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Abstract. Factorizations of Wiener-Hopf type of elements of weighted Wiener
algebras of continuous matrix-valued functions on a compact abelian group
are studied. The factorizations are with respect to a fixed linear order in
the character group (considered with the discrete topology). Among other
results, it is proved that if a matrix function has a canonical factorization in
one such matrix Wiener algebra then it belongs to the connected component
of the identity of the group of invertible elements in the algebra, and more-
over, the factors of the canonical factorization depend continuously on the
matrix function. In the scalar case, complete characterizations of canonical
and noncanonical factorability are given in terms of abstract winding num-
bers. Wiener-Hopf equivalence of matrix functions with elements in weighted
Wiener algebras is also discussed.
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1. Introduction

Let G be a compact multiplicative abelian group and Γ its additive character
group equipped with the discrete topology. We denote by 〈j, g〉 the action of the
character j ∈ Γ on the group element g ∈ G or, by Pontryagin duality, of the
character g ∈ G on the group element j ∈ Γ.

It is well-known [29] that Γ can be made into a linearly ordered group if and
only if G is connected; the latter hypothesis will be maintained throughout the
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paper. We fix a linear order � on Γ such that Γ is an ordered group with respect
to �, i.e., x+ z � y+ z if x, y, z ∈ Γ and x � y. The notations ≺, �, �, max, min
(with obvious meaning) will also be used. We introduce the additive semigroups
Γ+ = {x ∈ Γ : x � 0} and Γ− = {x ∈ Γ : x � 0}. In applications, often Γ is an
additive subgroup of Rk so that G is its Bohr compactification, or Γ = Zd so that
G = T

d is the d-torus.
In this paper we study factorization of Wiener-Hopf type of matrix valued

functions, as shown in formula (1.1) below, where we use diag (x1, . . . , xn) to denote
the n× n diagonal matrix with x1, . . . , xn on the main diagonal, in that order:

Â(g) = Â+(g) (diag (〈j1, g〉, . . . , 〈jn, g〉)) Â−(g), g ∈ G. (1.1)

Here Â+ and (Â+)−1 belong to the n × n matrix function algebra of abstract
Fourier transforms of a weighted �1 space indexed by Γ+, Â− and (Â−)−1 belong
to the n× n matrix function algebra of abstract Fourier transforms of a weighted
�1 space indexed by Γ−, and j1, . . . , jn ∈ Γ.

Factorization of type (1.1), for �1 spaces without weights, is classical when
G is the unit circle; it goes back to [14], and see also [10, 6], among many books
on this subject. Factorization of type (1.1) (without weights) in the case when Γ
is a subgroup of the additive group Rk (endowed with the discrete topology) and
its numerous applications have been extensively studied in the literature. A very
partial list of relevant references here include [30, 31, 17, 18, 19, 3, 26, 25, 27], and
see also the recent book [4]. In the abstract setting, but still for �1 spaces without
weights, the factorization (1.1) was studied in [22, 21, 24]. On the other hand, in
the paper [8] the weighted case was studied for scalar valued functions when G is
the d-dimensional torus.

In the present paper we continue this line of investigation, and focus on the
abstract compact multiplicative abelian connected group G and its additive or-
dered character group Γ. The factorization (1.1) will be considered in the matrix
function algebras of abstract Fourier transforms of weighted �1 spaces, with arbi-
trary weights subject only to natural admissibility assumptions (see Section 3 for
details).

Let us discuss the contents of this article. Sections 2 and 3 are devoted to
Wiener algebras of scalar functions, without and with weights, and contain a full
characterization of Wiener-Hopf factorizations. In Section 4 the matrix analog is
discussed, in particular the uniqueness of factorization indices, hereditary prop-
erties of factors with respect to subalgebras, and connectedness. In Section 5 we
relate canonical factorability to the unique solvability of certain Toeplitz equations.
In Section 6 we conclude the paper with a discussion of Wiener-Hopf equivalence.

The following notation is used throughout the paper: N the set of positive
integers, Z the set of integers, R the set of reals, T the unit circle, C the set of
complex numbers.
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2. Unweighted Wiener Algebras

Let G be a compact connected multiplicative abelian group and Γ its additive
character group equipped with the discrete topology and the linear order �.

For any nonempty set M , let �1(M) stand for the complex Banach space of
all complex-valued M -indexed sequences x = {xj}j∈M having at most countably
many nonzero terms that are finite with respect to the norm

‖x‖1 =
∑

j∈M

|xj |.

Then it is clear that

�1(Γ) = �1(Γ+)+̇�1(Γ− \ {0}) = �1(Γ+ \ {0})+̇�1(Γ−)

= �1(Γ+ \ {0})+̇C+̇�1(Γ− \ {0}), (2.1)

where the projections involved all have unit norm. Moreover, �1(Γ) is a commuta-
tive Banach algebra with unit element with respect to the convolution product

(x ∗ y)j =
∑

k∈Γ

xk yj−k.

Further, �1(Γ+) and �1(Γ−) are closed subalgebras of �1(Γ) containing the unit
element.

For every Banach algebra A with identity element we denote its group of
invertible elements by G(A) and the connected component of G(A) containing the
identity by G0(A). It is well-known that

G0(A) = {exp(b1) · · · exp(bn) : b1, . . . , bn ∈ A, n ∈ N}
for arbitrary Banach algebras with identity element and

G0(A) = {exp(b) : b ∈ A}
for those that are commutative, see [7], for example.

Given a = {aj}j∈Γ ∈ �1(Γ), by the symbol of a we mean the complex-valued
continuous function â on G defined by

â(g) =
∑

j∈Γ

aj〈j, g〉, g ∈ G. (2.2)

The set {j ∈ Γ : aj 
= 0} will be called the Fourier spectrum of â given by (2.2).
Since Γ is written additively and G multiplicatively, we have

〈j + k, g〉 = 〈j, g〉 · 〈k, g〉, j, k ∈ Γ, g ∈ G,

〈j, gh〉 = 〈j, g〉 · 〈j, h〉, j ∈ Γ, g, h ∈ G.

We will also use the shorthand notation ej for the function

ej(g) = 〈j, g〉, g ∈ G. (2.3)

Thus, ej+k = ejek, j, k ∈ Γ.



68 Ehrhardt, van der Mee, Rodman and Spitkovsky IEOT

The set of all symbols of elements a ∈ �1(Γ) forms an algebra W (G) of con-
tinuous functions on G (with pointwise addition, scalar multiplication and multi-
plication). The algebra W (G) is made into a Banach algebra isomorphic to �1(Γ)
by letting Λ : a �→ â be an isometry. (This is possible since Λ is injective, which
follows from [29, Sec. 1.3.6].) Standard Gelfand theory implies that the algebra
W (G) is inverse closed in the algebra of all continuous functions on G (indeed, it
is well-known that the maximal ideal space of �1(Γ) can be identified with G, see,
for example, [9, Section 21]).

Given a = {aj}j∈Γ ∈ �1(Γ), by a canonical factorization of â we mean a
factorization of the symbol â of the form

â(g) = â+(g)â−(g), g ∈ G, (2.4)

where a+ ∈ G(�1(Γ+)) and a− ∈ G(�1(Γ−)). In that case we obviously have a ∈
G(�1(Γ)) and a = a+∗a− = a−∗a+. Moreover, for any two canonical factorizations
of â, say (2.4) and â(g) = b̂+(g)̂b−(g) for g ∈ G, there exists a nonzero complex
number c such that b+ = c a+ and a− = c b−.

The following result has been established in [15] for the torus G = T2. It has
been generalized to compact connected groups G with finitely generated character
group Γ and to weighted generalizations of the Banach algebra �1(Γ) in [8]. Here
we achieve full generality in the unweighted case.

Theorem 2.1. Let G be a compact multiplicative abelian group with ordered charac-
ter group (Γ,�), and let a ∈ �1(Γ). Then the following statements are equivalent:

(a) â has a canonical factorization.
(b) a ∈ G0(�1(Γ)).

Proof. (b) ⇒ (a) Suppose a ∈ G0(�1(Γ)). Then there exists b ∈ �1(Γ) such that
a = exp(b). We can now find b+ ∈ �1(Γ+) and b− ∈ �1(Γ−) such that b = b+ + b−.
Then, by commutativity, we have the canonical factorization (2.4), where a+ =
exp(b+) and a− = exp(b−).

(a) ⇒ (b) For a ∈ �1(Γ), let â have a canonical factorization. Then a ∈
G(�1(Γ)). Let b ∈ �1(Γ) be such that ‖b − a‖ < ‖a−1‖−1 and {j ∈ Γ : bj 
= 0} is
a finite subset of {j ∈ Γ : aj 
= 0}. Then the symbols (1 − t)â+ t̂b (0 ≤ t ≤ 1) all
have a canonical factorization in �1(Γ), because

‖[(1 − t)a+ tb] − a‖ = t‖b− a‖ < ‖a−1‖−1, 0 ≤ t ≤ 1.

(This follows from a general result on factorization in decomposable Banach al-
gebras, see for example [10, Lemma I.5.1] or [11, Theorem XXIX.9.1].) On the
other hand, the canonical factorization of b̂ with respect to �1(Γ) is actually a
canonical factorization of b̂ with respect to �1(Γ0), where Γ0 is the additive group
generated by the finite set {j ∈ Γ : bj 
= 0}, see [24, Theorem 1]. According to
[8], b ∈ G0(�1(Γ0)). Then a is continuously connected to b within G(�1(Γ)) and
b ∈ G0(�1(Γ)), and hence a ∈ G0(�1(Γ)). �
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For any commutative Banach algebra A with unit element we have the group
isomorphisms

G(A)
G0(A)

� G(C(M))
G0(C(M))

� π1(M), (2.5)

where M stands for the maximal ideal space of A, C(M) is the Banach algebra
of continuous functions on M, and π1(M) denotes the first cohomotopy group of
M (see, for example, [16]). The first isomorphism follows from the Arens-Royden
theorem [33] (also [1, 28]). The second isomorphism follows from [7, Theorem 2.18].
It is most instructive to spell out the equivalences in (2.5). For every m ∈ M we
let φm stand for the unique multiplicative linear functional on A with kernel m.
Then a ∈ G(A) is mapped onto the homotopy class [Fa] of the continuous function
Fa : M → T defined by

Fa(m) =
φm(a)
|φm(a)| , a ∈ A.

In the situation we are interested in, where A = �1(Γ), we have M = G (see
[9, Section 21]) and Fa becomes

Fa(g) =

∑

j∈Γ 〈j, g〉 aj
∣
∣
∣
∑

j∈Γ 〈j, g〉 aj

∣
∣
∣

, a = {aj}j∈Γ ∈ �1(Γ). (2.6)

Moreover, the groups in (2.5) can be identified explicitly. Since G is connected, we
have the group isomorphism

G(C(G))
G0(C(G))

∼= Γ (2.7)

(see [32, Proposition in Subsection 8.3.2]). More specifically, each continuous func-
tion â ∈ G(C(G)) can be written as â(g) = ej(g)̂b(g) with uniquely determined
j ∈ Γ and b̂ ∈ G0(C(G)). As a result we obtain the group isomorphism

G(�1(Γ))
G0(�1(Γ))

� Γ (2.8)

between the so-called abstract index group of �1(Γ) on the left-hand side (cf. [7])
and the given discrete group Γ. Given a ∈ G(�1(Γ)), the element j ∈ Γ uniquely
determined by the above isomorphism will be called the abstract winding number
of â.

If Γ = Z, G = T, and a ∈ G(�1(Z)), the abstract winding number of â
coincides with the usual winding number of the function â ∈ G(C(T)). Clearly,
π1(T) ∼= Z.

If Γ = R with discrete topology, G is the Bohr compactification of R, and
a ∈ G(�1(Γ)), the abstract winding number of â ∈ G(C(G)) is known as the
mean motion of â (more precisely, of the function â restricted to R). In this case,
π1(G) ∼= R.
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Corollary 2.2. If a ∈ �1(Γ) and â(g) 
= 0 for every g ∈ G, then â admits a
factorization

â(g) = â+(g)ej(g)â−(g), g ∈ G, (2.9)
where a+ ∈ G(�1(Γ+)), a− ∈ G(�1(Γ−)), and j ∈ Γ is the abstract winding number
of â.

Proof. Clearly, a ∈ G(�1(Γ)). The specific form of the isomorphisms (2.5) and (2.7)
implies that â(g) = ej(g)̂b(g) with b ∈ G0(�1(Γ)) and j ∈ Γ. It now remains to
apply Theorem 2.1. �

For the particular case Γ = Rk, Corollary 2.2 was proved in [23] by elementary
means. See also [26], where the case when Γ is a subgroup of Rk is treated. For
Γ = Zd and G = Td Corollary 2.2 was proved in [8].

Note that either condition (a) or (b) of Theorem 2.1 is equivalent to â(g) 
= 0
for every g ∈ G and â(g) having winding number zero.

We now prove that the abstract index groups of �1(Γ+) and �1(Γ−) are trivial,
as is immediate in the case Γ = Z.

Proposition 2.3. The groups G(�1(Γ+)) and G(�1(Γ−)) are connected.

Proof. Let a ∈ G(�1(Γ+)). Trivially, â admits a canonical factorization and hence,
by Theorem 2.1, a ∈ G0(�1(Γ)). This means that a = exp(b) for some b ∈ �1(Γ).
Writing b = b+ + b− with b+ ∈ �1(Γ+) and b− ∈ �1(Γ− \ {0}), we have a ∗
exp(−b+) = exp(b−). Since the left-hand side belongs to �1(Γ+) and the right-hand
side to e+ �1(Γ− \ {0}), either side equals e and hence a = exp(b+). Consequently,
a ∈ G0(�1(Γ+)). In a similar way we prove that G(�1(Γ−)) is connected. �

3. Weighted Wiener Algebras

Let us now introduce weighted Wiener algebras on an arbitrary ordered discrete
abelian group (Γ,�). An admissible weight β = {βj}j∈Γ is defined as a Γ-indexed
sequence of positive numbers βj such that

1 ≤ βi+j ≤ βi βj , i, j ∈ Γ. (3.1)

For a subset M of Γ, let �1β(M) stand for the complex Banach space of all complex-
valuedM -indexed sequences x = {xj}j∈M having at most countably many nonzero
terms for which

‖x‖1,β :=
∑

j∈M

βj |xj | <∞.

A decomposition analogous to (2.1) holds, again with the projections having all
unit norm. Further, �1β(Γ), �1β(Γ+) and �1β(Γ−) are commutative Banach algebras
with unit element. As sets, we clearly have �1β(M) ⊆ �1(M) for every set M ⊆ Γ.
We now introduce the weighted Wiener algebra W (G)β = {â : a ∈ �1β(Γ)} which
inherits its norm from �1β(Γ) by natural isometry, and its subalgebras

(W (G)β)± = {â : a ∈ �1β(Γ±)}.
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Clearly, W (G)β coincides with W (G) if βj ≡ 1.
Moreover, due to Gelfand’s theorem, â ∈ G(W (G)β) if and only if â ∈W (G)β

and 0 /∈ {â(g) : g ∈ Mβ}, where Mβ stands for the maximal ideal space of W (G)β

(or of �1β(Γ)). Here we observe that every multiplicative linear functional φ on
�1β(Γ) corresponds to a Γ-indexed sequence of nonzero complex numbers φj such
that φi+j = φiφj for all i, j ∈ Γ and supj∈Γ (|φj |/βj) < +∞, while

φ(x) =
∑

j∈Γ

φj xj , x = {xj}j∈Γ ∈ �1β(Γ). (3.2)

Thus Mβ contains the maximal ideal space G of W (G).
Before generalizing Theorem 2.1 to W (G)β , we derive two propositions on the

unique extension of functions â ∈ W (G)β to the (generally larger) maximal ideal
space Mβ of a weighted Wiener algebra. This justifies our usage of the notation
â also for the Gelfand transform of a ∈ �1β(Γ).

Proposition 3.1. Let G be a compact abelian group with ordered character group
(Γ,�), β = {βj}j∈Γ an admissible weight. Then two functions â, b̂ ∈ W (G)β

coincide on Mβ if and only if they coincide on G.

Proof. Certainly â, b̂ ∈ W (G). If they coincide on G, then they are Fourier trans-
forms of sequences in �1(Γ) which must coincide. Since these two sequences also
belong to �1β(Γ), we may apply any multiplicative functional on �1β(Γ) and show
that â, b̂ coincide on Mβ, as claimed. �

This easy result generalizes the analytic continuation property for symbols
on annuli in the case of Γ = Z. Proposition 3.1 is also true for the corresponding
algebra of matrix functions.

A similar argument, where the maximal ideal space M±
β of �1β(Γ±) extends

that of �1(Γ), can be used to prove the following.

Proposition 3.2. Let G be a compact abelian group with ordered character group
(Γ,�), β = {βj}j∈Γ an admissible weight. Then two functions â, b̂ ∈ (W (G)β)±
coincide on M±

β if and only if they coincide on G.

The next theorem generalizes the main result of [8] from finitely generated
discrete abelian groups Γ to arbitrary discrete ordered abelian groups. It also
generalizes Theorem 2.1 to the setting of weighted Wiener algebras.

Theorem 3.3. Let G be a compact abelian group with ordered character group
(Γ,�), β = {βj}j∈Γ an admissible weight, and a ∈ �1β(Γ). Then the following
statements are equivalent:
(a) â has a canonical factorization of the form (2.4), where a+ ∈ G(�1β(Γ+)) and

a− ∈ G(�1β(Γ−)).
(b) a ∈ G0(�1β(Γ)).
(c) â(φ) 
= 0 for every φ ∈ Mβ and the abstract winding number of â is zero.
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Proof. The equivalence of (b) and (a) is proved as in Theorem 2.1.
To show the equivalence of (b) and (c) we have to show that the natural

group homomorphism
G(�1β(Γ))
G0(�1β(Γ))

→ G(�1(Γ))
G0(�1(Γ))

is an isomorphism. In view of the concrete form of the isomorphism in (2.5) this
amounts to proving that the natural group homomorphism

Inj : [f ] ∈ π1(Mβ) → [f |G] ∈ π1(G) (3.3)

is an isomorphism. This natural group-isomorphism assigns to the homotopy class
[f ] of a continuous function f : Mβ → T the homotopy class of the restriction of
f onto G. (Notice that G ⊆ Mβ, and that f1|G and f2|G are homotopic whenever
f1 and f2 are homotopic.)

For the map Inj to be an isomorphism it is sufficient to show that G is a strong
deformation retract of Mβ [16]. The latter means that there exists a continuous
function

F : Mβ × [0, 1] → Mβ (3.4)

such that F (φ, 0) = φ for all φ ∈ Mβ, F (g, t) = g for all g ∈ G, t ∈ [0, 1], and
F (φ, 1) ∈ G for all φ ∈ Mβ. Indeed, in order to see the sufficiency consider the
map

Proj : [h] ∈ π1(G) �→ [h̃] ∈ π1(Mβ), h̃(φ) = h(F (φ, 1)).

(Again, notice that if h1 and h2 are homotopic, then h̃1 and h̃2 are homotopic,
too.) Since for h : G → T we have h̃|G(g) = h(F (g, 1)) = h(g), g ∈ G, it follows
that Inj ◦ Proj = id. On the other hand, each continuous function f : Mβ → T,
which equals f(F (φ, 0)), is homotopic to f(F (φ, 1)) with the connecting function
f(F (φ, t)), t ∈ [0, 1], φ ∈ Mβ. This implies that Proj◦Inj = id. Hence Inj is indeed
an isomorphism once we have shown that a retracting deformation (3.4) exists.

Recall that every multiplicative linear functional φ on �1β(Γ) corresponds to
a Γ-indexed sequence of nonzero complex numbers φj such that φi+j = φiφj for
all i, j ∈ Γ and

‖φ‖ := sup
j∈Γ

|φj |
βj

= 1, (3.5)

by means of (3.2). (Every multiplicative linear functional has norm one.) The
topology on the set of all such sequences φ = {φj}j∈Γ which is compatible with
that on Mβ can be defined as the weakest topology that makes each function
φ �→ φj ∈ C continuous, j ∈ Γ. Indeed, if φ(α) = {φ(α)

j }j∈Γ is a net converging to
φ = {φj}j∈Γ such that the continuity condition just mentioned holds, then

lim
α

∑

j∈Γ

φ
(α)
j xj =

∑

j∈Γ

φjxj for each x = {xj}j∈Γ ∈ �1β(Γ)

by (3.5) and by the dominated convergence theorem.
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Clearly, when βi ≡ 1, then the above characterization applies to G in place of
Mβ and expresses the fact that G, the group of characters on Γ, can be identified
with the maximal ideal space of �1(Γ). Notice that condition (3.5) then forces φi

to have modulus one.
We now define the mapping F as follows:

F (φ, t) = ψt with ψt
i =

φi

|φi|t (3.6)

It is easy to see that ψt is a Γ-indexed sequence enjoying the multiplicativity
property and (3.5). Moreover, ψ0 = φ, ψ1 ∈ G (since |ψ1

i | = 1), and ψt ∈ G
whenever φ ∈ G (i.e., |φi| = 1). The continuity of F can be seen as follows. Let
φ(α) be a net of such sequences converging φ, and consider a net tα of numbers in
[0, 1] converging to t. Then φ(α)

i → φi for each i. Hence

φ
(α)
i

|φ(α)
i |t(α)

→ φi

|φi|t

for each i ∈ Γ, which means nothing but lim
α
F (φ(α), t(α)) = F (φ, t). �

Elaborating on the maximal ideal space Mβ (= space of all multiplicative
Γ-index sequences φ = {φj}j∈Γ satisfying (3.5)) it is easy to show that

Mβ
∼= Mβ,pos ×G, (3.7)

both topologically and algebraically, where Mβ,pos stands for the subset of all real
positive valued sequences satisfying (3.5) and G can be identified with the set of all
unimodular valued sequences. The multiplication of two such sequences is defined
pointwise, i.e., (φψ)j = φjψj , j ∈ Γ.

The set Mβ,pos can be shown to be a convex subset of the set M of all mul-
tiplicative nonzero Γ-indexed sequences φ not necessarily satisfying (3.5). The set
M becomes a topological vector space when introducing the algebraic operations
as (φ+ ψ)i := φiψi, (λφ)i = (φi)λ and the topology as the weakest topology that
makes each mapping φ ∈ M �→ φj ∈ C \ {0}, j ∈ Γ, continuous. In fact, Mβ,pos

is contractible to the neutral element in M, namely φ ≡ 1. The contracting defor-
mation is given by F (φ, λ) = λφ (with the scalar multiplication as defined above).
This provides another argument for the fact that G is the strong deformation
retract of Mβ.

Moreover, this fact generalizes to some extent the explicit characterization
of the maximal ideal space Mβ of �1β(Γ) given in [8] for the case Γ = Zd, G = Td

(see also [11] if d = 1). Using the map

z = (z1, . . . , zd) ∈ C
d �→

(

x ∈ �1(Γ) �→
∑

i∈Zd

zixi

)

∈ Mβ,
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(where zi = zi1
1 · · · zid

d ), Mβ corresponds exactly to the set

Ωβ =
{

z ∈ C
d : sup

i∈Zd

|zd|
βi

<∞
}

=
{

(t1eξ1 , . . . , tde
ξd) : (t1, . . . , td) ∈ T

d, (ξ1, . . . , ξd) ∈ Kβ

}

, (3.8)

where Kβ is the compact convex subset of Rd given by

Kβ =
{

y ∈ R
d : sup

i∈Zd

(〈i, y〉 − log(βi)) <∞
}

.

In this case (3.7) has the form Mβ � exp(Kβ) × Td, both topologically and
algebraically.

Finally, let us mention the analogue of Corollary 2.2 in the weighted case.

Corollary 3.4. Let G be a compact abelian group with ordered character group
(Γ,�), β = {βj}j∈Γ an admissible weight, and a ∈ �1β(Γ). If â(φ) 
= 0 for every
φ ∈ Mβ, then â admits a factorization

â(g) = â+(g)ej(g)â−(g), g ∈ G, (3.9)

where a+ ∈ G(�1β(Γ+)), a− ∈ G(�1β(Γ−)), and j ∈ Γ is the abstract winding number
of â.

Proof. As in the proof of Corollary 2.2 we can write â(g) = ej(g)̂b(g) with b ∈
G0(�1(Γ)) and j ∈ Γ being the abstract winding number. Clearly, b ∈ G(�1β(Γ)) and
the abstract winding number of b̂ is zero. It remains to apply Theorem 3.3. �

4. Weighted Wiener Algebras of Matrix Valued Functions

If A is a commutative Banach algebra, we denote by An×n the Banach algebra of
n×n matrices with entries in A. Invertibility in the weighted algebra (W (G)β)n×n

is characterized in terms of pointwise invertibility, as immediately follows from the
natural matrix generalization of Gelfand’s theorem:

Proposition 4.1. Let G be a compact abelian group with character group Γ, and
let (W (G)β)n×n be the corresponding Wiener algebra of n × n matrix functions,
where the weight β satisfies (3.1). Then Â ∈ G((W (G)β)n×n) if and only if Â(g) ∈
G(Cn×n) for every g ∈ Mβ, where Mβ is the maximal ideal space of W (G)β.

The concept of factorization as in Proposition 2.2 extends to n × n matrix
functions in (W (G)β)n×n. A (left) factorization of Â ∈ (W (G)β)n×n is a repre-
sentation of the form

Â(g) = Â+(g) (diag (ej1(g), . . . , ejn(g))) Â−(g), g ∈ G, (4.1)

where Â+ ∈ G((W (G)+)n×n
β ), Â− ∈ G((W (G)−)n×n

β ), and j1, . . . , jn ∈ Γ.
We remark that if Â ∈ (W (G)β)n×n has the left factorization (4.1), where

g ∈ G, then (4.1) holds automatically for all g ∈ Mβ, the maximal ideal space
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of W (G)β . Indeed, since (4.1) obviously is a left factorization in W (G)n×n, each
factor is the Fourier transform of a Γ-indexed sequence of n×n matrices belonging
to (�1(Γ))n×n. Since each sequence in fact belongs to (�1β(Γ))n×n, we may apply
any multiplicative functional to either side of the equation obtained from (4.1) by
restricting it to the (i, j)-element and conclude, using Proposition 3.1, that (4.1)
holds for each g ∈ Mβ.

Proposition 4.2. If Â(g) ∈ (W (G)β)n×n admits a factorization, then the elements
jk are uniquely defined (if ordered j1 � j2 � . . . � jn).

The elements j1, . . . , jn in (4.1) are called the (left) factorization indices of
A. For Γ = Z and βj ≡ 1 Proposition 4.2 is a classical result (see [10, Theorem
VIII.1.1]). The same method can be used to prove Proposition 4.2, and this was
done in [26] in the context of almost periodic matrix functions of several variables.
We omit further details.

Analogously, by a right factorization of Â ∈ (W (G)β)n×n we mean a repre-
sentation of the form

Â(g) = Â−(g) (diag (ej1(g), . . . , ejn(g))) Â+(g), g ∈ G, (4.2)

where Â+ ∈ G((W (G)+)n×n
β ), Â− ∈ G((W (G)−)n×n

β ), and j1, . . . , jn ∈ Γ. We can
prove as above that (4.2) in fact holds for g ∈ Mβ, the maximal ideal space of
W (G)β . Unless stated otherwise, all notions involving factorization will pertain to
left factorization.

If all factorization indices are zero, the factorization is called canonical. If a
factorization of Â exists, the function Â is called factorable. For Γ = Z, G the unit
circle, and βj ≡ 1, the definitions and results are classical [14, 10, 6]. Many of these
results have been generalized to unweighted Wiener algebras for the cases when
Γ = Rk (see [4] and references there) and Γ a subgroup of Rk (see [25, 26]). The
factorability and nonfactorability of certain block triangular matrix functions has
been studied in [22, 21], generalizing respective results for Γ = R from [17, 18, 3],
see also [4].

Wiener-Hopf factorization is hereditary (in the terminology of [26]) with re-
spect to subgroups of Γ, with the induced order:

Theorem 4.3. Let Γ′ be a subgroup of Γ, and let Â ∈ (W (G)β)n×n be such that the
Fourier spectrum of Â is contained in Γ′. If Â admits a Wiener-Hopf factorization
(4.1), then the factorization indices belong to Γ′, and there exists a Wiener-Hopf
factorization (4.1) in which the factors Â± ∈ G((W (G)±)n×n

β ) and their inverses
have their Fourier spectrum also contained in Γ′.

In particular, if Â admits a canonical Wiener-Hopf factorization, then the
Fourier spectra of its factors and of the inverses of the factors belong to Γ′.

Proof. Since a Wiener-Hopf factorization in the weighted Wiener algebra is au-
tomatically a Wiener-Hopf factorization in the corresponding unweighted Wiener
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algebra, it follows from [24, Theorem 1] that the factorization indices of (4.1) be-
long to Γ′. Now repeat the arguments from the proof of [24, Theorem 3], working
with the weighted Wiener algebra rather than with the unweighted one as in [24].
The statement about the canonical factorization follows from the uniqueness of
the canonical factorization up to a constant invertible multiplier. �

The following result relates canonical factorizations and the connected com-
ponent of the identity in the group G((�1β(Γ))n×n).

Theorem 4.4. Let G be a compact abelian group with ordered character group
(Γ,�), β = {βj}j∈Γ an admissible weight on Γ, Mβ the maximal ideal space of
�1β(Γ), and a ∈ (�1β(Γ))n×n.

(a) If a ∈ G0((�1β(Γ))n×n) then â(g) is invertible for every g ∈ Mβ and the
winding number of det â is zero.

(b) If â has a canonical factorization with factors and their inverses belonging to
(W (G)β)n×n, then a ∈ G0((�1β(Γ))n×n).

Before proving Theorem 4.4 we recall some topology [16]. For any two topo-
logical spaces X and Y we denote by [X,Y ] the set of homotopy classes of contin-
uous maps f : X → Y . We say that f0, f1 : X → Y are homotopic if there exists a
continuous map F : [0, 1]×X → Y such that F (0, z) = f0(z) and F (1, z) = f1(z).
We deviate here from the usual definition, which requires fixing base points x0 ∈ X ,
y0 ∈ Y0 and imposing the additional assumption that f(x0) = y0, at the expense
that [X,Y ] is not necessarily a group (cf. [16], where setups with and without fixed
base points are presented).

Proof. For part (a) observe that the invertibility of â(g) is obvious, and the state-
ment concerning the winding number follows from Theorem 3.3.

To prove part (b), let us assume that â has a canonical factorization in
(W (G)β)n×n. Then, using the argument for proving the implication (a) =⇒ (b) in
the proof of Theorem 2.1, we connect â to another element â1 within (W (G)β)n×n

which has finite Fourier spectrum. Then, replacing Γ by a finitely generated group
containing the Fourier spectrum of â1, in view of Theorem 4.3 we may assume
that G � Td and Γ � Zd.

Letting Γ � Z
d and G � T

d, we denote by M+
β the maximal ideal space

of �1β(Γ+), which can be identified with a compact subset Ω+
β of Cd [8, Theorem

5.2]. Recall the generalized Arens’ theorem [33, 1] according to which for each
commutative Banach unital algebra A the quotient group G(An×n)/G0(An×n)
depends (up to an isomorphism) only on the maximal ideal space of A. Using the
obvious result that M+

β is the maximal ideal space of C(M+
β ), we have the group

isomorphism
G(�1(Γ+)n×n

β )

G0(�1(Γ+)n×n
β )

� G(C(M+
β )n×n)

G0(C(M+
β )n×n)

.
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Moreover, we have

G(C(M+
β )n×n)

G0(C(M+
β )n×n)

� [M+
β , GL(C, n)].

This follows from the fact (see [7, Theorem 2.18], generalized to matrix valued
functions) that f1, f2 ∈ G(C(M+

β )n×n) are equivalent modulo G0(C(M+
β )n×n)

if and only if f1f−1
2 is path-connected to the identity element e of the group

G(C(M+
β )n×n), which means that f1f−1

2 and e are homotopic. Clearly, this is
equivalent to f1 and f2 being homotopic (as defined in the paragraph after Theo-
rem 4.4; see [7, Def. 2.17 and Th. 2.18]).

In [8, Corollary 5.3] it is proved that M+
β is contractible to the trivial mul-

tiplicative functional φ0 on �1(Γ+) that sends a = {aj}j∈Γ+ ∈ �1(Γ+) to a0. This
means that there exists a continuous function F : [0, 1] ×M+

β → M+
β such that

F (0, z) = z and F (1, z) = φ0. Now given a representative f : M+
β → GL(C, n) of

some homotopy class belonging to [M+
β , GL(C, n)] we define fr(z) = f(F (r, z)),

0 ≤ r ≤ 1, which implies that f is homotopic to the constant map f1(z) = f(φ0).
Because GL(C, n) is arcwise connected, all constant maps are homotopic to each
other. This proves that [M+

β , GL(C, n)] is trivial.
In the same way we prove that

G(�1β(Γ−)n×n)
G0(�1β(Γ−)n×n)

� [M−
β , GL(C, n)],

where M−
β is the space of multiplicative functionals on �1β(Γ−), and that this group

is trivial.
We have proved that the groups G(�1β(Γ±)n×n) are connected. Now argue as

in the proof of Proposition 2.3 to complete the proof. �

5. Canonical Factorization and Toeplitz Operators

In the classical case (G = T, βj ≡ 1) Wiener-Hopf factorization and Toeplitz
operators are closely related to each other, see, for example, [10]. This relationship
can be generalized to a more abstract context, e.g., Toeplitz operators acting
on (�1(Γ+))n, the space of column vectors with entries in �1β(Γ+). As before the
setting is that of a compact abelian group G with ordered character group (Γ,�)
and an admissible weight β. The symbols of such Toeplitz operators are supposed
to belong to (W (G)β)n×n (or, equivalently, to (�1β(Γ))n×n). Given A ∈ (�1β(Γ))n×n

we define TA by

TAx = y,
∑

j∈Γ+

Ai−jxj = yi, i ∈ Γ+, (5.1)
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where x = {xi}i∈Γ and y = {yi}i∈Γ. This operator is well-defined and bounded on
(�1β(Γ+))n since β is an admissible weight and the norm can be estimated by

‖TA‖ ≤ ‖Â‖(W (G)β)n×n . (5.2)

This can be seen from the inequality
∑

i∈Γ+

βi‖yi‖ ≤
∑

i,j∈Γ+

βi−jβj‖Ai−j‖ · ‖x‖j ≤
(∑

i∈Γ

βi‖Ai‖
)( ∑

j∈Γ+

βj‖xj‖
)

.

If A,B ∈ (�1β(Γ))n×n, then y = TABx− TATBx evaluates to

yi =
∑

j≺0

∑

k�0

Ai−jBj−kxk, i ∈ Γ+,

which vanishes if the corresponding entries of either A or B vanish. More precisely,
we have the formula

TAB = TATB (5.3)
if A ∈ (�1β(Γ−))n×n or B ∈ (�1β(Γ+))n×n. From this it follows easily that if A ∈
G(�1β(Γ−))n×n or A ∈ G(�1β(Γ+))n×n, then the Toeplitz operator TA is invertible
and the inverse is given by

(TA)−1 = TA−1 . (5.4)

Now assume that A ∈ (�1β(Γ))n×n and Â possesses a right canonical factor-
ization Â(g) = Â−(g)Â+(g). Then (5.3) implies the factorization TA = TA−TA+

from which we can conclude that TA is invertible and its inverse is given by

(TA)−1 = TA−1
+
TA−1

−
. (5.5)

The right canonical factorization of a symbol Â ∈ (W (G)β)n×n implies the
invertibility of yet another Toeplitz operator. Given A ∈ (�1β(Γ))n×n, we define

A∗ = {AT
−j}j∈Γ, where A = {Aj}j∈Γ (5.6)

and AT
−j refers to the matrix transpose of the matrix A−j . Clearly, A∗ belongs to

(�1β∗(Γ))n×n with the underlying weight being defined by β∗ = {β−j}j∈Γ where
β = {βj}j∈Γ.

Indeed, if A ∈ (�1β(Γ))n×n and Â(g) = Â−(g)Â+(g) is a right canonical
factorization, then

Â∗(g) = Â∗
+(g)Â∗−(g)

is also a right canonical factorization. Hence the Toeplitz operator TA∗ acting on
(�1β∗(Γ+))n is invertible and its inverse is given by

(TA∗)−1 = T(A∗
−)−1T(A∗

+)−1 . (5.7)

Let us remark that the defining equation for the Toeplitz operator TA∗ ,

TA∗x = y,
∑

j∈Γ+

AT
j−ixj = yi, i ∈ Γ+, (5.8)
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can be equivalently written as
∑

j∈Γ+

ujAj−i = vi, , i ∈ Γ+ (5.9)

when passing to the transpose. Therein, uT = {uT
j }j∈Γ+ and vT = {vT

j }j∈Γ+

belong to (�1β∗(Γ+))n.
The following result is well-known for G = T (see [10]) if βj ≡ 1. It repre-

sents to some extent the converse of the observations just made that the canonical
Wiener-Hopf factorization of a symbol Â implies the (unique) solvability of the
equations (5.1) and (5.9). In fact, the solutions to these equations for particular
right hand sides allow the construction of the right canonical Wiener-Hopf factor-
ization.

Let δi,j stand for the Kronecker symbol and In for the n×n identity matrix.

Theorem 5.1. Let G be a compact abelian group with ordered character group
(Γ,�), let β = {βj}j∈Γ be a Γ-indexed sequence of positive numbers satisfying
(3.1), and let A ∈ (�1β(Γ))n×n. If the convolution equations

∑

j∈Γ+

Ai−jXj = δi,0 In, i ∈ Γ+, (5.10)

and
∑

j∈Γ+

UjAj−i = δi,0 In, i ∈ Γ+, (5.11)

each have a solution such that
∑

i∈Γ+
(βi‖Xi‖ + β−i‖Ui‖) < ∞, and either of the

two conditions

(a) det(X0) 
= 0, equivalently, det(U0) 
= 0, or
(b) A ∈ G(�1β(Γ))n×n

is fulfilled, then Â ∈ (W (G)β)n×n has a right canonical factorization with factors
and their inverses belonging to (W (G)β)n×n.

Before we give the proof, let us remark that if (5.10) and (5.11) hold, then
necessarily X0 = U0 since

X0 =
∑

i,j�0

UiAi−jXj = U0.

Proof. Given the solutions of the equations (5.10) and (5.11) we can define Y ∈
(�1β(Γ−))n×n and V ∈ (�1β∗(Γ−))n×n) by

Yi =
∑

j∈Γ+

Ai−jXj, i ∈ Γ, (5.12)

Vi =
∑

j∈Γ+

UjAj−i, i ∈ Γ. (5.13)
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Clearly, Yi = Vi = 0 for i � 0, and (5.12) represents a convolution of two sequences
belonging to (�1β(Γ))n×n while (5.13) represents the convolution of two sequences
belonging to (�1β∗(Γ)))n×n, namely {Uj}j∈Γ+ and {A−j}j∈Γ.

The first equation can be rewritten in terms of the corresponding symbols as
( ∑

j�0

〈j, g〉Yj

)

= Â(g)
(∑

j�0

〈j, g〉Xj

)

, g ∈ Mβ,

while the second one turns into
( ∑

j�0

〈j, g〉V−j

)

=
( ∑

j�0

〈j, g〉U−j

)

Â(g), g ∈ Mβ. (5.14)

All of the symbols encountered here belong to (W (G)β)n×n, while the previous two
equations, which obviously hold for g ∈ G, are easily seen to be true for g ∈ Mβ

as well (cf. Proposition 3.1). Using obvious abbreviations we rewrite (5.14) as

Ŷ−(g) = Â(g)X̂+(g), V̂+(g) = Û−(g)Â(g) (5.15)

and conclude that

V̂+(g)X̂+(g) = Û−(g)Â(g)X̂+(g) = Û−(g)Ŷ−(g).

Inspecting the Fourier spectra of the products on either side it follows that they
must be constant, and since V0 = Y0 = In we obtain that they are equal to
X0 = U0. Hence

X0 = V̂+(g)X̂+(g) = Û−(g)Â(g)X̂+(g) = Û−(g)Ŷ−(g) = U0. (5.16)

(a) If we assume that X0 = U0 is non-singular, then X̂+ ∈ G(W (G)β)n×n
+

and Û− ∈ G(W (G)β)n×n
− with

X̂−1
+ (g) = X−1

0 V̂+(g), Û−1
− (g) = Ŷ−(g)U−1

0 ,

and the right canonical factorization is given by

Â(g) = Û−1
− (g)X0X̂

−1
+ (g).

(b) If we assume that Â(g) is invertible on all of Mβ, then clearly det Â ∈
GW (G)β ⊆ GW (G) and we can define the winding number γ ∈ Γ of det Â as in
Section 2. By Theorem 3.3 we have a factorization

det Â(g) = â−(g)eγ(g)â+(g), g ∈ Mβ, (5.17)

with â± ∈ G(W (G)β)±. Taking determinants in (5.15) and using this factorization
we obtain

â−(g)−1 det Ŷ−(g) = eγ(g)â+(g) det X̂+(g), (5.18)

det V̂+(g)â+(g)−1 = det Û−(g)â−(g)eγ(g). (5.19)

This implies γ = 0 because otherwise in one of these equations the left and right
hand sides must vanish identically, which contradicts the fact that [det V̂+]0 =
detV0 = 1 and [det Ŷ−]0 = detY0 = 1. Here [. . . ]0 stands for the zero-th Fourier
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coefficient of the underlying function. We use the fact that the map ĉ �→ [ĉ]0 is
a multiplicative linear functional on both of (W (G)β)±. Thus, (5.17) is in fact a
canonical factorization.

With γ = 0 it follows that both sides of equations (5.18) and (5.19) must
be constants, and for the same reasons as just pointed out these constants must
be nonzero. Hence det X̂+(g) and det Û−(g) are nonzero on all of Mβ, which by
(5.16) implies that detX0 = detU0 
= 0. Hence this case is reduced to case (a). �

Suppose that Â ∈ (W (G)β)n×n possesses a right canonical factorization
Â(g) = Â−(g)Â+(g). Then the zero-th Fourier coefficients of Â− and Â+ must
be non-singular matrices, which can be pulled out from those factors. Thus one
arrives at what might be called a normalized right canonical factorization,

Â(g) = Â−(g)CÂ+(g),

where Â± ∈ G(W (G)β)n×n with [A±]0 = In and C ∈ Cn×n is invertible. The
significance of this normalized representation is that both left and right factors as
well as C are uniquely determined. Moreover, the solutions of the equations (5.10)
and (5.11) are given by

X̂+(g) = Â−1
+ (g)C−1, Û−(g) = C−1Â−1

− (g),

as follows easily from (5.15). In particular, X0 = C−1 = U0, and hence condi-
tion (a) in Theorem 5.1 is also necessary for the existence of a right canonical
factorization.

In the case n = 1, the constant C can be interpreted as the geometric mean
of Â, a well-known notion in the almost periodic case (see [4, Chapter 3]). In fact,
if â ∈ G0(W (G)β), then

C = exp([log a]0).

The results of this section allow us to easily obtain the continuity property
of canonical factorizations. A proof of this property is known in many particular
situations (see, for example, [27] for the case of almost periodic functions of sev-
eral variables), and is presented here for completeness. It will be convenient to
work with normalized right canonical factorizations, and with analogously defined
normalized left canonical factorizations, in the next theorem.

Theorem 5.2. The set of all matrix functions Â ∈ (W (G)β)n×n which have a left
(resp., a right) canonical factorization with factors and their inverses belonging to
(W (G)β)n×n, is open in (W (G)β)n×n. Further, the factors in a normalized left
(resp., right) canonical factorization depend continuously on Â in (W (G)β)n×n.

Proof. Using the remarks made at the beginning of this section, namely, that
existence of a right canonical factorization implies invertibility of the corresponding
Toeplitz operator, and using Theorem 5.1, the result of Theorem 5.2 follows from
the well-known continuity of inversion of invertible bounded operators in a Banach
space. �
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A different proof of Theorem 5.2 may be given using the properties of decom-
posing algebras (see [5, 10]); note that (W (G)β)n×n is a decomposing algebra.

6. Wiener-Hopf Equivalence

Two matrix functions Â, B̂ ∈ (W (G)β)n×n are called left Wiener-Hopf equivalent
if there exist Ĉ+ ∈ G((W (G)+)n×n

β ) and Ĉ− ∈ G((W (G)−)n×n
β ) such that

Â(g) = Ĉ+(g)B̂(g)Ĉ−(g), g ∈ G. (6.1)

It is easily seen that left Wiener-Hopf equivalence is indeed an equivalence relation
on G((W (G)β)n×n). Similarly, we define right Wiener-Hopf equivalence. Clearly,
either notion depends essentially on the weight. For n = 1 the notions of left
and right Wiener-Hopf equivalence obviously coincide, but this is not the case for
n ≥ 2.

The concept of Wiener-Hopf equivalence has been introduced and studied
in [2, 13, 12] in the context of operator polynomials and analytic operator val-
ued functions. For Γ = R the notion of Wiener-Hopf equivalence was implicitly
discussed in [20, Section 2.3]. Observe that the Portuguese transformation, intro-
duced in the setting of Γ = R in [3], christened in [4] and then further used in the
setting of ordered abelian groups in [22], is in fact a convenient tool for establishing
Wiener-Hopf equivalence of some block triangular matrix functions.

For Γ = Z, two matrix functions Â, B̂ ∈ G((W (T))n×n) are left Wiener-
Hopf equivalent if and only if up to rearrangement they have the same left partial
indices, as it easily follows from the classical results of [10, 14]. For n = 1 it is clear
from Theorem 2.2 that two nowhere zero scalar functions â, b̂ ∈ W (G)β are (left
and right) Wiener-Hopf equivalent if and only if they have the same (abstract)
winding number.

The following result serves primarily to illustrate the scope of the Wiener-
Hopf equivalence problem. We only state and prove it in the left Wiener-Hopf
equivalence case. The right Wiener-Hopf equivalence class follows by reversing the
order of the character group.

Proposition 6.1. Let G be a compact abelian group with ordered character group
(Γ,�) and β = {βj}j∈Γ an admissible weight. Then the left (or, right, resp.)
Wiener-Hopf equivalence classes containing at least one diagonal n × n matrix
function in G((W (G))n×n

β ) are completely specified by the elements of the set

{(γ1, . . . , γd) ∈ Γn : γ1 � . . . � γn} . (6.2)

Above we have used the term “factorable” for those matrix functions which
are left Wiener-Hopf equivalent to a diagonal matrix with entries ej. This proposi-
tion characterizes the left Wiener-Hopf equivalence classes of the factorable matrix
functions.
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Proof. Given a left Wiener-Hopf equivalence class, let

diag(â1, . . . , ân), with â1, . . . , ân ∈W (G)β ,

be one of its elements. Let us denote the (abstract) winding number of âs by
γ̃s (s = 1, . . . , n). Then the above element is obviously left Wiener-Hopf equiva-
lent to diag(eγ1 , . . . , eγn), where (γ1, . . . , γn) is the rearrangement of the n-tuple
(γ̃1, . . . , γ̃n) that satisfies γ1 � . . . � γn. Since, by Proposition 4.2, the diagonal
factor in (4.1) is uniquely determined by the left Wiener-Hopf equivalence class
up to rearrangement of diagonal entries, there exists a one-to-one correspondence
between the left Wiener-Hopf equivalence classes containing at least one diagonal
matrix function in G((W (G))n×n

β ) and the elements of the set given in (6.2). �

It is possible to construct matrix functions Â ∈ G((W (G)β)n×n) which are
not left Wiener-Hopf equivalent to a diagonal matrix function. Such examples have
been constructed in the following cases: (1) Γ = R, n ≥ 2, and βj ≡ 1 (see [18]
and the book [4]), (2) Γ not isomorphic to a subgroup of the additive group of the
rational numbers, n ≥ 2, and βj ≡ 1 (see [22]). We mention here the case when

Â =
[

eλ 0
c−1e−ν + c0 + c1eα e−λ

]

, (6.3)

where α, ν ∈ Γ = R are positive with an irrational ratio, λ = α + ν, and the
coefficients cj ∈ C are such that

|c−1|α |c1|ν = |c0|λ 
= 0.

According to [19], the Wiener-Hopf equivalence class of (6.3) does not contain
any diagonal matrix functions at all. On the other hand, the proof of this result
given in [19] (see also [4]) implies that this equivalence class contains a sequence of
triangular matrix functions Âj of the same type (6.3) with the diagonal exponents
λj going to zero.

One reduction of the problem is the following. A left Wiener-Hopf equiv-
alence class of functions in (W (G)β)n×n is called reducible if there exist Âs ∈
(W (G)β)ns×ns (s = 1, 2) with n1, n2 ∈ N and n1 + n2 = n such that the di-
rect sum Â1+̇Â2 is contained in the class. It is then sufficient to characterize
the irreducible classes varying the matrix order n. For Γ = Z and n ≥ 2 all left
Wiener-Hopf equivalence classes of everywhere invertible matrix functions are re-
ducible. Obviously, the example of [18] belongs to an irreducible class. A sufficient
reducibility condition, in terms of the Toeplitz operators associated with eαÂ, is
given in [20, Theorem 2.6].
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Birkhäuser OT 160, Basel and Boston, 2005; pp. 425–439.

[22] C.V.M. van der Mee, L. Rodman, I.M. Spitkovsky, and H.J. Woerdeman, Factor-
ization of block triangular matrix functions in Wiener algebras on ordered abelian
groups. In: J.A. Ball, J.W. Helton, M. Klaus, and L. Rodman (eds.), Current Trends
in Operator Theory and its Applications, Birkhäuser OT 149, Basel and Boston,
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