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Abstract
In this paper, we derive a class of explicit solutions, global in (x, t) ∈ R

2, of the
focusing matrix nonlinear Schrödinger equation using straightforward linear
algebra. We obtain both the usual and multiple pole multisoliton solutions as
well as a new class of solutions exponentially decaying as x → ±∞.

1. Introduction

In the focusing case, the cubic matrix nonlinear Schrödinger (mNLS) equation

iut + uxx + 2uu†u = 0, (1.1)

where u(x, t) is an n × m matrix and the dagger denotes the matrix conjugate transpose,
has been studied extensively [1–3] as the natural generalization of the nonlinear Schrödinger
(NLS) equation. For n = m = 1 it describes wave propagation in nonlinear media [33],
evolution of surface waves on sufficiently deep waters [32] and signal propagation in optical
fibres with anomalous dispersion [16, 17]. For n = 1 and m = 2 it is known as the Manakov
system and arises in a natural way in paraxial light propagation in diffractive media [22],
signal transmission in optical fibres with randomly varying birefringence [4, 16, 31] and wave
transmission in the half-band-gaps of AlGaAs semiconductors [20]. In this paper, we present
a systematic method to derive exact solutions of (1.1) which are global in (x, t) ∈ R

2 and
decay exponentially as x → ±∞ for fixed t ∈ R, i.e., we assume the background field to be
zero. In this way we generalize the theory expounded in [6] for obtaining exact NLS solutions
and, to a lesser extent, that in [7] to solve the KdV equation on the half-line.

In [6], starting from a p × p matrix A, a column vector B of length p and a row vector C
of length p we derived the exact NLS solutions

u(x, t) = −2B† e−xA†
[Ip + Q(x; t)N (x)]−1 e−xA†+4it (A†)2

C†, (1.2)

where

Q(x; t) = e−xA†+4it (A†)2
Q e−xA−4itA2

, N (x) = e−xAN e−xA†
,
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and Q and N are the unique solutions of the Lyapunov equations

A†Q + QA = C†C, AN + NA† = BB†.

By choosing a complex p × p matrix A such that all of its eigenvalues have a positive
real part, multisoliton solitons were generated, not only those appearing in [33] but also
multiple pole solutions of soliton type. These multiple pole solutions appear when choosing
a nondiagonalizable matrix A while satisfying the minimality conditions (2.26), as illustrated
by examples 7.3 and 7.4 of [6]. On the other hand, it was suggested in [6] on the basis of the
few well-chosen example 7.2 and the corresponding figure 1 that a new class of NLS solutions
is generated by choosing the matrix A in such a way that A has eigenvalues in the left and
right half-plane and does not have eigenvalues in common with −A†.

In the present paper, we generalize the results of [6] to the focusing mNLS equation (1.1)
by choosing A,B and C to be p × p, p × m and n × p matrices, respectively. We derive the
exact solution (1.2) and prove that the trace

Tr[u(x, t)u(x, t)†] = Tr[u(x, t)†u(x, t)] = ∂2

∂x2
log det(Ip + Q(x; t)N (x)), (1.3)

which generalizes a well-known expression for the squared modulus of the NLS multisoliton
solution [6, 33]. Since we do not restrict ourselves to matrices A having all of their eigenvalues
in the open right half-plane, we now present a generalization of [6] that is going well beyond
a mere matrification of existing equations. One of the major results is that the newly found
mNLS solutions are global in (x, t) ∈ R

2 and decay exponentially as x → ±∞. Again
multiple pole solutions arise if A is nondiagonalizable and the minimality condition (2.26) is
satisfied.

In the literature, there are many different methods to find exact solutions of the NLS
equation, such as the Hirota method and other parameter adjustment techniques [5, 9, 15,
18, 24, 25, 28]. In comparison, exact mNLS solutions are far less prevalent in the literature.
Though dark soliton solutions of the Manakov system were obtained by Hirota’s method
[27, 29], it turned out to be difficult to generalize parameter adjustment methods to (1.1)
of arbitrary matrix order. We refer to the review paper [21] for further information. In
recent years, Park and Shin [23] have applied reduction to a vector eigenvalue problem to
systematically obtain dark, bright and ‘hybrid’ soliton solutions of (1.1). In [26], dark–dark
and dark–bright soliton solutions for the defocusing Manakov system were derived using IST
techniques, while in [19] the IST method was developed for the square mNLS equation. In
[14], matrix realizations were applied to derive exact solutions of (1.1) of arbitrary order, but
it was not made clear if these solutions are global in (x, t) ∈ R

2. Periodic and almost periodic
solutions were derived in [13, 30].

In [6], the Marchenko method was used as a tool to derive (1.2), but (1.2) was also
shown to satisfy the NLS equation without relying on any Marchenko theory whatsoever. In
other words, the Marchenko method was merely used to ‘suggest’ a concise form of the NLS
solution, which could just as well have been derived without it. Moreover, in [6] the power of
the method was shown by using Mathematica to produce exact solutions in terms of elementary
scalar functions. In this paper, we shall not draw on any Marchenko theory or IST methods
to arrive at (1.2) and (1.3), although we could have done so by repeating the arguments of
[6, section 4]. Still our method has the advantage of treating the NLS and the mNLS equations
in exactly the same way and, most of all, of producing concisely written exact solutions that
can be expressed in terms of elementary functions of x and t with the help of Mathematica,
REDUCE, Maple, the Symbolic Toolbox of MatLab or other symbolic calculus.

In section 2 we derive the exact solutions (1.2) and (1.3). To present the results more
clearly, we have relegated the discussion of Lyapunov equations and the positivity proof of the
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determinant appearing in (1.3) to subsections 2.1 and 2.2, whereas subsection 2.3 contains the
derivation of (1.3) itself. In subsection 2.4, we apply some transformations on the matrices
A,B and C to produce mNLS solutions starting from a given mNLS solution. As a result, we
manage to derive (1.2) and (1.3) also for matrix triples (A,B,C) of nonminimal matrix size.
A few illustrative examples are given in section 3.

2. Deriving explicit mNLS solutions

Let A1 and A2 be two square matrices of respective orders p1 and p2 and eigenvalues in the
open right half-plane such that A1 and A

†
2 (and hence also A

†
1 and A2) do not have eigenvalues

in common, and let B1, B2, C1 and C2 be p1 × n, p2 × n,m × p1 and m × p2 matrices,
respectively. Put

A =
[
A1 0
0 −A2

]
, B =

[
B1

B2

]
, C = [C1 C2]. (2.1)

We assume the (nonessential) minimality conditions
∞⋂

j=0

Ker(Cs(As)
j ) = {0}, (2.2a)

∞⋂
j=0

Ker
(
B†

s

(
A†

s

)j ) = {0}, (2.2b)

where s = 1, 2.

2.1. Lyapunov equations and determinant relations

Let

Q =
[
Q11 Q12

Q21 Q22

]
, N =

[
N11 N12

N21 N22

]
(2.3)

be the unique solutions of the Lyapunov equations

A†Q + QA = C†C, (2.4a)

AN + NA† = BB†. (2.4b)

Here Q11 and N11 are p1 × p1 matrices, Q12 and N12 are p1 × p2 matrices, Q21 and N21 are
p2 ×p1 matrices and Q22 and N22 are p2 ×p2 matrices. Furthermore, the uniqueness follows
from the fact that A and −A† do not have eigenvalues in common [12, theorem 18.5]. Then
the Lyapunov equations

A
†
1Q11 + Q11A1 = C

†
1C1, A1N11 + N11A

†
1 = B1B

†
1,

A
†
1Q12 − Q12A2 = C

†
1C2, A1N12 − N12A

†
2 = B1B

†
2

and the Sylvester equations

A
†
2Q21 − Q21A1 = −C

†
2C1, A2Q21 − Q21A

†
1 = −B2B

†
1,

A
†
2Q22 + Q22A2 = −C

†
2C2, A2N22 + N22A

†
2 = −B2B

†
2

are uniquely solvable. Moreover, as is easily verified by taking the adjoints of these matrix

equations, their unique solvability implies that Q1
def= Q11, N1

def= N11,Q2
def= −Q22 and

3



Inverse Problems 24 (2008) 025020 F Demontis and C van der Mee

N2
def= −N22 are nonnegative selfadjoint, while Q0

def= Q12 = [Q21]† and N0
def= N12 = [N21]†.

In fact [12, exercise 18.7],

Q1 =
∫ ∞

0
dz e−zA

†
1C

†
1C1 e−zA1 , Q2 =

∫ ∞

0
dz e−zA

†
2C

†
2C2 e−zA2 ,

N1 =
∫ ∞

0
dz e−zA1B1B

†
1 e−zA

†
1 , N2 =

∫ ∞

0
dz e−zA2B2B

†
2 e−zA

†
2 .

Moreover, if γ1 is a simple positively oriented Jordan contour containing the eigenvalues of
A

†
1 in its interior region and those of A2 in its exterior region and γ2 is a simple positively

oriented Jordan contour containing the eigenvalues of A1 in its interior region and those of A
†
2

in its exterior region, we have the contour integral representations [12, exercise 18.8]

Q0 = 1

2π i

∫
γ1

dλ
(
λ − A

†
1

)−1
C

†
1C2(λ − A2)

−1,

N0 = 1

2π i

∫
γ2

dλ(λ − A1)
−1B1B

†
2

(
λ − A

†
2

)−1
.

As in the proof of [6, theorems 4.2 and 4.4], we easily see that Q1,Q2, N1 and N2 are
(nonsingular) positive selfadjoint matrices if the minimality conditions (2.2) are true. In fact,
the identities

〈Qsx, x〉 =
∫ ∞

0
dz‖Cs e−zAs x‖2, 〈Nsx, x〉 =

∫ ∞

0
dz

∥∥B†
s e−zA

†
s x

∥∥2

imply that, for s = 1, 2, the positive selfadjointness of Qs is equivalent to the minimality
condition (2.2a) and that of Ns to the minimality condition (2.2b).

To prove that det(Ip +Q(x; t)N(x)) > 0 for any choice of the triple of matrices (A,B,C)

as in (2.1), we begin with some basic linear algebra. The rather elementary proofs of
lemmas 2.1 and 2.2 can both be based on the use of Schur complements [12, equations (1.11)
and (1.12)]. We give the first proof, since we shall use two equations appearing in it later on.

Lemma 2.1. Let T1 and T2 be two square matrices and let

T =
[

T1 T0

−T
†

0 T2

]
.

Then

det T =
{

(det T1)
(

det T #
2

)
if det T1 > 0,(

det T #
1

)
(det T2) if det T2 > 0,

(2.5)

where

T #
1 = T1 + T0(T2)

−1T
†

0 , T #
2 = T2 + T

†
0 (T1)

−1T0.

In particular, if T1 and T2 are positive selfadjoint, then so are T #
1 and T #

2 , while det T > 0.

Proof. The lemma is immediate from the identities

T =
[

I 0

−T
†

0 T −1
1 I

] [
T1 0

0 T #
2

] [
I T −1

1 T0

0 I

]
, (2.6a)

T =
[
I T0T

−1
2

0 I

] [
T #

1 0

0 T2

] [
I 0

−T −1
2 T

†
0 I

]
, (2.6b)

because the lateral factors on the right-hand sides of (2.6) have unit determinant. Furthermore,
T #

1 and T #
2 are positive selfadjoint whenever T1 and T2 are, in which case det T > 0. �
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Lemma 2.2. Let T be an r × s matrix and S an s × r matrix. Then

det(Ir + T S) = det(Is + ST ).

We now apply lemmas 2.1 and 2.2 to prove the following:

Theorem 2.3. Suppose the minimality requirements (2.2) are fulfilled. Then

det(Ip + QN) > 0,

where p = p1 + p2.

Proof. We first use the positive selfadjointness of Q1 to write

Ip + QN = Ip +

[
Q1 −Q0

Q
†
0 Q2

] [
N1 N0

−N
†
0 N2

]

= Ip +

[
Ip1 0

Q
†
0Q

−1
1 Ip2

] [
Q1 −Q0

0 Q#
2

] [
N1 N0

−N
†
0 N2

]
,

where Q#
2 = Q2 + Q

†
0Q

−1
1 Q0. Using lemma 2.2 twice we get

det(Ip + QN) = det

(
Ip +

[
Q1 −Q0

0 Q#
2

] [
N1 N0

−N
†
0 N2

] [
Ip1 0

Q
†
0Q

−1
1 Ip2

])

= det

(
Ip +

[
Q

1/2
1 −Q

−1/2
1 Q0

0
(
Q#

2

)1/2

] [
N1 N0

−N
†
0 N2

] [
Q

1/2
1 0

Q
†
0Q

−1/2
1

(
Q#

2

)1/2

])

= det

([
Q

1/2
1 −Q

−1/2
1 Q0

0
(
Q#

2

)1/2

] [
T1 T0

−T
†

0 T2

] [
Q

1/2
1 0

Q
†
0Q

−1/2
1

(
Q#

2

)1/2

])

= det(Q1) det
(
Q#

2

)
det

[
T1 T0

−T
†

0 T2

]
,

where the positive selfadjointness of Q2 implies that of Q#
2 and

T1 = N1 + Q−1
1 − Q−1

1 Q0
(
Q#

2

)−1
Q

†
0Q

−1
1 ,

T2 = N2 +
(
Q#

2

)−1
,

T0 = N0 + Q−1
1 Q0

(
Q#

2

)−1
.

Clearly, T2 is the positive selfadjoint.
To prove the positive selfadjointness of T1, it suffices to prove the positive selfadjointness

of

Z
def= Q−1

1 − Q−1
1 Q0

(
Q#

2

)−1
Q

†
0Q

−1
1 .

Indeed, we first apply (2.6b) and then (2.6a) to derive the following three matrix identities:[
Q−1

1 Q−1
1 Q0

Q
†
0Q

−1
1 Q#

2

]
=

[
Ip1 Q−1

1 Q0
(
Q#

2

)−1

0 Ip2

] [
Z 0

0 Ip2

] [
Ip1 0(

Q#
2

)−1
Q

†
0Q

−1
1 Ip2

]

=
[
Q

−1/2
1 0

0 Ip2

] [
Ip1 Q

−1/2
1 Q0

Q
†
0Q

−1/2
1 Q#

2

] [
Q

−1/2
1 0

0 Ip2

]
,

[
Ip1 Q

−1/2
1 Q0

Q
†
0Q

−1/2
1 Q#

2

]
=

[
Ip1 0

Q
†
0Q

−1/2
1 Ip2

] [
Ip1 0

0 Q2

] [
Ip1 Q

−1/2
1 Q0

0 Ip2

]
.
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Therefore, Z is positive selfadjoint. Furthermore, we easily get the determinant relation

det Z = det Q2

det Q1
> 0.

Consequently, det Z > 0, as claimed. �

2.2. Explicit mNLS solutions

Given the matrices A,B and C as in (2.1) satisfying the minimality conditions (2.2), we first
evaluate the unique solutions Q and N of the Lyapunov equations (2.4). For (x, t) ∈ R

2 we
then define

Q(x; t) = e−xA†+4it (A†)2
Q e−xA−4itA2

, (2.7a)

N (x) = e−xAN e−xA†
. (2.7b)

Then the matrices Q(x; t) and N (x) satisfy the Lyapunov equations

A†Q(x; t) + Q(x; t)A = e−xA†+4it (A†)2
C†C e−xA−4itA2

, (2.8a)

AN (x) + N (x)A† = e−xABB† e−xA†
. (2.8b)

Moreover, Q(x; t) and N (x) allow the following partitioning as in (2.3):

Q(x; t) =
[

Q1(x; t) Q0(x; t)

Q0(x; t)† −Q2(x; t)

]

=
[

e−xA
†
1+4it (A†

1)
2
Q1 e−xA1−4it (A1)

2
e−xA

†
1+4it (A†

1)
2
Q0 exA2−4it (A2)

2

exA
†
2+4it (A†

2)
2
Q

†
0 e−xA1−4it (A1)

2 −exA
†
2+4it (A†

2)
2
Q2 exA2−4it (A2)

2

]
,

N (x) =
[

N 1(x) N 0(x)

N 0(x)† −N 2(x)

]
=

[
e−xA1N1 e−xA

†
1 e−xA1N0 exA

†
2

exA2N
†
0 e−xA

†
1 −exA2N2 exA

†
2

]
.

Replacing C1 by C1 e−xA1−4it (A1)
2
, C2 by C2 exA2−4it (A2)

2
, B1 by e−xA1B1 and B2 = exA2B2,

we see that the minimality conditions (2.2) remain satisfied. Applying lemma 2.3 to these
modified matrices A �→ A,B �→ e−xAB and C �→ C e−xA−4itA2

, we obtain

Theorem 2.4. Suppose the minimality requirements (2.2) are fulfilled. Then

det(Ip + Q(x; t)N (x)) > 0, (x, t) ∈ R
2,

where p = p1 + p2.

We now arrive at the main result of this paper.

Theorem 2.5. Suppose A,B and C are matrices as in (2.1) satisfying the minimality
requirements (2.2) and such that A1 and A

†
2 do not have eigenvalues in common but have

all of their eigenvalues in the open right half-plane. Then

u(x, t) = −2B† e−xA†
[Ip + Q(x; t)N (x)]−1 e−xA†+4it (A†)2

C† (2.9)

is a global in (x, t) ∈ R
2 solution of the focusing mNLS equation (1.1).

Proof. Putting � = Ip + QN (where we have not written the (x, t)-dependence of �, Q and
N ), we can mimick the proof given in [6]. Indeed, (2.7) implies that

Qx = −(A†Q + QA), N x = −(AN + NA†), Qt = 4i[(A†)2Q − QA2].

(2.10)

6



Inverse Problems 24 (2008) 025020 F Demontis and C van der Mee

We now easily differentiate (2.9) to get

ux = 2B† e−xA†
�−1[�A† + QxN + QN x + A†�]�−1 e−xA†

e4it (A†)2
C†

= 4B† e−xA†
�−1[A† − QAN ]�−1 e−xA†

e4it (A†)2
C†,

as well as

iut = 8B† e−xA†
�−1[−{(A†)2Q − QA2}N�−1 + (A†)2]e−xA†

e4it (A†)2
C†

= 8B† e−xA†
�−1[(A†)2 + QA2N ]�−1 e−xA†

e4it (A†)2
C†, (2.11a)

uxx = 8B† e−xA†
�−1[(A†)2 − 2QAN�−1QAN + 2A†�−1QAN

− 2A†�−1A† + 2QAN�−1A† + QA2N ]�−1 e−xA†
e4it (A†)2

C†

= 8B† e−A†x�−1[(A†)2 + QA2N ]�−1 e−A†x+4i(A†)2tC†

− 16B† e−xA†
�−1(A† − QAN )�−1(A† − QAN )�−1 e−xA†

e4it (A†)2
C†, (2.11b)

2uu†u = −16B† e−xA†
�−1[(A†Q + QA)�̂−1(AN + NA†)]�−1 e−xA†

e4it (A†)2
C†

= −16B† e−xA†
�−1[(A†)2 + QA2N

− (A† − QAN )�−1(A† − QAN )]�−1 e−xA†
e4it (A†)2

C†, (2.11c)

where �̂ = I + NQ = �†. Adding (2.11a)–(2.11c) we obtain (1.1). �

We have derived a straightforward generalization of (4.13) in [6], which contains all of
the multisoliton solutions found in [11] (when taking A having all of its eigenvalues in the
open right half-plane) as well as a new class of exponentially decaying exact solutions. A
solution of the latter type was given in example 7.2 and plotted for various t in figure 1 of [6],
while nonscalar examples will be presented in section 3.

It is clear from lemma 2.1 that the Lyapunov solutions

Q =
[
Ip1 0

0 −Ip2

][
Q1 Q0

−Q
†
0 Q2

]
, N =

[
Ip1 0

0 −Ip2

] [
N1 N0

−N
†
0 N2

]

are invertible matrices. Putting Q̃ = Q−1 and Ñ = N−1 we can write

Ip + Q(x; t)N (x) = e−xA†+4it (A†)2
Q e−xA−4itA2

[Ip + Q̃(x; t)Ñ (x)] e−xAN e−xA†
,

where

Q̃(x; t) = exA+4itA2
Q̃ exA†−4it (A†)2

, Ñ (x) = exA†
Ñ exA.

Rearranging factors in (2.9) we then get

u(x, t) = −2B†Ñ exA[Ip + Q̃(x; t)Ñ (x)]−1 exA+4itA2
Q̃C†. (2.12)

Applying (2.6a) to the (modified) Lyapunov solutions Q diag(I,−I ) and Ndiag(I,−I )

with positive selfadjoint diagonal blocks Q1,Q2, N1 and N2, we easily compute that

Q̃ =
[
Q−1

1 − Q−1
1 Q0

(
Q#

2

)−1
Q

†
0Q

−1
1 Q−1

1 Q0
(
Q#

2

)−1

(
Q#

2

)−1
Q

†
0Q

−1
1 −(

Q#
2

)−1

]
, (2.13a)

Ñ =
[
N−1

1 − N−1
1 N0

(
N#

2

)−1
N

†
0N

−1
1 N−1

1 N0
(
N#

2

)−1

(
N#

2

)−1
N

†
0N

−1
1 −(

N#
2

)−1

]
, (2.13b)

7
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where Q#
2 = Q2 + Q

†
0(Q1)

−1Q0 and N#
2 = N2 + N

†
0(N1)

−1N0. Using lemma 2.1, we see that
the positivity of the determinants of the matrices Q#

2, N
#
2 ,

Q̃diag(I,−I ) = [diag(I,−I )Q]−1, Ñdiag(I,−I ) = [diag(I,−I )N ]−1,

[
Q−1

1 − Q−1
1 Q0

(
Q#

2

)−1
Q

†
0Q

−1
1

]# = Q−1
1 ,

and [
N−1

1 − N−1
1 N0

(
N#

2

)−1
N

†
0N

−1
1

]# = N−1
1 ,

implies the positivity of the determinants of Q−1
1 − Q−1

1 Q0
(
Q#

2

)−1
Q

†
0Q

−1
1 and N−1

1 −
N−1

1 N0
(
N#

2

)−1
N

†
0N

−1
1 . Using theorem 5.4 of [6], but also directly, we can prove that the

minimality conditions
∞⋂

j=0

Ker(CQ̃(A†)j ) = {0} =
∞⋂

j=0

Ker(B†ÑAj ) (2.14)

are fulfilled. Thus if replace A,B,C and t by −A†, ÑB,CQ̃ and t, we can derive (2.12)
directly from theorem 2.5.

To prove the minimality conditions (2.14) from (2.2), we compute that

[Ip + C(λ − A)−1Q̃C†]CQ̃(λ + A†)−1 = CQ̃(λ + A†)−1

+ C(λ − A)−1Q̃[(λ + A†)Q − Q(λ − A)]Q̃(λ + A†)−1 = C(λ − A)−1Q̃

and

[Ip − B†(λ + A†)−1ÑB]B†Ñ(λ − A)−1 = B†Ñ(λ − A)−1

−B†(λ + A†)−1Ñ [N(λ + A†) − (λ − A)N ]Ñ(λ − A)−1 = B†(λ + A†)−1Ñ .

Since the expressions between square brackets are invertible matrices for sufficiently large |λ|,
we see that (2.14) is satisfied if and only if

∞⋂
j=0

Ker(CQ̃(A†)j ) =
∞⋂

j=0

Ker(CAjQ̃) = Q

⎡
⎣ ∞⋂

j=0

Ker(CAj )

⎤
⎦ ,

∞⋂
j=0

Ker(B†ÑAj ) =
∞⋂

j=0

Ker(B†(A†)j Ñ) = N

⎡
⎣ ∞⋂

j=0

Ker(B†(A†)j )

⎤
⎦ .

Thus (2.14) follows from the minimality conditions (2.2).

2.3. Hilbert–Schmidt norms of mNLS solutions

To study the asymptotic behaviour of ‖u(x, t)‖ as x → ±∞ for fixed t ∈ R, we observe that

Tr[u(x, t)u(x, t)†] = Tr[u(x, t)†u(x, t)] =
n∑

r=1

m∑
s=1

|urs(x, t)|2, (2.15)

which is the squared Hilbert–Schmidt norm of the n × m matrix u(x, t). Putting �̂(x; t) =
�(x; t)†, where � = I + QN and �̂ = I + NQ, we now compute

Tr[u(x, t)u(x, t)†] = 4Tr
[
B† e−xA†

�(x; t)−1 e4it (A†)2
e−xA†

C†C e−xA e−4itA2
�̂(x; t)−1 e−xAB

]
= 4Tr

[
�(x; t)−1 e4it (A†)2

e−xA†
C†C e−xA e−4itA2

�̂(x; t)−1 e−xABB† e−xA†]
= 4Tr [�(x; t)−1Qx(x; t)�̂(x; t)−1N x(x)].

8
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Let us prove the following theorem which generalizes a classical result by Zakharov and
Shabat [33] (also [6]) for n = m = 1.

Theorem 2.6. Suppose A,B and C are matrices as in (2.1) satisfying the minimality
requirements (2.2) and such that A1 and A

†
2 do not have eigenvalues in common but have

all of their eigenvalues in the open right half-plane. Then

Tr[u(x, t)u(x, t)†] = Tr[�(x; t)−1�x(x; t)]x. (2.16)

In particular,

Tr[u(x, t)u(x, t)†] = ∂2

∂x2
log[det(Ip + Q(x; t)N (x))]. (2.17)

Proof. In analogy with [6], we first prove that

Tr[u(x, t)u(x, t)†] = 2Tr[�−1QN x]x, (2.18)

where we have not written the x-dependence of Q,N and �. Indeed, starting from the
right-hand side of (2.18) we employ the identities

N�−1Q = I − �̂−1, �−1QN = I − �−1, (2.19)

and compute

−Tr[�−1QN x]x
= Tr[�−1(QxN + QN x)�

−1QN x − �−1QxN x − �−1QN xx]

= Tr[�−1Qx(I − �̂−1)N x + �−1QN x�
−1QN x − �−1QxN x − �−1QN xx]

= Tr[−�−1Qx�̂
−1N x + �−1QN x�

−1QN x − �−1QN xx]

= Tr[−�−1Qx�̂
−1N x − �−1Q(AN + NA†)�−1QN x

+ �−1Q(AN x + N xA
†)]

= Tr[−�−1Qx�̂
−1N x − �−1QA(I − �̂−1)N x

− (I − �−1)A†�−1QN x + �−1Q(AN x + N xA
†)]

= Tr[−�−1Qx�̂
−1N x + �−1QA�̂−1N x + �−1A†�−1QN x]

= Tr[−�−1Qx�̂
−1N x + �−1(QA + A†Q)�̂−1N x]

= −2Tr[�−1Qx�̂
−1N x] = − 1

2 Tr[u(x, t)u(x, t)†],

which proves (2.18).
The remainder of the proof proceeds as in [6]. Using (2.19) repeatedly, it is easily verified

that

Tr[�−1QN x] = −Tr[�−1Q(AN + NA†)]

= −Tr[N�−1QA + �−1QNA†]

= −Tr[(I − �̂−1)A + (I − �−1)A†]

= −Tr[(I − �−1)A† + (I − �̂−1)A]

= −Tr[QN�−1A† + N�−1QA]

= −Tr(�−1A†QN + �−1QAN )

= −Tr(�−1[A†Q + QA]N )

= Tr[�−1QxN ].

In combination with (2.18) we finally derive that

Tr[u(x, t)u†(x, t)] = Tr[�−1(QxN + QN x)]x = Tr[�−1�x]x = Tr[�x�
−1]x.

9
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Equation (2.17) is now immediate from [10, theorem I 7.3] by taking � = � and A = �x�
−1

and differentiating the result with respect to x. �

We now establish the x → ±∞ behaviour of the mNLS solutions (2.9).

Theorem 2.7. Suppose A,B and C are matrices as in (2.1) satisfying the minimality
requirements (2.2) and such that A1 and A

†
2 do not have eigenvalues in common but have all of

their eigenvalues in the open right half-plane. Then the mNLS solution (2.9) is exponentially
decaying as x → ±∞ for fixed t ∈ R.

Proof. With no loss of generality we give the proof for t = 0. By PolTrig we denote
the complex vector space of all finite linear combinations of functions xn, xn cos(γ x) and
xn sin(γ x), where n = 0, 1, 2, . . . and γ > 0. Then the entries of the matrix exponentials
e−xA and e−xA†

are finite linear combination of functions of the type q(x) erx for q ∈ PolTrig
and r ∈ R, as is easily seen by using the similarity of A to a matrix in Jordan normal form.
Thus there exists a finite set F of distinct real numbers such that

F(x)
def= det �(x; 0) =

∑
f ∈F

qf (x) ef x

for certain qf ∈ F . Putting

f+ = maxF, f− = minF, ε± = dist(f±,F \ {f±}),
we have the asymptotic expression

det �(x; 0) =
{
qf+(x) ef+x[1 + O(e−ε1x)], x → +∞,

qf−(x) ef−x[1 + O(eε2x)], x → −∞,

for any ε1 ∈ (0, ε+) and ε2 ∈ (0, ε−), where qf± are elements of PolTrig that are positive as
x → ±∞. Now

Tr[u(x, 0)u(x, 0)†] = F(x)F ′′(x) − F ′(x)2

F(x)2
.

Then it is clear that the numerator has the form

F(x)F ′′(x) − F ′(x)2 =
∑
f ∈F

rf (x) ef x,

where

rf (x) = qf (x)q ′′
f (x) − [q ′

f (x)]2

belongs to PolTrig. It is now easily verified that

Tr[u(x, 0)u(x, 0)†] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

rf+(x) ef+x

[qf+(x) ef+x]2
[1 + O(e−ε1x)], x → +∞,

rf−(x) ef−x

[qf−(x) ef−x]2
[1 + O(eε2x)], x → −∞,

for any ε1 ∈ (0, ε+) and ε2 ∈ (0, ε−). Hence,

Tr[u(x, 0)u(x, 0)†] =

⎧⎪⎪⎨
⎪⎪⎩

rf+(x)

qf+(x)2
e−f+x[1 + O(e−ε1x)], x → +∞,

rf−(x)

qf−(x)2
e−f−x[1 + O(eε2x)], x → −∞,

for any ε1 ∈ (0, ε+) and ε2 ∈ (0, ε−). Since f+ > 0 (unless A2 is the zero matrix) and f− < 0
(unless A1 is the zero matrix), we get exponential decay, as claimed. �

10
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2.4. Transforming the triple (A,B,C)

In this subsection, we discuss the effect on the mNLS solution u(x, t) of certain transformations
on the triple (A,B,C), where A is a square matrix of order p such that A and −A† do not
have eigenvalues in common, C is an m × p matrix, and B is a p × n matrix.

1. Multiplying B and C by unitary matrices. By replacing B by BV and C by UC for
unitary matrices U and V , we leave C†C and BB† (and hence Q,N and �(x; t)) unaltered
but replace u(x, t) by V †u(x, t)U † which is again a solution of the mNLS equation.

2. Similarity. By replacing (A,B,C) by (SAS−1, SB,CS−1) for some nonsingular p × p

matrix S, we replace the matrix C†C by (S†)−1C†CS−1, the matrix Q by (S†)−1QS−1, BB†

by SBB†S†, N by SNS† and �(x; t) by (S†)−1�(x; t)S†. Thus det �(x; t) and u(x, t) remain
unchanged. Analogous similarity results can be found in [6, 11].

3. Parity. Let us replace (A,B,C) by (−A,B,C). Then Q and N are replaced by −Q and
−N and �(x; t) by �(−x; t). As a result, u(x, t) is converted to u(−x, t), which solves the
mNLS equation.

4. Conjugate transposition. Let us replace (A,B,C) by (A†, C†, B†), which switches the
roles of n and m. Then Q and N switch places and �(x; t) is replaced by e4itA2

�(x;−t)† e−4itA2
.

Thus u(x, t) is converted to the mNLS solution

u(x,−t)† = −2C e−xA e4itA2
[Ip + N (x)Q(x;−t)]−1 e−xAB.

5. Self-similarity. Let us replace (A,B,C) by (A + i(c/2)I, B,C), where c ∈ R. Then N
and Q do not change, while �(x; t) is replaced by

e2ctA†
[Ip + Q(x − 2ct, t)N (x − ct)]e−2ctA† = e2ctA†

�(x − 2ct; t) e−2ctA†
.

As a result, u(x, t) is replaced by

−2B† e−xA†
ei(c/2)x e2ctA†

�(x − 2ct; t)−1e−2ctA†
e−xA†

ei(c/2)x e4it (A†)2
e−ic2t e4ctA†

C†,

which coincides with

eic(x−ct)u(x − 2ct, t),

in compliance with a well-known self-similarity relation for mNLS solutions.

6. Extension. Let us replace (A,B,C) by (Ǎ, B̌, Č), where

Ǎ =
⎡
⎣∗1 ∗2 ∗5

0 A ∗4

0 0 ∗3

⎤
⎦ , B̌ =

⎡
⎣∗6

B

0

⎤
⎦ , Č = [0 C ∗7], (2.20)

while Ǎ and −Ǎ† do not have eigenvalues in common and, apart from that, the asterisks are
arbitrary matrices of compatible sizes. Then it is easily verified that

ČǍj B̌ = CAjB, j = 0, 1, 2, . . . . (2.21)

By expansion into a power series in x we get from (2.21)

Č e−xǍB̌ = C e−xAB, x ∈ R. (2.22)

It is now easily seen that

e−xǍ−4itǍ2 =
⎡
⎣∗ ∗ ∗

0 e−xA−4itA2 ∗
0 0 ∗

⎤
⎦ , e−xǍ†+4it (Ǎ)2 =

⎡
⎣∗ 0 0

∗ e−xA†+4it (A†)2
0

∗ ∗ ∗

⎤
⎦ .

11
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As a result,

B̌† e−xǍ† = [∗ B† e−xA†
0], e−xǍ†+4it (Ǎ†)2

Č† =
⎡
⎣ 0

e−xA†+4it (A†)2
C†

∗

⎤
⎦ .

Proposition 2.8. The solutions Q̌ and Ň of the Lyapunov equations

Ǎ†Q̌ + Q̌Ǎ = Č†Č, (2.23a)

ǍŇ + ŇǍ† = B̌B̌†, (2.23b)

have the form

Q̌ =
⎡
⎣0 0 0

0 Q Q[23]

0 Q
†
[23] Q[33]

⎤
⎦ , Ň =

⎡
⎢⎣

N[11] N[12] 0

N
†
[12] N 0
0 0 0

⎤
⎥⎦ , (2.24)

where Q[33] and N[11] are selfadjoint.

Proof. Put

Ň =

⎡
⎢⎣

N[11] N[12] N[13]

N[21] N[22] N[23]

N[31] N[32] N[33]

⎤
⎥⎦ .

Then Ň is selfadjoint and hence N[rs] = N
†
[sr] (r, s = 1, 2, 3), because Ǎ and −Ǎ† are assumed

not to have any eigenvalues in common. From (2.20) and (2.23b) we get

∗3N[33] + N[33]∗†
3 = 0,

3N[32] + N[32]A
† + N[33]∗†

4 = 0,

3N[31] + N[31] ∗†
1 +N[32] ∗†

2 +N[33]∗†
3 = 0.

Since the eigenvalues ∗1, A and ∗3 are eigenvalues of Ǎ and Ǎ and −Ǎ† do not have eigenvalues
in common, we successively get N[33] = 0, N[32] = 0 and N[31] = 0 [12, theorem 18.5].
Furthermore,

AN[22] + N[22]A
† = BB†,

which implies that N[22] = N [cf (2.4b)]. Hence, Ň has the form (2.24). The proof for Q̌ is
analogous. �

Proposition 2.8 implies that

�̌(x; t)
def= I + Q̌(x; t)Ň (x) = I + e−xǍ†+4it (Ǎ)2

Q̌ e−2xǍ−4itǍ2
Ň e−xǍ†

=
⎡
⎣I 0 0

? Ip + Q(x; t)N (x) 0
? ? I

⎤
⎦ ,

(2.25)

where the question marks stand for unspecified matrices. Hence,

det(I + Q̌(x; t)Ň (x)) = det(Ip + Q(x; t)N (x)) > 0, (x, t) ∈ R
2.

Using (2.25) we get

�̌(x; t)−1 =
⎡
⎣I 0 0

? �(x; t)−1 0
? ? I

⎤
⎦ ,

12
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where the question marks stand for unspecified matrices. Therefore,

ǔ(x, t)
def= −2B̌† e−xǍ†

�̌(x; t)−1 e−xǍ†
e4it (Ǎ†)2

Č†

= −2B† e−xA†
�(x; t)−1 e−xA†

e4it (A†)2
C†.

Consequently,

u(x, t) = −2B† e−xA†
�(x; t)−1 e−xA†

e4it (A†)2
C†

is a global in (x, t) ∈ R
2 solution of the focusing mNLS equation (1.1). In other words,

u(x, t) does not change upon extension of the matrix triple (A,B,C).

2.5. Removing the minimality conditions

Throughout section 2 we have assumed that the triple of matrices (A,B,C) satisfies the
minimality conditions

∞⋂
j=0

Ker(CAj ) = {0},
∞⋂

j=0

Ker(B†(A†)j ) = {0}, (2.26)

while A and −A† do not have eigenvalues in common. When partitioning A,B and C as
in (2.1), we have assumed (2.2), which is, in fact, equivalent to (2.26). In this subsection
we shall prove theorems 2.4–2.6 without assuming (2.1). Since theorem 2.3 cannot easily
be generalized to noninvertible Q1 and Q2, we shall study the effect of extending ‘minimal’
triples (A,B,C) on theorems 2.4–2.6 instead.

Let (A,B,C) be a minimal matrix triple in the sense of (2.26). Then any matrix triple
(Ǎ, B̌, Č) satisfying (2.22) is given by [8, theorem 3.2]

Ǎ = S

⎡
⎣∗ ∗ ∗

0 A ∗
0 0 ∗

⎤
⎦ S−1, B̌ = S

⎡
⎣∗

B

0

⎤
⎦ , Č = [0 C ∗]S−1, (2.27)

where S is a nonsingular matrix, Ǎ and −Ǎ† do not have eigenvalues in common and, apart
from that, the asterisks are arbitrary matrices of compatible sizes. In other words, (Ǎ, B̌, Č)

is obtained from (A,B,C) by extension and similarity, which are operations that do not
affect the mNLS solution u(x, t). Thus we have proved the following generalization of
theorems 2.4–2.6.

Theorem 2.9. Suppose A,B and C are matrices as in (2.1) such that A1 and A
†
2 do not have

eigenvalues in common but have all of their eigenvalues in the open right half-plane. Then

u(x, t) = −2B† e−xA†
�(x; t)−1 e−xA†

e4it (A†)2
C†

is a global in (x, t) ∈ R
2 solution of the focusing mNLS equation (1.1). Moreover,

Tr[u(x, t)u(x, t)†] = ∂2

∂x2
log[det(Ip + Q(x; t)N (x))] > 0.

3. Some illustrative examples

In this section we present a few illustrative examples. For n = m = 1, other examples (and in
particular multiple pole examples) can be found in [6], complete with plots for various values
of t.

13
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Example 3.1. Let A = a be a scalar off the imaginary axis, B = b a complex nonzero row
vector of length m and C = c a complex nonzero column vector of length n. Then

Q = ‖c‖2

2p
, N = ‖b‖2

2p
, �(x; t) = 1 +

‖c‖2‖b‖2

4p2
e−4px e16pqt ,

where p = Re a 
= 0 and q = Im a. Then we obtain the one-soliton solution

u(x, t) = −2e−2p(x−4qt) e2i(qx+2(p2−q2)t)

1 + ‖c‖2‖b‖2

4p2 e−4px e16pqt
ρ = − e−2px0 e2i(qx+2(p2−q2)t)

cosh[2p(x − x0 − 4qt)]
ρ,

where ρ = b†c† is an n×m matrix of rank 1, x0 = (1/2p) log(‖ρ‖/2|p|), u(x, t) = φ(x, t)ρ

and φ(x, t) is a scalar function satisfying the rescaled focusing NLS equation

iφt + φxx + 2‖ρ‖2|φ|2φ = 0.

Example 3.2. Consider distinct α, β > 0, nonzero complex row vectors b1, b2 of length m
and nonzero complex column vectors c1, c2 of length n, and put

A =
[
α 0
0 −β

]
, B =

[
b1

b2

]
, C = [c1 c2]. (3.1)

Then we easily compute that

Q =

⎡
⎢⎢⎢⎣

c
†
1c1

2α

c
†
1c2

α − β

c
†
2c1

α − β
−c

†
2c2

2β

⎤
⎥⎥⎥⎦ , N =

⎡
⎢⎢⎢⎣

b1b
†
1

2α

b1b
†
2

α − β

b2b
†
1

α − β
−b2b

†
2

2β

⎤
⎥⎥⎥⎦ .

Consequently,

det(I2 + Q(x; t)N (x)) = 1 +
‖c1‖2‖b1‖2

4α2
e−4αx +

‖c2‖2‖b2‖2

4β2
e4βx

+
e4i(α2−β2)t c

†
1c2b2b

†
1 + e−4i(α2−β2)t c

†
2c1b1b

†
2

(α − β)2
e−2(α−β)x

+

(
‖c1‖2‖c2‖2

4αβ
+

∣∣c†1c2

∣∣2

(α − β)2

)(
‖b1‖2‖b2‖2

4αβ
+

∣∣b1b
†
2

∣∣2

(α − β)2

)
e−4(α−β)x

=
∣∣∣∣∣1 +

e4i(α2−β2)t c
†
1c2b2b

†
1

(α − β)2
e−2(α−β)x

∣∣∣∣∣
2

+
‖c1‖2‖b1‖2

4α2
e−4αx +

‖c2‖2‖b2‖2

4β2
e4βx

+

(
‖c1‖2‖b1‖2‖c2‖2‖b2‖2

16α2β2
+

∣∣c†1c2

∣∣2‖b1‖2‖b2‖2 + ‖c1‖2‖c2‖2
∣∣b1b

†
2

∣∣2

(α − β)2

)
e−4(α−β).

Hence, this determinant is positive irrespective of the choice of (x, t) ∈ R
2. Asymptotically

we have

det(I2 + Q(x; t)N (x)) =

⎧⎪⎪⎨
⎪⎪⎩

‖c2‖2‖b2‖2

4β2
(1 + O(e−4 min(α,β)x)) e4βx, x → +∞,

‖c1‖2‖b1‖2

4α2
(1 + O(e4 min(α,β)x)) e−4αx, x → −∞.

Using (2.9) we obtain

u(x, t) = −2
e4iα2tNum1(x) + e4iβ2tNum2(x)

det(I2 + Q(x; t)N (x))
,

14
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where

Num1(x) = b
†
1c

†
1 e−2αx +

(
‖b2‖2

2β
b
†
1 +

b2b
†
1

α − β
b
†
2

) (
‖c2‖2

2β
c
†
1 +

c
†
1c2

α − β
c
†
2

)
e−(2α−4β)x,

Num2(x) = b
†
2c

†
2 e2βx +

(
‖b1‖2

2α
b
†
2 − b1b

†
2

α − β
b
†
1

) (
‖c1‖2

2α
c
†
2 − c

†
2c1

α − β
c
†
1

)
e−(4α−2β)x .

Thus there exist bounded functions F1(t) and F2(t) of t ∈ R such that

u(x, t) =
{

F1(t) e−2αx(1 + O(e−4 min(α,β)x)), x → +∞,

F2(t) e2βx(1 + O(e4 min(α,β)x)), x → −∞.

Example 3.3. Let A = diag(a1, . . . , ap) be a diagonal matrix such that aj 
= −ak for
j, k = 1, . . . , p, and let B and C be given by

B =

⎡
⎢⎣

b1

...

bp

⎤
⎥⎦ , C = [c1 . . . cp],

where b1, . . . , bp are complex nonzero row vectors of length m and c1, . . . , cp are complex
nonzero column vectors of length n. Then

Q =
[

c
†
j ck

aj + ak

]p

j,k=1

, N =
[

bjb
†
k

aj + ak

]p

j,k=1

.

As a result, for j, k = 1, . . . , p we have

�(x; t)j,k = δjk +
p∑

l=1

e−x(aj +ak+2al) e4it (aj
2−al

2)
c
†
j cl

aj + al

blb
†
k

al + bk

,

and therefore

u(x, t) = −2
[
e−xa1b

†
1 . . . e−xapb†

p

]
�(x; t)−1

⎡
⎢⎢⎣

e−xa1 e4ita1
2
c
†
1

...

e−xap e4itap
2
c
†
p

⎤
⎥⎥⎦ .
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