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Abstract
A method is given to construct globally analytic (in space and time) exact
solutions to the focusing cubic nonlinear Schrödinger equation on the line.
An explicit formula and its equivalents are presented to express such exact
solutions in a compact form in terms of matrix exponentials. Such exact
solutions can alternatively be written explicitly as algebraic combinations of
exponential, trigonometric and polynomial functions of the spatial and temporal
coordinates.

1. Introduction

Consider the focusing cubic nonlinear Schrödinger (NLS) equation

iut + uxx + 2|u|2u = 0, (1.1)

where the subscripts denote the appropriate partial derivatives. The NLS equation is important
for many reasons [1–3, 5, 31, 37]. It arises in many application areas such as wave propagation
in nonlinear media [37], surface waves on sufficiently deep waters [37] and signal propagation
in optical fibers [24–26]. It was also the second nonlinear partial differential equation (PDE)
whose initial-value problem was discovered [37] to be solvable via the inverse scattering
transform (IST) method.

In this paper we present a method to construct certain exact solutions to (1.1) that are
globally analytic on the entire xt-plane and that decay exponentially as x → ±∞ at each fixed
t ∈ R. We derive an explicit formula, namely (4.11) and its equivalents (4.12), (5.14) and
(6.9), in order to write such solutions in a compact form utilizing matrix exponentials. These
solutions can alternatively be expressed explicitly as algebraic combinations of exponential,
trigonometric and polynomial functions of x and t. We also present an explicit formula, namely
(5.6), and its equivalents (6.14) and (6.15), for the magnitude of such solutions.

The idea behind our method is similar to that used in [10] to generate exact solutions
to the Korteweg–de Vries equation on the half-line, and we are motivated by the use of the
IST with rational scattering data. This involves representing the corresponding scattering data

0266-5611/07/052171+25$30.00 © 2007 IOP Publishing Ltd Printed in the UK 2171

http://dx.doi.org/10.1088/0266-5611/23/5/021
http://stacks.iop.org/IP/23/2171


2172 T Aktosun et al

in terms of a matrix realization [11], establishing the separability of the kernel of a related
Marchenko integral equation by expressing that kernel in terms of a matrix exponential,
solving the Marchenko integral equation algebraically and observing that the procedure leads
to exact solutions to the NLS equation even when the input to the Marchenko equation does
not necessarily come from any scattering data.

For the general use of rational scattering data in inverse scattering theory, the reader is
referred, for example, to [8, 9, 17] and the references therein.

Our method has several advantages as follows.

(i) It is generalizable to obtain similar explicit formulae for exact solutions to other integrable
nonlinear PDEs where the IST involves the use of a Marchenko integral equation. For
example, a similar method has been used [10] for the half-line Korteweg–de Vries
equation, and it can be applied to other equations such as the defocusing nonlinear
Schrödinger equation, the modified Korteweg–de Vries equation and the sine-Gordon
equation.

(ii) It is generalizable to the matrix versions of the aforementioned integrable nonlinear PDEs.
For example, a similar method has been applied in the second author’s PhD thesis [20] to
the matrix NLS equation in the focusing case with a cubic nonlinearity.

(iii) As seen from our explicit formula (4.11), our exact solutions are represented in a simple
and compact form in terms of a square matrix A, a constant row vector C and a constant
column vector B, where A appears in a matrix exponential. Such matrix exponentials
can be ‘unpacked’ in a straightforward way to express our exact solutions in terms
of exponential, trigonometric and polynomial functions. Depending on the size of A,
such unpacked expressions may take many pages to display. Our explicit formula and its
equivalents allow easy evaluation of such unpacked expressions and numerical evaluations
on such exact solutions, as is evident from the examples in available Mathematica
notebooks [39].

(iv) Our method easily deals with nonsimple bound-state poles and the time evolution of the
corresponding bound-state norming constants. In the literature, nonsimple bound-state
poles are usually avoided due to mathematical complications. We refer the reader to [32],
where nonsimple bound-state poles are investigated and complications are encountered.
A systematic treatment of nonsimple bound states has recently been given in [13].

(v) Our method might be generalizable to the case where the matrix A becomes a linear
operator on a separable Hilbert space. Such a generalization on which we are currently
working would allow us to solve the NLS equation with initial potentials more general
than those considered in our paper.

Our method to produce exact solutions to the NLS equation is based on using the IST [1–3,
5, 31, 37]. There are also other methods to obtain solutions to (1.1). Such methods include
the use of a Darboux transformation [16], the use of a Bäcklund transformation [12, 14], the
bilinear method of Hirota [28], the use of various other transformations such as the Hasimoto
transformation [15, 27] and various other techniques [6] based on guessing the form of a
solution and adjusting various parameters. The main idea behind using the transformations of
Darboux and Bäcklund is to produce new solutions to (1.1) from previously known solutions,
and other transformations are used to produce solutions to the NLS equation from solutions
to other integrable PDEs. The basic idea behind the method of Hirota is to represent the
solution as a ratio of two functions and to determine these two functions by solving some
corresponding coupled differential equations. A unified treatment of Hirota’s method, the IST
and the Bäcklund transformation to obtain soliton solutions with simple and multiple poles
for the sine-Gordon equation was given by Pöppe by using Fredholm determinants [33].
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Other techniques may use an ansatz such as determining �(x, t) and M(x, t) by using
u(x, t) = ei�(x,t) M(x, t) in (1.1). For example, trying

u(x, t) = ei(k1x+k2t+k3) f (k4x + k5t + k6), (1.2)

where kj are constant real parameters and f is a real-valued smooth function, we get an exact
solution if we choose k2 = 1 − k2

1, k4 = ±1, k5 = ∓2k1, and f as the hyperbolic secant. One
can also use the fact that if U(x, t) is a solution to (1.1), so is eic(x−ct) U(x − 2ct, t) for any
real constant c. Multiplying a solution by a complex constant of unit amplitude yields another
solution, and hence such a phase factor can always be omitted from the solution.

There are many references in which some exact solutions to (1.1) are presented. For
example, Polyanin and Zaitsev [38] list five explicit solutions: one is of the form of (1.2) with
a constant f , the second and third with f as the hyperbolic secant (these are 1-soliton solutions
with simple poles), the fourth being periodic in x and the fifth is the n-soliton solution. Another
solution, which is periodic in x, is [6]

u(x, t)= a e2ia2t

[
2b2 cosh(2a2b

√
2 − b2t) + 2ib

√
2 − b2 sinh(2a2b

√
2 − b2t)

2 cosh(2a2b
√

2 − b2t) − √
2
√

2 − b2 cos(
√

2abx)
− 1

]
, (1.3)

where a and b are arbitrary real parameters. By letting b → 0 in (1.3), we get the solution

u(x, t) = a e2ia2t 3 + 16ia2t − 16a4t2 − 4a2x2

1 + 16a4t2 + 4a2x2
.

Another exact solution which is periodic in x is presented [7] in terms of the Jacobi elliptic
functions. An exact solution to (1.1) is displayed [22] in the form of a specific matrix
realization and is shown to be valid for t ∈ [0, ε) for some small ε and x ∈ [0, +∞). In their
celebrated paper [37], Zakharov and Shabat list the 1- and n-soliton solutions as well as a
1-soliton solution with a double pole, which is obtained from a 2-soliton solution with simple
poles by letting those poles coalesce. In [32] solitons with multiple eigenvalues are analyzed
and a 1-soliton solution with a double pole and a 1-soliton solution with a triple pole are listed
with the help of the symbolic software REDUCE, by stating that ‘in an actual calculation it is
very complex to exceed’ higher order poles. With our method in this paper, we show that such
solitons with any number of poles and any multiplicities can be easily expressed by using an
appropriate representation. Let us also add that some periodic or almost periodic solutions
can be obtained in terms of two hyperelliptic theta functions [29, 30], and the scattering data
for (2.1) can be constructed corresponding to certain initial profiles [34, 35].

In order to appreciate the power of our method, to see why it produces new solutions,
and to understand why it produces exact solutions that are either impossible or difficult to
produce by other methods, let us consider the following. When the matrix size is large
(imagine A being a 1000 × 1000 matrix), we have an explicit compact formula for an exact
solution as in (4.11) or its equivalents (4.12), (5.14) and (6.9). By using a computer algebra
system, we can explicitly express such a solution in terms of exponential, trigonometric and
polynomial functions of x and t (even though such an expression will take thousands of pages
to display, we are able to write such an expression, thanks to our explicit formula). The only
explicit formula in the literature comparable to ours is the formula for the n-soliton solution
without multiplicities. Our own explicit formula yields that explicit n-soliton solution without
multiplicities in a trivial case, namely, when A is a diagonal matrix of distinct entries with
positive real parts, as indicated in (7.1). Our explicit formula also easily yields the n-soliton
solution with arbitrary multiplicities as a special case. Dealing with even a single soliton
with multiplicities has not been an easy task in other methods; for example, the exact solution
example presented in [37] for a one-soliton solution with a double pole, which is obtained by
coalescing two distinct poles into one, contains a typographical error, as pointed out in [32].
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Our paper is organized as follows. In section 2 we present the preliminaries and outline the
Marchenko method to solve the inverse scattering problem for the Zakharov–Shabat system
given in (2.1), summarize the IST for the NLS equation and list in (2.12) the time evolution
of the norming constants in a compact form [13], which is valid even when bound-state poles
may have multiplicities greater than 1. In section 3 we consider (2.1) with some rational
scattering data, which in turn we express in terms of the matrices A,B,C given in (3.5)–(3.7),
respectively. In section 4, we derive the explicit formula (4.11) for our exact solutions u(x, t)

to (1.1) in terms of A,B,C, and we show that such solutions have analytic extensions to
the entire xt-plane when the real parts of the eigenvalues of A are positive. In section 5 we
independently and directly verify that (4.11) is a solution to (1.1) as long as the matrix �(x; t)

given in (4.7) is invertible, which is assured on the entire xt-plane when the real parts of the
eigenvalues of A are positive. In section 5 we also show that |u(x, t)|2 can be expressed in
terms of the logarithmic derivative of the determinant of �(x; t). In section 6 we remove
the positivity restriction on the real parts of the eigenvalues of A, and we enlarge the class
of exact solutions represented by our explicit formula (4.11) or its equivalents (4.12), (5.14)
and (6.9). Finally, in section 7 we present some examples showing how our explicit formula
easily yields exact solutions to (1.1) expressed in terms of exponential, trigonometric and
polynomial functions, and we also mention the availability of various Mathematica notebooks
[39], in which the user can easily modify the input and produce various exact solutions to (1.1)
and their animations by specifying A,B,C.

2. Preliminaries

Consider the Zakharov–Shabat system on the full line[
ξ

η

]′
=

[ −iλ q(x)

−q(x) iλ

] [
ξ

η

]
, x ∈ R, (2.1)

where the prime denotes the x-derivative, λ is the complex-valued spectral parameter, q is
a complex-valued integrable potential and the bar denotes complex conjugation. There are
two linearly independent vector solutions to (2.1) denoted by ψ(λ, x) and φ(λ, x), which
are usually known as the Jost solutions and are uniquely obtained by imposing the respective
asymptotic conditions

ψ(λ, x) =
[

0
eiλx

]
+ o(1), x → +∞, (2.2)

φ(λ, x) =
[

e−iλx

0

]
+ o(1), x → −∞.

The transmission coefficient T, the left reflection coefficient L and the right reflection coefficient
R are then obtained through the asymptotics

ψ(λ, x) =
[

e−iλx L(λ)/T (λ)

eiλx/T (λ)

]
+ o(1), x → −∞, (2.3)

φ(λ, x) =
[

e−iλx/T (λ)

eiλx R(λ)/T (λ)

]
+ o(1), x → +∞. (2.4)

For further information on these scattering solutions to (2.1), we refer the reader to [1–3, 5,
31, 37] and the references therein.

Besides scattering solutions to (2.1), we have the so-called bound-state solutions, which
are square-integrable solutions to (2.1). They occur at the poles of T in the upper half complex
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plane C+. Let us denote the (distinct) bound-state poles of T by λj for j = m + 1, . . . , m + n,
and suppose that the multiplicity of the pole at λj is given by nj . The reason to start indexing
the bound states with j = m + 1 instead of j = 1 is for notational convenience. It is known
[1–3, 5, 31, 37] that there is only one linearly independent square-integrable vector solution
to (2.1) when λ = λj for j = m + 1, . . . , m + n. Associated with each such λj , we have nj

bound-state norming constants cjs for s = 0, . . . , nj − 1.
The inverse scattering problem for (2.1) consists of recovery of q(x) for x ∈ R from an

appropriate set of scattering data such as the one consisting of the reflection coefficient R(λ)

for λ ∈ R and the bound-state information
{
λj , {cjs}nj −1

s=0

}m+n

j=m+1. This problem can be solved
via the Marchenko method as follows [1–3, 5, 31, 37].

(a) From the scattering data {R(λ), {λj }, {cjs}}, form the Marchenko kernel 	 as

	(y) := 1

2π

∫ ∞

−∞
dλ R(λ) eiλy +

m+n∑
j=m+1

nj −1∑
s=0

cjs

ys

s!
eiλj y . (2.5)

(b) Solve the Marchenko equation

K(x, y) − 	(x + y) +
∫ ∞

x

dz

∫ ∞

x

ds K(x, s)	(s + z)	(z + y) = 0, y > x. (2.6)

(c) Recover the potential q from the solution K(x, y) to the Marchenko equation via

q(x) = −2K(x, x). (2.7)

(d) Having determined K(x, y), also determine

G(x, y) := −
∫ ∞

x

dz K(x, z)	(z + y). (2.8)

Then, obtain the Jost solution ψ(λ, x) to the Zakharov–Shabat system (2.1) and (2.2) via

ψ(λ, x) =
[

0
eiλx

]
+

∫ ∞

x

dy

[
K(x, y)

G(x, y)

]
eiλy. (2.9)

Note that |q(x)|2 can be calculated from (2.7) or equivalently by using [37]∫ ∞

x

dz |q(z)|2 = −2G(x, x), |q(x)|2 = 2
dG(x, x)

dx
. (2.10)

The initial-value problem for (1.1) consists of the recovery of u(x, t) for t > 0 when
u(x, 0) is available. When u(x, 0) = q(x), where q is the potential appearing in (2.1), it is
known that such an initial-value problem can be solved [1–3, 5, 31, 37] by the method of IST
as indicated in the following diagram:

The application of the IST involves three steps as follows.

(i) Corresponding to the initial potential q(x), obtain the scattering data at t = 0, namely, the
reflection coefficient R(λ), the bound-state poles λj of T (λ) and the norming constants
cjs .
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(ii) Let the initial scattering data evolve in time. The time-evolved reflection coefficient
R(λ; t) is obtained from the reflection coefficient R(λ) via

R(λ; t) = R(λ) e4iλ2t . (2.11)

The bound-state poles λj and T (λ) do not change in time. The time evolution of the
bound-state norming constants cjs(t) has been known when s = 0 as

cj0(t) = cj0 e4iλ2
j t , j = n + 1, . . . , m + n.

The time evolution of the remaining terms has recently been analyzed in a systematic way
[13], and the evolution of cjs(t) is described by the product of e4iλ2

j t and a polynomial in
t of order s; we have [13][

cj (nj −1)(t) . . . cj0(t)
] = [

cj (nj −1) . . . cj0
]

e−4iA2
j t , (2.12)

where Aj is the matrix defined in (3.3). See also [32], where a more complicated procedure
is given to obtain cjs(t).

(iii) Solve the inverse scattering problem for (2.1) with the time-evolved scattering data{
R(λ; t),

{
λj , {cjs(t)}nj −1

s=0

}m+n

j=m+1

}
in order to obtain the time-evolved potential. It turns

out that the resulting time-evolved potential u(x, t) is a solution to (1.1) and reduces to
q(x) at t = 0. This inverse problem can be solved by the Marchenko method as outlined
in section 4 by replacing the kernel 	(y) with its time-evolved version 	(y; t), which is
obtained by replacing in (2.5) R(λ) by R(λ; t) and cjs by cjs(t).

3. Representation of the scattering data

We are interested in obtaining explicit solutions to (1.1) when the reflection coefficient R(λ)

appearing in (2.4) is a rational function of λ with poles occurring in C+. For this purpose
we will use a method similar to the one developed in [10] and already applied to the half-
line Korteweg–de Vries equation. We will first represent our scattering data in terms of a
constant square matrix A, a constant column vector B and a constant row vector C. We will
then rewrite the Marchenko kernel 	(y) given in (2.5) in terms of A,B,C. It will turn out
that the time-evolved kernel 	(y; t) will be related to 	(y) in an easy manner. By solving
the Marchenko equation (2.6) with the time-evolved kernel 	(y; t), we will obtain the time-
evolved solution K(x, y; t), from which we will recover the time-evolved potential u(x, t) in
a manner analogous to (2.7).

In this section, we show how to construct A,B,C from some rational scattering data
associated with the Zakharov–Shabat system. We show that our exact solutions can be obtained
by choosing our triplet A,B,C as in (3.5)–(3.7), where λj are distinct and cj (nj −1) �= 0 for
j = 1, . . . , m + n.

When the rational R(λ) has poles at λj in C+ with multiplicity nj for j = 1, . . . , m, since
R(λ) → 0 as λ → ∞, the partial fraction expansion of R(λ) can be written as

R(λ) =
m∑

j=1

nj∑
s=1

(−i)srjs

(λ − λj )s
, (3.1)

for some complex coefficients rjs . Note that we can represent the inner summation in (3.1) in
the form

nj∑
s=1

(−i)srjs

(λ − λj )s
= −iCj(λ − iAj)

−1Bj , (3.2)
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where, for j = 1, . . . , m, we have defined

Aj :=




−iλj −1 0 . . . 0 0
0 −iλj −1 . . . 0 0
0 0 −iλj . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . −iλj −1
0 0 0 . . . 0 −iλj




, Bj :=




0
0
0
...

0
1




,

Cj := [
rjnj

. . . rj1
]
,

(3.3)

so that

λ − iAj =




λ − λj i 0 . . . 0 0

0 λ − λj i . . . 0 0

0 0 λ − λj . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . λ − λj i

0 0 0 . . . 0 λ − λj




,

(λ − iAj)
−1 =




1
λ−λj

−i
(λ−λj )2

(−i)2

(λ−λj )3 . . . (−i)nj −2

(λ−λj )
nj −1

(−i)nj −1

(λ−λj )
nj

0 1
λ−λj

−i
(λ−λj )2 . . . (−i)nj −3

(λ−λj )
nj −2

(−i)nj −2

(λ−λj )
nj −1

0 0 1
λ−λj

. . . (−i)nj −4

(λ−λj )
nj −3

(−i)nj −3

(λ−λj )
nj −2

...
...

...
. . .

...
...

0 0 0 . . . 1
λ−λj

−i
(λ−λj )2

0 0 0 . . . 0 1
λ−λj




.

We remark that the row vector Cj contains nj entries, the column vector Bj contains nj entries
and Aj is an nj × nj square matrix, (−Aj) is in a Jordan canonical form and (λ − iAj)

−1 is
an upper triangular Toeplitz matrix.

As for the bound states, for j = m + 1, . . . , m + n, let us use (3.3) to define the nj × nj

matrix Aj and the column nj -vector Bj , and let Cj be the row nj -vector defined as

Cj := [
cj (nj −1) . . . cj0

]
,

so that the summation term in (2.5) is obtained as
nj −1∑
s=0

cjs

ys

s!
eiλj y = − i

2π

∫ ∞

−∞
dλ Cj (λ − iAj)

−1Bj eiλy, y > 0. (3.4)

Now let us define the p × p block diagonal matrix A as

A :=




A1 0 . . . 0
0 A2 . . . 0
0 0 . . . 0
...

...
. . .

...

0 0 . . . Am+n


 , (3.5)

where p is the integer given by

p :=
m+n∑
j=1

nj .
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Similarly, let us define the column p-vector B as

B :=




B1

B2
...

Bm+n


 (3.6)

and the row p-vector C as

C := [
C1 C2 . . . Cm+n

]
. (3.7)

Without loss of generality we can assume that λj for j = 1, . . . , m + n are all distinct; in
case one of λj for j = 1, . . . , m coincides with one of λj for j = m + 1, . . . , m + n, we can
simply combine the corresponding blocks in (3.5) to reduce the number of blocks in A by one.
In case more such λj coincide, we can proceed in a similar way so that each block in (3.5)
will be associated with a distinct λj . Similarly, we can combine the corresponding blocks in
each of (3.6) and (3.9) so that the sizes of B and C will be compatible with the size of A.

Consider the function P(λ) defined as

P(λ) := −iC(λ − iA)−1B, λ ∈ C, (3.8)

with the triplet A,B,C, where the constant matrices A,B,C have sizes p × p, p × 1, and
1 × p respectively, and the singularities of P(λ) occur at the eigenvalues of iA. Such a
representation is called minimal [11] if there do not exist constant matrices Ã, B̃, C̃ with sizes
p̃ × p̃, p̃ × 1 and 1 × p̃, respectively, such that P(λ) = −iC̃(λ − iÃ)−1B̃ and p̃ < p. There
always exists a triplet corresponding to a minimal representation. It is known [11] that the
realization with the triplet A,B,C is minimal if and only if the two p × p matrices defined as

colp(C,A) :=




C

CA
...

CAp−1


 , rowp(A,B) := [B AB . . . Ap−1B], (3.9)

both have rank p.
The following theorem shows that, for the sake of constructing exact solutions to (1.1),

it is sufficient to consider only the triplet A,B,C given in (3.5)–(3.7) with distinct λj for
j = 1, . . . , m + n because any other triplet Ã, B̃, C̃ with sizes p × p, p × 1 and 1 × p

respectively, can be equivalently expressed in terms of A,B,C.

Theorem 3.1. Given any arbitrary triplet Ã, B̃, C̃ with sizes p × p, p × 1 and 1 × p,
respectively, there exists a triplet A,B,C having the form given in (3.5)–(3.7), respectively,
which yields the same exact solution to (1.1). The construction of A,B,C can be achieved by
using

Ã = MAM−1, B̃ = MSB, C = C̃MS, (3.10)

where M is an invertible matrix whose columns consist of the generalized eigenvectors of Ã,
the matrix S is an upper triangular Toeplitz matrix commuting with A and the complex entries
of C are chosen as in (3.10).

Proof. Since (−A) is in the Jordan canonical form, any given Ã can be converted to A by
using Ã = MAM−1, where M is a matrix whose columns are formed by using the generalized
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eigenvectors of (−Ã). Next, consider all matrices S commuting with A. Any such matrix has
the block diagonal form

S :=




S1 0 . . . 0
0 S2 . . . 0
0 0 . . . 0
...

...
. . .

...

0 0 . . . Sm+n


 , Sj :=




αjnj
αj (nj −1) . . . αj1

0 αjnj
. . . αj2

0 0 . . . αj3
...

...
. . .

...

0 0 . . . αjnj


 , (3.11)

where nj is the order of the pole λj for j = 1, . . . , m + n, and the constants αjs are arbitrary.
We will determine such αjs and hence S itself by using M−1B̃ = SB. Note that SB is
the column p-vector consisting of m + n column blocks, where the j th block has entries
αj1, . . . , αjnj

. Thus, S is unambiguously constructed from M and B̃. Having constructed
M and S from Ã and B̃ respectively, we finally choose the complex entries in the matrix C
appearing in (3.7) so that C = C̃MS. Let us now show the equivalence of the representation
with the triplet Ã, B̃, C̃ and that with the triplet A,B,C. From (3.8), we see that we must
show

−iC(λ − iA)−1B = −iC̃(λ − iÃ)−1B̃. (3.12)

Since SA = AS and MA = ÃM , we also have

S(λ − iA)−1 = (λ − iA)−1S, M(λ − iA)−1 = (λ − iÃ)−1M. (3.13)

Replacing C by C̃MS on the left-hand side of (3.12) and using (3.13), we establish the equality
in (3.12). Similarly, replacing C by C̃MS on the right-hand side of (4.2) and using MA = ÃM

and SA = AS and (3.13), we prove that 	(y; t) remains unchanged if A,B,C are replaced
with Ã, B̃, C̃, respectively, in (4.2). Hence, the triplet A,B,C and the triplet Ã, B̃, C̃ yield
the same solution to (1.1). �

Note that the invertibility of S is not needed in theorem 3.1. On the other hand, from
(3.11) it is seen that S is invertible if and only if αjnj

�= 0 for j = 1, . . . , m + n. In the rest
of this section, we will give a characterization for the minimality of the representation in (3.8)
with the triplet A,B,C given in (3.5)–(3.7). We will show that as long as λj are distinct and
cj (nj −1) �= 0 in (3.7) for j = 1, . . . , m + n, the triplet A,B,C given in (3.5)–(3.7) can be used
to recover in the form of (4.11) our exact solutions to (1.1). First, we need a result needed in
the proof of theorem 3.3.

Proposition 3.2. The matrix rowp(A,B) defined in (3.9) is invertible if and only if λj for
j = 1, . . . , m + n appearing in (3.5) are distinct.

Proof. It is enough to prove that the rows of rowp(A,B) are linearly independent if and only
if λj for j = 1, . . . , m + n are distinct. We will give the proof by showing that a row-echelon
equivalent matrix T defined below has linearly independent rows. Using (3.5) and (3.6), we
get

rowp(A,B) =




rowp(A1, B1)

rowp(A2, B2)
...

rowp(Am+n, Bm+n)


 .
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With the help of (3.3), we see that the nj × p matrix rowp(Aj , Bj ) is given by




0 0 0 . . . 0 (−1)p−1

0 0 0 . . . (−1)p−2 (−1)p−1(p − 1)(iλj )
...

...
... . .. ...

...

0 −1 2iλj . . . (−1)p−2(p − 2)(iλj )
p−3 (−1)p−1(p − 1)(iλj )

p−2

1 −iλj (iλj )
2 . . . (−1)p−2(iλj )

p−2 (−1)p−1(iλj )
p−1


 ,

where we observe the binomial expansion of (−iλj − 1)s in the (s − 1)st column. Put
σ(k) := #{j : nj � k}, i.e. the number of Jordan blocks of A of size at least k. Then,
m + n = σ(1) � σ(2) � σ(3) � · · · . By reordering the rows of rowp(A,B) we obtain
a row-equivalent p × p echelon matrix T such that Tr1 = 0 for r > σ(1), Tr2 = 0 for
r > σ(1) + σ(2), Tr3 = 0 for r > σ(1) + σ(2) + σ(3), etc, while the submatrices consisting
of the elements Trs for r = σ(1) + · · · + σ(k − 1) + 1, . . . , σ (1) + · · · + σ(k) and s = k,

k + 1, . . . , p have the form




1 ak1µ1 ak2µ
2
1 . . . ak(k−1)µ

p−k−1
1

...
...

...
. . .

...

1 ak1µσ(k) ak2µ
2
σ(k) . . . ak(k−1)µ

p−k−1
σ(k)


 , (3.14)

where apart from a sign, the coefficients aks are the binomial coefficients and hence nonzero,
and the constants µ1, . . . , µσ(k) correspond to a rearrangement of those of −iλj for which
nj � k. Since the matrix given in (3.14) can be written as the product of a Vandermonde
matrix and a nonsingular diagonal matrix, its rows are linearly independent if and only if λj

with nj � k are distinct. From the echelon structure of the matrix T, it then follows that all
the rows of T and hence the rows of rowp(A,B) are linearly independent. �

Theorem 3.3. The triplet A,B,C given in (3.5)–(3.7) corresponds to a minimal representation
in (3.8) if and only if λj are all distinct and cj (nj −1) �= 0 for j = 1, . . . , m + n.

Proof. Note that the matrix S defined in (3.11) commutes with A, and we have SA = AS

and SjAj = AjSj for j = 1, . . . , m + n. Let us use a particular choice for Sj by letting
αj1 = cj0, αj2 = cj1, . . . , αjnj

= cj (nj −1). Thus, S is invertible if and only if cj (nj −1) �= 0 for
j = 1, . . . , m + n. Let us define the column p-vector B̂ and the row p-vector Ĉ via B̂ = SB

and ĈS = C, respectively. As in the proof of (3.12) in theorem 3.1, we obtain

−iC(λ − iA)−1B = −iĈ(λ − iA)−1B̂,

and hence the representation in (3.8) with the triplet A,B,C is equivalent to that with A, B̂, Ĉ.
From the statement containing (3.9), it then follows that our theorem is proved if we can show
that rowp(A, B̂) and colp(Ĉ, A) are both invertible if and only if λj are all distinct and
cj (nj −1) �= 0 for j = 1, . . . , m + n. Below we will prove that rowp(A, B̂) and colp(Ĉ, A)

are invertible if and only if rowp(A,B) and S are invertible. Our theorem then follows from
proposition 3.2 and the fact that S is invertible if and only if cj (nj −1) �= 0 for j = 1, . . . , m+n.
Since SA = AS and SB = B̂, from (3.9) we obtain

S rowp(A,B) = rowp(A, SB) = rowp(A, B̂),
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and hence rowp(A, B̂) is invertible if and only if rowp(A,B) and S are invertible. We
complete the proof by showing that colp(Ĉ, A) is invertible if and only if rowp(A,B) is
invertible. Define the nj × nj matrix Jj and the p × p matrix J as

Jj :=




0 0 . . . 0 1
0 0 . . . 1 0
...

...
. . .

...
...

0 1 . . . 0 0
1 0 . . . 0 0


 , J :=




J1 0 . . . 0
0 J2 . . . 0
0 0 . . . 0
...

...
. . .

...

0 0 . . . Jm+n


 , (3.15)

where 1 appears along the trailing diagonal of Jj . Let us use the superscript T to denote the
matrix transpose. Note that

J−1
j = Jj , J T

j = Jj , J−1 = J, J T = J.

It can be verified from (3.5) that JAJ = AT . Using (3.6), (3.7) and (3.15), since Ĉ = CS−1

we get Ĉ = BT J . Thus, we have

(colp(Ĉ, A))T = rowp(AT , ĈT ) = rowp(AT , JB) = J rowp(A,B).

Since J is invertible, our proof is complete. �

4. Explicit solutions to the NLS equation

In the previous section we have constructed A,B,C given in (3.5)–(3.7), respectively, from
some rational scattering data of the Zakharov–Shabat system. In this section we solve the
corresponding time-evolved Marchenko equation explicitly for x � 0 in terms of such A,B,C.
Such solutions lead to explicit solutions to (1.1) via the formula given in (4.11). We then
show that such solutions have analytic extensions to the entire xt-plane if the real parts of the
eigenvalues of A are positive, which is equivalent to having λj ∈ C+ for j = 1, . . . , m + n in
(3.3). We also analyze various properties of the key matrices Q(x; t), N(x) and �(x; t) that
appear in (4.7)–(4.9) and that are used to construct our exact solutions.

For y � 0, with the help (3.2), (3.4), and a contour integration along the boundary of C+,
we evaluate the kernel 	(y) defined in (2.5) as

	(y) = C e−Ay B, y � 0. (4.1)

Note that (4.1) yields a separable kernel for the Marchenko integral equation in (2.6) because
from

	(x + y) = C e−Ax e−Ay B,

we see that 	(x + y) is the Euclidean product of the row p-vector C e−Ax and the column
p-vector e−AyB. As a result of this separability, we are able to solve the Marchenko integral
equation (2.6) exactly by algebraic means.

At this point, we discuss the time evolution of the scattering data in more detail. Using
(2.11) we can express the time-evolved Marchenko integral kernel as

	(y; t) = 1

2π

∫ ∞

−∞
dλ R(λ) e4iλ2t eiλy +

m+n∑
j=m+1

nj −1∑
s=0

cjs(t)
ys

s!
eiλj y,

where cjs(t) satisfies (2.12). This time-evolved kernel is seen to satisfy the first-order PDE

	t(y; t) + 4i	yy(y; t) = 0,
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provided the integral
∫ ∞
−∞ dλ(1 + λ2)|R(λ)| exists. Such PDEs for Marchenko kernels have

been studied in [4] for a variety of nonlinear evolution equations and in [20] for the matrix
NLS equation. Here we use (4.1) as an initial condition in solving this PDE and write

	(y; t) = C e−Ay−4iA2t B, y � 0. (4.2)

In other words, 	(y; t) is obtained from 	(y) by replacing C in (4.1) by C e−4iA2t . Let us use
a dagger to denote the matrix adjoint (complex conjugate and transpose). Since 	(y; t) is a
scalar, its complex conjugate is the same as its adjoint and we have

	(y; t)† = B† e−A†y+4i(A†)2t C†. (4.3)

Comparing with (2.6), we obtain the time-evolved Marchenko integral equation as

K(x, y; t) − 	(x + y; t)† +
∫ ∞

x

dz

∫ ∞

x

ds K(x, s; t)	(s + z; t)	(z + y; t)† = 0, y > x.

(4.4)

Using (4.2) and (4.3) in (4.4), we see that we can look for a solution in the form

K(x, y; t) = H(x; t) e−A†y+4i(A†)2t C†, (4.5)

where H(x; t) is to be determined. Using (4.5) in (4.4), we obtain

H(x; t)�(x; t) = B† e−A†x, (4.6)

where we have defined

�(x; t) := I + Q(x; t)N(x), (4.7)

with I denoting the p × p identity matrix and

Q(x; t) :=
∫ ∞

x

ds e−A†s+4i(A†)2t C†C e−As−4iA2t , (4.8)

N(x) :=
∫ ∞

x

dz e−Az BB† e−A†z. (4.9)

Using (4.6) in (4.5), we can write the solution to (4.4) as

K(x, y; t) = B† e−A†x �(x; t)−1 e−A†y+4i(A†)2t C†, (4.10)

provided �(x; t) is invertible. We will prove the invertibility of �(x; t) in theorem 4.2. In
analogy to (2.7) we get the time-evolved potential as u(x, t) = −2K(x, x; t), and hence the
solution to (1.1) is obtained as

u(x, t) = −2B† e−A†x �(x; t)−1 e−A†x+4i(A†)2t C†. (4.11)

It is possible [19] to write (4.11) as the ratio of two determinants as

u(x, t) = det F(x; t)

det �(x; t)
, (4.12)

where the (p + 1) × (p + 1) matrix F(x; t) is given by

F(x; t) :=
[

0 2B† e−A†x

e−A†x+4i(A†)2t C† �(x; t)

]
.

We end this section by listing some useful properties of the matrices Q(x; t), N(x) and
�(x; t).
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Proposition 4.1. The matrices Q(x; t) and N(x) defined in (4.8) and (4.9), respectively,
satisfy

Q(x; t) = e−A†x+4i(A†)2t Q(0; 0) e−Ax−4iA2t , N(x) = e−Ax N(0) e−A†x, (4.13)

and the integrals in (4.8) and (4.9) converge for all x, t ∈ R as long as all the eigenvalues of
A have positive real parts.

Proof. By replacing s and z with s − x and z − x in (4.8) and (4.9), respectively, we obtain
(4.13). From (4.8) and (4.9), we then get

Q(0; 0) =
∫ ∞

0
ds [C e−As]†[C e−As], N(0) =

∫ ∞

0
dz [e−Az B][e−Az B]†. (4.14)

If ε > 0 is chosen such that the real parts of the eigenvalues of A exceed ε, then in any
matrix norm ‖·‖ we have ‖e−Az‖ = O(e−εz) and ‖e−A†z‖ = O(e−εz) as z → +∞. Hence,
the integrals in (4.14) converge, and as a consequence of (4.13) the integrals in (4.8) and (4.9)
converge for all x, t ∈ R. �

The next theorem shows that the matrix �(x; t) defined in (4.7) is invertible for all x, t ∈ R
as long as the eigenvalues of A have positive real parts. In fact, in that case �(x; t) has a
positive determinant for all x, t ∈ R.

Theorem 4.2. Assume that the eigenvalues of A have positive real parts. Then, for every
x, t ∈ R we have the following.

(i) The matrices Q(x; t) and N(x) defined in (4.8) and (4.9), respectively, are positive and
self-adjoint. Consequently, there exist unique positive self-adjoint matrices Q(x; t)1/2

and N(x)1/2 such that Q(x; t) = Q(x; t)1/2Q(x; t)1/2 and N(x) = N(x)1/2N(x)1/2.
(ii) The matrix �(x; t) defined in (4.7) is invertible.

(iii) The determinant of �(x; t) is positive.

Proof. In our proof let us write Q and N for Q(x; t) and N(x), respectively. The positivity
and self-adjointness of Q and N are a direct consequence of the fact that each of the integrands
in (4.8) and (4.9) can be written as the product of a matrix and its adjoint; hence we have
proved (i) [23]. From the Sherman–Morrison–Woodbury formula [23], it follows that

[I + Q1/2(Q1/2N)]−1 = I − Q1/2[I + (Q1/2N)Q1/2]−1Q1/2N,

and hence (I + QN) is invertible if and only if (I + Q1/2NQ1/2) is invertible; on the other
hand, the latter can be written as [I + (Q1/2N1/2)(Q1/2N1/2)†] due to the self-adjointness of
Q1/2 and N1/2, and hence it is invertible, establishing (ii). From the two matrix identities[

I 0
Q1/2N I

] [
I Q1/2

−Q1/2N I

] [
I −Q1/2

0 I

]
=

[
I 0
0 I + Q1/2NQ1/2

]
,[

I −Q1/2

0 I

] [
I Q1/2

−Q1/2N I

] [
I 0

Q1/2N I

]
=

[
I + QN 0

0 I

]
,

it follows that I + QN and (I + Q1/2NQ1/2) have the same determinant. Thus, we have (iii)
as a result of the fact that the determinant of [I + (Q1/2N1/2)(Q1/2N1/2)†] is positive. �

Proposition 4.3. Assume that the eigenvalues of A have positive real parts. Then, for all
x, t ∈ R the matrices Q(x; t), N(x), �(x; t) defined in (4.7)–(4.9) satisfy
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Qx = −A†Q − QA, Nx = −AN − NA†, Qt = 4i[(A†)2Q − QA2], (4.15)

�† = I + NQ, �−1Q = Q(�†)−1, (�†)−1N = N�−1. (4.16)

Proof. We obtain (4.15) from (4.13), or (4.8) and (4.9), through differentiation. Using the
self-adjointness of Q and N proved in theorem 4.2, from (4.7) we obtain (4.16). �

Theorem 4.4. For every x, t ∈ R, the matrices Q(x; t) and N(x) defined in (4.8) and (4.9),
respectively, are simultaneously invertible for all x, t ∈ R if and only if the realization in (4.1)
of 	(y) with the triplet A,B,C is minimal and the eigenvalues of A have positive real parts.

Proof. From (4.13) we see that it is enough to prove that Q(0; 0) and N(0) defined in (4.14)
are invertible. The integrals in (4.14) are convergent as a result of the positivity of the real
parts of the eigenvalues of A. If Q(0; 0)g = 0 for some vector g ∈ Cp, then from (4.14) we
see that C e−As g = 0 for all s � 0. By analytic continuation, this implies that C e−As g = 0
for all s ∈ C, and hence

CAkg = 0, k = 0, 1, . . . . (4.17)

Similarly, if N(0)h = 0 for some vector h ∈ Cp, using (4.14) we conclude that

B†(A†)kh = 0, k = 0, 1, . . . . (4.18)

It is known [11] that the realization in (3.8) or (4.1) for the triplet A,B,C is minimal if and
only if the two matrices given in (3.9) both have rank p, where we recall that the size of A is
p×p, that of B is p×1 and that of C is 1×p. On the other hand, the ranks of the two matrices
in (3.9) are both p if and only if (4.17) and (4.18) have only the trivial solutions g = 0 and
h = 0, respectively. �

For any fixed x0 ∈ R, by shifting the dummy integration variable in (4.9), we get

N(x) = e−A(x−x0) N(x0) e−A†(x−x0),

and similarly from (4.8) for any x0, t0 ∈ R we get

Q(x; t) = e−A†(x−x0)+4i(A†)2(t−t0) Q(x0; t0) e−A(x−x0)−4iA2(t−t0).

Thus, we have the following observations.

Corollary 4.5. Assume that the eigenvalues of A have positive real parts. Then, the matrix
N(x) defined in (4.9) is invertible for all x ∈ R if and only if it is invertible at any one
particular value of x. Similarly, Q(x; t) defined in (4.8) is invertible for all x, t ∈ R if and
only if it is invertible at any one particular point on the xt-plane.

Proposition 4.6. If the eigenvalues of A have positive real parts, then the matrix �(x; t)

defined in (4.7) satisfies �(x; t) → I as x → +∞. Additionally, if Q(0; 0) and N(0) given in
(4.14) are invertible, then �(x; t)−1 → 0 exponentially as x → −∞, where I and 0 are the
p × p unit and zero matrices, respectively.

Proof. As stated in proposition 4.1, since the integrals in (4.8) and (4.9) converge, �(x; t) → I

as x → +∞ follows from (4.7)–(4.9). To obtain the limit for �(x; t)−1 as x → −∞, let us
first define

Y (x; t) := eA†x �(x; t) eA†x. (4.19)

Using (4.13) in (4.19), we get

Y (x; t) = Q(0; t) e−2Ax N(0)
[
I + N(0)−1 e2Ax Q(0; t)−1 e2A†x

]
. (4.20)
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Note that, from theorem 4.2, it follows that N(0)−1 and e2AxQ(0; t)−1 e2A†x are positive self-
adjoint matrices. Using the Sherman–Morrison–Woodbury formula [23] as in the proof of
theorem 4.2, we see that the inverse of the matrix in the brackets in (4.20) exists, and for all
x ∈ R we have

Y (x; t)−1 = [
I + N(0)−1 e2Ax Q(0; t)−1 e2A†x

]−1
N(0)−1 e2Ax Q(0; t)−1. (4.21)

Further, since the eigenvalues of A and A† have strictly positive real parts, for each fixed
t ∈ R we conclude, as in the proof of proposition 4.1, that there exists ε > 0 such that
‖eAx‖ = O(eεx) and ‖eA†x‖ = O(eεx) as x → −∞ in any matrix norm ‖·‖. Hence, from
(4.21) we see that Y (x; t)−1 → 0 exponentially as x → −∞, and writing (4.19) in the form

�(x; t)−1 = eA†x Y (x; t)−1 eA†x,

we also see that �(x; t)−1 → 0 exponentially as x → −∞. �

5. Further properties of our explicit solutions

We have obtained certain explicit solutions to (1.1) in the form of (4.11) by starting with some
rational scattering data for (2.1) and by constructing the corresponding matrices A,B and C
given in (3.5)–(3.7), respectively. In this section we will show that (4.11) is a solution to
(1.1) no matter how the triplet A,B,C is chosen, as long as the matrix �(x; t) defined in
(4.7) is invertible. For example, from theorem 4.2 it follows that �(x; t)−1 exists on the entire
xt-plane and thus (4.11) is a solution to (1.1) when the eigenvalues of A have positive real
parts.

The purpose of this section is threefold. We will first obtain some useful representations
for |u(x, t)|2 corresponding to u(x, t) given in (4.11). Next, we will prove that u(x, t) given
in (4.11) is a solution to (1.1) as long as �(x; t)−1 exists. Then, we will consider further
properties of such solutions.

We can evaluate |u(x, t)|2 from (4.11) directly. Alternatively, we can recover it by using
the time-evolved analog of (2.10), namely∫ ∞

x

dz |u(z, t)|2 = −2G(x, x; t), |u(x, t)|2 = 2
∂G(x, x; t)

∂x
, (5.1)

where, in comparison with (2.8), we see that

G(x, y; t) := −
∫ ∞

x

dz 	(y + z; t)†K(x, z; t)†. (5.2)

From (4.3), (4.8), (4.10) and (5.2), we get

G(x, y; t) = −B† e−A†y �(x; t)−1Q(x; t) e−Ax B. (5.3)

Using (5.3) in (5.1), with the help of (4.15), (4.16), and

(�−1)x = −�−1�x�
−1, (�−1)t = −�−1�t�

−1, (5.4)

we obtain

|u(x, t)|2 = 4B† e−A†x �(x; t)−1[A†Q(x; t) + Q(x; t)A][�(x; t)†]−1 e−Ax B. (5.5)

Next, we show that |u(x, t)|2 can be expressed in a simple form in terms of the matrix
�(x; t) defined in (4.7). As indicated in theorem 4.2, recall that �(x; t) has a positive
determinant for all x, t ∈ R when the real parts of the eigenvalues of A are positive.
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Theorem 5.1. The absolute square |u(x, t)|2 of the solution to the NLS equation can be
written directly in terms of the determinant of the matrix �(x; t) defined in (4.7) so that

|u(x, t)|2 = ∂

∂x

[
∂ det �(x; t)/∂x

det �(x; t)

]
= ∂2

∂x2
[log(det �(x; t))]. (5.6)

Proof. In terms of a matrix trace, from (5.1) and (5.3) we get

|u(x, t)|2 = −2
[
B† e−A†x �−1Q e−Ax B

]
x

= 2 tr[�−1QNx]x, (5.7)

where we have used (4.9) and the fact that in evaluating the trace of a product of two matrices
the order in the product can be changed. With the help of (4.7), (4.15), (4.16) and the trace
properties, we obtain

tr[�−1QNx] = tr[−A − A† + (�†)−1A + �−1A†], (5.8)

tr[�−1QxN ] = tr[−A − A† + (�†)−1A + �−1A†]. (5.9)

Thus, from (5.7)–(5.9) with the help of (4.7) we get

2 tr[�−1QNx] = tr[�−1QxN + �−1QNx] = tr[�−1�x],

and hence

|u(x, t)|2 = tr[�−1�x]x,

which can also be written as (5.6), as indicated in theorem 7.3 on page 38 of [18]. �

We remark that (5.6) is a generalization of the formula given at the end of section 3 of
[37], where the formula was obtained for the n-soliton solution with simple poles. Thus, our
method handles the bound states with nonsimple poles easily even though nonsimple poles
have always caused complications in other methods and have mostly been avoided in the
literature.

Let us also remark that (1.1) has infinitely many conserved quantities expressed as trace
formulae. One such trace formula is given in the following.

Proposition 5.2. When the eigenvalues of the matrix A have positive real parts, the function
u(x, t) given in (4.11) satisfies the trace formula∫ ∞

−∞
dx |u(x, t)|2 = tr

[
A + A†] = 2

m+n∑
j=1

nj Im[λj ], (5.10)

where λj and nj are the poles in C+ and the corresponding multiplicities, respectively, as
in (3.3).

Proof. From (5.7) and (5.8), we see that∫ ∞

−∞
dx |u(x, t)|2 = tr[−A − A† + (�†)−1A + �−1A†]|∞−∞.

As indicated in proposition 4.6, we have �(x; t) → I as x → +∞ and �(x; t)−1 → 0 as
x → −∞. Thus, we get the first equality in (5.10). Using (3.3) and (3.5), we can write the
trace of (A + A†) in terms of the multiplicities and imaginary parts of λj as indicated in the
second equality in (5.10). �

Theorem 5.3. The function u(x, t) given in (4.11) satisfies (1.1) with any p × p matrix
A, column p-vector B and row p-vector C as long as the matrix �(x; t) defined in (4.7) is
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invertible. In particular, if all eigenvalues of A have positive real parts, then u(x, t) given in
(4.11) satisfies (1.1) on the entire xt-plane.

Proof. With the help of (4.15), (4.16) and (5.4), through straightforward differentiation and
after some simplifications, from (4.11) we get

iut = 8B† e−A†x �−1[(A†)2 + QA2N ]�−1 e−A†x+4i(A†)2t C†, (5.11)

ux = 4B† e−A†x �−1[A† − QAN ]�−1 e−A†x+4i(A†)2t C†,

uxx = 8B† e−A†x �−1[(A†)2 − 2QAN�−1QAN + 2A†�−1QAN − 2A†�−1A† (5.12)

+ 2QAN�−1A† + QA2N ]�−1 e−A†x+4i(A†)2t C†,

2uu†u = −16B† e−A†x �−1[(A†Q + QA)(�†)−1(AN + NA†)]�−1 e−A†x+4i(A†)2t C†. (5.13)

Using (4.16) and (5.11)–(5.13), and noting that u† = u, we verify that (1.1) is satisfied. Let
us note that (5.13) could also be obtained directly by multiplying (4.11) and (5.5). �

Theorem 5.4. Assume that the eigenvalues of A have positive real parts and that the matrices
Q(0; 0) and N(0) given in (4.14) are invertible, or equivalently, assume that the representation
in (3.8) with the triplet A,B,C is minimal and the eigenvalues of A have positive real parts.
Then, for each fixed t ∈ R the solution u(x, t) given in (4.11) vanishes exponentially as
x → ±∞.

Proof. From (4.11) and the fact that �(x; t) → I as x → +∞, it follows that u(x, t) → 0
exponentially as x → +∞ for each fixed t ∈ R. Let us write (4.11) as

u(x, t) = −2B†Y (x; t)−1 e4i(A†)2t C†, (5.14)

where Y (x; t) is the matrix defined in (4.19). In the proof of proposition 4.6, we have shown
that Y (x; t)−1 → 0 exponentially as x → −∞. Hence, from (5.14) we can conclude that for
each fixed t ∈ R we have u(x, t) → 0 exponentially as x → −∞. �

Let us remark that if the eigenvalues of A have positive real parts, when extended to the
entire x-axis the solutions given in (4.11) become multisoliton solutions, where the number of
solitons, multiplicity of the corresponding poles and norming constants can be chosen at will.
This can also be seen by analytically continuing the time-evolved Jost solution ψ(λ, x; t) to
the entire x-axis, by using (2.3), (2.9), and

L(λ; t)

T (λ; t)
= lim

x→−∞

∫ ∞

x

dy K(x, y; t) eiλ(y−x), (5.15)

by evaluating the integral with the help of (4.10) and by observing that the limit in (5.15)
vanishes.

6. Generalization

In some parts of sections 3–5, we have assumed that λj values appearing in (3.3) and in the
matrix A given in (3.5) are all located in C+. In this section, we relax that restriction and allow
some or all λj to be located in the lower half complex plane C−. Our only restriction will be
that no λj will be real and no two distinct λj will be symmetrically located with respect to the
real axis in the complex plane. This restriction is mathematically equivalent to the disjointness
of the sets {λj }m+n

j=1 and {λj }m+n
j=1 . Under this restriction, we will show that u(x, t) given in

(4.11) is a solution to (1.1) in any region on the xt-plane in which the matrix �(x; t) defined
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in (4.7) is invertible. The only change we need is that Q(x; t) and N(x) will no longer be
defined as in (4.8) and (4.9), but instead they will be given as in (4.13), where we now let

Q(0; 0) = 1

2π

∫
γ

dλ(λ + iA†)−1C†C(λ − iA)−1, (6.1)

N(0) = 1

2π

∫
γ

dλ(λ − iA)−1BB†(λ + iA†)−1, (6.2)

with γ being any positively oriented simple closed contour enclosing all λj in such a way that
all λj lie outside γ .

As the following proposition shows, the quantities given in (6.1) and (6.2) are the unique
(self-adjoint) solutions to the respective Lyapunov equations

Q(0; 0)A + A†Q(0; 0) = C†C, (6.3)

AN(0) + N(0)A† = BB†. (6.4)

We note that, using (4.13), we could also write (6.3) and (6.4) in the equivalent form

Q(x; t)A + A†Q(x; t) = e−A†x+4i(A†)2t C†C e−Ax−4iA2t , (6.5)

AN(x) + N(x)A† = e−Ax BB† e−A†x. (6.6)

Proposition 6.1. Assume that none of the eigenvalues of A is purely imaginary and that no two
eigenvalues of A are symmetrically located with respect to the imaginary axis. Equivalently,
assume that {λj }m+n

j=1 and {λj }m+n
j=1 are disjoint, where λj are the complex constants appearing

in (3.3) and (3.5). We then have the following.

(i) The matrix equations given in (6.3) and (6.4) are each uniquely solvable.
(ii) The unique solutions Q(0; 0) and N(0) are self-adjoint matrices.

(iii) The unique solutions are given by (6.1) and (6.2), respectively.

Proof. Note that (i) and (iii) directly follow from theorem 4.1 in section I.4 of [21]. It is easy
to show that the adjoint of any solution to (6.3) or (6.4) is also a solution to the same equation,
and hence the unique solutions Q(0; 0) and N(0) must be self-adjoint. �

Next, without requiring that all λj appearing in (3.5) be located in C+, we will prove that
the matrix u(x, t) given in (4.11) is a solution to (1.1) as long as �(x; t) defined in (4.7) is
invertible. First, we will write (4.11) in a slightly different but equivalent form. Define

�(x; t) := I + P(x; t)†Q(0; 0)P (x; t)N(0), P (x; t) := e−2Ax−4iA2t . (6.7)

Note that �(x; t) is invertible if and only if �(x; t) is invertible because, by using (4.7), (4.13)
and (6.7), we see that

�(x; t) = eA†x �(x; t) e−A†x. (6.8)

With the help of (6.8), we can write (4.11) in the equivalent form

u(x, t) = −2B†�(x; t)−1P(x; t)†C†. (6.9)

Theorem 6.2. Assume that none of the eigenvalues of the matrix A in (3.5) is purely
imaginary and that no two eigenvalues of A are symmetrically located with respect to the
imaginary axis. Equivalently, assume that {λj }m+n

j=1 and {λj }m+n
j=1 are disjoint, where λj are the
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complex constants appearing in (3.3) and (3.5). Then, the quantity u(x, t) given in (4.11), or
equivalently in any of (4.12), (5.14) and (6.9), is a solution to (1.1) in any region of the xt-plane
where the matrix �(x; t) defined in (6.7) or equivalently the matrix �(x; t) given in (4.7) is
invertible.

Proof. In our proof let us write u, �, P,Q,N for u(x, t),�(x; t), P (x; t),Q(0; 0), N(0),
respectively. Without explicitly mentioning it, we will use the self-adjointness Q† = Q and
N † = N established in proposition 6.1 as well as the fact that P is invertible. Proceeding
as in the proof of theorem 5.3, using straightforward differentiation on (6.9) and after some
simplification, we obtain

iut = 8B†�−1[(A†)2 + P †QA2PN ]�−1P †C†, (6.10)

where we have used the fact that

� = I + P †QPN, (�−1)t = −�−1�t�
−1, Pt = −4iA2P, AP = PA. (6.11)

Similarly, by using (6.11) and

Px = −2AP, (�−1)x = −�−1�x�
−1,

after some simplifications we obtain

ux = 4B†�−1[A† − P †QAPN ]�−1P †C†,

uxx = 8B†�−1[(A†)2 − 2A†�−1A† + P †QA2PN + 2A†�−1P †QAPN

+ 2P †QAPN�−1A† − 2P †QAPN�−1P †QAPN ]�−1P †C†.
(6.12)

Next, with the help of (6.3) and (6.4) and using |u|2u = uu†u, we obtain

2|u|2u = −16B†�−1[P †QAP(�†)−1AN + P †QAP(�†)−1NA†

+ P †A†QP(�†)−1AN + P †A†QP(�†)−1NA†]�−1P †C†.
(6.13)

We see that (1.1) is satisfied, which is verified by adding (6.10), (6.12) and (6.13) side by side
and by using

QPN = (P †)−1(� − I ), (�†)−1N = N�−1, NP †Q = (�† − I )P −1,

which directly follows from (6.7) and the self-adjointness of Q and N. �

As the next theorem shows, if we remove the restriction λj ∈ C+ then the result in
theorem 5.1 still remains valid in any region in the xt-plane where �(x; t) or equivalently
�(x; t) is invertible.

Theorem 6.3. Assume that none of the eigenvalues of the matrix A in (3.5) is purely
imaginary and that no two eigenvalues of A are symmetrically located with respect to the
imaginary axis. Equivalently, assume that {λj }m+n

j=1 and {λj }m+n
j=1 are disjoint, where λj are the

complex constants appearing in (3.3) and (3.5). Then, in any region of the xt-plane where
the matrix �(x; t) defined in (6.7) or equivalently the matrix �(x; t) given in (4.7) is invertible,
the solution u(x, t) given in (4.11) or equivalently in (6.9) satisfies (5.6) or equivalently

|u(x, t)|2 = tr

[
∂

∂x

(
�(x, t)−1 ∂�(x; t)

∂x

)]
= ∂

∂x

[
∂ det �(x; t)/∂x

det �(x; t)

]
, (6.14)

|u(x, t)|2 = tr

[
∂

∂x

(
�(x, t)−1 ∂�(x; t)

∂x

)]
= ∂

∂x

[
∂ det �(x; t)/∂x

det �(x; t)

]
. (6.15)
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Proof. Let us write u, �, P,Q,N for u(x, t),�(x; t), P (x; t),Q(x; t), N(x), respectively.
Using the fact that in evaluating the trace of a product of two matrices we can change the order
in the matrix product, from (6.8) we obtain

tr[�−1�x] = tr[�−1�x],

and hence it is sufficient to prove only (6.14). From (4.13) it follows that (6.5) and (6.6) are
equivalent to the first two equations, respectively, in (4.15). Note that (4.16) is still valid and
is a direct consequence of (4.7) and the self-adjointness of Q and N. Proceeding as in the proof
of theorem 5.1, with the help of (4.15), (4.16) and (5.4) we obtain

tr[�−1�x] = 2 tr[−A − A† + (�†)−1A + �−1A†],

tr[�−1�x]x = 4 tr[�−1(A†)2 + (�†)−1A2 − �−1A†�−1A†

− (�†)−1A(�†)−1A + 2�−1QAN�−1A†].
(6.16)

On the other hand, using the fact that |u|2 = uu†, from (4.11) we obtain

|u|2 = 4 tr[(AN + NA†)�−1(QA + A†Q)(�†)−1], (6.17)

where we have also used (6.5) and (6.6). Using (4.16) and the aforementioned property of
the matrix trace, we can simplify the right-hand side of (6.17) and show that it is equal to
the right-hand side of (6.16). Finally, as indicated in the proof of theorem 5.1, the second
equalities in (6.14) and (6.15) follow from theorem 7.3 on page 38 of [18]. �

7. Examples

Specific examples of our exact solutions can be obtained from the explicit formula (4.11), or
equivalently from any one of (4.12), (5.14) and (6.9), by specifying A,B and C, where �(x; t)

is the matrix defined in (4.7). We have made available various Mathematica notebooks [39]
in which the user can easily perform the following steps and display the corresponding exact
solution u(x, t) explicitly in terms of exponential, trigonometric and polynomial functions,
verify that the resulting u(x, t) satisfies (1.1) and animate |u(x, t)|.
(i) Input the matrices A,B,C.

(ii) Evaluate the matrix �(x; t) as in (4.7), where Q(x; t) and N(x) are the matrices appearing
in (4.13). In case all the eigenvalues of A lie in the right half complex plane, evaluate
Q(0; 0) and N(0) explicitly as in (4.14) with the help of MatrixExp, which is used to
evaluate matrix exponentials in Mathematica. In case some or all eigenvalues of A lie
in the left half complex plane, use (6.1) and (6.2) instead in order to evaluate explicitly
Q(0; 0) and N(0), respectively.

(iii) Having obtained �(x; t), use (4.11) or one of its equivalents (4.12), (5.14) and (6.9) to
display u(x, t) explicitly in terms of exponential, trigonometric and polynomial functions.

(iv) Using (5.6) or (4.11), evaluate |u(x, t)|2 exactly and animate |u(x, t)|.
(v) As an option, evaluate the quantities iut , uxx and 2|u|2u, and verify directly that (1.1) is

satisfied.

Example 7.1. The well-known ‘n-soliton’ to (1.1) is obtained when R(λ) ≡ 0 and T (λ) has
n simple bound-state poles in C+. In this case, from (3.5)–(3.7) we see that A,B and C are
given by

A =




−iλ1 0 . . . 0
0 −iλ2 . . . 0
...

...
. . .

...

0 0 . . . −iλn


 , B =




1
1
...

1


 , C = [c1 c2 . . . cn], (7.1)
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Figure 1. Snapshots of |u(x, t)| of example 7.2 at t = 0.0, 0.1, 0.2, 0.3, 0.4 and 0.5.

where λj are distinct and all lie in C+. Using (4.7)–(4.9), the (α, β)-entries of the matrices
Q(x; t), N(x) and �(x; t) are easily evaluated as

Nαβ = i ei(λα−λβ)x

λα − λβ

, Qαβ = i cαcβ ei(λβ−λα)x+4i(λ2
β−λ

2
α)t

λβ − λα

,

�αβ = δαβ −
n∑

γ=1

cαcγ ei(2λγ −λα−λβ)x+4i(λ2
γ −λ

2
α)t

(λγ − λα)(λγ − λβ)
,

where δαβ is the Kronecker delta. A Mathematica notebook [39] is available, where the user
can specify n and {λj , cj }nj=1 and display the corresponding u(x, t) explicitly in terms of
exponential, trigonometric and polynomial functions and animate |u(x, t)|.
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Figure 2. Snapshots of |u(x, t)| of example 7.3 at t = −0.5,−0.2,−0.1, 0.0, 0.1 and 0.2.

Example 7.2. Choosing

A =
[

2 0
0 −1

]
, B =

[
1
1

]
, C = [1 −1],

we evaluate Q(0; 0) and N(0) using (6.3) and (6.4), respectively. Then, with the help of (6.7)
and (6.9) we obtain

u(x, t) = 8e4it (9e−4x + 16e4x) − 32e16it (4e−2x + 9e2x)

−128 cos(12t) + 4e−6x + 16e6x + 81e−2x + 64e2x
. (7.2)

Note that one of the eigenvalues of A in this example is negative and the solution in (7.2) is
not a soliton solution. A Mathematica notebook containing the animation of (7.2) is available
[39].
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Figure 3. Snapshots of |u(x, t)| of example 7.4 at t = 0.0, 0.1, 0.2, 0.3, 0.4 and 0.5.

Example 7.3. Choosing

A =
[

2 − i −1
0 2 − i

]
, B =

[
0
1

]
, C = [1 + 2i −1 + 4i],

we get u(x, t) = num(x, t)/den(x, t), where

num(x, t) := 1024e4(x+4t)−2i(x−6t)[(12 − 9i) + 100t + (5 − 10i)x]

+ 131 072e12(x+4t)−2i(x−6t)[(1 + 4i) + (24 + 32i)t − (2 − 4i)x],

den(x, t) := 25 + 65 536e16(4t+x)

+ 512e8(4t+x)[12 800t2 + 64(20x + 43)t + 160x2 + 304x + 207].

The solution in this example can be described as a soliton of double multiplicity, and its
Mathematica animation is available [39].



2194 T Aktosun et al

Example 7.4. Choosing

A =

1 −1 0

0 1 −1
0 0 1


 , B =


0

0
1


 , C = [1 0 0],

we easily obtain u(x, t) = num(x, t)/den(x, t), where

num(x, t) := 32e−2(x−2it){[−32 768x2 + 524 288t2 + 262 144itx − 65 536it]

+ e−4x [90 112t2 + 15 872x2 + 131 072t2x2 + 4096x4 + 196 608xt2

+ 12 288x3 + 9216x + 1344 + 1048 576t4 − 32 768itx2 − 35 840it

− 61 440itx] + e−8x [128t2 − 8x2 − 24x − 15 − 112it − 64itx]},

den(x, t) := 262 144 + e−4x [262 144x4 + 589 824x2 + 393 216x + 524 288x3

+ 67 108 864t4 + 8388 608x2t2 + 122 880] + e−8x [16 384x3 + 4096x4

+ 1048 576t4 + 15 360x + 344 064t2 + 24 576x2 + 131 072x2t2

+ 393 216xt2 + 3648] + e−12x .

The solution in this example can be described as a soliton of triple multiplicity. A Mathematica
notebook [39] is available for this example and the corresponding animation.

In figures 1–3 we present some snapshots of |u(x, t)| appearing in examples 7.2–7.4
respectively. Further examples of exact solutions to (1.1) expressed in terms of exponential,
trigonometric and polynomial functions as well as their animations can be obtained with the
help of available Mathematica notebooks [39]. It can be directly verified that u(x, t) given in
the above examples all satisfy (1.1). When the matrix size for A,B,C becomes large, such
expressions become lengthy and yet can easily be displayed with the help of Mathematica or
any other symbolic software.
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http://dx.doi.org/10.1063/1.524548
http://dx.doi.org/10.1007/BF01017105
http://dx.doi.org/10.1007/BF01037866


Exact solutions to the NLS equation 2195

[9] Aktosun T and Klaus M 2001 Inverse theory: problem on the line Scattering ed E R Pike and P C Sabatier
(London: Academic) pp 770–85

[10] Aktosun T and van der Mee C 2006 Explicit solutions to the Korteweg–de Vries equation on the half-line Inverse
Problems 22 2165–74

[11] Bart H, Gohberg I and Kaashoek M A 1979 Minimal Factorization of Matrix and Operator Functions (Basel:
Birkhäuser)
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