); this can be proved by a standard argument
(see [9, Theorem VIII.1.1]). The elements j1, . . . , jn in (3) are called the (left)
factorization indices of A.

If all factorization indices coincide with the zero element of Γ, the factor-
ization is called canonical. If a factorization of A exists, the function A is called
factorizable. For Γ = Z and G the unit circle, the definitions and the results are
classical [10], [9], [4]; many results have been generalized to Γ = Rk (see [2] and ref-
erences there), and Γ a subgroup of Rk (see [15],[16]). The notion of factorization
in the abstract abelian group setting was introduced and studied, in particular,
for block triangular matrices, in [14]. The present paper can be thought of as a
follow up of [14].
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In this paper we prove the following result.

Theorem 3. Let A have the form

A(g) =
[

eλ(g)Ip 0
c1eσ(g) − c2eµ(g) e−λ(g)Iq

]
, g ∈ G, (4)

and assume that λ � 0, µ � σ, and

nµ ≺ λ, nσ ≺ λ for all integers n. (5)

Then A admits a factorization if and only if

rank (λ1c1 − λ2c2) = max{rank (z1c1 − z2c2) : z1, z2 ∈ C}
for every λ1, λ2 ∈ C satisfying |λ1| = |λ2| = 1. (6)

Moreover, in case a factorization exists, the factorization indices of A belong to
the set

{±σ,±µ,±λ, λ − (µ − σ), . . . , λ − min{p, q}(µ− σ)}.
We emphasize that the setting of Theorem 3 is a non-archimedean linearly

ordered abelian group (Γ,�), in contrast with the archimedean linear order of
R and its subgroups. The setting of non-archimedean, as well as archimedean,
linearly ordered abelian subgroups was studied in [14].

2. Preliminary results on factorization

Theorem 4. If A admits a factorization (3), and if the Fourier spectrum σ(A) is
bounded:

λmin � σ(A) � λmax,

for some λmin, λmax ∈ Γ, then the factorization indices are also bounded with the
same bounds

λmin � jk � λmax, k = 1, 2, . . . , n, (7)

and moreover,
σ(A−) ⊆ {j ∈ Γ : −λmax + λmin � j � 0}, (8)

and
σ(A+) ⊆ {j ∈ Γ : 0 � j � λmax − λmin}. (9)

Proof. We follow well-known arguments. Rewrite (3) in the form

A−1
+ (e−λminA) = e−λminΛA−.

Since the left-hand side is in W (G)n×n
+ , so is the right-hand side, and we have

jk � λmin for all k = 1, . . . , n (otherwise, A− would contain a zero row, which is
impossible because A− is invertible). Analogously the second inequality in (7) is
proved. Now

eλmax−λminA− =
(
eλmaxΛ

−1
)
A−1

+ (e−λminA)
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is a product of three matrix functions in W (G)n×n
+ , and therefore also

eλmax−λminA− ∈ W (G)n×n
+ .

This proves (8); (9) is proved analogously. �
It follows from the proof that “one-sided” bounds are valid for the factoriza-

tion indices:

λmin � σ(A) =⇒ λmin � jk, for k = 1, 2, . . . , n;

σ(A) � λmax =⇒ jk � λmax for k = 1, 2, . . . , n.

For future use we record the next corollary of Theorem 4. On Γ+ \{0} we consider
the equivalence relation (cf. [6])

i ∼ j ⇐⇒ ∃n, m ∈ N : (ni � j and mj � i).

Here N is the set of positive integers. Any such i, j are called archimedeally equiv-
alent (with respect to (Γ,�)). The set Arch(Γ,�) of archimedean equivalence
classes, which are additive semigroups (in the sense that they are closed under
addition), can be linearly ordered in a natural way. Given J ∈ Arch(Γ,�), it is
easily seen that

ΓJ := {i − j : i, j ∈ J}
is the smallest additive subgroup of Γ containing J and that ΓJ in fact contains
all archimedean components � J in Arch(Γ,�).

Before proceeding we first discuss some illustrative examples.
a. If Zk is ordered lexicographically, in increasing order the archimedean com-

ponents are as follows: J0 = (0), J1 = (0)k−1 × N, J2 = (0)k−2 × N × Z,
J3 = (0)k−3 × N × Z2, . . ., Jk−1 = (0)1 × N × Zk−2, and Jk = N × Zk−1.

b. Z2 with linear order (i1, i2) � (0, 0) whenever i1+i2
√

5 > 0. Then the ordered
group is archimedean and in increasing order the archimedean components
are J0 = (0) and J1 = {i ∈ Z2 : i � 0}.

c. Let (i1, i2) � (0, 0) whenever i1 + i2 > 0. Then in increasing order the
archimedean components are J0 = (0), J1 = {(j,−j) : j ∈ N}, and J2 =
{(i1, i2) : i1 + i2 > 0}.
We now have the following corollary.

Corollary 5. If A admits a factorization (3), and if the Fourier spectrum σ(A) is
contained in ΓJ for some J ∈ Arch(Γ,�), then

jk ∈ ΓJ , k = 1, . . . , n,

and
σ(A±1

− ) ∈ ΓJ , σ(A±1
+ ) ∈ ΓJ .

Indeed, in addition to using Theorem 4 we need only to observe that if X ∈
G(W (G)n×n) is such that σ(X) ⊆ Γ′ for some subgroup Γ′ ⊆ Γ, then σ(X−1) ⊆
Γ′, and apply this observation for X = A± (the observation follows easily from
Theorem 2).
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Corollary 5 may be considered as asserting the hereditary property of Fourier
spectra for additive subgroups of Γ of the form Γj . We say that a subgroup Γ′ of Γ
has the hereditary property if for each matrix function A that admits a factorization
(3), and the Fourier spectrum of A is contained in Γ′, we have that the factorization
indices as well as the Fourier spectra of A± and of A−1

± are also contained in Γ′. This
notion was introduced in [16] for Γ the additive group Rk; the hereditary property
of certain subgroups of Rk was proved there as well. It is an open question whether
or not the hereditary property holds for every subgroup of the character group of
every connected compact abelian group.

A factorization (3) will be called finitely generated if the Fourier spectra of
A+ and of A− are contained in some finitely generated subgroup of Γ. Clearly, a
necessary condition for existence of a finitely generated factorization of A is that
the Fourier spectrum of A is contained in a finitely generated subgroup of Γ. We
shall prove below that this condition is also sufficient.

In the proof of the following theorem we make use of a natural projection: If
B ∈ W (G)n×n is given by the series

B(g) =
∑

j∈Γ

Bj〈j, g〉, g ∈ G,

and if Ω is a subset of Γ, we define BΩ by

BΩ(g) =
∑

j∈Ω

Bj〈j, g〉, g ∈ G.

Clearly, BΩ ∈ W (G)n×n and the Fourier spectrum of BΩ is contained in Ω.

Theorem 6. If A ∈ W (G)n×n is factorizable, and if the Fourier spectrum of A is
contained in a finitely generated subgroup of Γ, then A admits a finitely generated
factorization.

Proof. Let Γ̃ be a finitely generated subgroup of Γ that contains the Fourier spec-
trum of A. Let (3) be a factorization of A. Since (W (G)±)n×n are unital Banach
algebras, the set of invertible elements G((W (G)±)n×n) is open in (W (G)±)n×n.
Thus, there exists a finitely generated subgroup Γ̆ of Γ with the following proper-
ties:
(a) Γ̆ contains Γ̃;
(b) Γ̆ contains the elements j1, . . . , jn;
(c) (A−)Ω and (A−1

+ )Ω are invertible in (W (G)±)n×n for every set Ω ⊇ Γ̆.
For verification of (c), note the following estimate:

‖A− − (A−)Ω‖(W (G)±)n×n =
∑

j∈Γ\Ω
‖(A−)j‖ ≤

∑

j∈Γ\Γ̆
‖(A−)j‖

= ‖A− − (A−)Γ̆‖(W (G)±)n×n .

Letting Ğ be the dual group of Γ̆, by Theorem 2 and (3) we have

(A−1
+ )Γ̆, (A−)Γ̆ ∈ G((W (Ğ)±)n×n).
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Rewrite the equality (3) in the form

(A+(g))−1A(g) = (diag (ej1(g), . . . , ejn(g))) A−(g).

Write also (omitting the argument g ∈ G in the formulas)
(
(A−1

+ )Γ̆ + ((A+)−1)Γ+\Γ̆
)

A

= (diag (ej1 , . . . , ejn))
(
(A−)Γ̆ + (A−)Γ−\Γ̆

)
. (10)

Since j1, . . . , jn ∈ Γ̆ and the Fourier spectrum of A is contained in Γ̆, (10) implies

(A−1
+ )Γ̆A = (diag (ej1 , . . . , ejn)) (A−)Γ̆.

Rewriting this equality in the form

A =
(
(A−1

+ )Γ̆
)−1

(diag (ej1 , . . . , ejn)) (A−)Γ̆,

we obtain a finitely generated factorization of A. �

Theorem 7. Let A be given as in Theorem 3 with p = q, and assume that (5) holds.
If the matrix c1 is invertible and the spectrum of c−1

1 c2 does not intersect the unit
circle, or if c2 is invertible and the spectrum of c−1

2 c1 does not intersect the unit
circle, then A admits a finitely generated factorization. Moreover, the factorization
indices belong to the set {±σ,±µ}.

For the proof see [14]. In fact, the proof of Theorem 7 shows more detailed
information about the factorization indices:

Theorem 8. Under the hypotheses of Theorem 7, assume that c1 is invertible and
the spectrum of c−1

1 c2 does not intersect the unit circle, and let r be the dimension
of the spectral subspace of c−1

1 c2 corresponding to the eigenvalues inside the unit
circle. Then the factorization indices of A are σ (r times), −σ (r times), µ (p− r
times), and −µ (p − r times).

If c2 is invertible and the spectrum of c−1
2 c1 does not intersect the unit circle,

then the factorization indices of A are µ (r times), −µ (r times), σ (p− r times),
and −σ (p − r times), where r be the dimension of the spectral subspace of c−1

2 c1

corresponding to the eigenvalues inside the unit circle.

Finally, we present a result concerning linearly ordered groups that will be
used in the next section.

Proposition 9. Let (Γ,�) be a finitely generated additive ordered abelian group.
Let Γ0 stand for the additive subgroup of Γ generated by all archimedean equiva-
lence classes preceding the archimedean equivalence class E. Then there exists an
additive subgroup Γ1 of Γ such that the direct sum decomposition

Γ = Γ0+̇Γ1 (11)

holds and the coordinate projection Γ → Γ1 is �-order preserving.
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Proof. With no loss of generality we assume that Γ = Zk and that the order � on Zk

has been extended to a so-called term order on Rk. That is, if x � y in Rk, z ∈ Rk

and c ≥ 0, then x+z � y+z and cx � cy. Such an extension is always possible but is
often nonunique [3]. There now exists an orthonormal basis {e1, . . . , ek} of Rk and
a decreasing sequence {H0, H1, . . . , Hk} of linear subspaces of Rk with dim Hr =
k − r (r = 0, 1, . . . , k) such that er � 0, er ∈ Hr−1 and er ⊥ Hr (r = 1, . . . , k)
(cf. [5]). Here we note that the orthonormal basis is completely determined by the
term order � on Rk, with the one-to-one correspondence between term order (on
Rk) and orthonormal basis given by

x = (x1, . . . , xk) � (0, . . . , 0) ⇔






x1 > 0 or
x1 = 0 and x2 > 0, or
...
x1 = · · · = xk−1 = 0 and xk > 0.

Indeed, put H0 = Rk and let H1 stand for the set of those points in Rk

all of whose neighborhoods contain elements of both Γ+ and Γ−. Then H1 is a
linear subspace of Rk of dimension k − 1 [5]. We now let e1 be the unique unit
vector in Rk that is �-positive and orthogonal to H1 and restrict the term order
to H1. We now repeat the same construction in H1 and find a linear subspace H2

of H1 of dimension k − 2 and a unique �-positive unit vector e2 in H1 orthogonal
to H2. After finitely many such constructions we arrive at the sequence of linear
subspaces Rk = H0 ⊃ H1 ⊃ · · · ⊃ Hk−1 ⊃ Hk = {0} and the orthonormal basis
e1, . . . , ek of Rk as indicated above.

Next, let H̃r be the smallest linear subspace of Rk spanned by Hr ∩ Zk

(r = 0, 1, . . . , k). From this nonincreasing set of linear subspaces of Rk we select
a maximal strictly decreasing set of nontrivial linear subspaces Rk = L0 ⊃ L1 ⊃
· · · ⊃ Lµ−1 
= {0}. Also let ν be the largest among the integers s ∈ {1, . . . , k}
such that Lµ−1 is spanned by Hs−1 ∩ Zk; then Hν ∩ Zk = {0}. If µ = 1, we have
H1 ∩ Zk = {0}, so that the ordered group (Zk,�) is archimedean; in that case
i �→ ξ1(i)

def= (i, e1) (i.e., the signed distance from i to H1) is an order preserving
group homomorphism from (Zk,�) into R. On the other hand, if µ ≥ 2, we let
(i) ξ1(i) stand for the signed distance from i to H1 and p1(i) for the orthogonal
projection of i onto L1, (ii) ξr(i) for the signed distance from pr−1(i) to Hq for
q = min{s : Lr = span(Hs∩Zk)} and pr(i) for the orthogonal projection of pr−1(i)
onto Lr (r = 2, . . . , µ−1), and finally (iii) ξµ(i) as the signed distance from pµ−1(i)
to Hν . In this way

i
ϕ�→ (ξ1(i), . . . , ξµ(i))

is an order preserving group homomorphism from (Zk,�) into Rµ with lexico-
graphical order. It then appears that µ is the number of nontrivial (i.e., different
from {0}) archimedean components. Moreover, in increasing order the archimedean
components of (Γ,�) are now as follows:

J0 = {0}, Jr = [Lµ−r ∩ Γ+] \ ∪r−1
s=0 Js (r = 1, . . . , µ). (12)



Factorization with Off-diagonal binomials 431

The additive subgroups of Zk generated by the smallest archimedean components
are as follows:

ΓJ0 = {0}, ΓJr = Lµ−r ∩ Γ (r = 1, . . . , µ). (13)

Let us now define the group homomorphisms πr on Γ with image ΓJr
and qr with

kernel ΓJr
by π0 = 0, q0 equal the identity, and

{
πri = ϕ−1(0, . . . , 0, ξµ−r+1(i), . . . , ξµ(i)),
qri = ϕ−1(ξ1(i), . . . , ξµ−r(i), 0, . . . , 0).

(14)

Then the fact that the linear order on ϕ[Zk] ⊂ Rµ is lexicographical, implies
that the additive group homomorphisms q0, q1, . . . , qµ are order preserving, but
π1, . . . , πµ−1 are not. Putting Γ′

Jr
= qr[Γ] we obtain the direct sum decomposition

Γ = ΓJr +̇Γ′
Jr

, r = 0, 1, . . . , µ,

which completes the proof. �

3. Proof of Theorem 3

Using Theorem 6 we can assume without loss of generality that Γ is finitely gen-
erated, and furthermore assume that Γ = Zk for some positive integer k.

Consider the part “if”. Applying the transformation

c1 �→ Sc1T, c2 �→ Sc2T,

for suitable invertible matrices S and T , we may assume that the pair (c1, c2) is
in the Kronecker normal form (see, e.g, [7]); in other words, c1 and c2 are direct
sums of blocks of the following types:

(a) c1 and c2 are of size k × (k + 1) of the form

c1 =
[

Ik 0k×1

]
, c2 =

[
0k×1 Ik

]
.

(b) c1 and c2 are of size (k + 1) × k of the form

c1 =
[

Ik

01×k

]
, c2 =

[
01×k

Ik

]
.

(c) c1 is the k × k upper triangular nilpotent Jordan block, denoted by Vk, and
c2 = Ik.

(d) c1 = Ik, and c2 = Vk.
(e) c1 and c2 are both invertible of the same size.
(f) c1 and c2 are both zero matrices of the same size.

Note that if c1 (resp., c2) is invertible, then condition (6) is equivalent to the
condition that the spectrum of c−1

1 c2 (resp., of c1c
−1
2 ) does not intersect the unit

circle. Thus, by Theorem 7 we are done in cases (c), (d), and (e), as well as in the
trivial case (f).
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Consider the cases (a) and (b), where the condition (6) is obviously satisfied.
We follow arguments similar to those presented in [13], and also in the proof of
[14, Theorem 7].

Let Jk be the k×k matrix with 1’s along the top-right to the left-bottom diag-
onal and zeros in all other positions. If A(g) = [ai,j(g)]ni,j=1 ∈ (W (G))n×n, then A∗

will denote the matrix function defined by [aj,i(g)]ni,j=1; clearly, A∗ ∈ (W (G))n×n,
and if A ∈ (W (G)±)n×n, then A∗ ∈ (W (G)∓)n×n. The transformation

A �→
[

0 Jk+1

Jk 0

]
A∗

[
0 Jk

Jk+1 0

]

transforms the case (b) to the case (a). Thus, it will suffice to consider the case
(a):

A =




eλIk 0 0

0 eλ 0
eσIk − eµVk h e−λIk



 , where h =
[

0(k−1)×1

−eµ

]
.

Let

B+ =




Ik − eµ−σVk b −eλ−σIk

0 1 0
0 0

∑k−1
j=0 ej(µ−σ)V

j
k



 , where b =
[

0(k−1)×1

−eµ−σ

]
,

B− =




∑k−1

j=0 ej(µ−σ)−λ−σV j
k 0 Ik

0 1 0
−Ik 0 0



 .

Clearly,

B+ ∈ G((W (G)+)(2k+1)×(2k+1)) and B− ∈ G((W (G)−)(2k+1)×(2k+1))

(the latter inclusion follows from (5) and from µ � σ). A direct computation shows
that

Φ0 := B+AB− =




e−σIk 0 0

0 eλ 0
0 hk eσIk



 ,

where
(hk)T =

[ −e(k−1)(µ−σ)+µ . . . −e(µ−σ)+µ −eµ

]
. (15)

Define for j = 0, 1, . . . , k − 1 the auxiliary matrices

R+,k−j =




1 0 eλ−µ−j(µ−σ)

0 Ik−j−1 hk−j−1e−σ

0 0 1



 ,

R−,k−j =




eσ−µ 0 −1

0 Ik−j−1 0
1 0 0



 , Rk−j =
[

eλ−j(µ−σ) 0
hk−j eσIk−j

]
.

Clearly, R−,k−j ∈ G((W (G)−)(k−j+1)×(k−j+1)), and in view of (5),

R+,k−j ∈ G((W (G)+)(k−j+1)×(k−j+1)).
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We also have the recurrence relations

R+,k−jRk−jR−,k−j =
[

Rk−j−1 0
0 eµ

]
, R0 = eλ−k(µ−σ), (16)

for j = 0, . . . , k − 1. Note that Φ0 = diag (e−σIk, Rk). Applying consecutively
(16) for j = 0, . . . , k − 1, we obtain a factorization A = A+ΛA− with Λ =
diag (e−σIk, eλ−k(µ−σ), eµIk). This completes the proof of the “if” part of the the-
orem.

For the part “only if”, we make use of the archimedean structure on Γ =
(Zk,�) (see the previous section). Let Γ0 be the subgroup of Γ generated by all
archimedean classes of Γ that are ≺ λ. Condition (5) guarantees that 0 
= µ−σ ∈ Γ0

and hence that Γ0 
= {0}. Since

α ∈ Γ, nα ∈ Γ0 for some n ∈ N =⇒ α ∈ Γ0,

it follows that
Γ = Γ0+̇Γ1, (17)

a direct sum, for some subgroup Γ1 of Γ = Zk, where the coordinate projection
onto Γ1 along Γ0 is order preserving (Proposition 9). Also, by [11, Theorem 23.18],
we may assume

G = G0 × G1, (18)
where Gj is the character group of Γj , j = 0, 1. We write

λ = λ0 + λ1, µ = µ0 + µ1, σ = σ0 + σ1,

in accordance with (17). By construction of Γ0, we have λ1 � 0, and by (5)
µ, σ ∈ Γ0, and so µ1 = σ1 = 0.

Assume that A has a factorization

A(g) = A+(g) (diag (ej1(g), . . . , ejn(g)))A−(g), g ∈ G. (19)

In accordance with (17) and (18) write

jk = jk,0 + jk,1, jk,0 ∈ Γ0, jk,1 ∈ Γ1, k = 1, . . . , n,

g = g0g1, g0 ∈ G0, g1 ∈ G1,

and consider the equation (19) in which g0 is kept fixed, whereas g1 is kept variable.
To emphasize this interpretation, we write (19) in the form

Ag0 (g1) = A+,g0(g1)
(
diag (ej1,0(g0), . . . , ejn,0(g0))

)

· (
diag (ej1,1(g1), . . . , ejn,1(g1))

)
A−,g0(g1). (20)

We consider Γ1 with the linear order induced by (Γ,�). Since the property that
α = α0 + α1 ∈ Γ±, where αj ∈ Γj , j = 0, 1, implies that α1 ∈ (Γ1)±, we obtain

A±,g0 ∈ G((W (G1)±)n×n)

for every g0 ∈ Γ0. Thus, (20) is in fact a factorization of Ag0(g1) whose factorization
indices are j1,1, . . . , jn,1, and moreover we have the following property:

(ℵ) the factorization indices of Ag0(g1) are independent of g0 ∈ G0.
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Arguing by contradiction, we assume that

rank (λ1c1 − λ2c2) < max{rank (z1c1 − z2c2) : z1, z2 ∈ C}
for some λ1, λ2 ∈ C satisfying |λ1| = |λ2| = 1. (21)

A contradiction will be obtained with Property (ℵ). We can assume, using the
Kronecker normal from (see, e.g., [7]), that c1 and c2 have the form

c1 = diag (c1,1, . . . , c1,s), c2 = diag (c2,1, . . . , c2,s),

where each pair of blocks (c1,w, c2,w) has one of the forms (a) - (f). After a permu-
tation transformation, we obtain (keeping the same notation for the transformed
Ag0(g1)):

Ag0 (g1) = diag (Ag0,1(g1), . . . , Ag0,s(g1)),

where

Ag0,w(g1) =
[

eλ1(g1)Ipw 0
c1,weβ(g0) − c2,weκ(g0) e−λ1(g1)Iqw

]
Q, w = 1, . . . , s,

with β, κ ∈ Γ0 independent of w, and Q is a diagonal matrix (also independent
of w) with terms of the form eα(g0), α ∈ Γ0 on the main diagonal. Note that
β 
= κ (otherwise we would have µ = σ, which is excluded by the hypotheses of
the theorem). The “if” part of the theorem shows that Ag0,w(g1) is factorable with
indices independent of g0 if the pair (c1,w, c2,w) has one of the forms (a), (b), (c),
(d), and (f).

Suppose that the pair (c1,w, c2,w) is of the form (e). Then we may further
assume that c1,w = I and c2,w is in the Jordan form:

c2,w = Jτ1(ρ1) ⊕ · · · ⊕ Jτu(ρu),

where Jτj (ρj) is the upper triangular τj × τj Jordan block with the eigenvalue
ρj (for notational simplicity, we suppress the dependence of ρj , τj , and u on w
in the notation used). Accordingly, after a permutation transformation we have
Ag0,w(g1)Q−1 in the following form:

Ãg0,w(g1) = diag (Ãg0,w,1(g1), . . . , Ãg0,w,u(g1)),

where

Ãg0,w,j(g1) =
[

eλ1(g1)Iτj 0
eβ(g0)Iτj − eκ(g0)Jτj (ρj) e−λ1(g1)Iτj

]
, j = 1, . . . , u.

If |ρj | 
= 1, then by the “if” part of the theorem, the factorization indices of
Ãg0,w,j(g1) are independent of g0 (this can be also checked directly). Assume |ρj | =
1; then the factorization indices of Ãg0,w,j(g1) equal zero if

eβ(g0) − ρjeκ(g0) 
= 0. (22)

Indeed, [
eλ1I 0
S e−λ1I

]
=

[
I eλ1S

−1

0 I

] [
0 −S−1

S e−λ1I

]
,
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where
S = eβ(g0)Iτj − eκ(g0)Jτj (ρj).

If |ρj | = 1 and
eβ(g0) − ρjeκ(g0) = 0, (23)

then the factorization indices of Ãg0,w,j(g1) are zeros (2(τj − 1) times) and ±λ1.
It follows that for the values of g0 such that

eβ(g0) − ρeκ(g0) 
= 0 (24)

for any eigenvalue ρ of c2,w the factorization indices of Ag0,w(g1) are all zeros,
whereas in case the equality

eβ(g0) − ρeκ(g0) = 0 (25)

holds for some eigenvalue ρ of c2,w not all factorization indices of Ag0,w(t1) are
zeros. Since κ 
= β, the range of the function

eβ−κ(g0) = eβ(g0) (eκ(g0))
−1

coincides with the unit circle (since G is connected and the characters are con-
tinuous), and therefore by hypothesis (21) there do exist eigenvalues ρ of c2,w for
which (25) holds. We obtain a contradiction with Property ℵ.

This completes the proof of Theorem 3.

4. Invertibility vs factorizability

The following conjecture was stated in [14].

Conjecture 10. Every function A ∈ G(W (G)n×n) admits a factorization if and
only if Γ (as an abstract group without regard to � ) is isomorphic to a subgroup
of the additive group of rational numbers Q.

Regarding this conjecture we quote a result from [14]:

Theorem 11. If Γ is not isomorphic to a subgroup of Q, then there exists a 2 × 2
matrix function of the form

A(g) =
[

eλ(g) 0
c1eα1(g) + c2 + c3eα3(g) e−λ(g)

]
, g ∈ G, (26)

where λ, α1, α2, α3 ∈ Γ, and c1, c2, c3 ∈ C, which does not admit a factorization
with the factors A± and their inverses A−1

± having finite Fourier spectrum.

We improve on Theorem 11:

Theorem 12. If Γ is not isomorphic (as an abstract group ) to a subgroup of Q,
then there exists a 2 × 2 matrix function of the form (26) which is not factorable.

Proof. Consider two cases: (1) Γ is archimedean. Then (Γ,�) is isomorphic to a
subgroup of the additive group of real numbers (Hölder’s theorem, see, e.g., [6])
and since Γ is not isomorphic to a subgroup of Q, there exist non-commensurable



436 C.V.M. van der Mee, L. Rodman and I.M. Spitkovsky

elements x, y ∈ Γ \ {0}. Using x and y, a known construction (see [12], also [2,
Section 8.5]) may be used to produce a 2×2 matrix function of the required form.

(2) Γ is not archimedean. Then there exist σ = 0 ≺ µ ≺ λ ∈ Γ such that (5)
holds. Theorem 3 now implies that the function

[
eλ(g) 0

1 − eµ(g) e−λ(g)

]
, g ∈ G,

is not factorable. �
Theorem 12 and its proof show that if Γ is not isomorphic to a subgroup of

Q, then there exists a 2 × 2 matrix function of the form

A(g) =
k∑

j=1

cjeαj (g), det A(g) ≡ 1,

which is not factorable, with k = 5 if Γ is archimedean, and k = 4 if Γ is not
archimedean. On the other hand, for every linearly ordered group Γ, every n × n
matrix function of the form

A(g) = c1eα1(g) + c2eα2(g)

with det A(g) 
= 0, g ∈ G, is factorable. Indeed, this follows easily from the Kro-
necker form of the pair of matrices (c1, c2). This leaves the following problem open:

Problem 13. Assume that Γ is not isomorphic to a subgroup of Q.
(a) If the subgroup generated by α1, α2, α3 ∈ Γ is not archimedean, prove or

disprove that every n × n matrix function of the form

A(g) = c1eα1(g) + c2eα2(g) + c3eα3(g)

with detA(g) 
= 0, g ∈ G, is factorable.
(b) If Γ is archimedean, prove or disprove that every n × n matrix function of

the form A(g) =
∑k

j=1 cjeαj(g) with detA(g) 
= 0, g ∈ G, and with k = 3 or
k = 4, is factorable.
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