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GENERALIZED KINETIC EQUATIONS 

W. Greenberg, C.V.M. van der Mee and P.F. Zweifel 

This  paper i s  d g d i c a t e d  to  K.M. Case on 
thg  occas i on  of h is  s i x t i e t h  b i r t h d a y  

We study the abstract differential equation T~ + Af = O 

on a Hilbert space H, which represents a variety of different 
kinetic equations. T is assumed bounded and self-adjoint on H, 
and A (unbounded) positive self-adjoint and Fredholm. For partial 
range boundary conditions and 0~x<~, we prove existence and (non-) 
uniqueness theorems and give representations of the solution. 
Various examples from neutron transport, radiative transfer of 
polarized and unpolarized light, and electron transport are given. 

INTRODUCTION 

In 1960, K. M. Case[ll] introduced the method of singu- 

lar eigenfunctions for constructing solutions of the neutron 

transport equation. This method quickly came to supplant the more 

classical Wiener-Hopf technique[17] (to which it is equivalent[36]) 

for reasons of convenience and familiarity (the Case method is 

basically a separation of variables technique, in which boundary 

data are fitted by singular eigenfunction expansions, so the 

analogy to the usual theory of partial differential equations is 

quite close). 

Case's second paper (which actually followed two earlier 

papers by van Kampen and Case[23,10] in which singular eigenfunc- 

tion techniques had been applied to the study of plasma stability) 

induced a flurry of activity in which similar ideas were applied 

to solutions of kinetic equations which arise in many different 

areas of physics, for example, gas dynamics[14,15], plasma 

waves[31], radiative transfer[32,33], electron discharge[13], 

even lattice spin systems[12]. In addition, the one-speed, 

isotropic scattering neutron transport equation of Case[ll] was 

generalized to models involving anisotropic scattering and energy 
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dependence. The literature is much too enormous to cite here. 

However, several review papers exist, in which references 

abound[27,38]. 

Despite the popularity of the Case method to physicists 

and engineers, the mathematicians remained largely unconvinced 

because of the heuristic nature of many oF Case's arguments. (A 

thoughtful discussion of Case's mathematical irregularities has 

been given by Hangelbroek[20].) However, in the mid 1970's Case's 

formulas were reproduced rigorously by two different methods, 

resolvent integration[24] and application of the spectral theorem 

(Hilbert space technique)J20]. Again, a flurry of papers resulted 

in which functional analytic techniques were applied to a number 

of problems in kinetic theory, some of which for one reason or 

another had not been conveniently amenable to singular eigen- 

function expansions[19]. 

it is of comfort to the purist that in mathematics, as 

in life, virtue need not always be its own reward. Thus, the 

introduction of mathematically rigorous formulations of Case's 

ideas made possible, for the first time, the solution of the 

multigroup neutron transport equation[9] and the correct solution 

of the initial value problems in which eigenvalues were imbedded 

in the continuous spectrum[2]. However, perhaps a more important 

reward was that the understanding introduced by rigorous mathema- 

tics into the structure of the Case solutions made it possible 

to generalize vastly the class of kinetic equations which could 

be treated. The instigator of this generalization was Richard 

Beals[5,6]. 

The generalized kinetic equation considered by Beals 

can be written in the form 

~@f'x h(~j-~ ,~) + Af = 0, x~[a,b]~R, ~S. (l) 

The set S is assumed to be equipped with a measure dm, and the 

operator A is taken to be positive in the Hilbert Space L2(S,dm). 

The function h(~) is essentially bounded and the set S O = 

{~eS[h(~)=-0} is assumed to have m-measure zero. The following 
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theorem can be proved by standard methods. 

THEOREM 0. D e f i n e  a s o l u t i o n  t o  e q u a t i o n  ( I )  t o  be a 

d i f f e ~ e n t i a b l e  map f:[a,b]§ s u c h  t h a t  f(a,~) = f+, ~S + = 

{McSI h ( ~ )  > 0 } ,  and f ( b , ~ )  = f _ ,  McS- = {~cS I h(M) < 0 } .  Then 

a s o l u t i o n  t o  Eq. ( I I  i s  u n i q u e .  

This theorem suggests that partial range boundary 

conditions can lead to well-posed problems. They are the 

analogues of the standard boundary conditions in neutron trans- 

port theory that the incident distribution be specified[13]. 

In the case that the interval [a,b] is semi-infinite 

(the situation treated in this paper) the boundary conditions 

expressed in Theorem I can be weakened. We prove a stronger 

result for that case in Section V. 

The operator A is assumed by Beals to be bounded with 

bounded inverse[5] or to be a specific Sturm-Liouville type 

appropriate to electron scattering[6]. (Thus, in [6], A has a 

one-dimensional kernel.) In [5], one section is devoted to a 

generalization of the result obtained there to the case that A 

has a finite-dimensional kernel, but assumptions are introduced 

which we would like to avoid.) 

The purpose of this paper is to generalize and codify 

Beals' results to the following kinetic equation 

T Bf + Af = 0, xc[0,~). (2)  

Here T is assumed bounded, injective and self-adjoint on a 

Hi!bert ~Dace H and A positive self-adjoint on H with Ker A 

finite-dimenslonal and Ran A closed in H. We note that since 

the spectrum of A contains a gap at zero, A restricted to the 

orthogonal complement of Ker A is strictly positive. 

Since this paper is quite long and technical, we shall 

present here a rather detailed discussion of the content. 

Suppose Eq. (2) is rewritten as 

~-~# + Kf = 0 (2,) 
~x 
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with K = T-IA. The kernel of A induces a root linear manifold 

Z0(K) which (K is not self-adjoint) may contain generalized eigen- 

vectors in addition to the zero eigenvectors of A. Similarly we 

define Z0(K*). One sees that Ker K*=T Ker A. Given these condi- 

tions H can be decomposed as 

H = Z0(K) �9 Z0(K*) • 

= Z0(K* ) 8 Z0(K) • . 

(3a) 

(3b) 

On Z0(K*) • , K is self-adjoint in a suitable inner product. 

Straightforward analysis leads to a spectral theorem. 

The problem is to apply the spectral theorem to partial 

range boundary conditions. Recalling Theorem 0, we can define 

projection operators Q• on H corresponding to the positive and 

negative parts of T (in Eq. (2), T is the generalization of the 

multiplication operator h(~) of Eq. (i); the obvious generaliza- 

tion of Theorem 0 has not been stated explicitly). Then the 

boundary data for a half-range problem is f+ s Ran(Q+). In 

order to use the spectral theorem for f+, one must introduce the 

Larsen-Habetler[24] albedo operator E:Ran Q• § Ran P• where p• 

are the projections on%o the positive and negative~parts of K. 

If Z0(K) is trivial, this is all there is to the construction, 

and the results for bounded A are contained in [5]; the modifica- 

tions for unbounded A s re straightforward[39]. 

However, if Z0(K) is not trivial, it is necessary to 

define E such that E maps the subspace Ran Q+ into the subspace 

Ran P+ + Ker A in order to guarantee bounded solutions at 

infinity. This modification in the definition of E is non-trivial 

and, in fact, was carried out incorrectly in [6]. Our approach 

to this problem is to introduce an invertible matrix 8 on Z0(K) 

and a modified operator A 8 such that K B = T-IA8 = 8 8 KIZ0(K,)• 

(This idea was first exploited in [28]). The problem is now 

reduced to the previous case since Ker(A 8) = {0}. 

If now Z0(K) is decomposed as M+ �9 M_, where M• are the 

positive and negative subspaces of 8, E8 is defined such tl~at 
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E 8 : Ran Q+ § Ran P+ @ M+. Such a construction is always possible;. 

the solution obtained in this way is now projected onto Z0(K* / and 

the original equation projected onto Z0(K) (a matrfx equation) is 

trivially solvable. The crux of the matter is that the decomposi- 

tion H = Z0(K) �9 Z0(K*) • does not reduce E. 

The construction above is carried out for the boundary 

value problem (2) on an enlarged Hilbert space. Under the condi- 

tion that I - A is a compact operator and Ran (I - A)~Ran ITI ~ 

for some 0 < ~ < I, van der Mee[28] solved the half-space problem 

and constructed the albedo operator without extending the original 

Hilbert space (as in [5]). 

In Sec. II, we derive the decomposition of H and intro- 

duce the matrix 8 and the operator AB, and prove that there always 

exists a choice of B such that A~ is strictly positive. 

In Sec. III we state the spectral theorem for K (in H A ) 

and in the case that K admits a rigged extension we state a Case 

type full-range completeness and orthogonality theorem. 

In Sec. IV we consider the solution of half-space pro- 

blems by proving the existence of the operator E discussed above, 

and noting that the "half-range"[ll,13] expansion of f+ corresponds 

to the full-range expansion (Sec. III) of Ef+. The definition 

of E guarantees that no growing modes occur in the solution and 

thus we can show (Sec. V) that a bounded solution exists. 

Finally in Sec. VI, we discuss several applications. 
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II. DECOMPOSITION 

We recall our assumptions (noted throughout this paper) 

that the (possibly unbounded) operator A is positive self-adjoint 

and Fredholm on an abstract (complex) Hilbert space H, and that 

the operator T is bounded and self-adjoint with a trivial kernel 

Ker T. Below we analyze the operator K = T-IA and its adJoint K*, 
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which are closed and densely defined by virtue of the Fredholm 

assumption on A. 

The zero root linear manifold Z0(K) is defined by 

Z0(K) = {f0~D(K)If0~D(K n) and Knf0 = 0 for some n~Z+}, 

and similarly for Z0(K*). The next lemma proves that the zero 

Jordan chains of K have at most length two ([28], Sec. III. 3). 

LEMMA i. I f  f0~Z0(K), t h e r e  e x i s t s  fleD(K) such t h a t  

Kf0 = fl ' Kfl = 0. 

PROOF. Assume that go' gl' g2 ED(K) are chosen in such 

a way that Kg 0 = gl' Kgl = g2' Kg2 = 0. Then go' gl' g2 eD(A)' 

Ag 2 = 0 and 

(Agl,g I) = (Tg2,g I) = (g2,Tgl) = (g2,Ag0) = (Ag2,g 0) = 0. 

The positivity of the operator A implies Tg 2 = Ag I = 0. As Ker T 

= {0}, one gets g2 = 0. 

Hangelbroek[20] introduced in his analysis the Hilbert 

space H A ~ H with inner product (f'g)A = (Af,g). Since we do 

not assume A to be injective (or bounded), we must restrict A 

to a subspace on which it will be injective, a procedure first 

followed by Lekkerkerker[25]. 

PROPOSITION I. One has �9 

TZ0(K) = Z0(K*) , A{Z0(K*) • n D(A)} : T{Z0(K*) ~ } = Z0(K ~ (4) 

and the  fo l lowing  decomposi t ions  hold t rue :  

Zo(K) ~ Z0(K*) • = H; (5a) 

Zo(K* ) �9 Z0(K) • : H. (Sb) 
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PROOF. Let A,T be chosen. Then Lemma I and dim Ker A 

finite imply dim Z0(K) ~ 2 dim Ker A < ~. On the one hand, 

if xeD(K), then TxeD(K*) and K*Tx = TK~,-implying that 

TZ0(K) ~ Z0(K*). On the other hand, Z0(K*) ~ D(K*) ~ Ran T. 

Hence, Z0(K*) has finite dimension and TZ0(K) = Z0(K*). 

Take xeZ0(K) n Z0(K*) ~. Then xED(K) and T-IAx = 

KxsZ0(K). So AxEZ0(K*). Using that xeZ0(K*) ~, one gets (Ax,x) 

= 0 and thus xcKer A. As T is bounded and A has closed range, 

x = Ky for some y~Z0(K) , and Ay = TxEZ0(K*). As TY~Z0(K*) , one 

gets 

(Ay,y) = (Tx,y) = (x,Ty) = 0, 

implying that Tx = Ay = 0. Thus x = 0, proving that 

Z0(K) n Z0(K*~ = {0}. 

Next take ysZ0(K*) n Z0(K) • and zeZ0(K*). Then y = Tx 

for some x~Z0(K) , z = Tu for some ucZ0(K) , and (x,z) = (x,Tu) = 

(Tx,u) = (y,u) = 0. Thus xeZ0(K) n Z0(K*~ = {0} and y = Tx = 0. 

Hence, 

J. 
Z0(K) n Z0(K*) = Z0(K*) 8 Z0(K) • = (0}. (6) 

However, 

dim Z0(K) = dim Z0(K*) = codimZ0(K*~ ; 

dim Z0(K*) = dim Z0(K) = codimZ0(K~ , 

which establishes the decompositions (5a) and (5b). 

Take x~Z0(K*~-- and let us show that Tx, Ax~Z0(K) • 

(In the latter case we assume x~D(A)). Let zcZ0(K). Then Tz, 

AzcZ0(K*) and so (x,Tz) = (x,Az) = 0. Hence, (Tx,z) = 0 for all 

zaZ0(K) and, in case x~D(A), (Ax,z) = 0 for all z~Z0(K) , thereby 

establishing our assertion. 

To finish the proof we note that as T is a self-adjoint 

operator with trivial kernel, its range Ran T is dense in H. 

So T{Z0(K*) • is dense in Z0(K) ~. Further, as A is assumed to 
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have closed range and Z0(K/) • has finite codimension (in H), the 

restriction of A to Z0(K*) n D(A) has closed range in Z0(K~ . 

Moreover, 

Z0(K*) Z0(K) ~ 
d im Ker  A = c o d i m  Ran A = d im  ~ + d i m  A{Z0(K, )~  N D ( A ) } .  

Because Ker A ~ Z0(K) , also dim Z0(K*)/AZ0(K ) = dim Ker A and 

A{Z0(K*) I N D(A)} = Z0(K) • . This completes the proof. thus 

Now that we have constructed the decompositions 

of the original Hilbert space H given by Eqs. (5), we define the 

sesquilinear form (''')A on Z0(K*) ~ N D(A) by putting 

(f'g)A : (Af,g) (7) 

This sesquilinear form is positive and any vector fsZ0(K*) i N D(A) 

for which (f'f)A = (Af,f) = 0 necessarily belongs to Ker A and 

therefore must vanish. Let us denote by H A the Hilbert space 

obtained as the completion of Z0(K*) i N D(A) with respect to the 

inner product (''')A" It is easy to derive that H A will coincide 

with Z0(K*) l if and only if A is bounded. For unbounded A the 

sesquilinear form (''')A on Z0(K*) I N D(A) is incomplete. 

As a corollary of Eq. (4) there exists a unique bounded 

operator K on Z0(K*~ such that 

A K x = T x , xsZ0(K*) I . 

Of course, if Ker A : {0}, then K = A-IT. It is clear that 

Z0(K*) i N D(A) is invariant under K and 

(Kf'g)A : (f'Kg)A; f,gaZo(K*) • N D(A) 

Because K is bounded on Z0(K*~ N D(A) endowed with the norm of 

Eq. (7), the above equality implies that K (restricted to 

Z0(K*~ N D(A))can be extended in a unique way to a bounded self- 

adjoint operator on HA, also to be denoted by K. 

The next proposition intends to reduce the solution of 
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Eq. (I) to the solution of the analogous problem for some A with 

Ker A = {0}. 

PROPOSITION 2. Let  A,T be chosen and l e t  P deno t e  t h e  

p r o j e c t i o n  of H onto Z0(K*) I along Z0(K).  For some i n v e r t i b l e  

o p e r a t o r  @ on t h e  f i n i t e - d i m e n s i o n a l  space  Z0(K) put  

A@ = A P + TB-I(I-P). (8) 

Then t h e  o p e r a t o r  A8 i s  d e n s e l y  d e f i n e d  w i t h  bounded i n v e r s e  and 

One may choose ~ i n  such a way t h a t  (TB-ix,x) > 0 f o r  a l l  

x~Z0(K) , i n  which case A@ w i l l  be a p o s i t i v e  o p e r a t o r .  

PROOF. Because of Eq. (4) the operator A8 in (8) is 

well-defined and has {Z0(K*) i n D(A)} �9 Z0(K) = D(A) as its 

domain. As 

A{Z0(K*) ~ n D(A)} = Z0(K) ~ , TB-IZo(K) = Z0(K* ) 

and the decompositions (5a) and (5b) hold true, the operator A~ 

is densely defined and has a bounded inverse. Formula (9) is 

checked by computation. 

Next choose xsH. Then there exist unique x0sZ0(K ) and 

xI~Z0(K*) • such that x = x 0 + x I. As T~-Ix0~Z0(K*), one has 

(TB-ix0,x I) = 0. Further, if xsD(AB) = D(A), also XlsD(A) , 

AXlEZ0(K) • (cf. (4)) and (AXl,X 0) = 0. Therefore, for x~D(A~) 

(A~x,x) = (AXl,Xl) + (TB-ix0,x0) 

This identity proves A~ to be a positive operator if (and only 

if) (Ts-lh,h) > 0 for all hEZ0(K). 

In case I - A is compact this proposition was derived 

by van der Mee ([28], Sec. III. 5) and exploited to reduce Eq.(1) 
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to the case when Ker A = {0}. This reduction will be accomp- 

lished in Section V. It will be convenient to choose 8 in a 

special way. 

There exists a basis b = {Xl'''''Xr'Yl'''''Yr~Zl'''''zs}l 

of Z0(K) with respect to which the restriction of K = T A to 

Z0(K)_. has Jordan normal form. This means that 

T-IAyj = xj (j=l,...,r) and Ker A = span {Xl, ..,Xr,Zl,...,Zs}. 

Note that for j = i .... ,r and numbers ~l'''''~r' 

(T(yj-~jxj), (yj-~jxj)) = (Tyj,yj) + J~j J2(Txj,xj) 

- 2Re[~j(Txj,yj)] = (Tyj,yj)-2(Re~j)(Ayj,yj), 

(lO) 

where we used that Txj = Ayj (j=l,...,r). Because Ayj # 0, the 

number (Ayj,yj) > 0. So one can choose real ~l,...,~r such that 

for j = l,...,r the expressions (i0) are negative. A simple 

readjustment leads to a Jordan basis b for which (Tyj,yj) < 

o ( j  = l , . . . , r ) .  

On the finite-dimensional space Z0(K) one considers the 

indefinite inner product 

[u,v] = (Tu,v) (ll) 

which makes Z0(K) a Pontryagin space[8]. The original Jordan 

basis b can be chosen in such a way that with respect to (II) 

vectors of distinct Jordan chains are orthogonal. This requires 

a repeated application of the reasoning of Eq. (i0). Furthermore, 

the vectors yl,...y r can be chosen strictly negative with respect 

to (II) without affecting this orthogonality property. For 

j = l,...,r and ucKer A one has 

[ x j , u ]  = ( T x j , u )  = ( A y j , u )  = ( y j , A u )  = O. (12)  
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Further, because N = span {Zl,...,z s} is a Pontryagin space, 

there exist a positive subspace N+ and a negative subspace N_ 

that are orthogonal with N+ ~ N_ = N [8]. This means that 

[u,u] ~ 0 for u~N+, [v,v] ( 0 for v~N_ and [u,v] = 0 for u~N+ 

and v~N . 

LEMMA 2. The subspace  M+ = span {Xl,...,x r} �9 N+ i s  a 

maximal p o s i t i v e  subspace  of Zo(K). With r e s p e c t  to  (II) t h e r e  

e x i s t s  a maximal n e g a t i v e  subspace  M_ of Zo(K) or thogonal  to  M+ 
suah t h a t  

M+ O M_ = Z0(K). 

PROOF. Because [u,u] ~ 0 for all ucspan {Xl,...,x r} 

(cf. (12)) and all ueN+, and [u,v] = 0 for uespan {Xl,...,x r} 

and v~N+ (cf. (12)), the subspace M+ is positive. Further, 

L ~ span{y I} 0...@ span{y r} 0 N_, M+ �9 L = Zo(K). 

The orthogonality of vectors of distinct Jordan chains with res- 

pect to (ii) and the specific choice of yl,...,y r imply the 

negativity of L with respect to (II). Clearly, M+ is maximal 

positive. The second part of the lemma follows immediately from 

Pontryagin space theory ([8], Sec. IX. I). 

For x = m+ + m_~Z0(K) with m• ~ M• put 8 x = m+ - m_. 

Then the orthogonality of M+ and M_, the positivity of M+ and 

the negativity of M imply that 

(Tfl-lx,x) = [m+-m_,m++m_] = [m+,m+] - [m ,m ] ~ O. 

We observe 

u(~/Mf) = {• K{Z0(K)} ~ M+ ~ Ker A. 

So for this choice of @ the operator A~in Eq. (8) will be posi- 

tive. If all Jordan chains of K at I = 0 have length 2, then 
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Ker A is maximal positive and maximal negative at the same time. 

III. FULL-RANGE EXPANSIONS 

We have observed that as a corollary of Proposition i, 

the operator K is a bounded self-adjoint operator on H A . Thus 

K = ~-I extended to H A has a spectral decomposition 

fo 
K = XdF(X) (13) 

Define the ( , )A-orthogonal projections [20] 

P• = • d F ( k ) .  (i4) 

Since on P• ~K generate C0-semigroups , it is possible to solve 

the inhomogeneous problem 

! (Tr = -Ar + q 
~x (15) 

for x~ IR with appropriate continuity conditions on q:~ § H A and 

boundedness conditions of infinity. Details are given in 

Appendix A. 

In general, for positive A, it is only possible to 

associate a spectral projection F(~) with each value ~ in the 

spectrum g(K). The expansion 

dim Z0(K) io 
f = d(F(X)f) + ~ cia. (16) 

i=l 

~dimZ^(K) 
for feH with Pf~H A and {ai~i= 1 u a basis of Z0(K) has been 

called the full-range expansion of f. For many physical problems 

(obviously those which have been solved using orthodox 

"Caseology"[13])a description in terms of generalized eigenfunc- 

tions has been obtained. A criterion for the existence of such 

generalized eigenfunction expansions is provided within the 

framework of rigged Hilbert spaces[7]. 

We assume that H A contains a dense linear subspace H+ 

which is complete in another inner product ( , )+ and such that 
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H~ D H A D H+ 

where the embedding i:H+ § H A is Hilbert-Schmidt. One says that 

K admits a rigged extension if there is a dense subspace D ~ H+ 

such that D ~ D(K) and K:D § H~ is continuous. 

THEOREM i. (GENERALIZED EIGENVECTOR EXPANSION) (cf.[7]) 

I f  H A i s  as above and K admi ts  a r i g g e d  e x t e n s i o n ,  t h e n  t h e r e  

e x i s t s  a s e t  of e i g e n v e c t o r s  r  for  ~ ( K ) ,  ~ = I , . . . , N ~ ,  

obeying  

Kr = ~r 

where K i s  u n d e r s t o o d  to  r e p r e s e n t  t h e  r i g g e d  e x t e n s i o n  of K on 

H*- e q u i v a l e n t l y  +,  

((K - kl)v,r A : 0, V veD 

Moreover,  t h e  s e t  of e i g e n v e c t o r s  i s  comp le t e  on H+: 

Nk 
v =f~ ~ A(~,k)r 

A(~,X) = (v,~,k) A 

f o r  veH+ and p(~) t h e  (Bore l )  s p e c t r a l  measure of t h e  o p e r a t o r  K. 
F i n a l l y ,  t h e  g i g e n v e c t o r s  ~,~ are " o r t h o g o n a l "  in  HA: 

i 
(r162 = p--(~7 ~(~'~) ~ (~-~') 

COROLLARY (FULL-RANGE COMPLETENESS) Let  t h e  c o n d i t i o n s  

of  t h e  p r e v i o u s  theorem be f u l f i l l e d  t o g e t h e r  w i t h  t h e  c o n d i t i o n  

t h a t  K admi ts  a r i g g e d  e x t e n s i o n .  Then any f u n c t i o n  f c H  w i t h  

PfEH+ can be expanded as 
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f = d2~ O%Z (K) 

i=l 

N~ 
ci~i +/ Z A(~,t)r , 

and t h e  expans ion  c o e f f i c i e n t s  can be computed from t h e  or tho-  

g o n a l i t y  r e l a t i o n .  

IV. HALF-RANGE EXPANSIONS 

We define Q• to be the H-orthogonal projections of H 

onto the maximal T-invariant subspaces on which T is positive/ 

negative. In analogy with the construction of H A (Sec.il), we 

define the ( , )A~ inner product on HA8. (Note^ that H A^~ H 

densely, and the bounded self-adjoint operator K B e B@K on HAB). 

Likewise, the ( ' )A8 -orthogonal projections P+ _ are defined as 

in (l~). 

Let us introduce two additional inner products on H; 

namely, 

( ' ' ' ) T  = ( I T I . , . )  (17) 

with the completion of H denoted HT, and 

(''')K~ (I~:~I''')A B (18) 

with the completion of HAB denoted HKB. The projections Q• and 

P• extend continuously to projection operators on H T and HKB , 

respectively. 

The positive operator AB has been constructed in such 

a way that the domain D(A B) is the same as the domain of the 

original operator A, and A and A~ coincide on their domains 

within the subspace Z0(K*) i of finite codimension. Hence, on 

D(A) all inner products ( , )ABate equivalent and therefore we 

may suppress ~ in HA . In a similar way the inner products ( , )K8 

are equivalent on HA, and thus the subscript B may be suppressed 

in HK B 
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The projection P onto Z0(K*) i along Z0(K) has been 

defined on H, but, because Ker P = Z0(K) ~ D(A), one can extend 

P continuously from D(A) to bounded projections on the spaces H A 

and H K. In both cases, Ker P = Z0(K). 

The Larsen-Habetler[24] albedo operator E is defined 

by the conditions that, for all feH, 

(i) Q+EQ+f = Q• 

(19) 
(ii) P~EQ• = 0. 

In transport theory terminology, these conditions imply that if 

feRan Q+ is an incoming flux for a right half-space problem, then 

Ef will be the corresponding total (incoming plus reflected) flux, 

and if feRan Q_ is an incoming flux for a left half-space problem, 

then Ef will be the corresponding total flux. 

Let us find an explicit representation for E:H T § HK, 

which we shall justify later. First we derive the intertwining 

relation 

P• = EQ• (20 

on H T. We have 

P• = P• + Q ) = P+EQ+ = EQ• , 

where we have used Eqs.(19). Now by (19), again, 

Q+P+EQ+ = Q• , 

whence, by adding the • equations, 

Q+P+EQ+ + Q P EQ = (Q+P+ + Q_P_)E = I. 

PROPOSITION 3. T h e r e  e x i s t s  a u n i q u e  a l b e d o  o p e r a t o r  

E : H  T + H K t h a t  i s  bounded ,  i n j e c t i v e  and s a t i s f i e s  t h e  c o n d i t i o n s  

( 1 9 ) .  F u r t h e r ,  E a c t s  as a bounded  o p e r a t o r  f rom H T i n t o  H T.  
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PROOF. On H A we define the Hangelbroek operators[22] 

V : Q+P+ + Q_P_:H A § H, W : Q+P_ + Q_P+:H A § H. 

A straightforward calculation shows that, for f~HA, 

(Q+ - Q_)(P+ - P_)f : Vf - Wf : (2V - I) 

(cf.[21]),and therefore 

((2V - I),f,f) T = (ITI(Q+ - Q_)(p+- p_)f,f) 

= (T(P+- e_)f,f) 

^ 2 = (~8(e+- P->f'f>AB = (l~If,f>A= Ifll~. 

This implies the following identity: 

2 2 
2<vf,f)T = l lfiIT + l lflIK~ , f~HA. <21> 

Introduce the semi-bounded quadratic form 

q(f,g) = 2(Vf,g)T , f,gsH A , 

on the Hilbert space H T. Note that q can be extended to a 

closed form with domain D(q) = H T n H K and H A is a form core for 

q. Now q is the quadratic form of a unique self-adjoint operator 

whose domain D satisfies (cf.[30]) 

H A~- D -~ H T n HK_~ HT . 

Hence V extends to a self-adjoint operator on H T (with domain D), 

and moreover, 

2(vf,f> T ~ lJfIl$ , f~D . 
From this we find V to have trivial kernel and dense range in HT~ 

so that (20) holds for E = V -I on V[HA]. Putting E on D0(E) as 
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D0(E) = VD ~ H T , E(Vf) = feD, 

E extends to a bounded operator on HT, thereby proving the second 

part of the proposition. 

Since VH A is dense in HT, we may consider E as a densely 

defined operator on DI(E): 

DL(E) = {Vflfe~ n} , E(Vf) =feH A . 

Following an argument of Beals[5] one computes that, for FeHA, 

I I v f I l $  - l l w f I l $  = ~(TP+f ,Q+P+f)  - (TP_f ,Q_P_f ) }  

- ( (mP_f ,Q+P_f )  - (mP+f,Q P + f ) }  (22)  

~B )A B 2 = (mP+f,P+f)  - (mP_f ,P_f )  = (] I f , f  =JJ fJ l~  

This formula implies 

2 2 
f fEgiIK~ ~ I fglfT ' geDl(E) ~-~ ' 

which establishes the existence of E as a bounded operator from 

H T into H K satisfying (20). 

One might be interested in knowing whether the total 

(i.e., incoming plus reflected) fluxes Ef with feRan Q• make up 

the whole subspace Ran P• and not just some dense subspace of it. 

In general this is not the case. However, for bounded and injec- 

tire A, and for non-injective A with certain restrictions, 

Beals[5] succeeded in proving the invertibility of the Hangelbroek 

operator V from H K into H T and in establishing the equivalence 

of the inner products ( , )K and ( , )T on H, after which he 

could simply define E = V-I. B Unfortunately, in a recent paper[6] 

he misstated some steps in a derivation concerning non-injective 

A, and thus arrived at an incorrect result (cf.[6], first paragraph 

of Sec. IV). Using the operator A B of Sec. 2, one may extend 

Beals' earlier work to all bounded p0sitive Fredholm A. In Appen- 

dix B we give a new proof of the equivalence of H T and H K for 

this case. 
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Earlier, Hangelbroek[20] proved the invertibility of V 

as an operator from H into H for neutron transport with isotropic 

(and later also for some anisotropic) scattering kernels. In 

that work I - A was assumed compact. Under the conditions that 

I - A is compact and Ran(l - A) ~ Ran ITI ~ for some 0 < ~ < I, 

van der Mee[28] proved the invertibility of V and of TVT -I on H, 

which in this case implies Beals' result on H T. 

Implications of the boundedness of V are given in the 

following lemma. 

LEMMA 3. Let  V be t h e  p r e v i o u s  e x t e n s i o n  of V:HA§ T. 

Then t h e  f o l l o w i n g  f i v e  s t a t e m e n t s  are e q u i v a l e n t :  

(a) VsL(HK,H T) 

(b) V~L(HK,H T) i n v e r t i b l e  

(c) II IIT and II IIKB are e q u i v a l e n t  

(d) VEL(HT,H T) i n v e r t i b l e  

(e) H K ~ H T ~ H ~ H A �9 

PROOF. (b) => (a): Trivial. 

(a) => (b): Combining Eq. (22) with V~L(HK,H T) we find, 

for some constant M, 
/ ~  2 2 2 , MIIfl)u2 ~ I lv f l l$  ~ I v f l l T -  I lwflIT = IIfI1KB 

which proves (b 8 
(a) => (c): From Eq. (21) we have immediately 

I f l l $~  2 ( v f , f )  T ~ 2 1 1 v l l  I l f l lK B I l f l lT  

l f l l ~  ~ 2 ( v f , f )  T ~ 2 1 I v l l  I l f l l~  e I t f l lT  

where I lv l  indicates the norm of VcL(HK,HT) , and (c) follows. 

(c) =, (a): Recall that Q• are bounded on H T and P• are 

bounded on H K. The equivalence of the norms obviously implies (a). 

(c) => (d) (cf.[21]): From (c) follows the estimate 
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2 ~ ljfii2 2 clIIfJIT ~c2rffflT 

for fSHT, or 

ClITI~ T(P+- P) ~ o21TI- 

But 

whence 

on H T. 

T(P+ - P_) = IT (Q+ - Q_)(P+ - P_) = 

(I + Cl) ~ V ~ �89 + c 2) 

Now clearly (c) implies (d). 

fox fall A . 

ITI(2V - I) 

(d) ~> (e): From (22) and (d), it follows that 

llflJ~ ~{21JvlJH T§ T-l} IlfII$ 

Conversely, Eq. (22), (e) and Proposition 3 imply (d). 

(e) = (c) [Pointed out by R. Beals]: Following pre- 

cisely [5], one may estimate, for f~D(A): 

flfIl$ = (Tf,(Q+ - %)f) = (I~BI(P + - P+)f,(%- Q-)f)A~ 

= ((P+ - P-)f'(q+ - Q-)f)K8 

llfllxB II(%- %)fllx B~ olffll~ IrffIT. 

The last estimate follows from (e), and completes the proof of 

the lemma. 

Under any of the (equivalent) conditions of Lemma 3, 

the half-range expansion of fEH T is the full-range expansion of 

EfsH K. However, even if none of these conditions is satisfied, 

we may formulate such a statement. Let us denote by F the resolu- 

tion of the identity of K~ as a self-adjoint operator on H K. For 

f~RanQ• 

f = •177 /j'd(F(1)Ef) 
i 

Under the conditions of Theorem i, one can write 

where A( , ) can be calculated from full-range "orthogonality." 
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V. EXISTENCE AND UNIQUENESS THEORY FOR HALF-SPACE 

PROBLEMS 

To solve the half-space problem, one seeks a solution 

of Eq. (I), f:[0,~) § HK, subject to 

f(0) = f+ , f+ e Q+(H T) (23a) 

Lim sup l If(x) II finite. (23b) 
X -~ 

Because the albedo operator E acts from H T into HK, a statement 

of this type is required. Below, we give a more precise state- 

ment of the problem. 

The decomposition of H into reducing subspaces of K, 

Proposition I, decouples the half-space problem, into a half- 

space problem on PH (with a different f+) and a finite-dimensional 

first order system on (I - P)H. However, the use of a suitable 

operator A B makes it possible to extend the half-space problem 

on PH to one on H of a simpler structure than the original pro- 

blem, the simplicity stemming from the injectivity of A . The 
B 

main difficulty of the newly obtained half-space problem is that 

the albedo operator E acts from H T into H K and might not act from 

H into H. For this reason we state the following weakened version 

of the half-space problem: 

Given f+~Q+[HT] , construct a continuous function 

r + H K with KPr and (I - P)r differentiable 

on (0,~), such that 

dxdK-Ipr = -P@ (on P H K) (24a) 

- P)@ = -T-IA@ (on Zo(K)) (I 
dx (24b) 

~(0)~H T and Q+@(0) = f+ (24c) 

IIP~(x)IIK = o(1), ll(I-P)~(x)ll = o(1)(x+-). (24d) 
B 

We did not use B in this statement of the half-space problem. In 

Equation (24d) it is immaterial which B one applies in the KB-norm. 
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The decompositions of H K into reducing subspaces of K, 

Proposition I extended to HK, decouples the weak half-space pro- 

blem (24) into an infinite dimensional evolution equation PH K 

(namely, (24a) with initial value PEr+) and a finite-dimensional 

first order system on (I-P)H K = Z0(K). On PHK, the weak half- 

space problem is equivalent to the semigroup problem 

! T~ = -Ar ; 
~x 

4(0) = PEf+ ; 

llr = o(1)(x§ , 

which has a unique solution once ~(0) = PEf+ is specified uniquely. 

The albedo operator E satisfies conditions (19). On (I - P)H K = 

Z0(K) , boundedness at infinity requires that (I - P)Ef+ s Ker A, 

after which the solution on Z0(K) can be written as a constant; 

more precisely, 

(I - P)@(x) = e-XT-IA(l - P)Ef+ ~ (I - P)Ef+ . 

Recalling the remark at the end of Sec. II, we have 

THEOREM 2. For every  f+~Q+(HT), t h e  h a l f - s p a c e  problem 

has a un ique  ( d i f f e r e n t i a b l e )  s o l u t i o n  i f  and on ly  i f  Ker A i s  

p o s i t i v e  d e f i n i t e  w i t h  r e s p e c t  to  t h e  i n d e f i n i t e  i n n e r  p roduc t  

( i i ) .  This  w i l l  be t h e  case  i f  each I = 0 e i g e n v e c t o r  of K has 

a c o r r e s p o n d i n g  g e n e r a l i z e d  e i g e n v e c t o r .  I f  Ker A i s  no t  p o s i -  

t i v e ,  t h e r e  e x i s t  n o n - t r i v i a l  s o l u t i o n s  w i t h  incoming f l u x  f+  = 0 

( n o n - u n i q u e n e s s ) ,  and a t  l e a s t  one s o l u t i o n  for  every  f+EQ+[HT].  

On PHK, lim IIPr K = 0. 
x§ B 

The theorem follows immediately from standard semigroup 

theory, assuming the construction of E (which depends on B) gives 

a unique albedo operator E. We observe that PE:HT§ K is indepen- 

dent of the choice of 8. So we must investigate the dependence 
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of (I - P)EQ+:H T § Z0(K) on 8. Recall that B was constructed 

from a decomposition M+ @ M_ = Z0(K) into subspaces M• that are 

positive/negative with respect to the inner product (II). How- 

ever, E has a dense range in H K and maps Ran Q• into Ran P• 

where Ran P• = Ran PP• @ M• Thus (! - P)EQ+ maps H T onto M+, 

and we conclude that (I - P)EQ+ depends on the choice of the 

maximal positive subspace M+ only. In order that the weak half- 

space problem (24) has a (bounded) solution, one has to be able 

to take (I - P)Ef+c Ker A. Hence, problem (24) has a (bounded) 

solution for every f+sQ+(HT) , if and only if there exists a 

maximal positive subspace M+ of Z0(K) with respect to (II) with 

the property M+ ~ Ker A. The existence of such M+ follows from 

Lemma 2. The uniqueness statement in Theorem I will be proved 

shortly. 

A measure of non-uniqueness is given by the number 

= dim [Ran PP+ @ Ran Q_] n Ker A. 

Indeed, let r § H K be any solution of the weak half-space 

problem (24) with incoming flux f+ = 0. Then ~(0)~Q_(HT) , and 

(I - P)r Ker A (so that the solution ~ will be bounded at 

+~). Therefore, (I - P)r [Ran PP+ �9 Ran Q_] n Ker A. 

Conversely, note that any vector f0 = fp + f- with fp~ Ran PP+, 

f_s Ran Q_ and f0 s Ker A satisfies 

0 ~ [f ,f ] = [fp,fpl + [f0,f03 =(KBfp,fp)A~ + [f0,f01 

and, as (KBfp,fp)AB ~ 0, the space N_ = [Ran PP+ ~ Ran Q_] nKer A 

is strictly negative with respect to (Ii), and thus M+ n N_ = 

{0} for every choice of M+, 8 or E. Thus the incoming flux f+ = 

Q+r is identically zero, which proves our assertion. 

As in the previous paragraph we prove that 

Z~ = [Ran P~ + �9 Ran Q• N Z0(K ) 

is strictly positive/negative with respect to (II). Using the 
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computational rules for orthogonal complements of sums and inter- 

sections of linear subspaces, together with the self-adjointness 

of Q• and TPP~, one finds 

~] ~ Zo(~ (z~ = T[Z o 

+ n z~ = (0)): This equation implies (together with Z 0 

+ ~  I • 
+ �9 z: : (z + z:~ i ((z o) n (z;)) : Zo(,). Z 0 

Thus Z: is a maximal strictly positive/negative subspace of 

Z0(K) (cf.[28], Sec. lll. 5). But then 

[Ran PP_ @ Ran Q+]nKer A = Z: n Ker A 
+ 

ls a maximal strictly positive/negative subspace of Ker A 

(endowed with (Ii)). Using the measure of non-uniqueness @ of 

the previous paragraph we prove the uniqueness statement of 

Theorem i. 

THEOREM 3. Any s o l u t i o n  of t h e  h a l f - s p a c e  problem 

(24) has t h e  form 

r  = cic~i + - f o  e-XXd(p() t)PEf+ ) , 
i = l  

�9 are t h e  expansion a o e f f i c i e n t s  of (I - P)Ef+ where Cl, .... ~Cm+ 

. .  } of M+ = Ran(l - P)P+. wi th  r e s p e c t  to  a bas is  {~i' "'~m+ 

Under the conditions of Theorem l, one can expand PC(x) 

in terms of Case's eigenfunctions as follows: 

PC(x)  = ~ :  e - l x  ~ A ( ~ , ~ ) r  

The functions A(~,X) are computed from full-range orthogonality: 

A(~,~) = 1 (PEf+ ' r  �9 
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VI. APPLICATIONS 

This section contains several physical models leading 

to an equation of the form (I). All models involve a time- 

independent one-dimensional transport problem in a semi-infinite 

medium and in all cases the spatial variable xs(0,~). For all 

these models we shall specify the Hilbert space H, the operators 

T and A and the structure of the zero root linear manifold Z0(K). 

i. ONE-SPEED NEUTRON TRANSPORT (cf. [13,20,5,28]) 

+i 
~x ~f - -f(x,~) + c /_i p(~,~')f(x,~')d~' 

+ g(x,.), (-i ~ ~<+i) (25) 

where 

P(~,~ ') = i a (n+ �89 
n= 0 n 

the Pn are the usual Legendre polynomials, a 0 = i, 

and lima = 0. In this case we take 
n 

n+~ 

H = L2[-I,+I]__ and define A and T by 

+1 
(Af)(~) : f(~) - c /-iP(~'~')f(~')d~'' 

( T f ) ( ~ )  = ~ f ( ~ ) .  

-i ~ a n ~ i 

(26) 

Obviously T is bounded self-adjoint, A positive and I - A is 

compact (cf.[35]). For 0 ~ c < I the operator A is invertible. 

For c = i, however, Ker A is non-trivial and equals the span of 

{Pnlan = i}. The zero root linear manifold Z0(K) is well-known 

and its dimension is even [28]. In fact, K = T-IA has zero 

Jordan chains of length 2 only, if and only if the finite set M : 

{n ~ 0 I a n = i} does not contain consecutive integers. This 

situation i s  f u l f i l l e d  i f  p(~,,') ~ 0, c = i ani~ l fan Iz < 

in which case M = {0} and Z0(K) = {a+b~la,b s r 
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2. RADIATIVE TRANSFER OF UNPOLARIZED LIGHT 

(cf.[16,26,28]) 

c (cos e)~(x,~) = -f(x,~)+~-~ p(w,~')f(x,~')d~'+ g(x,~). 

( 2 7 )  

Here ~ is a point of the unit sphere ~ in ~3 with polar coordi- 

nates (e,r We assume that 0 ~ c ~ i and that the phase function 

p is nonnegative, belongs to LI[-I,+I] and satisfies Y~i p(t)dt=2. 

For this model we take H = L2(Q) and define A and T by 

c [ , ')d~', ( A f ) ( m )  = f ( m )  - 2 p(m.m ) f ( x , m  

(Tf)(~) =(cos ef(~). 

Certainly T is bounded self-adjoint, A positive and I - A com- 

pact[35]. For 0 ~ c < I the operator A invertible. For c = i 

and PEL2[-I,+I] Maslennikov[26] proved that Ker A = span{l} and 

Z0(K) = span{l,cos e}. 

3. RADIATIVE TRANSFER OF UNPOLARIZED LIGHT (FOURIER 

DECOMPOSED) 

Writing 

f(x,~) = f0(x,cos e) + 2 ~ fm(X,COS e)cos m r 
m=l 

Eq. (27) can be reduced to a sequence of equations of the form 

[ 1 , 2 6 , 3 4 ]  

- + i  
~ fm c ] p m ( ~ , ~ ' ) f  ( x , ~ ' ) d ~ '  ~ ~---x--(x,~) = - f m ( X , ~ )  + g -1  m 

+ qm(X,~), ~[-I,+I] , 

where 0 ~ c ~ I and pm(~,~ ') is the kernel 

i f 2~ _ p , ~ , +  , ~  ~ . ~  ,2 t . 7_/~--~,.2 , 7/-~_,, c o s  m ) c o s  me dm. 
Pm ( ~ ' ~ ' )  2~ 0 
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If PELI[-I,+I] , then [35,34] 

pm(~,~,) = f an(2n+l)~(n-m)! p~(~)p~(~,) , 
n:m 

m i ~)mPn( where Pn(~) = (l-~2)~m( ~) is the associated Legendre func- 

+I and lima = 0. For m = 0 and tion and a 0 = I, -i ~ a n n§ n 
p(~,~,) I , 

: ~pm(~,~ ) one gets Eq. (25). Now take H = L2[-I,+I] 

and define A and T to be 

+i 
c J ~v ~v (Af)(~) : f(~) - ~ pm(~, )f( )d~', 

-1 

(Tf)(~) = ~f(.) 

Clearly T is bounded self-adjoint, A is positive and I - A com- 

pact. If m = 0, the structure of Z0(K) is basically described at 

the first application. If P~L2[-l,+l] (or equivalently if 

f fan 12 < ~), the result of Maslennikov implies that A is in- 
_n=0 

vertible whenever m > I, because -I ~ a n < I (n > m ~ i). 

4. SYMMETRIC MULTIGROUP NEUTRON TRANSPORT (cf.[18]) 

�9 N +i 
~fi(x'~) = -~ifi(x'~) + ~ J ~-i fj ~ i ~ Ci j (x,~')d~' 

+ qi(x,~) (i = I,..., N; -i ~ ~ ~ +i), 

where ~I,...,~N are positive constants and C is a real symmetric 

matrix. Writing Z for the diagonal matrix of order N with dia- 

gonal entries ~I,...,~N we assume that ~-C is positive, possibly 

with a non-trivial kernel. Now consider the Hilbert space H = 
N 

i~iL2[-l,+l], the direct sum of N copies of L2[-I,+I ]. Define A 

and T by 

N +i 
i ~ fj(~')d~', (Af)i(~) = ~ifi (~) - 7 ~ Cij -i 

j=l 
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(Tf)i(~) = ~fi(~) (i = I,..., N; -i ( ~ (+I). 

Then T is bounded self-adjoint, A positive and I - Z-IA compact. 

The kernel of A is given by 

Ker A = {f = (fi) N ifi(~) ~ ~i' (Z-C)6 = 0} . 
i=l 

Solving the equation Ag = Tf for fEKer A and exploiting Lemma i 

one obtains 

N 

Zo(K) = {f = (fi) ]fi (~) : ~i + a[ini ~ ' 
i=l 

(~ - c)r : (z - c)n : o} . 

Hence, dim Z0(K) = 2 dim Ker A = 2 dim Ker (Z-C) and so all zero 

Jordan chains of K = T-IA have length 2. 

5. TRANSFER OF POLARIZED LIGHT WITH RAYLEIGH 

SCATTERING (cf.[16]) 

d-x fr - fr (x'~) (-I~< ~ (I) 

+ ~ _S~I( 2(I-~2)(I-~'2)+~2~'2~,2 i ~2) Ifr (x'~'fs d~' 

where we have omitted the internal source term q(x,~). This pro- 

blem is considered on the Hilbert space H = L2[-I,+I] @ L2[-I,+I] 

and the operators A and T are defined by 

(Af)r (~)) = ) \fr(~ 

(Tf)s = ~fs (Tf)r(~) : ~fr(~) 
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Certainly T is bounded self-adjoint, A positive and I - A compact. 

It is straightforward to show that 

Ker A = span I(~)}, Z0(K)= span {(~) , (~)}. 

Hence, K = T-IA has one zero Jordan chain, which has length 2. 

6. NEUTRON TRANSPORT WITH ANGULARLY DEPENDENT CROSS 

SECTIONS (cf.[29,37]) 

~f I [ +i 
~-~(x,~) + Z(p)f(x,,) = [J-I Zs(O')f(x'~')du' + g(x,~). 

(28) 
We assume that Z and ~s are measurable, Zs is bounded (whereas 

Z is not assumed to be so) and Z > z s > s > 0. Now premultiply 

Eq. (28) by Zs(~) and consider the new equation on H = L2[-1,+l ]. 

Put 

i/+i 
(Af)(~) = Zs(~) {~(~)f(~) - ~ 1 Zs (~')f(~')d~'} ; 

(Tf)(~) = ~Zs(~)f(~) 

Then T is bounded self-adjoint, A is self-adjoint with closed 

range. Schwarz's inequality implies that 

i ~s fd~l -~/-i ~21f12d~ If 2 i f  + l  2 1 + l  + l  
_  f_l s z 12dla --1 S -- ' 

and therefore A is positive. Note that A is bounded if and only 

if ~ is bounded. 

Let us determine the zero root linear manifold Z0(K). 

First observe that Z -I belongs to H = L2[-I,+I] and that every 

function in Ker A is proportional to ~-i. However, in order that 

Ker A # {0} it is necessary and sufficient that 

i /_+I Z-Z s i /_+I Es 
-- d~ = 1 - ~ 1 -~- d~ = Z s(~)-i(A~-i)(~) = o. 
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We conclude that Ker A = {0} unless Z(~) = Z (~) for almost every 
S 

~s[-l,+l], in which case Ker A = span {z-l}. If this is ful- 

filled, then 

Zo(K) = _ ~+l -1 
[span{z -I} = Ker A if j_ 1 ~z(~) du # O. 

+i Since for non-trivial Ker A one has "[~-i z-lj- = i_ I ~(~)-id~- - 

(cf.(ll)), the half-space problem (24) has a unique solution far 
+i 

/-i ~(~)-Id~ > 0 and measure of non-uniqueness one for negative 

values of this integral. 

Finally, as pointed by R. Beals, we note that in 

L2([-I,I]; Zs(~)~(~)d~) the operator A I =z(~)-IZs(~)-i A is a 

(self-adjoint) compact perturbation of the identity, and the 

bounded A theory may also be applied to (28). In this way one 

may specify the domain of V, but the set of allowable incident 

fluxes is smaller. 

7. 2n th ORDER STURM-LIOUV!LLE DIFFUSION (cf.[3,4,6]) 

h(~) ~f- -dn 

~x d n 
(p(~) dnf + q(x,~) ~ a J c 

~n ) ' _ 

for (-l)n+Ip(~) > 0 on a compact interval J and p n-times con- 

tinuously differentiable on J. Of course, p may not vanish on a 

set of positive measure. The function h is assumed to be bounded 

measurable and the set S O = {~aJlh(~) = 0} has measure zero. 

Now consider H = L2(J) and define A and T by 

_d n (Af)(~) - (p(~) --dnf) (Tf)(~) = h(~)f(~) 
du n d~ n ' 

with self-adjoint boundary conditions assumed for A. Then T is 

bounded self-adjoint with Ker T = {0}, A positive with closed 

range and the point k = 0 does not belong to the spectrum of A 

or is an isolated eigenvalue of finite multiplicity. For J=[-l,l], 

n=l, h(~) = ~, p(~) = i-~ 2 with D(A) consisting of bounded func- 
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tions, one gets an application to electron transport, where T-IA 

has one zero Jordan chain, which has length 2 [5]. Thus this 

problem is uniquely solvable. 

APPENDIX A: INFINITE MEDIUM INHOMOGENEOUS EQUATION 

The inhomogeneous equation 

~Tf 
~x Af + Tq (A.I) 

on H can be solved in terms of the full-range expansion. We 

assume that Pq(x) is uniformly HUlder continuous in x as a func- 

tion from ~ to H with bound 
A 

IIPq(x) II A ~ ce -~Ixl (A.2) 

for some ~ > 0, and (I - P) q (x) is continuous in x as a func- 

tion from ~ to H. 

On (I - P)H, (A.I) is an elementary first order system 

of linear differential equations. Denoting the basis of Z0(K) 

by xi, Yi' zj as in the proof of Proposition 2, we may write the 

solution of the homogeneous equation on Z0(K) as 

r s 

(I-P)f(x) = ~ {cix i + di(l-xT-IA)y i) + ~ e.z. 
i=l j=l J j 

for constants ci, di, ej. Then the variation of parameters 

formula may be used to obtain a particular solution of the inhomo- 

geneous equation. Expanding (I-P)q as 

r s 
(l-P)q(x) = ~ {~(x)T-IA+mi(x)} Yi + ~ nj(x)zj, 

i=l j =i 

we find 

(I-P)f(x) ~ f x = { ~i (x)T-iA+m i (x) (x-x)T-iA 
i=l -~ 

+ mi(x)S}dxYi+ ~ f x ni(x)dxz 
j=l - 0 

(A.3) 

is the solution of (A.I) on Zo(K) which vanishes at x = --. 
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On HA, a solution of (A.I) may be written 

<Pf) (x) e_ (x_x d<F( (x>dx 
X --~ 

^ (A.4 

THEOREM A.I I f  Pq i s  u n i f o r m l y  HA-H~lder  c o n t i n u o u s  i n  
2 �9 x w i t h  bound ( A . 2 )  and ( l - P ) q  i s  L - c o n t r n u o u s ,  t h e n  t h e  s o l u t i o n  

( A . I )  w i t h  t h e  c o n d i t i o n s  t h a t  I I P f ( x ) I I  A w i l l  be bounded  f o r  

x ~ ~ and I I ( l - P ) f ( x ) I I  + 0 ms x + - ~  i s  g i v e n  by Eqs .  ( A . 3 )  and 

( A . 4 )  and i s  u n i q u e .  

PROOF. Let U• denote the holomorphic semigroups 

generated by ~K on P• A. The convergence of the integrals 

~x U+(x-x)P+Pq(x)dx 

and the bound on IIPfl I A result from the inequality (A.2). 

To prove that Pf is a solution of Equation' (A.I) on the 

subspace HA, we fix x c ~ and define g• = P• 0 • x). Then 

g• satisfies the semigroup equation 

~g• 

~x - P+Kg+(x) = f(x 0 • x), x > 0. 

The proof of the theorem follows from standard results in semi- 

group theory (on P• A) and the existence theorem for solutions 

of finite systems of first order linear equations (on Z0(K)). 

The solution is also unique. On Z0(K) this is immediate. 

On P+HA, for example, the Lebesque Dominated Convergence Theorem 

applied to P+f(x) = f_~ U+(x-x)P+Pq(x)dx, along with Eq. (A.2), 

yields lim llP+f(x)ll = 0. If r and r are both solutions, 
X~--~ 

then semigroup arguments show that U+(x-x)(r162 is con- 

stant for x ~ x, hence ~l(X) = r These arguments follow 

the uniqueness proof for subcritical neutron transport; see 

Ref. [20]. 

COROLLARY. I f  t h e  c o n d i t i o n s  of  C o r o l l a r y  i a r e  f u l -  

f i l l e d ,  t h e n  a s o l u t i o n  o f  Eq. ( A . I )  may be w r i t t e n  
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N~ ^ 

r = ((z-P)r ~ ~ e-~(x-x)A(x,~,~)%,~d~(~)dx 
^ 

--oo O 

where A(x,~, ~) are the  expansion c o e f f i c i e n t s  of q(x,-) given by 

the  f u l l - r a n g e  expansion formula and (I-P)@ i s  given by Eq. (A.3) .  

APPENDIX B: EQUIVALENCE OF INNER PRODUCTS 

For bounded positive A with bounded inverse a new proof 

is given of Beals' result[5] that the inner products ( , )T and 

( ' )K (the subscript ~ will be suppressed)are equivalent. 

Observe that TA -I is self-adjoint in the completion 

HA-I of H with respect to the inner product 

(h,k)A-1 : (A-lh,k). (B.I) 

t 
By assumption, H A = H = HA-I. Let P+ be the ( , )A-l-orthogonal 

projection of Ha-I(=H) onto the maximal ( , )A-l-positive/-nega- 
t v -I "" -I i e TA -invariant subspace. Then T(A T):(TA -I) T gives 

TP+ = P+ T . 

Therefore, if 

vt def. t _p3 , 
Q+P+ + Q 

then 

TV = VtT, lB.2) 

where V and V + are bounded on H. By (B.2), the operators V and 

(Q+-Q_)(vt)*(Q+-Q_) are (possibly unbounded) adjoints in HT, 

which are bounded on H. According to Theorem 1 1.2 of [7], V 

extends to a bounded operator on HT, and thus (see Lemma 3) the 

inner products ( , )T and ( , )K are equivalent. 
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If T is unbounded, the reasoning is the same with the 

following modifications: (i) V leaves invariant D(T) and (B.2) 

holds true on D(T), and (ii) V and (Q+-Q_)(VT)*(Q+-Q_) leave 

invariant D(T) and their restrictions to D(T) are bounded with 

respect to the graph norm for T. Using [7] again, we may then 

continuously extend V from D(T) to HT, and the equivalence of the 

inner products follows as in the proof of Lemma 3. 
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