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Nonautonomous Exponential Dichotomy
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Abstract. In this note we generalize the strongly continuous bisemigroups
generated by exponentially dichotomous operators to so-called bievolution
families. These families are then related to strongly continuous bisemigroups
on certain Banach spaces of continuous and measurable vector-valued func-
tions.
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1. Introduction

In recent years exponentially dichotomous operators S(X → X) defined on a
dense linear subspace of a complex Banach space X have been studied extensively
[1, 7, 10, 12]. They can be defined through the Laplace transform relation

(λ − S)−1x =
∫ ∞

−∞
e−λtE(t; x) dt,

where, for each x ∈ X , E(·; x) : R → X is strongly measurable and satisfies∫ ∞

−∞
eε|t|‖E(t; x)‖X dt ≤ const.‖x‖X , x ∈ X,

for some constant ε > 0. Then there exists a strongly continuous function E : R →
L(X), the so-called bisemigroup, having its values in the complex Banach algebra
L(X) of bounded linear operators on X and having a strong jump discontinuity
at t = 0 such that E(t)x = E(t; x) for 0 �= t ∈ R. Also E(0+) − E(0−) = IX , the
identity operator on X . Further, ±E(0±) are complementary projections reducing
S.

Exponentially bounded evolution families have been defined as strongly con-
tinuous operator functions U : {(t, s) ∈ R

2 : t ≥ s} → L(X) having the properties
(i) U(t, r)U(r, s) = U(t, s) for t ≥ r ≥ s, and (ii) ‖U(t, s)‖L(X) ≤ Meε(t−s) for
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certain constants M, ε > 0. They are the natural generalizations of strongly contin-
uous semigroups when modeling nonautonomous first order initial value problems
(cf. [2] and references therein). In the context of [4, 3, 2] exponential dichotomy
pertains to the existence of a projection-valued function P : R → L(X) such
that (i) U(t, s)P (s) = P (t)U(t, s) for t ≥ s, (ii) there exists ε > 0 such that
‖U(t, s)P (s)x‖X ≤ const.eε(t−s)‖P (s)x‖X for t ≥ s, and (iii) the restriction of
U(t, s) to the kernel of P (s) is a boundedly invertible operator defined on the ker-
nel of P (t) with norm bounded above by const.e−ε(t−s) for some ε > 0. Exponential
dichotomy of exponentially bounded evolution families can be proven equivalent
to the hyperbolicity of the strongly continuous semigroup E : R → L(Lp(R; X))
defined by [E(t)f ](τ) = U(τ, τ − t)f(τ − t) for t ≥ 0 and τ ∈ R (cf. [8]).

In this note we generalize the exponentially dichotomous operators as studied
in [1, 12] to so-called bievolution families, mimicking the terminology of bisemi-
groups introduced in [1]. In Theorem 2.2 we prove that U is a bievolution family
on X if and only E defined by [E(t)f ](τ) = U(τ, τ − t)f(τ − t) is a strongly con-
tinuous bisemigroup on C0(R; X). In Proposition 2.1 we also show that EU is a
strongly continuous bisemigroup on Lp(R; X) (1 ≤ p < ∞) if U is a bievolution
family.

Exponentially dichotomous operators have among their applications Riccati
equations [10], transport equations [5], functional differential equations [9], and
noncausal linear systems [6]. Some of these applications have nonautonomous coun-
terparts conductive to treatment as bievolution systems, such as nonautonomous
functional differential equations [9] and evolution equations in Banach spaces [11].

Let us introduce some notations. Given a complex Banach space X , we write
IX for the identity operator on X , L(X) for the Banach algebra of bounded linear
operators on X , C0(R; X) for the Banach space of strongly continuous functions
f : R → X such that ‖f(t)‖X → 0 as t → ±∞. For 1 ≤ p < ∞ we mean by
Lp(R; X) the Banach space of strongly measurable functions f : R → X for which
the scalar function ‖f(·)‖X ∈ Lp(R).

2. Bievolution Families and Main Theorem

Letting ∆± = {(t, s) ∈ R
2 : ±(t − s) ≥ 0}, the disjoint (set theoretical and

topological) union ∆ = ∆+ ∪ ∆− represents the Euclidean plane R
2, where we

distinguish between (t, t−) ∈ ∆+ and (t, t+) ∈ ∆−. Letting X be a complex
Banach space, by a bievolution family on X we mean a strongly continuous operator
function U : ∆ → L(X) having the following properties:

1. For (t, r) and (r, s) in ∆± we have the product rule

U(t, r)U(r, s) = ±U(t, s).

2. For (t, τ) ∈ ∆+ and (s, σ) ∈ ∆− we have

U(t, τ)U(s, σ) = U(s, σ)U(t, τ) = 0.



Vol. 59 (2007) Nonautonomous Exponential Dichotomy 593

3. There exist positive constants M and ε such that

‖U(t, s)‖L(X) ≤ Me−ε|t−s|, (t, s) ∈ ∆±.

4. We have

U(t+, t) − U(t−, t) = IX , t ∈ R.

Then U(t, t−) and −U(t, t+) for (t, t∓) ∈ ∆± are bounded complementary
projections on X which are strongly continuous in t ∈ R.

When U(t, s) only depends on (t − s) ∈ ∆ and hence we may write E(t −
s) = U(t, s) while distinguishing between E(0+) and E(0−), we obtain a (strongly
continuous) bisemigroup on X . The separating projection then no longer depends
on t and is called the separating projection of the bisemigroup. For convenience we
write Ṙ for the disjoint (set theoretical and topological) union of Ṙ− = (−∞, 0]
and Ṙ+ = [0,∞), so that E can be viewed as a strongly continuous operator
function E : Ṙ → L(X).

Given a bievolution family U : ∆ → X , we define the evolutionary bisemi-
group EU : Ṙ → L(Lp(R; X)) (1 ≤ p < ∞) or EU : Ṙ → L(C0(R; X)) by

(EU (t)f)(τ) = U(τ, τ − t)f(τ − t), (τ, τ − t) ∈ ∆.

Proposition 2.1. Let 1 ≤ p < ∞ and let U : ∆ → L(X) be a bievolution family.
Then EU : Ṙ → Lp(R; X) is a strongly continuous bisemigroup.

Proof. Let U : ∆ → L(X) be a bievolution family. For t ∈ Ṙ we have

‖EU (t)f‖Lp(R;X) =
[∫ ∞

−∞
‖(EU (t)f)(τ)‖p dτ

]1/p

=
[∫ ∞

−∞
‖U(τ, τ − t)f(τ − t)‖p dτ

]1/p

≤ Me−ε|t|‖f‖Lp(R;X),

which implies the boundedness of EU (t) for t ∈ Ṙ as well as the exponential bound
on its norm. Further, for t, s ∈ Ṙ of the same sign we estimate

‖EU (t)f − EU (s)f‖p
Lp(R;X)

=
∫ ∞

−∞
‖U(τ, τ − t)f(τ − t) − U(τ, τ − s)f(τ − s)‖p

X dτ

≤
∫ ∞

−∞
‖[U(τ + t, τ) − U(τ + t, τ + t − s)]f(τ)‖p

X dτ

+ Me−ε|s|
∫ ∞

−∞
‖f(τ) − f(τ + t − s)‖p

X dτ,

which vanishes as s → t as a result of the strong continuity of U .
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For t, s ∈ Ṙ we have

(EU (t)EU (s)f)(τ) = U(τ, τ − t)(EU (s)f)(τ − t)

= U(τ, τ − t)U(τ − t, τ − t − s)f(τ − t − s)

=




U(τ, τ − t − s)f(τ − t − s) = (EU (t + s)f)(τ), t, s ≥ 0,

−U(τ, τ − t − s)f(τ − t − s) = −(EU (t + s)f)(τ), t, s ≤ 0,

0, ts < 0,

which implies the product rule. Next,

(EU (0+)f)(τ) − (EU (0−)f)(τ) = U(τ, τ−)f(τ) − U(τ, τ+)f(τ) = f(τ),

so that EU (0+) − EU (0−) = ILp(R;X). Thus, if U : ∆ → L(X) is a bievolution
family on X , then EU is a strongly continuous bisemigroup on Lp(R; X). �

We now derive the main result of this note.

Theorem 2.2. The operator function U : ∆ → L(X) is a bievolution family iff
EU : Ṙ → L(X) is a strongly continuous bisemigroup on C0(R; X).

Proof. For t ∈ Ṙ we have

‖EU (t)f‖C0(R;X) ≤ sup
τ∈R

‖U(τ, τ − t)‖L(X)‖f‖C0(R;X) ≤ Me−ε|t|‖f‖C0(R;X),

which yields the boundedness of EU (t) and the exponential bound on its norm.
For t, s ∈ Ṙ of the same sign we estimate

‖EU (t)f − EU (s)f‖C0(R;X)

= sup
τ∈R

‖U(τ, τ − t)f(τ − t) − U(τ, τ − s)f(τ − s)‖X

≤ sup
τ∈R

‖[U(τ + t, τ) − U(τ + t, τ + t − s)]f(τ)‖X

+ Me−ε|s| sup
τ∈R

‖f(τ) − f(τ + t − s)‖X ,

proving the strong continuity of EU : Ṙ → C0(R;L(X)). Thus, if U : ∆ → L(X)
is a bievolution family on X , then EU is a strongly continuous bisemigroup on
C0(R; X).

Conversely, let EU : Ṙ → C0(R; X) be a strongly continuous bisemigroup.
For x ∈ X and φ ∈ C0(R) we define F(φ,x) ∈ C0(R; X) by

[F(φ,x)](t) = φ(t)x, t ∈ R.

Then taking a function φ without zeros we see from the identity

U(τ, τ − t)x =
[E(t)F(φ,x)](τ)

φ(τ − t)
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that U : ∆ → L(X) is strongly continuous. For t, s ∈ Ṙ we have on the one hand[
EU (t)EU (s)F(φ,x)

]
(τ) = U(τ, τ − t)

[
EU (s)F(φ,x)

]
(τ − t)

= U(τ, τ − t)U(τ − t, τ − t − s)
[
F(φ,x)

]
(τ − t − s)

= φ(τ − t − s)U(τ, τ − t)U(τ − t, τ − t − s)x

and on the other hand[
EU (t + s)F(φ,x)

]
(τ) = U(τ, τ − t − s)

[
F(φ,x)

]
(τ − t − s)

= φ(τ − t − s)U(τ, τ − t − s)x.

Taking φ ∈ C0(R) to be nonzero, we obtain from the product rule for EU the
product properties 1 and 2 for U . Moreover,

φ(τ)x =
{
EU (0+) − EU (0−)

}
F(φ,x)(τ) = φ(τ)

{
U(τ, τ−)x − U(τ, τ+)x

}
implies that U(τ, τ−) − U(τ, τ+) = IX . Finally,

‖φ‖C0(R)‖U(τ, τ − t)x‖X =
∥∥EU (t)F(φ,x)

∥∥
C0(R;X)

≤ Me−ε|t| ∥∥F(φ,x)

∥∥
C0(R;X)

= Me−ε|t|‖φ‖C0(R)‖x‖X

implies the exponential decay condition 4 on U . Thus, U : ∆ → L(X) is a bievo-
lution family. �
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