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Abstract In this article the Marchenko integral equations leading to the so-
lution of the inverse scattering problem for the 1-D Schrödinger equation on
the line are solved numerically. The linear system obtained by discretization
has a structured matrix which allows one to apply FFT based techniques to
solve the inverse scattering problem with minimal computational complexity.
The numerical results agree with exact solutions when available. A proof of
the convergence of the discretization scheme is given.

Keywords Structured matrix systems, 1-D inverse scattering, Marchenko in-
tegral equation

1 Introduction

In this article we propose a numerical method for solving the inverse scattering
problem for the Schrödinger equation

ψ ′′(k, x)+ k2ψ(k, x) = V (x)ψ(k, x), x ∈ R, (1.1)

where V is a Faddeev class potential, i.e., a real function satisfying

‖V ‖L1
1(R)

def=
∫ ∞

−∞
dx (1 + |x |)|V (x)| < ∞.

Research supported in part by the Italian Ministery of Education, Universities and Research
(MIUR) under COFIN grant 2004015437, and by INdAM-GNCS.

C. van der Mee (B)
Dip. Matematica e Informatica, Università di Cagliari, 09123 Cagliari, Italy

S. Seatzu · D. Theis
Dip. Matematica e Informatica, Università di Cagliari, 09123 Cagliari, Italy



60 C. van der Mee et al.

This method is based on the application of structured matrix algorithms for
solving the linear systems obtained by discretizing the Marchenko integral
equations whose solution allows one to identify the potential V , as explained
in Sect. 2.

Traditionally inverse scattering problems on the line were solved numer-
ically by methods not relying on the Marchenko integral equation method.
Most effort went into the development of the layer stripping method [2,5,7,
21] which is based on either the trace formula or on causality and the Riesz
transform. Basically these methods rely on the time domain description of di-
rect and inverse scattering rather than on the frequency domain description. In
[22] a time domain description of the direct and inverse problems and finite
difference schemes are applied to solve the same inverse scattering problem.
Only in [2,13] was the Marchenko integral equation method adopted, but with-
out using structured matrix techniques. In [2] the Marchenko method served
to construct the scattering matrices for the restrictions of the potential on the
positive and negative half-lines and to employ the latter data in the layer strip-
ping method, while in [13] an integral equation method was applied to solve
the inverse spectral problem of the Schrödinger equation on a finite interval
numerically. As a result, the method has a computational complexity of O(n3)
for a number of x values that is proportional to n. Our method allows one to
compute V (x), for the same set of x values, by an algorithm of computational
complexity O(n2 log n). We also prove the convergence of the scheme adopted
at the approximation of the Marchenko integral equation, by observing that the
approximation amounts to quadratic spline interpolation. This approximation
is similar but not identical to that given in [19] for convolution equations on
the half-line. For the approximation inspired by that given in [19] and for the
approximation obtained by applying the corresponding Nyström method we
also give convergence proofs.

The outline of the paper is as follows. In Sect. 2 we introduce the Mar-
chenko integral equation and explain how its solution allows one to identify
the potential V if the scattering data satisfy the hypotheses which we specify.
In Sect. 3 we discuss the boundedness and compactness of the Marchenko in-
tegral operator and the unique solvability of the Marchenko integral equation
on various Sobolev spaces. These well-posedness results, as well as auxiliary
results presented in Appendix A, are used in Sects. 4.1 and 4.2 to prove the con-
vergence of two approximation schemes for the Marchenko equation in certain
Sobolev spaces. In Sect. 3.2 we derive the explicit solution of this equation for
rational scattering data by control theory methods. Some of them are used to
assess the effectiveness of our numerical method. In Sect. 4.3 we describe the
(preconditioned) Richardson iteration algorithm and present numerical results.
We draw conclusions in Sect. 5.
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2 The Marchenko integral equation method: statements and
discussion

We first discuss conditions on the scattering data that assure the identificability
of the potential V by the Marchenko integral equation method. To explain this
issue, we introduce the Jost solutions fl (k, x) and fr (k, x) as those solutions
of (1.1) that satisfy{

fl (k, x) = eikx [1 + o(1)], x → +∞,

fr (k, x) = e−ikx [1 + o(1)], x → −∞,

and define the transmission coefficient T(k) and the reflection coefficients R(k)
from the right and L(k) from the left by means of the asymptotic relations⎧⎪⎪⎨

⎪⎪⎩
fl (k, x) = 1

T (k)
eikx + L(k)

T (k)
e−ikx + o(1), x → −∞,

fr (k, x) = 1

T (k)
e−ikx + R(k)

T (k)
eikx + o(1), x → +∞,

such that the scattering matrix

S(k) =
(

T (k) R(k)

L(k) T (k)

)
, k ∈ R,

is unitary. Let iκ1, . . . , iκN , with 0 < κ1 < . . . < κN , be the finitely
many (necessarily simple) poles of T (k) in the upper half-plane C+ and let
it1, . . . , itN be the residues of T (k) at these poles. Then the inverse scattering
problem consists of determining the unique Faddeev class potential V (x) from
the following scattering data [6,8,10,17]:

a. to determine V (x) for x > 0 from the reflection coefficient R(k) from the
right, the distinct positive numbers κ1, . . . , κN relating to the poles of T (k)
in C+, and the constant ratios c j = fr (iκ j , x)/fl(iκ j , x) (the so-called
norming constants) such that � j = c j t j > 0 ( j = 1, . . . ,N );

b. to determine V (x) for x < 0 from the reflection coefficient L(k) from the
left, the distinct positive numbers κ1, . . . , κN relating to the poles of T (k)
inC+, and the constant ratios (1/c j ) = fl (iκ j , x)/ fr (iκ j , x) (the so-called
reciprocal norming constants) such that (t j/c j ) > 0 ( j = 1, . . . ,N ).

The potential V (x) is to be found from the unique solutions Bl(x , y) (for
x , y > 0) and Br (x , y) (for x < 0 and y > 0) of the two Marchenko integral
equations

Bl(x , y)+�l (2x + y)+
∫ ∞

0
dz�l (2x + y + z)Bl (x , z) = 0, (2.1)

Br (x , y)+�r (−2x + y)+
∫ ∞

0
dz�r (−2x + y + z)Br (x , z) = 0, (2.2)
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by means of the identities

V (x) =
{

−2(∂/∂x)Bl (x , 0+), x > 0,

+2(∂/∂x)Br (x , 0+), x < 0.
(2.3)

Here the kernels of the above integral equations are connected to the scattering
data as follows:

�l (y) = R̂(y)+
N∑
j=1

t j c j e−κ j y, �l (y) = L̂(y)+
N∑
j=1

(t j/c j )e−κ j y, (2.4)

where

R̂(y) = 1

2π

∫ ∞

−∞
dk eiky R(k), L̂(y) = 1

2π

∫ ∞

−∞
dk eiky L(k).

We note that the integral kernels of the Marchenko equations (2.1) and (2.2) are
functions of the sums of their arguments. This property motivated us to solve
them by applying structured matrix algorithms to the linear systems obtained
by their discretization and thus to reduce the computational complexity of the
algorithm substantially. The same property holds true for the integral kernels
of the equations characterizing V (x) for x > 0 and x < 0 as, given Bl and Br ,
∂Bl/∂x and ∂Br/∂x are the solutions of the integral equations

∂Bl

∂x
(x , y)+

∫ ∞

0
dz�l (2x + y + z)

∂Bl

∂x
(x , z) = −2�′

l (2x + y)

− 2
∫ ∞

0
dz�′

l (2x + y + z)Bl (x , z), (2.5)

∂Br

∂x
(x , y)+

∫ ∞

0
dz�r (−2x + y + z)

∂Br

∂x
(x , z) = 2�′

r (−2x + y)

+ 2
∫ ∞

0
dz�′

r (−2x + y + z)Br (x , z). (2.6)

Consequently, we can apply the structured matrix algorithms for solving
Eqs. (2.5)–(2.6), which allows us to obtain better results than by applying
numerical differentiation to the solution of the Marchenko integral equations,
but without increasing the order of computational complexity.

Calculations for x > 0 and x < 0 are done independently. Once the
algorithm for computing V (x) for x > 0 is in place, it is sufficient to recall
that the scattering data

{
R(k), {κ j , c j }Nj=1

}
for V (−x) for x > 0 are exactly{

L(k), {κ j , (1/c j )}Nj=1

}
, where L(k) is computed from R(k) and κ1, . . . , κN

in a straightforward way [6,8,17].
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To test the method we make use of explicit expressions for the potential
V (x) with x > 0 based on a so-called realization of rational reflection coeffi-
cient R(k) in the form [4]

R(k) = −iC(k − iA)−1B, (2.7)

whereA, B and C are real p × p, p × 1 and 1 × p matrices and p is minimal
and is in fact equal to the McMillan degree of R(k). Under the realization (2.7)
the integral equation (2.1) can be solved explicitly by separation of variables if
x > 0. Moreover, by using symbolic calculus the explicit solution thus obtained
can be employed to determine the error in the numerical computation. When
R(k) is not rational, in general no explicit solution of (2.1) is known.

3 Analysis of the Marchenko equations

In this section we prove the compactness of the Marchenko integral operator
between various function spaces.

3.1 The Marchenko integral operator

For 1 ≤ p ≤ +∞ and m = 0, 1, 2, . . . we define the Sobolev spaces
W p,m(R+) as the (real or complex) spaces of those measurable f for which
f and its first m distributional derivatives f ′, f ′′, . . . , f (m) belong to L p(R+),
endowed with the norm

‖ f ‖p,m =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎡
⎣ m∑

j=0

‖ f ( j)‖p
p

⎤
⎦

1/p

, 1 ≤ p < +∞,

max(‖ f ‖∞, ‖ f ′‖∞, . . . , ‖ f (m)‖∞), p = +∞.

We write f (0) = f and W p,0(R+) = L p(R+). We write BC(R+) for the
Banach space of bounded continuous complex-valued functions on [0,∞)
endowed with the supremum norm.

Proposition 3.1 Let 1 ≤ p ≤ +∞ and K ∈ W 1,m(R+). Then the integral
operator K defined by

(K f )(y) =
∫ ∞

0
dzK(y + z) f (z) (3.1)

acts as a compact linear operator from L p(R+) into W p,m(R+). As a result,
K is a compact linear operator on W p,m(R+). The operator K is compact on
BC(R+) whenever K ∈ L1(R+).
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Proof It is easy to see that K is a bounded linear operator on L p(R+) with
norm bounded above by ‖K‖1. In fact, this is a straightforward estimate for
p = 1 (using the convolution theorem), p = 2 (using the unitarity of the
Fourier transform), and p = +∞ (trivial). It follows for the remaining p-
values by the Riesz interpolation theorem. Next, if K ∈ W 1,m(R+), then for
j = 0, 1, . . . ,m we have

(K f )( j)(y) =
∫ ∞

0
dzK( j)(y + z) f (z), y ∈ R+,

in the distributional sense and therefore

‖(K f )( j)‖p ≤ ‖K( j)‖1‖ f ‖p, f ∈ L p(R+).

As a result, for 1 ≤ p < +∞ we have

‖K f ‖p,m =
⎡
⎣ m∑

j=0

‖(K f )( j)‖p
p

⎤
⎦

1/p

≤
⎡
⎣ m∑

j=0

‖K( j)‖p
1

⎤
⎦

1/p

‖ f ‖p

≤ (m + 1)1/p ‖K‖1,m‖ f ‖p ≤ (m + 1)1/p ‖K‖1,m‖ f ‖p,m.

For p = +∞ we have ‖K f ‖∞,m ≤ ‖K‖1,m‖ f ‖∞ ≤ ‖K‖1,m‖ f ‖∞,m .
The compactness of K on L p(R+) and BC(R+) under the conditionK ∈

L1(R+) is a well-known result ([11], Lemma XII 2.4, its proof generalized to
p ∈ [1,∞]). When K ∈ W 1,m(R+), we have K( j) ∈ L1(R+) and hence the
integral operator K j of the type (3.1) with kernel function K( j) is compact
on L p(R+) ( j = 0, 1, . . . ,m). Thus choosing a bounded sequence { fn }∞

n=1
in L p(R+) one can extract a subsequence { fnk }∞

k=1 and find {g0, . . . , gm} in
L p(R+) such that, for j = 0, 1, . . . ,m, ‖K ( j) fnk − g j‖p → 0 as k → ∞.
From the fact that the (distributional) differentiation operator on L p(R+) is
closed it follows that g j = (d/dx) j g0 in the distributional sense. As a result,
‖K fnk − g0‖p,m → 0 as k → ∞, which proves the compactness of K as an
operator from L p(R+) into W p,m(R+). �	

To determine if
{

R(k), {κ j , c j }Nj=1

}
are scattering data for a (unique) Fad-

deev class potential, let T0(k) be the unique continuous function of k ∈ C+
such that k/T0(k) is analytic in k ∈ C+, T0(k) → 1 as k → ∞ in C+, and
T0(k)T0(−k) = 1 − R(k)R(−k) for k ∈ R (cf. [8]). Put

T (k) = T0(k)
N∏
j=1

k + iκ j

k − iκ j
, L(k) = − T (k)

T (−k)
R(−k).

Then
{

R(k), {κ j , c j }Nj=1

}
are scattering data for a (unique) Faddeev class po-

tential [18,17,1] if and only if



Structured matrix algorithms for inverse scatteringon the line 65

a. R(−k) = R(k) for k ∈ R,
b. R(k) is continuous for k ∈ R,
c. −1 ≤ R(0) < 1,
d. the function k/T (k) is continuous in C+,
e. R(k) ≤ 1 − C(k2/(1 + k2)) on R for some positive constant C,
f. R(k) = o(1/k) as k → ±∞,
g. the functions R̂ and L̂ are absolutely continuous, while

∫ ∞

a
dy (1 + |y|)(|R̂′(y)| + |L̂ ′(y)|) < +∞, a ∈ R,

h. � j
def= t j c j > 0 for it j = Resiκ j T (k) ( j = 1, . . . ,N ).

When
{

R(k), {κ j , c j }Nj=1

}
are scattering data for a Faddeev class potential

V (x), then
{

L(k), {κ j , 1/c j }Nj=1

}
are scattering data for a Faddeev class po-

tential (namely, for V (−x)).
The following result is well-known, as far as unique solvability in L1(R+)

and L2(R+) is concerned (see [6,8,9]). The other statements follow from it by
the compactness of the integral operator and the symmetry of its kernel.

Theorem 3.2 Let
{

R(k), {κ j , c j }Nj=1

}
be scattering data for a Faddeev class

potential. Then, for 1 ≤ p < ∞ and any x ∈ R+, the integral equation

Cl (y)+
∫ ∞

0
dz�l (2x + y + z)Cl (z) = Fl(y), y ∈ R+, (3.2)

is uniquely solvable in L p(R+) for any Fl ∈ L p(R+). Moreover, if �l ∈
W 1,m(R+) for some m ∈ N, then (3.2) is uniquely solvable in W p,m(R+) for
any Fl ∈ W p,m(R+). Analogously, for 1 ≤ p < ∞ and any x ∈ R

−, the
integral equation

Cr (y)+
∫ ∞

0
dz�r (−2x + y + z)Cr (z) = Fr (y), y ∈ R+, (3.3)

is uniquely solvable in L p(R+) for any Fr ∈ L p(R+). Moreover, if �r ∈
W 1,m(R+) for some m ∈ N, then (3.3) is uniquely solvable in W p,m(R+) for
any Fr ∈ W p,m(R+).

With F standing for the Fourier transform operator, it is well-known [15]
thatFmaps the orthogonal decomposition L2(R) = L2(R−)⊕L2(R+) into the
orthogonal decomposition L2(R) = H 2−(R)⊕H 2+(R), where the spaces H 2±(R)
are the Hardy spaces of analytic functions f on C± for which supb>0 ‖ f (· ±
ib)‖2 < +∞. Letting Q+ stand for the natural projection of L2(R) onto
H 2+(R), j+ for the natural imbedding of L2(R+) into L2(R), and J for the sign
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inversion (J f )(k) = f (−k), we can write the Marchenko integral operator K
in (3.1) on L2(R+) in the form

K f = F−1Q+(K̂JF j+ f ),

where F−1 maps H 2+(R) onto L2(R+) and K̂ is the Fourier transform of K.
As a result,

‖K ‖L2(R+)→L2(R+) ≤ inf{‖K̂− φ‖∞ : φ ∈ H ∞(C−)},
where H ∞(C−) is the Banach space of bounded analytic functions on C−,
which can be compared to functions of k ∈ R through their almost everywhere
existing nontangential limits in k ∈ R. In fact, equality holds according to the
Hartman-Wintner theorem [14]. Therefore, if there are no bound states, then
the Marchenko integral operator in (3.2) has the spectral radius

min
φ∈H ∞(C−)

ess sup
k∈R

|R(k)eikx − φ(k)|.

As a result, if R(k) ∈ [r−, r+] for −1 ≤ r− < r+ < 1, then by choosing
φ(k) = 1 − 1

2 [r+ − r−] we see that the Marchenko integral operator in (3.2)
has a spectral radius ≤ 1

2 [r+ − r−].
Because of the compactness of K on all of the function spaces mentioned

above, the result remains true on these spaces. Indeed, let E and Ẽ be two of
these function spaces, let K be compact on either, and let I − K be invertible
on E . Then E ∩ Ẽ , which is dense in both E and Ẽ , is a Banach space when
endowed with the sum of the norms on E and Ẽ and K is a compact operator
on E ∩ Ẽ . Since Ker (I − K ) = {0} on E ∩ Ẽ , the Fredholm alternative implies
the invertibility of I − K on E ∩ Ẽ . Then the density of E ∩ Ẽ in Ẽ implies
that I − K has a dense range on Ẽ . By the Fredholm alternative, I − K is
invertible on Ẽ , as claimed.

3.2 Explicit solutions in the rational case

If the reflection coefficient R(k) is a rational function satisfying the character-
ization conditions (a)-(h) for corresponding to a Faddeev class potential, then
there exist real matrices A, B and C, of sizes p × p, p × 1 and 1 × p, respec-
tively, such thatA does not have zero or purely imaginary eigenvalues and the
realization (2.7) is valid. Letting P (+)

A and P (−)
A stand for the projections onto

the maximal A-invariant subspaces of Cp on which the restriction of A only
has eigenvalues in the right and left half-planes, we have

R̂(y) = CE(y; −A)B, (3.4)
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where

E(y; −A) =
⎧⎨
⎩

+Ce−yAP (+)
A B, y > 0,

−Ce−yAP (−)
A B, y < 0.

We now easily arrive at the following result (cf. [3]).

Theorem 3.3 Let
{

R(k), {κ j , c j}Nj=1

}
be valid scattering data satisfying the

conditions (a)-(h), and let R(k) have the realization (2.7). Put

B̃ =

⎛
⎜⎜⎜⎝
B
1
...
1

⎞
⎟⎟⎟⎠ ,

⎧⎨
⎩
Ã = A⊕ diag(κ1, . . . , κN ),

C̃ =
(
C t1c1 . . . tN cN

)
.

Then for x ∈ R+ the unique solution of the Marchenko equation (2.1) is given
by

Bl(x , y) = −C̃E(2x + y; −Ã)[I + X̃ E(2x ; −Ã)]−1B̃,
where

X̃ =
∫ ∞

0
dy E(y; −Ã)B̃C̃E(y; −Ã). (3.5)

For x ∈ R+ the corresponding potential is given by

V (x) = −4C̃E(2x ; −Ã)[I + X̃ E(2x ; −Ã)]−1

Ã[
I + X̃ E(2x ; −Ã)]−1B̃. (3.6)

Proof From (3.4) and (2.4) we easily derive that

�̂l (y) = C̃E(y; −Ã)B̃, (3.7)

where E(y; −Ã) = E(y; −A)⊕ diag(e−κ1y, . . . , e−κN y) for y > 0. Further,
for x ∈ R+ the integral equation (2.1) has a separated kernel and hence

Bl (x , y) = −C̃E(2x + y; −Ã)[B̃ +
∫ ∞

0
dz E(z; −Ã)B̃Bl(x , z)

]
,

which implies that

[
I + X̃ E(2x ; −Ã)]

∫ ∞

0
dy E(y; −Ã)B̃Bl (x , y) = −X̃ E(2x ; −Ã)B̃,

which immediately gives (3.5). Equation (3.6) then follows using (2.3). �	
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4 Discretization schemes and algorithms

In this section we introduce an approximation scheme which makes use of an
exact calculation of integrals of the type

∫ ∞
0 dzK(y + z)s(z), where s is a

quadratic spline, and prove its convergence in several Sobolev spaces. When
these integrals can be evaluated exactly, as in all of the examples given in
Sect. 5 except for Example 5.3, the resulting linear system is of diagonal-plus-
Hankel type. Moreover, we describe an algorithm for solving Eqs. (2.1)–(2.2)
and (2.5)–(2.6) which relies on the evaluation of these integrals by composite
Simpson quadrature, thus leading to Nyström’s method [16]. In all cases the
resulting linear system is of diagonal-plus-Hankel type. The former method,
to be described in Sect. 4.1, leads to an approximation error of the type

∫ ∞

0
dzK(y + z)

[
(I −	�) f

]
(z),

with 	� defined below in (4.2), whereas the second method, to be described
in Sect. 4.2, leads to the additional quadrature error

∫ ∞

0
dz

[
(I −	�)(K(y + ·) f )

]
(z).

which is of the order of the square of the step size.

4.1 Convergence of the approximation scheme

By a mesh we mean a set of the form

� = {0 = x0 < x1 < x2 < . . . < xn < . . . < +∞}, (4.1)

where xn → +∞ as n → ∞. The points xn are called division points. We write
h j = x j − x j−1 ( j = 1, 2, . . .). For each mesh we write ‖�‖ def= sup j∈N h j .

Given the mesh � of type (4.1) and a continuous function f : R+ → Cwe
define its corresponding quadratic spline interpolant as:

(	� f )(y)= f (x j−1)

(
y − 1

2 [x j−1 + x j ]
)
(y − x j)

h2
j/2

− f

(
1

2
[x j−1 + x j ]

)
(y − x j−1)(y − x j )

h2
j/4

+ f (x j )
(y − x j−1)

(
y − 1

2 [x j−1 + x j ]
)

h2
j/2

, (4.2)
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where x j−1 ≤ y ≤ x j for j = 1, 2, 3, . . . ,. Using a C∞-function g of compact
support to compute 〈(	� f )′ f, g〉 = −〈	� f, g′〉 and g(x0) = g(0) = 0, we
obtain (in the sense of a function defined a.e.)

(	� f )′(y) = f (x j−1)
y − ( 1

4 x j−1 + 3
4 x j

)
h2

j/4

− f

(
1

2
[x j−1 + x j ]

)
y − 1

2 [x j−1 + x j ]

h2
j/8

+ f (x j )
y − ( 3

4 x j−1 + 1
4 x j

)
h2

j/4
, (4.3)

where x j−1 < y < x j and j = 1, 2, 3, . . .. For details see Appendix B.
By an allowable sequence of meshes we mean a sequence {�m}∞

m=1 of
meshes{

�m = {0 = x m
0 < x m

1 < x m
2 < . . . < x m

n < . . . < +∞},
hm

j = x m
j − x m

j−1, j = 1, 2, . . . ,
(4.4)

where
lim

m→∞ ‖�m‖ = 0.

Given the integral operator K defined by (3.1), we now define the approx-
imant K� of K as:⎧⎪⎨

⎪⎩
(K� f )(y) = (	�g)(y),

g(y) =
∫ ∞

0
dzK(y + z)(	� f )(z).

(4.5)

Proposition 4.1 Let 1 ≤ p < ∞. Then for any allowable sequence of meshes
{�m}∞

m=1 we have as m → ∞
‖K − K�m ‖ = O(‖�m‖) (4.6)

ifK ∈ W 1,2(R+), in the operator norm of any of the Banach spaces W p,1(R+).

Proof Writing K�m = 	�m K	�m we have

K − K�m = K (I −	�m )+ (I −	�m )K − (I −	�m)K (I −	�m). (4.7)

We estimate each term separately as depicted in the following diagrams:

W p,1(R+)
I−	�m−−−−→ L p(R+) K−−−→ W p,1(R+),

W p,1(R+) K−−−→ W p,2(R+)
I−	�m−−−−→ W p,1(R+),

W p,1(R+)
I−	�m−−−−→ L p(R+) K−−−→ W p,2(R+)

I−	�m−−−−→ W p,1(R+).
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The first estimate requires K ∈ W 1,1(R+), the second and third require K ∈
W 1,2(R+), and Lemma A.2 and the p-additivity of the L p-norm are applied to
get the norm estimates on I −	�m . In all of these cases we only need 	�m f
and (	�m f )′ for continuous f , but no higher order derivatives of 	�m f .

Indeed, applying Lemma A.2 to each interval (x m
j−1, x m

j ) for j = 1, 2, . . .
and Proposition 3.1 for m = 1, we obtain, for 1 ≤ p < ∞,

‖K (I −	�m ) f ‖p
p,1 ≤ (‖K ‖L p→W p,1)p

∞∑
j=1

∫ x j

x j−1

dy |[(I −	�m) f
]
(y)|p

≤ (‖K ‖L p→W p,1)p
∞∑
j=1

(
3

4
h j

)p ∫ x j

x j−1

dy | f ′(y)|p

≤ 2

(
3

4
‖K‖1,1‖�m‖

)p

‖ f ‖p
p,1,

so that, for f ∈ W p,1(R+),

‖K (I −	�m ) f ‖p,1 ≤ 21/p‖�m‖‖K‖1,1‖ f ‖p,1. (4.8)

Next, using the facts that K acts as a bounded linear operator from W p,1(R+)
into W p,2(R+) wheneverK ∈ W 1,2(R+) with norm bounded above by ‖K‖1,2

and that I − 	�m acts as a bounded linear operator from W p,2(R+) into
W p,1(R+) [see (A.13a)] with norm of the order of O(‖�m‖), we see that,
for f ∈ W p,1(R+),

‖(I −	�m)K f ‖p,1 ≤ 31/p‖�m‖‖K‖1,2‖ f ‖p,1. (4.9)

Also, using the facts that I −	�m acts as a bounded operator from W p,1(R+)
into L p(R+) with norm of the order of O(‖�m‖), that K acts as a bounded
operator from L p(R+) into W p,2(R+) whenever K ∈ W 1,2(R+) with norm
bounded above by 31/p‖K‖1,2, and that I − 	�m acts as a bounded operator
from W p,2(R+) into W p,1(R+) with norm of the order of O(‖�m‖), we have,
for f ∈ W p,1(R+),

‖(I −	�m )K (I −	�m ) f ‖p,1 ≤ 31/p‖�m‖‖K‖1,2‖ f ‖p,1. (4.10)

From (4.8)–(4.10) we immediately obtain (4.6). �	
The unique solvability of the Marchenko integral equations implies that,

under the conditionsof Proposition 4.1, the solution of the discretized equation

(I + K�m)Bm = −	�m W (4.11)
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converges to the unique solution of the Marchenko integral equation

(I + K )B = −W

in the norm of the function space W p,1(R+), irrespective of the choice of
W ∈ W p,2(R+).

Theorem 4.2 Let 1 ≤ p < ∞ and let I + K be invertible on L p(R+). If K ∈
W 1,2(R+), then for any allowable sequence of meshes {�m}∞

m=1 there exists
m0 ∈ N such that, for m ≥ m0, (4.11) has a unique solution Bm ∈ W p,1(R+)
for any W ∈ W p,2(R+). Moreover, for m ≥ m0 we have

‖B − Bm‖p,1 = O(‖K‖1,2‖�m‖ ‖W‖p,2), (4.12)

where the order constant does not depend on m ≥ m0 and B ∈ W p,2(R+).

Proof The invertibility of I + K on W p,1(R+) and the relation

lim
m→∞

∥∥K − K�m

∥∥
W p,1→W p,1 = 0

imply that, for sufficiently large m, the inverses (I + K�m)
−1 exist and are

uniformly bounded on W p,1(R+):
∥∥(I + K�m)

−1
∥∥

W p,1→W p,1 ≤ c0, m ≥ m0.

Now let Bm ∈ W p,1(R+) be the solution of (4.11). Then for m ≥ m0 it follows
that

‖B − Bm‖p,1 ≤ c0‖(I + K�m)(B − Bm)‖p,1

≤ c0
(‖(I + K )B − (I + K�m)Bm‖p,1 + ‖(K�m − K )B‖p,1

)

≤ c0
(‖W −	�m W‖p,1 + 31+ 1

p ‖�m‖ ‖K‖1,2‖B‖p,1
)

≤ O(‖�m‖ ‖K‖1,2)
(‖W‖p,2 + ‖B‖p,1

)
≤ O(‖�m‖ ‖K‖1,2)‖W‖p,2,

which establishes (4.12). �	

4.2 Applying Nyström’s method

Apart from (4.5), we now consider the Nyström approximation scheme [16]
⎧⎪⎨
⎪⎩
(K[�] f )(y) =

∫ ∞

0
dz (K � f )(y, z),

(K � f )(z) = [	�K(y + ·) f (·)](z).
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Given the mesh (4.1) and putting h−1 = hn+1 = 0, it is easily verified that

∫ ∞

0
dy (	� f )(y) =

n+1∑
j=0

h j−1 + h j

6
f (x j )

+ hn

6
f (xn)+

n∑
j=1

2

3
h j−1 f

(
1

2
[x j−1 + x j ]

)

is the result of truncating f for y > xn and integrating f over [0, xn] by
Simpson’s rule. Here we note that the sum of the weights equals xn. Thus, the
integral in the integral equation (I − K )B = −W is confined to the interval
[0, xn] and evaluated by Simpson’s quadrature rule.

Fix M > 0. Let {�m}∞
m=1 be a sequence of meshes such that

�m = {0 = x m
0 < x m

1 < . . . < x m
nm

= M}, lim
m→∞ max

j=1,...,nm

(x m
j − x m

j−1) = 0.

(4.13)
Then it follows from [16, Theorems 12.2 and 12.4] that the sequence of quadra-
ture rules corresponding to such a sequence of meshes is convergent in the sense
that

lim
n→∞

∫ M

0
dy [ f (y)− (	�m f )(y)] = 0

for every f ∈ C[0, M]. According to [16, Theorem 12.8], the sequence of
integral operators {K �m}∞

m=1 is collectively compact and converges pointwise
to the integral operator K (M) defined on C[0, M] by

(K (M) f )(y) =
∫ M

0
dzK(y + z) f (z), 0 ≤ y ≤ M. (4.14)

In the sequel we write χA for the characteristic function of the set A.

Theorem 4.3 Suppose K ∈ W 1,1(R+), W ∈ BC(R+), and that the homo-
geneous equation (I + K ) f = 0 has only the trivial solution in L∞(R+).
Then, for sufficiently large M > 0 and for any sequence of meshes {�m}∞

m=1
satisfying (4.13), there exists m0 = m0(M) ∈ N such that the equations

BM(y)+ χ[0,M](y)
∫ M

0
dzK(y + z)BM (z) = −W (y), y ≥ 0,

and, for m ≥ m0,

(I + K[�m])B[m] = −	�m

(
W |[0,M]

)
have unique solutions BM ∈ L∞(R+) and B[m] ∈ C[0, M], respectively.
Moreover,

lim
m→∞ ‖B[m] − BM‖∞,[0,M] = 0 for sufficiently large M, (4.15)
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where ‖ f ‖∞,[0,M] = supx∈[0,M] | f (x)|, and

lim
M→∞ ‖BM − B‖∞ = 0. (4.16)

Proof For M > 0 define K̃ (M) = PM K PM : L∞(R+) → L∞(R+), where

(PM f )(x) =
{

f (x), x ∈ [0, M],

0, x > M.

Since PM has unit norm on L∞(R+), for f ∈ L∞(R+) we can estimate∥∥∥K f − K̃ (M) f
∥∥∥∞

≤ ‖K f − K PM f ‖∞ + ‖PM(K f − K PM f )‖∞
≤ 2‖K f − K PM f ‖∞

= 2 sup
y≥0

∣∣∣∣
∫ ∞

M
dzK(y + z) f (z)

∣∣∣∣
≤ 2‖ f ‖∞

∫ ∞

M
dz |K(z)|,

which vanishes as M → +∞. This means that

lim
M→∞

∥∥∥K − K̃ (M)
∥∥∥

L∞(R+)→L∞(R+)
= 0. (4.17)

Consequently, since I + K is invertible on L∞(R+), the operators I + K̃ (M)

are invertible for sufficiently large M .
To prove that the operator I + K (M) : C[0, M] → C[0, M] defined by

(4.14) is invertible for sufficiently large M , it is sufficient to show that, for
sufficiently large M , the homogeneous equation

f̃ + K (M) f̃ = 0 (4.18)

has only the trivial solution in C[0, M]. Indeed, if f̃ ∈ C[0, M] is a solution
of (4.18), define

f (x) =
{

f̃ (x), x ∈ [0, M],

0, x > M.

Then, since PM is a projection operator, we have

0 = f̃ + K̃ (M) f̃ = PM f + PM K PM PM f = (
I + K̃ (M)

)
PM f.

Due to the invertibility of I + K̃ (M) on L∞(R+) for sufficiently large M , we
obtain PM f = 0 and hence f̃ = 0, thus proving the uniqueness statement.

Let B and BM denote the solutions of the equations (I + K )B = −W and(
I + K̃ (M)

)
BM = −W , respectively. Then, due to (4.17), ‖BM − B‖∞ → 0 as

M → +∞. With the help of [16, Theorem 10.9] one obtains the convergence
(in the norm of C[0, M]) of B[m] to the restriction of BM to the interval [0, M].
Thus we have proved (4.15) as well as (4.16). �	
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The choice of M is not an easy task. However, in our numerical experiments
we found it effective to choose M such that ‖Kχ[M,∞)‖1 � ‖�‖, where χ[M,∞)

is the characteristic function of [M,∞). This choice of M is motivated by the
fact that, on the one hand, ‖K − K (M)‖ = O(‖Kχ[M,∞)‖1) and, on the other
hand, ‖K − K[�]‖ = O(‖�‖).

4.3 Algorithms

Our numerical method is based on Nyström’s method, i.e., on the evaluation of
the integrals in (2.1)–(2.2) and (2.5)–(2.6) by Simpson’s method for y ∈ (0, α)
for sufficiently large α. When applied to (2.1) by selecting an odd integer n and
a step size h such that (n −1)h = α, by taking xl = (l −1)h for l = 1, . . . , n,
and by selecting yi = (i − i)h for i = 1, . . . , n with (n − 1)h = α for each
given l value, we obtain the linear system

Bi +
n∑

j=1

Hi+ j d j B j = −Hi , i = 1, . . . , n, (4.19)

where

Hi = R̂
(
2xl + (i − 1)h

) +
N∑

s=1

tscse−κs[2xl +(i−1)h],

d1 = dn = (h/3), di = (4h/3) for i = 2, 4, 6, . . . , n −1, and di = (2h/3) for
i = 3, 5, 7, . . . , n − 2. Thus the linear system (4.19) has the form

(I + H D)b = −w, (4.20)

where I is the identity matrix, H = (Hi+ j)
n
i, j=1 is a Hankel matrix, D =

diag(d1, . . . , dn) is a diagonal matrix, and w is a known column vector. After
the computation of Bl , the application of the same technique to (2.5) leads to
a linear system whose matrix is exactly the same but whose right-hand side
is different. For this reason the analysis of the algorithm is focused on the
solution of (2.1). We note that solving Eq. (2.1) and then Eq. (2.5) leads to
more accurate results than computing V (x) by numerical differentiation of Bl

without increasing the computational complexity of the algorithm.
When there are no bound states, the Marchenko equations (2.1) and (2.2)

can be solved uniquely by iteration in a variety of function spaces [6,8,9,17]. In
this case the linear system (4.20) is solved by Richardson iteration [12], since
the Marchenko integral operator is a strict contraction. When there are bound
states, the Marchenko integral operator is a strict contraction plus a positive
selfadjoint operator of rankN , which makes (2.1) and (2.2) uniquely solvable
in many function spaces ([9], also the discussion at the end of Sect. 2). In this
case the Hankel matrix H can be written as the sum H = H (R) + H (K ) of a



Structured matrix algorithms for inverse scatteringon the line 75

Hankel matrix for which H (R)D is contractive, and a positive Hankel matrix
of rank N . We then solve the preconditioned system

(
I + [I + H (K )D]−1 H (R)D

)
b = −[I + H (K )D]−1w,

by Richardson iteration. The Hankel matrix-vector products arising during
execution are computed by applying the FFT, leading to a reduction of the
computational complexity from O(n2) [for each x ] to O(n log(n)) [for each x ].

If there are no bound states, the linear system
[
I + H (R)D

]
b = −ω

can be solved by the Richardson iteration scheme:
{

b̃
(r) = Dbr ,

b(r+1) = −ω − H (R)b̃
(r)
.

(4.21)

Then the absolute error b − b(r) of the r-th iterate behaves as follows:

b − b(r+1) = [ − ω − H (R)Db
] + ω + H (R)Db(r) = −H (R)D

(
b − b(r)

)
.

Therefore,

b − b(r) = (−1)r D−1/2[D1/2 H (R)D1/2]r D1/2
(
b − b(0)

)
.

Consequently, the relative error decreases exponentially in r , i,.e.,

‖b − b(r)‖
‖b − b(0)‖ ≤ ‖D−1/2‖ ‖D1/2‖ ‖D1/2H (R)D1/2‖r ,

where ‖D1/2 H (R)D1/2‖ coincides with the spectral radius of H (R)D, because
of the selfadjointness of D1/2H (R)D1/2. It should be observed that in (4.21)
the first line can be implemented in O(n) operations and (by FFT) the second
line in O(n log(n)) operations for each iteration step. To get the relative error
‖b − b(r)‖/‖b − b(0)‖ below ε > 0 we need about

log
(‖D1/2‖ ‖D−1/2‖/ε)

log(1/‖D1/2 H (R)D1/2‖)
iterations.

Now note that ‖D1/2‖ ‖D−1/2‖ equals the square root of the ratio between
the largest and the smallest weight, namely q = 2 for Simpson’s rule. Writing
� = �(h) for the value of ‖D1/2H (R)D1/2‖ we need about

log(q/ε)

log(1/�)
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iterations, where q = 2. Richardson iteration works properly only if

‖D1/2H (R)D1/2‖ = �(h) < 1. (4.22)

This condition is satisfied, since�(h) tends to the spectral radius of K (which
is less than 1) monotonically as h → 0+. Hence the iteration scheme works in
the approximately

log(1/‖D1/2 H (R)D1/2‖)
log(1/ε)

iterations needed to attain a relative error of less than ε.
If there are N bound states, we should solve the full linear system[

I + {H (K ) + H (R)}D
]
b = −ω, (4.23)

where H (K ) is a Hankel matrix of rankN such that the nonzero eigenvalues if
H (K )D are all positive. This means that linear systems which are of the form
[I + H (K )D]b = −b̂ can easily be solved uniquely in O(N 2) operations,
without using any of its structure apart from its rank. We then write (4.23) in
the form

b̂ = −ω − H (R)Db,[
I + H (K )D

]
b = b̂,

which can be solved by the Richardson iteration scheme:⎧⎪⎪⎨
⎪⎪⎩

b̃
(r) = Db(r),

b̂
(r+1) = −ω − H (R)b̃

(r)
,

b(r+1) = [
I + H (K )D

]−1
b̂
(r+1)

.

The rate of exponential convergence is determined by the spectral radius of
the matrix [

I + H (K )D
]−1

H (R)D,

which equals the spectral radius (and hence the norm) of
[
I + D1/2 H (K )D1/2

]−1/2
D1/2 H (R)D1/2

[
I + D1/2 H (K )D1/2

]−1/2
,

which is strictly less than the spectral radius of H (R)D, due to the nonnega-
tive selfadjointness of D1/2H (K )D1/2. Thus taking into account bound state
information tends to accelerate the Richardson iteration scheme. Once (4.22)
is satisfied, the iteration scheme works in the approximately

log
(
1/‖[I + D1/2H (K )D1/2]−1/2 D1/2 H (R)D1/2[I + D1/2H (K )D1/2]−1/2‖)

log(1/ε)

iterations needed to attain a relative error of less than ε.
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To compute the inverse of the matrix I + H (K )D, we first observe that

H (K )D = U V T ,

where U and V are the real n ×N matrices given by

Uis = tscse
−κs(i−1)h,

V js = w j e−κs( j−1)h,

i, j = 1, . . . , n and s = 1, . . . ,N . According to the Sherman-Morrison-
Woodbury formula ([12], Sect. 2.1.3), we have

(
I + H (K )D

)−1 = In×n − U (I + V T U )−1V T ,

where (I + V T U )−1 is an N × N -matrix which is to be computed before
performing the iterations. As a result, we have O

(
n log(n)

)
operations per

iteration, as if there were no bound states.

5 Numerical results and conclusions

5.1 Numerical results

In order to assess the effectiveness of the method proposed, we carried out
extensive experimentation on various models, some of which are quoted in the
literature. More precisely, we considered three models without bound states,
a model with one bound state, and a model with two bound states. The re-
sults are presented in Figs. 5.1–5.5 in logarithmic scale (except for Fig. 5.3).
Furthermore, the results presented were obtained by taking α = 10.24, which
corresponds to n = 210 + 1 and h = 1

100 . These values of α and n correspond
to a choice for which ‖�m‖ and ‖Kχ[α,∞)‖1 are essentially equivalent.

Example 5.1 Following [2] we consider the Schrödinger potential without
bound states, where

R(k) = (k + i)(k + 2i)(101k2 − 3ik − 400)

(k − i)(k − 2i)(50k4 + 280ik3 − 609k2 − 653ik + 400)
.

Then for y > 0 we have

R̂(y) = −3

2
e−y + 4

3
e−2y, L̂(y) = (8 − 6

√
2)e−y

√
2.

Moreover, for x > 0 the potentials V (x) and V (−x) are given by (3.6), where

Ã = A = diag(1, 2), B̃ = B =
(

1
1

)
, and C̃ = C = (−3

2
4
3

)
[for V (x)], and
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Ã = A = (√
2
)
, B̃ = B = (

1
)
, and C̃ = C = (

8 − 6
√

2
)

[for V (−x)], which
corresponds with the expressions given in [2].

Figure 5.1 highlights the effectiveness of the algorithmillustrated inSect. 3.1.
Indeed, it shows the behavior of both the analytical expression for the potential
for x > 0 and the potential computed by solving (2.1) and (2.5) as explained
above.

0 2 4 6 8 10
10

−15

10
−10

10
−5

10
0

10
5

Fig. 5.1 Potential without bound states and with exponentially decaying Marchenko kernel:
numerical (blue) and exact (red) results

Example 5.2 We next consider the potential without bound states whose Mar-
chenko integral kernel for x > 0 is given by (3.4), where

Ã = A =
(

2 1
−1 2

)
, B̃ = B

(
1
1

)
, C̃ = C = (

1
2

1
5

)
.

Then

R̂(y) = e−4y

(
7

10
cos(y)− 3

10
sin(y)

)
.

Figure 5.2 gives a geometrical idea of the accuracy of the results for this
model.

Example 5.3 We now study the Schrödinger potential without bound states,
where R(k) = γπe−|k| for γπ ∈ [−1, 1). Then, for y > 0, we have

R̂(y) = γ

1 + y2
,
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0 2 4 6 8 10
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Fig. 5.2 Potential without bound states and with oscillatory Marchenko kernel: numerical (blue)
and exact (red) results

where the spectral radius of the Marchenko integral operator is bounded above
by |γ |π/2. In this case no explicit solution of the inverse scattering problem
is known. Further, as α → +∞, we have
∫ ∞

α

dy (|R̂(y)| + |R̂′(y)|) = arctan(1/α)+ 1

1 + α2
= (1/α)[1 + O(1/α)].

Example 5.4 Here we consider the Schrödinger equation with one bound state
pole at k = iκ , norming constant�1 = t1c1 = � > 0, and reflection coefficient

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Fig. 5.3 Potential without bound states and with algebraically decaying Marchenko kernel:

numerical results for γ = − 1
π

(blue) , γ = −1
8

(red) , γ = − 1
25

(green)
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from the right and transmission coefficient

R(k) = 2γβ

k2 + β2
,

T (k) = (k + iβ
√

1 + 2(γ /β))(k + iβ
√

1 − 2(γ /β))

(k + iβ)2
k + iκ

k − iκ
,

where −1 ≤ 2(γ /β) < 1. Then R̂(y) is given by (3.4), where A = (
β
)
,

B = (
1
)
, and C = (

γ
)
, while

Ã =
(
β 0
0 κ

)
, B̃ =

(
1
1

)
, C̃ = (

γ �
)
.

The Marchenko integral kernel is given by

�l (y) = γ e−βy + �e−κy, y > 0.

The numerical and analytical results (for β = 1, γ = −3
2 , κ = 2, and

� = 4
3 ) are presented in Fig. 5.4.
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5

−10
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−10
−5

−10
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Fig. 5.4 Potential with one bound state and exponentially decaying Marchenko kernel: numer-
ical (blue) and exact (red) results

Example 5.5 Lastly we consider the Schrödinger equation with two bound
state poles at iκ1 and iκ2, norming constants �1 = t1c1 > 0 and �2 = t2c2 >
0, reflection coefficient from the right R(k) = 2γβ/(k2 + β2) with −1 ≤
2(γ /β) < 1, and transmission coefficient

T (k) = (k + iβ
√

1 + 2(γ /β))(k + iβ
√

1 − 2(γ /β))

(k + iβ)2
(k + iκ1)(k + iκ2)

(k − iκ1)(k − iκ2)
.
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Then the Marchenko integral kernel is given by

�l (y) = γ e−βy + �1e−κ1 y + �2e−κ2 y, y > 0,

which can be written in the form (3.7), where

Ã =
⎛
⎝β 0 0

0 κ1 0
0 0 κ2

⎞
⎠ , B̃ =

⎛
⎝1

1
1

⎞
⎠ , C̃ = (

γ �1 �2
)
.

The numerical and analytical results (for β = 1, γ = 1
5 , κ1 = 1

2 , κ2 = 2,
�1 = 3, and �2 = 6) are presented in Fig. 5.5.
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Fig. 5.5 Potential with two bound states and exponentially decaying Marchenko kernel: nu-
merical (blue) and exact (red) results

5.2 Conclusions

Our numerical experiments highlight the effectiveness of the numerical al-
gorithm, as might be expected from the convergence properties of the spline
approximation to the exact solution of the Marchenko integral equation. Fur-
thermore, in the absence of bound states the Marchenko integral operator has
spectral radius less than one in suitable Sobolev spaces and therefore this is
also the case for the iteration matrix in the Richardson iteration. When there are
bound states, the bound state part of the Marchenko integral operator makes
its spectrum shift to the right and hence the corresponding matrices have the
same property, which leads to a preconditioned Richardson iteration matrix
of spectral radius less than one. As a result, starting from b(0) = (0, . . . , 0)T ,
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we always obtained good results with few iterations: at most 15 for the al-
gebraically decaying case (Example 5.3) and at most 10 in the exponentially
decaying cases (Examples 5.1–5.2 and 5.4–5.5). We emphasize that the com-
putational complexity of our method is O(n log(n)) for one x value, whereas
it is O(n2) in all the methods for solving the Marchenko integral equation of
which we are aware [2].

We remark that in the cases considered we have essentially the same results
obtained with the same computational complexity if we adopt the approxima-
tion scheme based on the approximation of K f by K� f .
Acknowledgments.The authors are greatly indebted to Prof. Peter Junghannsfor several useful
remarks which have led to a substantial improvement of the contents of the paper, in particular
for the formulation and proof of Theorem 4.3 on the Nyström method.

A Appendix: auxiliary approximation results

In this section we obtain results concerning the approximation by quadratic splines needed to
study the convergence of our discretization schemes.

Consider α, β, γ ∈ R such that α < β and γ = 1
2 (α + β), and put h = β − α. For a

continuous function f : [α, β] → C, the unique quadratic polynomial S2 f passing through
the points (α, f (α)), (β, f (β)) and (γ, f (γ )) is given by each of the three identities

(S2 f )(x) = f (x) − En ( f ; γ, x)

+ En ( f ; γ, β)(x − α)(x − γ )+ En ( f ; γ, α)(x − β)(x − γ )

h2/2
, (A.1)

where n = 0, 1, 2. Here En ( f ; γ, x) is the n-th order remainder term in the Taylor expansion
of f in γ , i.e.,

f (x) =
n∑

j=0

f ( j)(γ )

n!
(x − γ ) j + En ( f ; γ, x), (A.2)

where

En ( f ; γ, x) = 1

n!

∫ x

γ
dt (x − t)n f (n+1)(t), (A.3)

provided that f ∈ C(n+1)[α, β]. Throughout the appendix norms are taken in function spaces
over the interval [α, β].

The estimate (A.4) in the following lemma can be proved in a straightforward way for p = 1
and p = ∞ and by interpolation for 1 < p < ∞. The estimate (A.5) follows by applying
Hölder’s inequality.

Lemma A.1 For general n = 0, 1, 2, . . . and 1 ≤ p ≤ +∞ we have

‖En( f ; γ, ·)‖p ≤ 1

2n+1(n + 1)!
hn+1‖ f (n+1)‖p (A.4)
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and

‖En( f ; γ, ·)‖∞ ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(h/2)1/q‖ f ′‖p, n = 0,

h1+ 1
q

(q + 1)1/q21+ 1
q

‖ f ′′‖p, n = 1,

h
n+ 1

q

n!(nq + 1)1/q2
n+ 1

q

‖ f (n+1)‖p, n = 0, 1, 2, . . . ,

(A.5)

where q = p/(p − 1).

We now easily obtain the following result.

Lemma A.2 For 1 ≤ p < +∞ we have

‖ f − S2 f ‖p ≤ h

[
1
2

+ 1
4
(p + 1)−1/p

]
‖ f ′‖p ≤ 3

4
h‖ f ′‖p, (A.6a)

‖ f − S2 f ‖p ≤ h2
[

1

8
+ 1

8
(p + 1)−1/p

]
‖ f ′′‖p ≤ 1

4
h2‖ f ′′‖p, (A.6b)

‖ f − S2 f ‖p≤ h3
[

1
48 + 1

32
(p + 1)−1/p

]
‖ f (3)‖p ≤ 5

96
h3‖ f (3)‖p, (A.6c)

while, for p = +∞, we have

‖ f − S2 f ‖∞ ≤ 3

2
h‖ f ′‖∞, (A.7a)

‖ f − S2 f ‖∞ ≤ 3

8
h2‖ f ′′‖∞, (A.7b)

‖ f − S2 f ‖∞ ≤ 1

16
h3‖ f (3)‖∞. (A.7c)

Proof We begin by deriving the estimates

‖(· − β)(· − γ )‖p = ‖(· − α)(· − γ )‖p

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
h

2

)2+ 1
p

K p, 1 ≤ p < +∞,

h2

2
, p = +∞,

where

K p =
[∫ 1

0
t p(1 − t)p dt +

∫ 1

0
t p(1 + t)p dt

]1/p

.
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For 1 ≤ p < +∞ and n = 0, 1, 2 we have [cf. (A.4) and (A.5)]

‖ f − S2 f ‖p

‖ f (n+1)‖p
≤ ‖En( f ; γ, ·)‖p

‖ f (n+1)‖p
+ 4

h2
‖En ( f ; γ, ·)‖∞

‖ f (n+1)‖p
K p

(
h

2

)2+ 1
p

≤ hn+1

2n+1(n + 1)!
+ K phn+1

n!(nq + 1)1/q2n+1

≤ hn+1
[

1

2n+1(n + 1)!
+ K p

n! 2n+1

]
,

where K p is as above. On the other hand, for p = ∞ and n = 0, 1, 2 we have [cf. (A.5)]

‖ f − S2 f ‖∞
‖ f (n+1)‖∞

≤ ‖En ( f ; γ, ·)‖∞
‖ f (n+1)‖∞

+ 2
2

h2
‖En ( f ; γ, ·)‖∞

‖ f (n+1)‖∞
h2

2
≤ 3cnhn+1,

where c0 = 1
2 , c1 = 1

8 and c2 = 1
48 , as claimed. �	

We now compute the derivatives of the spline interpolants. First we have

d

dx
En ( f ; γ, x) =

{
f ′(x), n = 0,

En−1( f ′; γ, x), n = 1, 2, 3, . . . .
(A.8)

From (A.1) we find that

f ′(x) − (S2 f )′(x)

= f ′(x) − E0( f ; γ, β)(x − α+γ
2 )+ E0( f ; γ, α)(x − β+γ

2 )

h2/4

= E0( f ′; γ, x) − E1( f ; γ, β)(x − α+γ
2 )+ E1( f ; γ, α)(x − β+γ

2 )

h2/4

= E1( f ′; γ, x) − E2( f ; γ, β)(x − α+γ
2 ) + E2( f ; γ, α)(x − β+γ

2 )

h2/4
, (A.9)

as well as that

f ′′(x) − (S2 f )′′(x) = f ′′(x) − E0( f ; γ, β)+ E0( f ; γ, α)
h2/4

= f ′′(x) − E1( f ; γ, β)+ E1( f ; γ, α)
h2/4

= E0( f ′′; γ, x) − E2( f ; γ, β)+ E2( f ; γ, α)
h2/4

. (A.10)

Using the fact that∥∥∥∥ · −β + γ

2

∥∥∥∥
p

=
∥∥∥∥ · −α + γ

2

∥∥∥∥
p

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

h1+ 1
p [3 p+1 + 1]1/p

41+ 1
p (p + 1)1/p

, 1 ≤ p < +∞,

3
4 h, p = +∞,
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we obtain

∥∥ f ′ − (S2 f )′
∥∥

p ≤ ∥∥ f ′∥∥
p

[
1 + [3 p+1 + 1]1/p

21/p(p + 1)1/p

]
≤ 4

∥∥ f ′∥∥
p, (A.11a)

∥∥ f ′ − (S2 f )′
∥∥

p≤ 1

2
h
∥∥ f ′′∥∥

p

[
1 + [3 p+1 + 1]1/p

21/p(p + 1)1/p(q + 1)1/q

]
≤ 2h

∥∥ f ′′∥∥
p, (A.11b)

∥∥ f ′ − (S2 f )′
∥∥

p ≤ 1

8
h2∥∥ f (3)

∥∥
p

⎡
⎣1 + [3 p+1 + 1]1/p

2
3+ 1

p (p + 1)1/p(2q + 1)1/q

⎤
⎦

≤ 11

64
h2∥∥ f (3)

∥∥
p, (A.11c)

∥∥ f ′′ − (S2 f )′′
∥∥

p ≤ ∥∥ f ′′∥∥
p

⎡
⎣1 + 21+ 1

p

(q + 1)1/q

⎤
⎦ ≤ 5

∥∥ f ′′∥∥
p, (A.12a)

∥∥ f ′′ − (S2 f )′′
∥∥

p ≤ 1

2
h
∥∥ f (3)

∥∥
p

[
1 + 21/p

(2q + 1)1/q

]
≤ 3

2
h
∥∥ f (3)

∥∥
p . (A.12b)

We now arrive at the result to be applied when proving the convergenceof the discretization
method for the Marchenko integral equations. The constants can be chosen to be independent
of p ∈ [1,+∞].

Theorem A.3 For 1 ≤ p ≤ +∞ we have

‖ f − S2 f ‖p,1 ≤ const.h‖ f ‖p,2, (A.13a)

‖ f − S2 f ‖p,1 ≤ const.h2‖ f ‖p,3, (A.13b)

‖ f − S2 f ‖p,2 ≤ const.h‖ f ‖p,3. (A.13c)

Proof Equations (A.6) and (A.11)-(A.12) imply that

‖ f − S2 f ‖p,1 ≤ const.h‖ f ′‖p,1 ≤ const.h‖ f ‖p,2,

‖ f − S2 f ‖p,1 ≤ const.h2‖ f ′′‖p,1≤ const.h2‖ f ‖p,3,

‖ f − S2 f ‖p,2 ≤ const.h‖ f ′‖p,2 ≤ const.h‖ f ‖p,3,

as claimed. �	

B Appendix: distributional derivatives (	� f )′ and (	� f )′′

Put ξ j = 1
2 [x j−1 + x j ], where j = 1, 2, 3, . . .. Given a C∞-function g of compact support in

(0,∞) and denoting the right-hand side of (4.3) by H (y), we obtain, for a continuous function
f on [0,∞),
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〈(	� f )′, g〉 = −〈	� f, g′〉

= −
∞∑

j=1

∫ x j

x j−1

dy (	� f )(y)g′(y)

= −
∞∑

j=1

[(	� f )(y)g(y)]
x j
y=x j−1 +

∞∑
j=1

∫ x j

x j−1

dy H (y)g(y)

= −
∞∑

j=1

{
f (x j )g(x j ) − f (x j−1)g(x j−1)

}

+
∞∑

j=1

∫ x j

x j−1

dy H (y)g(y)

= f (x0)g(x0)− lim
n→∞ f (xn )g(xn )+

∞∑
j=1

∫ x j

x j−1

dy H (y)g(y)

=
∫ ∞

0
dy H (y)g(y).

Here we have employed the fact that g(x0) and all but finitely many g(x j ) vanish, which yields
the absolute convergence of the first series in the fourth expression above. Thus (	� f )′(y) =
H (y) for a.e. y ∈ R+.

Computing (	� f )′′ we obtain, for any C∞-function g of compact support in (0,∞),

〈(	� f )′′, g〉 = −〈(	� f )′, g′〉 = −
∫ ∞

0
dy H (y)g′(y)

= −
∞∑
j=1

[H (y)g(y)]
x j
y=x j−1 +

∞∑
j=1

∫ x j

x j−1

dy H ′(y)g(y)

=
∞∑

j=1

{H (x+
j ) − H (x−

j )}g(x j )+
∞∑

j=1

∫ x j

x j−1

dy H ′(y)g(y).

Consequently, (	� f )′′ is the sum of the piecewise constant function H ′ and an infinite linear
combination of delta functions centered at each of the points x j ( j = 1, 2, 3, . . .).
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