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1. Introduction

In [14] perturbation results for exponentially dichotomous operators on Banach
spaces were discussed. In this paper we continue the investigation started in that
paper.

Recall that an exponentially dichotomous operator is a direct sum A0+̇(−A1),
in which A0 and A1 are generators of exponentially decaying C0-semigroups. Such
operators were introduced in [2, 3] in connection with convolution equations on
the half-line. Operators of this type also occur in various other applications, see,
e.g., [7, 8, 9, 10, 11].

Perturbation results for exponentially dichotomous operators were already
studied in [2], where additive perturbations were considered. Results in this di-
rection were later obtained for more particular operators on Hilbert spaces in
[8, 9, 10, 11]. In [14] the authors considered additive perturbations for exponen-
tially dichotomous operators on Banach spaces. Multiplicative perturbations were
studied in [7, 13].

The research leading to this article was supported in part by MIUR under the COFIN grants
2002014121 and 2004015437, and by INdAM.
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In this article we accomplish the following two tasks. First we generalize the
main results on additive and bounded perturbations of exponentially dichotomous
operators derived in [14] by requiring the corresponding bisemigroup multiplied
from the right by a bounded additive perturbation to be continuous in the op-
erator norm, except possibly as t → 0±. This greatly simplifies the treatment in
[14], where it is assumed that either the corresponding bisemigroup itself is con-
tinuous in the operator norm (except possibly as t → 0±) or the perturbation is
a compact operator. We shall prove a lemma that will allow us to use the same
proofs as in [14] and to refer to [14] for these proofs. Secondly, for exponentially
dichotomous operators having bounded analytic constituent semigroups, we study
perturbations obtained by multiplying the given exponentially dichotomous op-
erator from the right by a compact perturbation of the identity. We shall prove
that the newly obtained operator is exponentially dichotomous and has bounded
analytic constituent semigroups. We thus generalize results obtained before in [7]
in a Hilbert space setting. All of our results will be derived in general complex
Banach spaces, including those on Riccati equations.

The main body of this paper consists of two sections. In Section 2 we indi-
cate how one of the main results of [14] can be generalized to the present setting
without changing its proof and discuss the consequences of this result for canon-
ical factorization and for block operators. In Section 3 we study perturbations of
analytic bisemigroup generators. We refer to the introduction of [14] for a more
comprehensive discussion of the existing literature.

Let us introduce some notations. We let R± stand for the right (left, resp.)
half-line, including the point at zero. For two complex Banach spaces X and Y,
we let L(X ,Y) stand for the Banach spaces of all bounded linear operators from
X into Y. We write L(X ) instead of L(X ,X ).

Let X be a complex Banach space and E an interval of the real line R. Then
Lp(E;X ) denotes the Banach space of all strongly measurable functions φ : E → X
such that ‖φ(·)‖X ∈ Lp(E), endowed with the Lp-norm, and C0(E;X ) stands for
the Banach space of all bounded continuous functions φ : E → X which vanish
at infinity if E is unbounded, endowed with the supremum norm. In particular,
C0(R−;X )+̇C0(R+;X ) is the Banach space of all bounded continuous functions
φ : R → X which vanish at ±∞ and may have a jump discontinuity in zero.

2. Bisemigroups and their perturbations

2.1. Bisemigroup perturbation results

A C0-semigroup (T (t))t≥0 on a complex Banach space X is called uniformly expo-
nentially stable if

‖T (t)‖ ≤Me−εt, t ≥ 0, (2.1)

for certain M, ε > 0.
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A closed and densely defined linear operator −S on a Banach space X is
called exponentially dichotomous [2] if for some projection P commuting with S,
the restrictions of S to ImP and of −S to KerP are the infinitesimal generators of
exponentially decaying C0-semigroups. We then define the bisemigroup generated
by −S as

E(t;−S) =

{
e−tS(I − P ), t > 0

−e−tSP, t < 0.

Its separating projection P is given by P = −E(0−;−S) = IX − E(0+;−S). One
easily verifies the existence of ε > 0 such that {λ ∈ C : |Reλ| ≤ ε} is contained in
the resolvent set ρ(S) of S and for every x ∈ X

(λ− S)−1x = −
∫ ∞

−∞
eλtE(t;−S)xdt, |Reλ| ≤ ε. (2.2)

As a result, for every x ∈ X we have ‖(λ − S)−1x‖ → 0 as λ → ∞ in {λ ∈ C :
|Reλ| ≤ ε′} for some ε′ ∈ (0, ε]. We call the restrictions of e−tS to KerP and of
etS to ImP the constituent semigroups of the exponentially dichotomous operator
−S. Observe that {x ∈ X : (λ − S)−1x is analytic for Reλ < 0} = KerP , and
{x ∈ X : (λ− S)−1x is analytic for Reλ > 0} = ImP .

Before deriving our main perturbation result, we prove the following lemma.
Note that Theorem 3 of [14] is an immediate consequence of this lemma.

Lemma 2.1. Let −S0 be exponentially dichotomous, Γ a bounded operator such that
E(t;−S0)Γ is norm continuous in 0 �= t ∈ R, and −S = −S0 + Γ, where D(S) =
D(S0). Suppose the strip {λ ∈ C : |Reλ| < ε} is contained in the resolvent set of
S for some ε > 0. Then −S is exponentially dichotomous. Moreover, E(t;−S)Γ
is norm continuous in 0 �= t ∈ R with norm continuous limits as t→ 0±.

Proof. There exists ε > 0 such that∫ ∞

−∞
eε|t|‖E(t;−S0)‖ dt <∞. (2.3)

Using the resolvent identity

(λ− S)−1 − (λ− S0)−1 = −(λ− S0)−1Γ(λ− S)−1, |Reλ| ≤ ε, (2.4)

for some ε > 0, we obtain the convolution integral equation

E(t;−S)x−
∫ ∞

−∞
E(t− τ ;−S0)ΓE(τ ;−S)xdτ = E(t;−S0)x, (2.5)

where x ∈ H and 0 �= t ∈ R. By assumption, in (2.5) the convolution kernel
E(·;−S0)Γ is continuous in the norm except for a jump discontinuity in t = 0.
Further, (2.3) implies that eε|·|E(·;−S0)Γ is Bochner integrable.

The symbol of the convolution integral equation (2.5), which equals IH +
(λ− S0)−1Γ = (λ− S0)−1(λ− S), tends to IH in the norm as λ→∞ in the strip
|Reλ| ≤ ε, because of the Riemann-Lebesgue lemma. Thus there exists ε0 ∈ (0, ε]
such that the symbol only takes invertible values on the strip |Reλ| ≤ ε0. By
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the Bochner-Phillips theorem ([4], also [6]), the convolution equation (2.5) has a
unique solution u(·;x) = E(·;−S)x with the following properties:

1) E(·;−S) is strongly continuous, except for a jump discontinuity at t = 0,

2)
∫∞
−∞ eε0|t|‖E(t;−S)‖ dt <∞; hence E(·;−S) is exponentially decaying,

3) the identity (2.2) holds.

As a result [2], −S is exponentially dichotomous. �

We now present our main perturbation result. Note that Theorem 2 of [14]
is an immediate consequence of this result.

Theorem 2.2. Let −S0 be exponentially dichotomous, Γ a bounded operator such
that the operator (λ − S0)−1Γ is compact for imaginary λ, and −S = −S0 + Γ,
where D(S) = D(S0). Suppose the imaginary axis is contained in the resolvent set
of S. Then −S is exponentially dichotomous. Moreover, E(t;−S) − E(t;−S0) is
a compact operator, also in the limits as t→ 0±.

Proof. It suffices to prove that E(t;−S0)Γ is a compact operator for 0 �= t ∈ R.
This would imply that (1) E(t;−S0)Γ is norm continuous in 0 �= t ∈ R with
norm continuous limits as t → 0±, and (2) the symbol IH + (λ − S0)−1Γ =
(λ−S0)−1(λ−S) of the convolution integral equation (2.5) tends to IH in the norm
as λ → ∞ in the strip |Reλ| ≤ ε. In combination with the absence of imaginary
spectrum of S, the latter would imply that the strip {λ ∈ C : |Reλ| < ε0} is
contained in the resolvent set of S for some ε0 > 0. Theorem 2.2 would then be
immediate from Lemma 2.1.

By analytic continuation, we easily prove that (λ−S0)−1Γ is a compact oper-
ator on a strip {λ ∈ C : |Reλ| ≤ ε} for some ε > 0. Thus (λ−S0)−1E(0+,−S0)Γ is
analytic and compact operator valued for Reλ < ε, while (λ− S0)−1E(0−,−S0)Γ
is analytic and compact operator valued for Reλ > −ε.

Now it is well known ([5], Corollary III 5.5) that

E(t;−S0)x =

⎧⎨⎩ lim
n→∞ (I +

t

n
S0)−nE(0+;−S0)x, t > 0,

lim
n→∞ (I +

t

n
S0)−nE(0−;−S0)x, t < 0.

uniformly in x on relatively compact sets. Since for every 0 �= t ∈ R we have that
(I + t

nS0)−1Γ is compact for sufficiently large n ∈ N, it follows that

E(t;−S0)Γ =

⎧⎨⎩ lim
n→∞ (I +

t

n
S0)−nE(0+;−S0)Γ, t > 0,

lim
n→∞ (I +

t

n
S0)−nE(0−;−S0)Γ, t < 0,

in the operator norm. Since (I + t
nS0)−nE(0±;−S0)Γ is compact for (±t) > 0, it

follows that E(t;−S0)Γ is compact for 0 �= t ∈ R, which completes the proof. �
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2.2. Canonical factorization and matching of subspaces

Let −S0 be exponentially dichotomous and Γ a bounded operator on a complex
Banach space X , and let −S = −S0 + Γ, where D(S) = D(S0) and {λ ∈ C :
|Reλ| ≤ ε} ⊂ ρ(S) for some ε > 0. Then −S is exponentially dichotomous if
E(t;−S0)Γ is continuous in 0 �= t ∈ R in the operator norm. In this section we
consider the analogous vector-valued Wiener-Hopf integral equation

φ(t) −
∫ ∞

0

E(t− τ ;−S0)Γφ(τ) dτ = g(t) (2.6)

where t > 0.
Suppose W is a continuous function from the extended imaginary axis i(R∪

{∞}) into L(X ). Then by a left canonical (Wiener-Hopf ) factorization of W we
mean a representation of W of the form

W (λ) = W+(λ)W−(λ), Reλ = 0, (2.7)

in which W±(±λ) is continuous on the closed right half-plane (the point at ∞
included), is analytic on the open right half-plane, and takes only invertible values
for λ in the closed right half-plane (the point at infinity included). Obviously, such
an operator function only takes invertible values on the extended imaginary axis.
By a right canonical (Wiener-Hopf ) factorization we mean a representation of W
of the form

W (λ) = W−(λ)W+(λ), Reλ = 0, (2.8)

where W±(λ) are as above.
Theorems 6 and 7 and Corollary 8 of [14] can now easily be generalized with

exactly the same proofs. We now require −S0 to be an exponentially dichotomous
and Γ a bounded operator on a complex Banach space X (Hilbert space when
generalizing Corollary 8 of [14]) such that E(t;−S0)Γ is continuous in 0 �= t ∈ R in
the operator norm, instead of requiring that either (i) E(t;−S0) itself is continuous
in the operator norm for 0 �= t ∈ R or (ii) Γ is a compact operator. Lemma 2.1
then enables us to apply Theorems 6 and 7 and Corollary 8 of [14] in the case
(λ− S0)−1Γ is a compact operator for imaginary λ.

The above generalizations of Theorems 6 and 7 of [14] yield results on the
equivalence of (i) left (resp., right) canonical Wiener-Hopf factorizability ofW (λ) =
(λ − S0)−1(λ − S), (ii) the complementarity in X of the range of one of the sep-
arating projections P0 and P and the kernel of the other, and (iii) the unique
solvability of the vector-valued convolution equation on the positive (resp. neg-
ative) half-line with convolution kernel E(·;−S0)Γ. The above generalization of
Corollary 8 of [14] yields left and right canonical factorizability if the symbol
W (λ) = (λ− S0)−1(λ− S) of the half-line convolution equation involved is either
close to the identity operator or has a strictly positive definite real part. Sim-
ilar results in various different contexts exist in the finite-dimensional case [1],
for equations with symbols analytic in a strip and at infinity [3], for extended
Pritchard-Salamon realizations [8], and for abstract kinetic equations [7].
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2.3. Block operators

Suppose −S0 is exponentially dichotomous and Γ is a bounded linear operator on
a complex Banach space X . Define S by −S = −S0 + Γ, and put

X± = ImE(0±;−S0),

i.e., X+ = Im (I − P0) = KerP0 and X− = ImP0. Assuming that Γ[X±] ⊂ X∓,
we have the following block decompositions of S0 and S with respect to the direct
sum X = X++̇X−:

S0 =
(
A0 0
0 −A1

)
, S =

(
A0 −D
−Q −A1

)
, (2.9)

where −A0 and −A1 are the generators of uniformly exponentially stable C0-
semigroups and Q : X+ → X− and D : X− → X+ are bounded. Then we call S
written in the form (2.9) a block operator, which is in line with the definition used
in [14]. In the literature the notion of a block operator is also used in a wider sense
(e.g., without assumptions about semigroup generators).

Theorem 9 of [14] can now be generalized in the same way without changing
its proof. We now require −S0 to be an exponentially dichotomous operator and Γ
a bounded operator on a complex Banach space X satisfying Γ[X±] ⊂ X∓, instead
of requiring that either (i) E(t;−S0) itself is continuous in the operator norm for
0 �= t ∈ R or (ii) Γ is a compact operator. Here X+ and X− are the kernel and
range of the separating projection of −S0, respectively.

The above generalization of Theorem 9 of [14] states that there exists a
bounded linear operator Π+ from X− into X+ which maps D(A1) into D(A0), has
the property that B1 = A1 + QΠ+ generates an exponentially stable semigroup
on X−, and satisfies the Riccati equation

A0Π+x + Π+A1x−Dx + Π+QΠ+x = 0, x ∈ D(A1), (2.10)

if and only if the equivalent statements (a)–(e) of Theorem 7 of [14] are true. Anal-
ogously, it states that there exists a bounded linear operator Π− from X+ into X−

which maps D(A0) into D(A1), has the property that B0 = A0 −DΠ− generates
an exponentially stable semigroup on X+, and satisfies the Riccati equation

Π−A0x + A1 Π−x−Π−DΠ−x + Qx = 0, x ∈ D(A0). (2.11)

if and only if the equivalent statements (a)–(e) of Theorem 8 of [14] are true. Similar
results are valid in the finite-dimensional case [1] and for extended Pritchard-
Salamon realizations [8].

3. Analytic bisemigroups and unbounded perturbations

3.1. Preliminaries on analytic semigroups

As in [5] (but in contrast to the definition given in [12]), a closed linear operator
A densely defined on a complex Banach space X is called sectorial if there exists
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a δ with 0 < δ ≤ (π/2) such that the sector

Σπ
2 +δ = {λ ∈ C : | argλ| < π

2
+ δ} \ {0}

is contained in the resolvent set of A, and if for each ζ ∈ (0, δ) there exists Mζ ≥ 1
such that

‖(λ−A)−1‖ ≤ Mζ

|λ| , λ ∈ Σπ
2 +δ−ζ \ {0}.

According to [5], Theorem II 4.6, the sectorial operators are exactly the gener-
ators of bounded analytic semigroups. Thus A is the generator of a uniformly
exponentially stable analytic semigroup if and only if there exist δ and γ with
0 < δ ≤ (π/2) and γ > 0 such that (1) the sector

−γ + Σπ
2 +δ = {λ ∈ C : | arg(λ + γ)| < π

2
+ δ} \ {−γ} (3.1)

is contained in the resolvent set of A, and (2) for each ζ ∈ (0, δ) there exists Mζ ≥ 1
such that

‖(λ−A)−1‖ ≤ Mζ

|λ + γ| , λ ∈ −γ +
[
Σπ

2 +δ−ζ \ {−γ}
]
. (3.2)

3.2. Perturbation results for analytic bisemigroups

A bisemigroup is called analytic if its constituent semigroups are analytic. Writing
−S for its generator and P for its separating projection, we can define

H(t;−S) =

{
Se−tS(I − P ), t > 0

−Se−tSP, t < 0,

for the derivative of E(t;−S) with respect to 0 �= t ∈ R.
Next, we note that the generator −S has the following two properties (cf.

(3.1)–(3.2)):
1. there exist δ and γ with 0 < δ ≤ (π/2) and γ > 0 such that the set

Ωδ,γ =
{
λ ∈ C :

∣∣∣π
2
− argλ

∣∣∣ < δ or |Reλ| < γ
}

(3.3)

is contained in the resolvent set of S, and
2. for each ζ ∈ (0, δ) there exists Nζ ≥ 1 such that

‖(λ− S)−1‖ ≤ Nζ

(
1

|λ+ γ| +
1

|λ− γ|

)
, λ ∈ Ωζ,γ \ {γ,−γ}. (3.4)

It is not clear if a closed and densely defined linear operator −S on X having the
properties (3.3)–(3.4) generates an analytic bisemigroup.

Starting from an exponentially dichotomous operator −S0 on a complex Ba-
nach space X generating an analytic bisemigroup and a bounded linear operator
∆ on X , we now study sufficient conditions under which the unbounded pertur-
bation −S = −S0 + Γ of −S0 for which Γ = S0∆, is a generator of an analytic
bisemigroup. We will always assume that 1 /∈ σ(∆) and define −S by

D(S) = (I −∆)−1[D(S0)], −S = −S0(I −∆).
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Before deriving our main perturbation result, we prove the following lemma.

Lemma 3.1. Let −S0 be the generator of an analytic bisemigroup and ∆ a bounded
linear operator such that 1 /∈ σ(∆). Suppose that

1. there exist δ and γ with 0 < δ ≤ (π/2) and γ > 0 such that the set Ωδ,γ

defined by (3.3) is contained in the resolvent set of S = S0(I −∆), and
2.
∫∞
−∞ ‖H(t;−S0)∆‖ dt <∞.

Then −S is the generator of an analytic bisemigroup.

Proof. There exists ε > 0 such that (2.3) is true. Using the resolvent identity (2.4),
we obtain the convolution integral equation

E(t;−S)x−
∫ ∞

−∞
H(t− τ ;−S0)∆E(τ ;−S)xdτ = E(t;−S0)x, (3.5)

where x ∈ H and 0 �= t ∈ R. By assumption, in (3.5) the convolution kernel
H(·;−S0)∆ is continuous in the norm except for a jump discontinuity in t = 0
and satisfies

∫∞
−∞ eε|t| ‖H(t;−S0)∆‖ dt < ∞. Indeed, the integral is an improper

integral at 0 and at ±∞. Convergence at t = 0 is guaranteed by the second
assumption. Convergence at ±∞ follows from (2.3) and a line of argument as on
page 103 (bottom) of [5], which together prove that H(t;−S0) is exponentially
decaying. Thus eε|·|H(·;−S0)∆ is Bochner integrable.

The symbol of the convolution integral equation (3.5), which equals I −∆ +
λ(λ − S0)−1∆ = (λ − S0)−1(λ − S), tends to I in the norm as λ → ∞ in the
strip |Reλ| < ε, because of the Riemann-Lebesgue lemma. Thus there exists ε0 ∈
(0,min(ε, γ)] such that the symbol only takes invertible values on the strip |Reλ| ≤
ε0. By the Bochner-Phillips theorem [4], the convolution equation (3.5) has a
unique solution u(·;x) = E(·;−S)x with the following properties:

1) E(·;−S) is strongly continuous, except for a jump discontinuity at t = 0,
2)

∫∞
−∞ eε0|t|‖E(t;−S)‖ dt <∞; hence E(·;−S) is exponentially decaying,

3) the identity (2.2) holds.
As a result [2], −S is exponentially dichotomous. �

The following result has been established in [7] for the case in which S0 is
the inverse of a bounded and injective selfadjoint operator on a Hilbert space. In
[7] it has been sketched how the arguments used to prove the Hilbert space case
can also be applied to prove the Banach space case, without rendering details.

Theorem 3.2. Let −S0 be the generator of an analytic bisemigroup and ∆ a compact
operator such that 1 /∈ σ(∆) and S = S0(I − ∆) does not have purely imaginary
eigenvalues. Suppose that ∫ ∞

−∞
‖H(t;−S0)∆‖ dt <∞. (3.6)

Then −S is the generator of an analytic bisemigroup.
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Proof. It suffices to prove the first condition of Lemma 3.1. Indeed, since the
symbol of the convolution equation (3.5) is a compact perturbation of the identity
and is invertible on a strip |Reλ| ≤ ε0 about the imaginary axis while it has
invertible limits in the operator norm as λ → 0 and λ → ±i∞, the spectrum of
S in this strip must consist of finitely many normal eigenvalues. Thus the first
condition of Lemma 3.1 amounts to requiring the absence of purely imaginary
eigenvalues of S, as assumed. �

It is clear from the proof that the hypotheses of Theorem 3.2 can be replaced
by the hypotheses that −S0 is the generator of an analytic bisemigroup, (λ −
S0)−1∆ is compact for purely imaginary λ, 1 /∈ σ(∆), S = S0(I − ∆) does not
have purely imaginary eigenvalues, and (3.6) holds. It is not necessary to have ∆
itself compact.

It is well known that sectorial operators have fractional powers [12]. Thus
generators −S = (−A0)+̇A1 of analytic bisemigroups, where −A0 and −A1 are
generators of uniformly exponentially stable analytic semigroups, have fractional
powers defined by |S|α def= (−A0)α+̇(−A1)α for any α ∈ R. Moreover,

‖|S|αE(t;−S)‖ = O(|t|−α), t→ 0±; (3.7)

∃c > 0 : ‖|S|αE(t;−S)‖ = O(|t|−α e−c|t|), t→ ±∞. (3.8)

As a result of (3.7)–(3.8) we have∥∥|S|−αH(t;−S)
∥∥ = O(|t|α−1), t→ 0±;

∃c > 0 :
∥∥|S|−αH(t;−S)

∥∥ = O(|t|α−1 e−c|t|), t→ ±∞.

The following corollary is now clear.

Corollary 3.3. Let −S0 be the generator of an analytic bisemigroup and ∆ a com-
pact operator such that 1 /∈ σ(∆), S = S0(I −∆) does not have purely imaginary
eigenvalues, and Im∆ ⊂ D(|S0|α) for some α > 0. Then −S is the generator of
an analytic bisemigroup.

3.3. Canonical factorization and matching of subspaces

The following results can all be found in [7] for the case in which S0 is the inverse
of a bounded and injective selfadjoint operator on a Hilbert space.

Theorem 3.4. Suppose X is a complex Banach space. Let −S0 be the generator
of an analytic bisemigroup and ∆ a bounded operator with 1 /∈ σ(∆) such that
(λ − S0)−1∆ is compact for purely imaginary λ, S0(I − ∆) does not have purely
imaginary eigenvalues, and (3.6) is true. Let P0 and P stand for the separating
projections of −S0 and −S, respectively. Then the following statements are equiv-
alent:
(a) The operator function

W (λ) = (λ− S0)−1(λ− S) = IX −∆ + λ(λ − S0)−1∆, |Reλ| ≤ ε, (3.9)

has a left canonical factorization with respect to the imaginary axis.
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(b) We have the decomposition

KerP +̇ImP0 = X . (3.10)

(c) For some (and hence every) E(R+;X ), the vector-valued Wiener-Hopf equa-
tion

φ(t)−
∫ ∞

0

H(t− τ ;−S0)∆φ(τ) dτ = g(t), t > 0, (3.11)

is uniquely solvable in E(R+;X ) for any g ∈ E(R+;X ).

Theorem 3.5. Suppose X is a complex Banach space. Let −S0 be the generator
of an analytic bisemigroup and ∆ a bounded operator with 1 /∈ σ(∆) such that
(λ − S0)−1∆ is compact for purely imaginary λ, S0(I − ∆) does not have purely
imaginary eigenvalues, and (3.6) is true. Let P0 and P stand for the separating
projections of −S0 and −S, respectively. Then the following statements are equiv-
alent:

(a) The operator function

W (λ) = (λ− S0)−1(λ− S) = IX −∆ + λ(λ− S0)−1∆, |Reλ| ≤ ε,

has a right canonical factorization with respect to the imaginary axis.
(b) We have the decomposition

KerP0+̇ImP = X . (3.12)

(c) For some (and hence every) E(R−;X ), the vector-valued Wiener-Hopf equa-
tion

φ(t) −
∫ 0

−∞
H(t− τ ;−S0)∆φ(τ) dτ = g(t), t < 0, (3.13)

is uniquely solvable in E(R−;X ) for any g ∈ E(R−;X ).

Corollary 3.6. Suppose H is a complex Hilbert space. Let −S0 be the generator
of an analytic bisemigroup and ∆ a bounded operator with 1 /∈ σ(∆) such that
(λ − S0)−1∆ is compact for purely imaginary λ, S0(I − ∆) does not have purely
imaginary eigenvalues, and (3.6) is true. Let P0 and P be the separating projections
of −S0 and −S, respectively. Suppose

sup
Reλ=0

‖ −∆ + λ(λ − S0)−1∆‖ < 1.

Then all of the following statements are true:

(a) The operator function W (·) in (3.9) has a left and a right canonical factor-
ization with respect to the imaginary axis.

(b) We have the decompositions (3.10) and (3.12).
(c) For some (and hence every) E(R±;H), the vector-valued Wiener-Hopf equa-

tion (3.11) [(3.13), respectively] is uniquely solvable in E(R±;H) for any
g ∈ E(R±;H).
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