
Integr. equ. oper. theory 62 (2008), 517–540

0378-620X/040517-24, DOI 10.1007/s00020-008-1640-3
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Abstract. In this article the scattering matrix pertaining to the defocusing
matrix Zakharov-Shabat system on the line is related to the scattering op-
erator arising from time-dependent scattering theory. Further, the scattering
data allowing for a unique retrieval of the potential in the defocusing matrix
Zakharov-Shabat system are characterized.
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1. Introduction

Consider the matrix Zakharov-Shabat system

−iJ dX
dx

(x, λ)− V (x)X(x, λ) = λX(x, λ), x ∈ R, (1)

where

J =
(

In 0n×m

0m×n −Im

)
, V (x) =

(
0n×n iq(x)
∓iq(x)† 0m×m

)
, (2)

Ip is the identity matrix of order p, the dagger stands for the conjugate transpose,
and the entries of q(x) belong to L1(R). The plus sign in (2) occurs in the focusing
case and the minus sign in the defocusing case. Equation (1) has been studied
extensively. We mention the original articles by Zakharov and Shabat [25] (n =
m = 1) and Manakov [15] (n = 1 and m = 2) and in particular [1, 2, 3], where
also some of the applications are discussed. For the applications to fiber optics we
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refer to [13, 21]. Equation (1) can also be viewed as a so-called canonical system
(cf. [20, 5] and references therein).

As in [4, 22, 8], for λ ∈ R we define the Jost solution from the left,1 Fl(x, λ),
and the Jost solution from the right, Fr(x, λ), as the (n + m) × (n + m) matrix
solutions of (1) that satisfy the boundary conditions

Fl(x, λ) = eiλJx[In+m + o(1)], x→ +∞, (3a)

Fr(x, λ) = eiλJx[In+m + o(1)], x→ −∞. (3b)

Actually, the Jost solutions follow from the Volterra integral equations

Fl(x, λ) = eiλJx − iJ
∫ ∞

x

dy eiλJ(x−y)V (y)Fl(y, λ), (4a)

Fr(x, λ) = eiλJx + iJ

∫ x

−∞
dy eiλJ(x−y)V (y)Fr(y, λ). (4b)

Then these two Jost solutions satisfy

Fl(x, λ) = eiλJx[al(λ) + o(1)], x→ −∞, (5a)

Fr(x, λ) = eiλJx[ar(λ) + o(1)], x→ +∞, (5b)

where al(λ) and ar(λ) are called transition matrices. It is easily seen that al(λ)
and ar(λ) are each other’s inverses, while

al(λ)−1 = Jal(λ)†J, ar(λ)−1 = Jar(λ)†J, defocusing case,

al(λ)−1 = al(λ)†, ar(λ)−1 = ar(λ)†, focusing case.

Moreover, since (1) is a first order system, we have

Fl(x, λ) = Fr(x, λ)al(λ), Fr(x, λ) = Fl(x, λ)ar(λ). (6)

Introducing the Faddeev functions

Ml(x, λ) = Fl(x, λ)e−iλJx, Mr(x, λ) = Fr(x, λ)e−iλJx, (7)

we obtain from (4) the Volterra integral equations

Ml(x, λ) = In+m − iJ
∫ ∞

x

dy eiλJ(x−y)V (y)Ml(y, λ)eiλJ(y−x), (8a)

Mr(x, λ) = In+m + iJ

∫ x

−∞
dy eiλJ(x−y)V (y)Mr(y, λ)eiλJ(y−x). (8b)

Defining the modified Faddeev functions

m+(x, λ) = Ml(x, λ)
(
In+̇0m×m

)
+Mr(x, λ)

(
0n×n+̇Im

)
, (9a)

m−(x, λ) = Mr(x, λ)
(
In+̇0m×m

)
+Ml(x, λ)

(
0n×n+̇Im

)
, (9b)

where A+̇B denotes the direct sum of the square matrices A and B, we see that
m+(x, λ) is analytic in λ ∈ C+ and continuous in λ ∈ C+ and m−(x, λ) is analytic

1In [3] the term “Jost function” is used for the (n+m)×n and (n+m)×m submatrices composed

of the first n and last m columns, respectively.
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in λ ∈ C− and continuous in λ ∈ C−. The corresponding modified Jost solutions
are then defined by

f+(x, λ) = m+(x, λ)eiλJx, f−(x, λ) = m−(x, λ)eiλJx. (10)

The modified Faddeev functions are related by the scattering matrix S(λ) by means
of the Riemann-Hilbert problem

m−(x, λ) = m+(x, λ)JS(λ)J = m+(x, λ)
(
Tl(λ) −R(λ)
−L(λ) Tr(λ)

)
, (11)

where S(λ) is unitary in the defocusing case and J-unitary in the focusing case.
The n × n matrix Tl(λ) and the m × m matrix Tr(λ) are called transmission
coefficients, while the n ×m matrix R(λ) and the m × n matrix L(λ) are called
reflection coefficients.

In [4, 3, 22] the scattering coefficients were introduced ad hoc to create an
operational inverse scattering theory without relating them to time dependent
scattering theory [14, 19, 24, 23]. In this article we introduce the scattering operator
as in time dependent scattering theory by

S = Ω+(Ω−)†,

where Ω± are the Moeller wave operators. In the defocusing case, where the free
Hamiltonian H0 = −iJ(d/dx) and the full Hamiltonian H = H0 − V are both
selfadjoint on the direct sum of n+m copies of L2(R), we then prove the existence
and asymptotic completeness of Ω± and hence the unitarity of S for potentials
with entries in L1(R). Applying the unitary equivalence by the (modified) Fourier
transform F, we then go on to prove that FSF−1 is the multiplication by a unitary
matrix function S(λ) of order n+m. We then proceed to identify S(λ) with the
scattering matrix S(λ) given by (11) and defined in [4] in terms of the transition
matrices.

Finally, we briefly touch on the Marchenko integral equation method for
recovering the potential from one of the reflection coefficients (See [4, 3, 8] in the
defocusing case, [22, 3] in the focusing case without bound states, and [8, 3] in
the focusing case) and characterize the scattering data that lead to a defocusing
L1-potential. We note that a full characterization of the scattering data for the
Schrödinger equation on the line is known [16, 18] as is a characterization of the
scattering data for the matrix Zakharov-Shabat system on the half-line [17].

Let us discuss the contents of the various sections. In Sec. 2 we derive ex-
pressions for the resolvent and the spectral decomposition of the full Hamiltonian.
Section 3 contains the results on the wave operators, the scattering operator, and
the scattering matrix. We also prove the absolute continuity of the full Hamil-
tonian. In Sec. 4 we review the necessary Marchenko theory, prove boundedness,
compactness, and continuous dependence of the Marchenko integral operator on x,
and solve the characterization problem. In Appendix A we discuss the precise def-
inition of the full Hamiltonian −iJ(d/dx)− V .
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We now introduce some notations. By C+ and C− we denote the open upper
and lower complex half-planes. We put C± = C± ∪ R. The orthogonal direct sum
of p copies of L2(R) is written as Hp. Let Hs

p denote the orthogonal direct sum of
p copies of the Sobolev space Hs(R) of measurable functions φ on R whose Fourier
transforms φ̂ satisfy

‖φ‖2,s =
[∫ ∞

−∞
dξ (1 + ξ2)s/2|φ̂(ξ)|2

]1/2

.

The `1-direct sum of p copies of L1(R) is written as Lp. By L1
p we denote the

`1-direct sum of p copies of the weighted space L1 def= L1(R; (1 + |x|)dx). The
corresponding spaces of p× q matrices of vectors in the same space are denoted by
Hp×q, Hs

p×q, Lp×q, and L1
p×q, respectively. Throughout this article we partition

square matrices H of order n+m as follows:

H =
(

H1 H2

H3 H4

)
,

where H1 is n× n, H2 is n×m, H3 is m× n, and H4 is m×m. This partitioning
will be applied in particular to Jost solutions, Faddeev matrices, and transition
matrices.

2. Resolvent of the Full Hamiltonian

In this section we derive an expression for the resolvent operator (λ − H)−1 for
λ ∈ C \ R and apply it to find the spectral decomposition of H.

Let φ ∈ Hn+m and λ ∈ C \ R. In order to find the resolvent (λ −H)−1, we
need to determine Ψ(·, λ) ∈ Hn+m such that

(H − λ)Ψ = −iJ d

dx
Ψ(x, λ)− V (x)Ψ(x, λ)− λΨ(x, λ) = −φ(x).

Letting λ ∈ C+ and writing Ψ(x, λ) = f+(x, λ)Φ(x, λ), we get

−iJf+(x, λ)
d

dx
Φ(x, λ)+

[
−iJ d

dx
f+(x, λ)−V (x)f+(x, λ)−λf+(x, λ)

]
︸ ︷︷ ︸

=0(n+m)×(n+m)

Φ(x, λ)

= −φ(x),

and hence

d

dx
Φ(x, λ) = −if+(x, λ)−1Jφ(x) = −iJg+(x, λ)φ(x),
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where g+(x, λ) = Jf+(x, λ)−1J . Thus, writing g+(x, λ) = e−iλJxn+(x, λ) we get

Φup(x, λ) = −i
∫ x

−∞
dy e−iλy[n+(y, λ)φ(y)]up = −i

∫ x

−∞
dy [g+(y, λ)φ(y)]up,

Φdn(x, λ) = −i
∫ ∞

x

dy eiλy[n+(y, λ)φ(y)]dn = −i
∫ ∞

x

dy [g+(y, λ)φ(y)]dn,

where Φup(x, λ) =
(
In 0n×m

)
Φ(x, λ) and Φdn(x, λ) =

(
0m×n Im

)
Φ(x, λ). Anal-

ogously, letting λ ∈ C− and writing Ψ(x, λ) = f−(x, λ)Φ(x, λ), we get

−iJf−(x, λ)
d

dx
Φ(x, λ)+

[
−iJ d

dx
f−(x, λ)−V (x)f−(x, λ)−λf−(x, λ)

]
︸ ︷︷ ︸

=0(n+m)×(n+m)

Φ(x, λ)

= −φ(x),

and hence
d

dx
Φ(x, λ) = −if−(x, λ)−1Jφ(x) = −iJg−(x, λ)φ(x),

where g−(x, λ) = Jf−(x, λ)−1J . Thus, writing g−(x, λ) = e−iλJxn−(x, λ) we get

Φup(x, λ) = +i
∫ ∞

x

dy e−iλy[n−(y, λ)φ(y)]up = +i
∫ ∞

x

dy [g−(y, λ)φ(y)]up,

Φdn(x, λ) = +i
∫ x

−∞
dy eiλy[n−(y, λ)φ(y)]dn = +i

∫ x

−∞
dy [g−(y, λ)φ(y)]dn.

Consequently,

[(λ−H)−1φ](x) =
∫ ∞

−∞
dy G(x, y;λ)φ(y), (12)

where the Green’s function G(x, y;λ) is given by

G(x, y;λ) =


−i f+(x, λ) 1

2 (I + J)g+(y, λ), Imλ > 0, x > y,

−i f+(x, λ) 1
2 (I − J)g+(y, λ), Imλ > 0, x < y,

+i f−(x, λ) 1
2 (I + J)g−(y, λ), Imλ < 0, x < y,

+i f−(x, λ) 1
2 (I − J)g−(y, λ), Imλ < 0, x > y.

(13)

Now recall that for λ ∈ R

f+(x, λ) = Fl(x, λ)
1
2
(I + J) + Fr(x, λ)

1
2
(I − J)

= Fl(x, λ)
[
1
2
(I + J) + ar(λ)

1
2
(I − J)

]
= Fl(x, λ)

(
In ar2(λ)

0m×n ar4(λ)

)
.

We now easily verify that for λ ∈ R

g+(x, λ) = Jf+(x, λ)−1J =
(

In ar2(λ)ar4(λ)−1

0m×n ar4(λ)−1

)
JFl(x, λ)−1J.
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In the same way we get for λ ∈ R

f−(x, λ) = Fr(x, λ)
1
2
(I + J) + Fl(x, λ)

1
2
(I − J)

= Fr(x, λ)
[
1
2
(I + J) + al(λ)

1
2
(I − J)

]
= Fr(x, λ)

(
In al2(λ)

0m×n al4(λ)

)
= Fl(x, λ)ar(λ)

(
In al2(λ)

0m×n al4(λ)

)
= Fl(x, λ)

(
ar1(λ) 0n×m

ar3(λ) Im

)
,

where we have used that ar(λ)al(λ) = In+m. Thus for λ ∈ R

g−(x, λ) = Jf−(x, λ)−1J =
(

In al2(λ)al4(λ)−1

0m×n al4(λ)−1

)
JFr(x, λ)−1J

=
(

ar1(λ)−1 0n×m

ar3(λ)ar1(λ)−1 Im

)
JFl(x, λ)−1J.

By taking the adjoints we get for λ ∈ R

f+(x, λ)† =
(

In 0n×m

ar2(λ)† ar4(λ)†

)
Fl(x, λ)† =

(
In 0n×m

−al3(λ) al4(λ)

)
JFl(x, λ)−1J,

f−(x, λ)† =
(
ar1(λ)† ar3(λ)†

0m×n Im

)
Fl(x, λ)† =

(
al1(λ) −al2(λ)
0m×n Im

)
JFl(x, λ)−1J.

Thus for λ ∈ R we have

g+(x, λ) =
(

In ar2(λ)ar4(λ)−1

0m×n ar4(λ)−1

) (
al1(λ)−1 al1(λ)−1al2(λ)
0m×n Im

)
f−(x, λ)†

=
(
al1(λ)−1 0n×m

0m×n ar4(λ)−1

)
f−(x, λ)†, (14a)

g−(x, λ) =
(

ar1(λ)−1 0n×m

al3(λ)ar1(λ)−1 Im

) (
In 0n×m

al4(λ)−1al3(λ) al4(λ)−1

)
f+(x, λ)†

=
(
ar1(λ)−1 0n×m

0m×n al4(λ)−1

)
f+(x, λ)†. (14b)

Using estimates as derived in [7] for the Schrödinger equation on the line, we
prove the following

Proposition 1. Suppose the entries of V (x) belong to L1. Then

‖Ml(x, λ)− In+m‖ ≤ const.
1 + max(0,−x)

1 + |x|
, (15a)

‖Mr(x, λ)− In+m‖ ≤ const.
1 + max(0, x)

1 + |x|
, (15b)

uniformly in λ ∈ R.

Proof. From (8a) we easily derive by iteration

‖Ml(x, λ)‖ ≤ 1 +
∫ ∞

x

dy ‖V (y)‖‖Ml(y, λ)‖ ≤ exp
(∫ ∞

x

dy ‖V (y)‖
)
≤ e‖V ‖1 .
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Next, we apply (8a) again and get

‖Ml(x, λ)− In+m‖ ≤ e‖V ‖1
∫ ∞

x

dy ‖V (y)‖

≤ e‖V ‖1 1 + max(0,−x)
1 + |x|

∫ ∞

x

dy (1 + |y|)‖V (y)‖

≤ ‖V ‖L1 e‖V ‖1
1 + max(0,−x)

1 + |x|
,

which proves (15a). The estimate (15b) follows from (8b) in an analogous way. �

3. Wave Operators

Consider the free Hamiltonian H0 and the full Hamiltonian H defined by

H0 = −iJ d

dx
, H = H0 − V = −iJ d

dx
− V,

defined on dense domains in Hn+m. Here we assume V to have its entries in
L1(R). Then H0 is an absolutely continuous selfadjoint operator with domain
H1

n+m and spectrum R. In the defocusing case H is a selfadjoint operator with
essential spectrum R. Note that iH0 and iH generate the strongly continuous
unitary groups {eitH0}t∈R and {eitH}t∈R on Hn+m (cf. [14]).

We first prove the following elementary result [8]. It has a well-known analog
in the case of the Schrödinger equation [14, Sec. 5.3].

Proposition 2. Let λ ∈ C \ R and let W have its entries in L2(R). Then W (λ −
H0)−1 is a Hilbert-Schmidt operator on Hn+m. Moreover, if W1 and W2 have their
entries in L2(R), then W1(λ−H0)−1W2 is a Hilbert-Schmidt operator on Hn+m.

Proof. It suffices to prove that, for T = −i(d/dx) defined on L2(R) with domain
H1(R) and for W ∈ L2(R), the operator W (λ− T )−1 is Hilbert-Schmidt. Indeed,
letting F stand for the Fourier transform, we have

(FW (λ− T )−1F−1φ̂)(ξ) =
1√
2π

∫ ∞

−∞
dη

Ŵ (ξ − η)
λ+ ξ

φ̂(η).

Hence, FW (λ−T )−1F−1 is an integral operator on L2(R) with square integrable
kernel and hence of Hilbert-Schmidt type.

The second part is immediate from

[W1(λ−H0)−1W2φ](x) =


−iW1(x)

∫ x

−∞
dy eiλ(x−y)W2(y)φ(y), Imλ > 0,

+iW1(x)
∫ ∞

x

dy e−iλ(y−x)W2(y)φ(y), Imλ < 0,

which shows W1(λ−H0)−1W2 to be a matrix of integral operators on L2(R) with
square integrable kernels. �
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Corollary 3. Let the potential V have its entries in L1(R) ∩ L2(R). Then the
domains of the free Hamiltonian H0 and the full Hamiltonian H coincide.

In the defocusing case we now define the wave operators Ω̃± by

Ω̃±φ = lim
τ→±∞

eiτHe−iτH0φ, (16)

where the limit is taken in the norm of Hn+m. If the limits in (16) exist, then Ω̃±
maps the domain of H0 into the domain of H and

Ω̃±H0 = HΩ̃± on D(H0). (17)

By the same token, in the defocusing case we define the wave operators

Ω±φ = lim
τ→±∞

eiτH0e−iτHPac(H)φ, (18)

where Pac(H) is the orthogonal projection onto the absolutely continuous subspace
of H. If the limits in (18) exist, then Ω± maps the domain of H into the domain
of H0 and

Ω±H = H0Ω± on D(H), (19)
while

Ω̃± = (Ω±)†.
For the basic theory of wave operators we refer to [14, 19, 23, 24].

We summarize the above results in the following

Theorem 4. Let the entries of V (x) belong to L1(R). Then the wave operators Ω±
defined by (16) exist and have the absolutely continuous subspace of H as their
range. Moreover, the scattering operator

S = Ω+Ω̃− (20)

is unitary.

Proof. Since V has its entries in L1(R), we can write V = V1V2, where V1 and V2

both have their entries in L2(R). Put

W (λ) = I + V2(λ−H0)−1V1, λ ∈ C \ R.
Then, according to the second part of Proposition 2, for nonreal λ the operator
W (λ) is a Hilbert-Schmidt perturbation of the identity. Then for λ ∈ C \ R we
apply Proposition 2 and derive that

(λ−H)−1 − (λ−H0)−1 = −(λ−H0)−1V1W (λ)−1V2(λ−H0)−1

= −

V1(λ−H0)−1︸ ︷︷ ︸
Hilbert-Schmidt

†W (λ)−1︸ ︷︷ ︸
bounded

V2(λ−H0)−1︸ ︷︷ ︸
Hilbert-Schmidt

is a trace class operator. We refer to Appendix A for details on the precise definition
of H. According to [23, Theorem 22.19], the wave operators Ω± and Ω̃± defined by
(17) and (18) exist. Then Ω± and Ω̃± are partial isometries such that Ω̃± = (Ω±)†,
where Ω± has full range and the absolutely continuous subspace ofH as its cokernel
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(see [23, Theorem 21.3], [14, Lemma X 4.11]). Moreover, S as defined in (20) is a
unitary operator on Hn+m. �

Equation (16) implies that the wave operators Ω± satisfy the intertwining
relations (17) and (19). As a result, the scattering operator S leaves invariant the
domain of H0 and commutes with H0.

For φ ∈ Hn+m, put

φ̆(λ) = (Fφ)(λ) =
∫ ∞

−∞
dx e−iλJxφ(x). (21a)

Then

φ(x) = (F−1φ̆)(x) =
1
2π

∫ ∞

−∞
dλ eiλJxφ̆(λ). (21b)

For φ ∈ H1
n+m we get

ψ̆(λ) = −iJφ̆′(λ) = λφ̆(λ).
where ψ = H0φ. Thus

(FH0φ)(λ) = λ(Fφ)(λ), φ ∈ D(H0) = H1
n+m. (22)

Since this operator commutes with FSF−1, the unitary operator FSF−1 coincides
with the operator of multiplication by an (almost everywhere existing) unitary
scattering matrix [23, Theorem 21.15], S(λ) say. In other words,

(FSF−1φ̂)(λ) = S(λ)φ̂(λ), φ̂ ∈ Hn+m. (23)

Let us now introduce the transformation G that diagonalizes the full Hamil-
tonian H.

Lemma 5. Suppose the entries of V (x) belong to L1 ∩ L2(R). Then the linear
operators Gl and Gr defined by

(Glφ)(λ) =
∫ ∞

−∞
dx [al1(λ)−1+̇al4(λ)−1]Fr(x, λ)†φ(x), (24a)

(Grφ)(λ) =
∫ ∞

−∞
dx [ar1(λ)−1+̇ar4(λ)−1]Fl(x, λ)†φ(x), (24b)

are bounded on Hn+m. Moreover, Gl and Gr are boundedly invertible on Hn+m

and their inverses are given by

(G−1
l φ̂)(x) =

1
2π

∫ ∞

−∞
dλFl(x, λ)φ̂(λ), (24c)

(G−1
r φ̂)(x) =

1
2π

∫ ∞

−∞
dλFr(x, λ)φ̂(λ). (24d)

Further, Gl and Gr diagonalize the Hamiltonian H in the sense that for each
φ ∈ D(H)

(GlHφ)(λ) = λ(Glφ)(λ), (25a)

(GrHφ)(λ) = λ(Grφ)(λ). (25b)
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Proof. Proposition 1 implies that

Fl(x, λ) = eiλJx + o((1 + |x|)−1), x→ +∞,

= eiλJxal(λ) + o((1 + |x|)−1), x→ −∞,

where the entries of V (x) are assumed to be in L1 for the right-hand sides to be
true. Therefore,

G−1
l = 2πF−1 (Π+ + [al(λ)]Π−) +K,

where Π± are the restrictions of vectors in Hn+m to R± and K is a bounded linear
operator on Hn+m. The boundedness of K follows from the estimate

‖Kφ‖ ≤ const.
∫ ∞

−∞
dx
‖φ(x)‖√
1 + x2

≤ π const.‖φ‖.

Consequently, G−1
l itself is bounded on Hn+m. The boundedness proofs for G−1

r ,
Gl, and Gr are similar, but depart from (4b) and the adjoints of (4). It is now
immediate from the two versions of (28) that the bounded linear operators defined
by (24a) and (24b) are the inverses of those defined by (24c) and (24d).

Since

G(x, λ) def= [al1(λ)−1+̇al4(λ)−1]Fr(x, λ)†=[al1(λ)−1+̇al4(λ)−1]JFr(x, λ)−1J (26)

satisfies the adjoint matrix Zakharov-Shabat system

i
∂G

∂x
(x, λ)J −G(x, λ)V (x) = λG(x, λ), (27)

we easily verify that for φ ∈ D(H) = D(H0) = H1
n+m

λ(Glφ)(λ) = [iG(x, λ)Jφ(x)]∞x=−∞

+
∫ ∞

−∞
dxG(x, λ) (−iJφ′(x)− V (x)φ(x))

= (GlHφ)(λ),

which implies (25a). In the same way we prove (25b). �

We now prove that the full Hamiltonian H, like the free Hamiltonian H0, is
absolutely continuous.

Theorem 6. Suppose the entries of V (x) belong to L1 ∩ L2(R). Then the Hamil-
tonian operator H is absolutely continuous.

Proof. We divide the proof into three parts.
1. Let σ denote the resolution of the identity of the selfadjoint operator H,

where σ(E) is an orthogonal projection on Hn+m for each real Borel set E. Then
for each pair of real numbers a, b with a < b and each φ ∈ Hn+m we have

σ((a, b)) + σ([a, b])
2

φ = lim
ε→0+

1
2πi

∫ b

a

dτ
(
(λ− iε−H)−1−(λ+ iε−H)−1

)
φ,

where the limit is taken in the strong sense [14]. Thus if a and/or b is an eigenvalue
of H, which results in a nonzero eigenprojection σ({a}) and/or σ({b}), then these
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eigenprojections are only taken account of with weight 1
2 . Let us now apply this

identity. Using (12) and (13) we take the limit as ε→ 0+ and get[
σ((a, b)) + σ([a, b])

2
φ

]
(x) =

∫ b

a

dζ

∫ ∞

−∞
dyJ (x, y; ζ)φ(y),

where

J (x, y; ζ) =

=


1
2π

[
f+(x, ζ) 1

2 (I + J)g+(y, ζ) + f−(x, ζ) 1
2 (I − J)g−(y, ζ)

]
, x > y,

1
2π

[
f+(x, ζ) 1

2 (I − J)g+(y, ζ) + f−(x, ζ) 1
2 (I + J)g−(y, ζ)

]
, x < y.

2. Let us now write J (x, y; ζ) in a different way. Using (9) and (10) we write
(14) in the form

J (x, y; ζ) =


1
2π
Fl(x, ζ)[al1(ζ)−1+̇al4(ζ)−1]Fr(y, ζ)†, x > y,

1
2π
Fr(x, ζ)[ar1(ζ)−1+̇ar4(ζ)−1]Fl(y, ζ)†, x < y.

Using (6) and the J-unitarity of the transition matrices, we compute for x > y

2πJ (x, y; ζ) = Fl(x, ζ)[al1(ζ)−1+̇al4(ζ)−1]Fr(y, ζ)†

= Fr(x, ζ)al(ζ)[al1(ζ)−1+̇al4(ζ)−1]ar(λ)†Fl(x, λ)†

= Fr(x, ζ)al(ζ)[al1(ζ)−1+̇al4(ζ)−1]Jar(ζ)−1JFl(x, ζ)†

= Fr(x, ζ)al(ζ)[al1(ζ)−1+̇al4(ζ)−1]Jal(ζ)JFl(x, ζ)†

= Fr(x, ζ)[(al1(ζ)− al2(ζ)al4(ζ)−1al3(ζ))

+̇(al4(ζ)− al3(ζ)al1(ζ)−1al2(ζ))]Fl(x, ζ)†

= Fr(x, ζ)[ar1(ζ)−1+̇ar4(ζ)−1]Fl(x, ζ)†,

where we have used al(ζ)ar(ζ) = In+m at the last step. Consequently,

J (x, y; ζ) =
1
2π
Fl(x, ζ)[al1(ζ)−1+̇al4(ζ)−1]Fr(y, ζ)†

=
1
2π
Fr(x, ζ)[ar1(ζ)−1+̇ar4(ζ)−1]Fl(y, ζ)†, (28)

irrespective of whether x > y or x < y.
3. Equations (24) imply that∫ ∞

−∞
dyJ (x, y; ζ)φ(y) =

1
2π
Fl(x, ζ)(Glφ)(ζ) =

1
2π
Fr(x, ζ)(Grφ)(ζ),
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where Gl and Gr are bounded operators. Hence, for φ, ψ ∈ Hn+m we have∫ ∞

−∞
dx

∫ ∞

−∞
dy 〈C(x, y; ζ)φ(y), ψ(x)〉

=


1
2π
〈(Glφ)(ζ), [ar1(ζ)+̇ar4(ζ)](Grψ)(ζ)〉,

1
2π
〈(Grφ)(ζ), [al1(ζ)+̇al4(ζ)](Glψ)(ζ)〉,

which implies the boundedness of the integral operator J (ζ) with integral kernel
J (x, y; ζ) for each ζ ∈ R. Consequently, H is absolutely continuous with σ′(ζ) =
J (ζ), as claimed. �

We now relate the scattering operator S to the scattering matrix

S(λ) =
(
Tl(λ) R(λ)
L(λ) Tr(λ)

)
,

where

Tl(λ) = al1(λ)−1, R(λ) = ar2(λ)ar4(λ)−1

L(λ) = al3(λ)al1(λ)−1, Tr(λ) = ar4(λ)−1.

Here we have defined the scattering coefficients as in [4, 22, 8]. We also have the
alternative expressions

R(λ) = −al1(λ)−1al2(λ), L(λ) = −ar4(λ)−1ar3(λ).

Recall that in the defocusing case the scattering matrix S(λ) is unitary. Using the
scattering matrix we can write (28) in the form

J (x, y;λ) = Fl(x, λ)
(

In R(λ)
R(λ)† Im

)
Fl(x, λ)†

= Fr(x, λ)
(
In L(λ)†

L(λ) Im

)
Fr(x, λ)†.

To prove that S(λ) = S(λ) for each λ ∈ R, we follow the path taken in [23]
fot the Schrödinger equation on the line.

Theorem 7. Let the entries of V (x) belong to L1 ∩L2(R). Then the Fourier trans-
formed scattering operator FSF−1 coincides with the operator of premultiplication
by the unitary (n+m)× (n+m) matrix function S(λ).

Proof. Equations (17), (22), and (25) imply that on F[D(H0)]

GlΩ̃±F−1[λ]
(22)
= GlΩ̃±H0F−1 (17)

= GlHΩ̃±F−1 (25a)
= [λ]GlΩ̃±F−1,

where [λ] is the operator of multiplication by the independent variable. Analo-
gously, (19), (22), and (25a) imply that on G[D(H)]

FΩ±G−1
l [λ]

(25a)
= FΩ±HG−1

l

(19)
= FH0Ω±G−1

l

(22)
= [λ]FΩ±G−1

l .
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Consequently, both GlΩ̃±F−1 and FΩ±G−1
l are operators of premultiplication by

an (n+m)×(n+m) matrix function [23, Theorem 21.15]. Hence there exist matrix
functions w̃±(λ) and w±(λ) such that

(GlΩ̃±F−1φ̂)(λ) = w̃±(λ)φ̂(λ), (FΩ±G−1
l φ̂)(λ) = w±(λ)φ̂(λ), (29)

where φ̂ ∈ Hn+m. Then using (20) and (23) it follows that

S(λ) = w+(λ)w̃−(λ), λ ∈ R. (30)

In the above derivation we could have employed Gr instead of Gl.
Let us now compute w̃±(λ). Writing G(x, λ) defined by (26) in the form

G(x, λ) = e−iλJxN(x, λ), (31)

we obtain from (27) the Volterra integral equations

N(x, λ) = eiλJxN+∞(λ)e−iλJx + i

∫ ∞

x

dy eiλJ(x−y)N(y, λ)V (y)eiλJ(y−x)J,

(32a)

N(x, λ) = eiλJxN−∞(λ)e−iλJx − i
∫ x

−∞
dy eiλJ(x−y)N(y, λ)V (y)eiλJ(y−x)J,

(32b)

where

N+∞(λ) = [al1(λ)−1+̇al4(λ)−1]ar(λ)† = [al1(λ)−1+̇al4(λ)−1]Jar(λ)−1J

=
(

In −al1(λ)−1al2(λ)
−al4(λ)−1al3(λ) Im

)
, (33a)

N−∞(λ) = al1(λ)−1+̇al4(λ)−1. (33b)

We then compute

w̃±(λ)φ̂(λ)
(29)
= (GlΩ̃±F−1φ̂)(λ)

(16)
= lim

τ→±∞
(Gle

iτHe−iτH0F−1φ̂)(λ)

(22)
= lim

τ→±∞
eiλτ (GlF−1e−i[ξ]τ φ̂)(λ)

(24)
= lim

τ→±∞
eiλτ

∫ ∞

−∞
dxG(x, λ)(F−1e−i[ξ]τ φ̂)(x)

(21b)
= lim

τ→±∞
eiλτ

∫ ∞

−∞
dxG(x, λ)

1
2π

∫ ∞

−∞
dξ eiξJxe−iξτ φ̂(ξ)

= lim
τ→±∞

∫ ∞

−∞
dξ ei(λ−ξ)τ

(
1
2π

∫ ∞

−∞
dxG(x, λ)eiξJx

)
φ̂(ξ)

(31)
= lim

τ→±∞

∫ ∞

−∞
dξ ei(λ−ξ)τ

(
1
2π

∫ ∞

−∞
dx e−iλJxN(x, λ)eiξJx

)
φ̂(ξ),



530 Demontis and van der Mee IEOT

where we have changed the order of integration at the penultimate transition.
Substituting (32) we get

w̃±(λ)φ̂(λ) = lim
τ→±∞

1
2π

∫ ∞

−∞
dξ ei(λ−ξ)τ

[∫ ∞

0

dxN+∞(λ)ei(ξ−λ)Jx

+
∫ 0

−∞
dxN−∞(λ)ei(ξ−λ)Jx −

∫ ∞

−∞
dxΦ(x, λ)Jei(ξ−λ)Jx

]
φ̂(ξ),

where

Φ(x, λ) =


+i

∫ x

−∞
dy e−iλJyN(y, λ)V (y)eiλJy, x < 0,

−i
∫ ∞

x

dy e−iλJyN(y, λ)V (y)eiλJy, x > 0,

is continuous in 0 6= x ∈ R, vanishes as x→ ±∞, and satisfies [cf. (32)]

Φ(0+, λ)− Φ(0−, λ) = N+∞(λ)−N−∞(λ).

Moreover, for potentials V whose entries belong to L1, the entries of Φ(·, λ) belong
to L1(R) for each λ ∈ R. When taking the limit as τ → ±∞, the terms involving
N±∞(λ) either lead to a delta function integration or vanish and the term involving
Φ(x, λ) vanishes. As a result,

w̃±(λ)φ̂(λ) =
{
N±∞(λ)

1
2
(I + J) +N∓∞(λ)

1
2
(I − J)

}
φ̂(λ). (34)

Next, we compute

w±(λ)φ̂(λ)
(29)
= (FΩ±G−1

l φ̂)(λ)
(18)
= lim

τ→±∞
(FeiτH0e−iτHPac(H)G−1

l φ̂)(λ)

= lim
τ→±∞

(FeiτH0e−iτHG−1
l φ̂)(λ)

(22)
= lim

τ→±∞
eiλτ (FG−1

l e−i[ξ]τ φ̂)(λ)

(21a)
= lim

τ→±∞
eiλτ

∫ ∞

−∞
dx e−iλJx(G−1

l e−i[ξ]τ φ̂)(x)

(25)
= lim

τ→±∞
eiλτ

∫ ∞

−∞
dx e−iλJx 1

2π

∫ ∞

−∞
dξ Fl(x, ξ)e−iξτ φ̂(ξ)

= lim
τ→±∞

∫ ∞

−∞
dξ ei(λ−ξ)τ

(
1
2π

∫ ∞

−∞
dx e−iλJxFl(x, ξ)

)
φ̂(ξ)

(13)
= lim

τ→±∞

∫ ∞

−∞
dξ ei(λ−ξ)τ

(
1
2π

∫ ∞

−∞
dx e−iλJxMl(x, ξ)eiξJx

)
φ̂(ξ),

where we have used the absolute continuity [Lemma 6] at the third transition and
changed the order of integration at the penultimate transition. Substituting (8)
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we get

w±(λ)φ̂(λ) = lim
τ→±∞

1
2π

∫ ∞

−∞
dξ ei(λ−ξ)τ

[∫ ∞

0

dx ei(ξ−λ)JxM+∞(ξ)

+
∫ 0

−∞
dx ei(ξ−λ)JxM−∞(ξ)−

∫ ∞

−∞
dx JΦ̃(x, ξ)

]
φ̂(ξ),

where Ml(x, λ)→M±∞(λ) as x→ ±∞ and

Φ̃(x, λ) =


−i

∫ x

−∞
dy e−iλJyV (y)M(y, λ)eiλJy, x < 0,

+i
∫ ∞

x

dy e−iλJyV (y)M(y, λ)eiλJy, x > 0.

As above, we obtain for potentials V with entries in L1

w±(λ)φ̂(λ) =
{

1
2
(I + J)M±∞(λ) +

1
2
(I − J)M∓∞(λ)

}
φ̂(λ), (35)

where M+∞(λ) = In+m and M−∞(λ) = al(λ).
Let us compute S(λ):

S(λ)
(30)
= w+(λ)w̃−(λ)

(34)
=

(
In 0n×m

al3(λ) al4(λ)

)
w̃−(λ)

(33)
=

(
In 0n×m

al3(λ) al4(λ)

) (
al1(λ)−1 −al1(λ)−1al2(λ)
0m×n Im

)
=

(
al1(λ)−1 −al1(λ)−1al2(λ)

al3(λ)al4(λ)−1 al4(λ)− al3(λ)al1(λ)−1al2(λ)

)
=

(
al1(λ)−1 ar2(λ)ar4(λ)−1

al3(λ)al4(λ)−1 ar4(λ)−1

)
=

(
al1(λ)−1 ar2(λ)ar4(λ)−1

al3(λ)al1(λ)−1 ar4(λ)−1

)
=

(
Tl(λ) R(λ)
L(λ) Tr(λ)

)
= S(λ),

which concludes the proof. �

4. Marchenko Theory

In this section we prove the unique solvability of the Marchenko integral equations
that lead to the solution of the inverse scattering problem of determining the po-
tential in the defocusing matrix Zakharov-Shabat system from one of the reflection
coefficients. The information obtained will then be used to solve the characteriza-
tion problem of describing the scattering data leading to a unique determination
of a potential having its entries in L1(R).



532 Demontis and van der Mee IEOT

4.1. From Reflection Coefficient to Scattering Matrix

We first summarize some of the properties of the scattering coefficients, referring
to [4, Theorem 3.1] and [8, Proposition 3.13 and the two lines above its statement]
for the proof.

Proposition 8. In the defocusing case the scattering matrix S(λ) is unitary, i.e.,

S(λ)−1 = S(λ)†, λ ∈ R.

Further, the reflection and transmission matrices are continuous in λ ∈ R, while
as λ → ±∞ the reflection coefficients vanish and the transmission coefficients
tend to the identity. Moreover, the transmission coefficients Tl(λ) and Tr(λ) are
continuous in λ ∈ C+ and analytic in λ ∈ C+, while

sup
λ∈C+

‖Tl(λ)‖ > 0, sup
λ∈C+

‖Tr(λ)‖ > 0. (36a)

The reflection coefficients R(λ) and L(λ) satisfy the inequalities

sup
λ∈R
‖R(λ)‖ < 1, sup

λ∈R
‖L(λ)‖ < 1. (36b)

In order to construct the scattering matrix from one of the reflection co-
efficients, we define the so-called Wiener algebra Wq denote of all q × q matrix
functions of the form [9, 10, 11]

Z(λ) = Z∞ +
∫ ∞

−∞
dα z(α)eiλα, (37)

where z(α) is a q × q matrix function whose entries belong to L1(R) and Z∞ =
Z(±∞). Then Wq is a Banach algebra with unit element endowed with the norm

‖Z(λ)‖Wq = ‖Z∞‖+
∫ ∞

−∞
dα ‖z(α)‖.

The analogous Banach algebra of q × r matrix functions is denoted as Wq×r, so
that Wq×q = Wq. By Wq×r

+ we denote the closed subalgebra of Wq×r consisting
of those Z(λ) of the type (37) for which z(α) is supported on the positive real line.
We write Wq

+ instead of Wq×q
+ .

It is important to recall the following result [4, 8].

Theorem 9. The coefficients al(λ) and ar(λ) are elements of Wn+m.

Now it is simple to show that in the defocusing case the scattering data consist
of just one reflection coefficient, either R(λ) or L(λ), while the other reflection
coefficient and the transmission coefficients can computed in the process. Indeed,
using the unitarity of S(λ) we first determine the unique matrix functions Tl(λ)
and Tr(λ) such that Tl is an invertible element of Wn×n

+ with Tl(±∞) = In, Tr
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is an invertible element of Wm×m
+ with Tr(±∞) = Im, and the following two

equations are true:

Tl(λ)Tl(λ)† = In −R(λ)R(λ)†, λ ∈ R,

Tr(λ)† Tr(λ) = Im −R(λ)†R(λ), λ ∈ R.

These factorization problems have a unique solution, as a result of the fol-
lowing [12, 10, 6]

Theorem 10. Let F ∈ L1(R; Cp×p) be such that

Ŵ (λ) = Ip +
∫ ∞

−∞
dt eiλtF (t)

is positive and selfadjoint for λ ∈ R. Then there exist unique functions F+ ∈
L1(R+; Cp×p) and G+ ∈ L1(R+; Cp×p) such that

Ŵ (λ) =
[
Ip +

∫ ∞

0

dt eiλtF+(t)
] [
Ip +

∫ ∞

0

dt e−iλtF+(t)
]†
,

Ŵ (λ) =
[
Ip +

∫ ∞

0

dt e−iλtG+(t)
]† [

Ip +
∫ ∞

0

dt eiλtG+(t)
]
,

while

det
([
Ip +

∫ ∞

0

dt eiλtF+(t)
])
6= 0, λ∈ C+,

det
([
Ip +

∫ ∞

0

dt eiλtG+(t)
])
6= 0, λ∈ C+.

Finally we define L(λ) by

L(λ) = −Tr(λ)R(λ)† [Tl(λ)†]−1, λ ∈ R.

On the other hand, given L ∈ Wm×n satisfying the second of (36b), we first
determine the unique matrix functions Tl(λ) and Tr(λ) such that Tl is an invertible
element of Wn×n

+ with Tl(±∞) = In, Tr is an invertible element of Wm×m
+ with

Tr(±∞) = Im, and the following two equations are true:

T †l (λ)Tl(λ) = In − L†(λ)L(λ), λ ∈ R,

Tr(λ)Tr(λ)† = Im − L(λ)L†(λ), λ ∈ R.

By Theorem 10, these factorization problems again have a unique solution. We
then define

R(λ) = −Tl(λ)L(λ)†[Tr(λ)†]−1, λ ∈ R.
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4.2. Coupled and uncoupled Marchenko equation

It is well-known [4, 8] that the Marchenko integral equation can be written in
two different and equivalent forms. In the defocusing case the coupled Marchenko
equations2 are given by

K1(x, α) = −
∫ ∞

0

dβ K2(x, β) Ω(α+ β + 2x)†, (38a)

K2(x, α) = −Ω(α+ 2x)−
∫ ∞

0

dβ K1(x, β) Ω(α+ β + 2x), (38b)

where

Ω(α) =
1
2π

∫ ∞

−∞
dλR(λ)e−iαλ, R(λ) =

∫ ∞

−∞
dαΩ(α)eiαλ. (39)

Substituting (38a) into (38b), we obtain the uncoupled Marchenko equation

K2(x, α) + Ω(α+ 2x)

−
∫ ∞

0

dβ K2(x, β)
∫ ∞

0

dγ Ω(β + γ + 2x)†Ω(α+ γ + 2x) = 0n×m. (40)

Formally we can write the adjoint of the uncoupled Marchenko equation (40) as(
I − Ω†Ω

)
K†

2 = −Ω†.

The potential q(x) is obtained from the solution of the Marchenko equation (40)
as follows:

q(x) = 2K2(x, 0+). (41)

In the same way we get3

K3(x, α) = −
∫ ∞

0

dβ K4(x, β) ˜Ω(α+ β − 2x) (42a)

K4(x, α) = −Ω̃(α− 2x)† −
∫ ∞

0

dβ K3(x, β) Ω̃(α+ β − 2x)†, (42b)

where

Ω̃(α) =
1
2π

∫ ∞

−∞
dλL(λ)e−iαλ, L(λ) =

∫ ∞

−∞
dα Ω̃(α)eiαλ.

Substituting (42a) into (42b), we obtain the uncoupled Marchenko equation

K4(x, α) + Ω̃(α− 2x)†

−
∫ ∞

0

dβ K4(x, β)
∫ ∞

0

dγ Ω̃(β + γ − 2x)Ω̃(α+ γ − 2x)† = 0n×m. (43)

The potential q(x) is obtained from the solution of the Marchenko equation (43)
as follows:

q(x) = −2K4(x, 0+).

2In [4, 8] the notations K1 = Bl1 and K2 = Bl2 were used.
3In [4, 8] the notations K3 = Br1 and K4 = Br2 were used.
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To prove the unique solvability of (40) we need the following two elementary
results. A proof of Lemma 12 can be found in [11].

Lemma 11. Let Ω belong to L1(R+). Then the operator KΩ defined by

(KΩb) (α) =
∫ ∞

0

dβ Ω(α+ β)b(β) (44)

is bounded on L2(R+) and satisfies the norm estimate

‖KΩ‖ ≤ ‖Ω̂‖∞ ≤ ‖Ω‖1,

where Ω̂ denotes the Fourier transform of Ω.

Proof. The estimate ‖KΩ‖ ≤ ‖Ω‖1 is immediate, while the estimate ‖KΩ‖ ≤ ‖Ω̂‖∞
follows using the commutative diagram

L2(R+) −−−−−−−−−−−−−−−−→
imbedding plus inversion

L2(R) −−−−→
F

L2(R)

KΩ

y y[Ω̂]

L2(R+) ←−−−−−−−−−−−−−
orthogonal projection

L2(R) ←−−−−
F−1

L2(R)

where the first step involves the imbedding-plus-inversion f(β) 7→ f(−β) and the
third step multiplication by Ω̂. �

Lemma 12. Let Ω belong to L1(R+). Then for 1 ≤ p < +∞ the operator KΩ

defined by (44) is compact on Lp(R+) and has the norm estimate

‖KΩ‖ ≤ ‖Ω‖1.

Using Lemma 11, Lemma 12, and Proposition 8, it is easy to prove the
following

Theorem 13. For each x ∈ R and 1 ≤ p < +∞ the Marchenko equations (38) are
uniquely solvable for K1(x, ·) and K2(x, ·) with entries in Lp(R+).

Proof. In the defocusing case Ω̂(λ) = R(λ) and (36b) is true. Then the integral
operators appearing in (38) have an operator norm bounded above by ‖R‖∞,
which is strictly less than 1. The unique solvability of (38) now follows also in the
other Lp-spaces as a result of the compactness of the integral operators involved.
Indeed, putting TΩ = I −KΩ and X = L2(R+) ∩ Lp(R+) endowed with the sum
of the L2 and Lp norms, we first prove the compactness of KΩ on X. Next, since
TΩ is Fredholm of index zero on Lp(R+) and X and invertible on L2(Ω) and X is
continuously and densely imbedded in both L2(Ω) and Lp(Ω), the invertibility of
TΩ is also true on X and Lp(R+). �
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4.3. Characterization problem

The characterization problem can be described as follows:

Give necessary and sufficient conditions for an n × m matrix func-
tion R(λ) to be the right reflection coefficient of a defocusing matrix
Zakharov-Shabat system (1) whose potential q(x) has its entries in
L1(R).

In this subsection we shall solve this characterization problem. A similar char-
acterization problem can be formulated and solved in terms of the left reflection
coefficient L(λ). In fact, the solutions of the direct and inverse scattering problems
for (1) provide a 1,1-corresponding between potentials q(x) with entries in L1(R)
and a suitable class of n × m matrix functions R(λ) or m × n matrix functions
L(λ) on the line, as depicted in the following diagram:

q(x) with entries in L1(R)

direct scattering problem
−−−−−−−−−−−−−−−−−−−−→
←−−−−−−−−−−−−−−−−−−−−−
inverse scattering problem

R(λ) or L(λ)

The solution of the characterization problem for the Schrödinger equation
on the line is well-known [16, 18]. As far as we know, no solution of the charac-
terization problem for the matrix Zakharov-Shabat system has been published.
In the defocusing case on the half-line Melik-Adamjan [17] has given a complete
characterization of the Jost solution as scattering data to retrieve an L1-potential.

Theorem 14. In the defocusing case it is possible to determine a unique potential
q(x) with entries in L1(R) from the right reflection coefficient R(λ) if and only if
the following conditions are satisfied:

1) supλ∈R ‖R(λ)‖ < 1, and
2) the n×m matrix function Ω(α) given by (39) has its entries in L1(R).

A similar characterization result holds in the case of a left reflection coefficient
L(λ) as scattering data.

Proof. It is well-known [4, 8] that a defocusing matrix Zakharov-Shabat system
(1) with L1-potential has a right reflection coefficient R(λ) satisfying conditions
1)-2) of Theorem 14.

To prove the converse, we assume to have an n × m matrix function R(λ)
with properties 1)-2). We then prove uniquely solvable the Marchenko equations
(38) for K1(x, ·) and K2(x, ·) with entries in L1(R+). We then consider the integral
operator K(x)

Ω as a function of x ∈ R. Then for b(α) with entries in Lp(R+) we
have

‖[K(x1)
Ω −K(x2)

Ω ]b‖p ≤ ‖b‖p
∫ ∞

0

dβ ‖Ω(β + 2x1)− Ω(β + 2x2)‖,
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so that K(x)
Ω depends continuously on x ∈ R in the operator norm. Moreover, its

operator norm

‖K(x)
Ω ‖ ≤

∫ ∞

0

dβ ‖Ω(β + 2x)‖ =
∫ ∞

2x

dγ ‖Ω(γ)‖ → 0, x→ +∞.

Since (38) are uniquely solvable for K1(x, ·) and K2(x, ·) with entries in L1(R+),
we see that for any x0 ∈ R we have

C(x0)
def= sup

x≥x0

∫ ∞

0

dβ ‖K1(x, β)‖ < +∞.

Defining q(x) by (41), i.e., by

q(x) = −2Ω(2x)− 2
∫ ∞

0

dβ K1(x, β)Ω(β + 2x), (45)

by integrating (45) we get for each x0 ∈ R∫ ∞

x0

dx ‖q(x)‖ ≤ (1 + C(x0))‖Ω‖1 < +∞,

which proves that any right tail of the potential obtained has L1 entries.
Next, we apply the same argument to the identity

q(x) = 2Ω̃(−2x)† + 2
∫ ∞

0

dβ K1(x, β)Ω̃(β − 2x)†, (46)

which follows directly from (42). Arguing that

D(x0)
def= sup

x≤x0

∫ ∞

0

dβ ‖K3(x, β)‖ < +∞,

we now get ∫ x0

−∞
dx ‖q(x)‖ ≤ (1 +D(x0))‖Ω‖1 < +∞,

which proves that any left tail of the potential obtained has L1 entries.
As a result, the potential as a whole has L1 entries. �

Appendix A. Definition of the Full Hamiltonian

Write V = V1V2 as the product of the two matrix functions V1 and V2 with L2

entries. Then for λ ∈ C \ R
W (λ) = I + V2(λ−H0)−1V1 (47)

is a Hilbert-Schmidt perturbation of the identity, so that W (λ) is invertible except
possibly on a discrete subset of C \ R. Now put

R(λ) def= (λ−H0)−1 − (λ−H0)−1V1W (λ)−1V2(λ−H0)−1, (48)

which implies

R(λ)† = (λ−H0)−1 − (λ−H0)−1V †2 [W (λ)†]−1V †1 (λ−H0)−1. (49)
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Then for nonreal λ the operators R(λ) and R(λ)† both have a zero kernel, because
(λ−H0)−1 does. Hence, R(λ) has a zero kernel and a dense range.

Next, we show that R(λ) satisfies the resolvent identity. Indeed,

R(λ)R(ζ) = (λ−H0)−1(ζ −H0)−1

− (λ−H0)−1(ζ −H0)−1V1W (ζ)−1V2(ζ −H0)−1

− (λ−H0)−1V1W (λ)−1V2(λ−H0)−1(ζ −H0)−1

+ (λ−H0)−1V1W (λ)−1V2(λ−H0)−1(ζ −H0)−1V1W (ζ)−1V2(ζ −H0)−1.

Multiplying each term (called I, II, III, and IV) by (ζ − λ) and using theresolvent
identity

(ζ − λ)(λ−H0)−1(ζ −H0)−1 = (λ−H0)−1 − (ζ −H0)−1,

we obtain

(ζ − λ)R(λ)R(ζ) = (λ−H0)−1 − (ζ −H0)−1

− {(λ−H0)−1 − (ζ −H0)−1}V1W (ζ)−1V2(ζ −H0)−1

− (λ−H0)−1V1W (λ)−1V2{(λ−H0)−1 − (ζ −H0)−1}
− (λ−H0)−1V1W (λ)−1V2(ζ −H0)−1

+ (λ−H0)−1V1W (ζ)−1V2(ζ −H0)−1,

where the last two terms occur by writing W (λ)−1{V2(λ − H0)−1V1 − V2(ζ −
H0)−1V1}W (ζ)−1 as the difference of two terms. Letting the terms in the right-
hand side be called Ia, Ib, IIa, IIb, IIIa, IIIb, IVa, and IVb, we see that IVaand
IIIb cancel out and IVb and IIa cancel out. At the end, we get

(ζ − λ)R(λ)R(ζ) = R(λ)−R(ζ),

which is the resolvent identity. Thus there exists a closed and densely defined linear
operator H̃ such that

R(λ) = (λ− H̃)−1, λ ∈ C \ R.

Clearly, (λ− H̃)−1 − (λ−H0)−1 is a trace class operator.
To derive “mixed” resolvent identities, we first derive from (48) and (49) with

the help of (47)

V2R(λ) = V2(λ−H0)−1 − [W (λ)− I]W (λ)−1V2(λ−H0)−1

= W (λ)−1V2(λ−H0)−1,

V †1 R(λ)† = V †1 (λ−H0)−1 − [W (λ)† − I][W (λ)†]−1V †1 (λ−H0)−1

= [W (λ)†]−1V †1 (λ−H0)−1,

which are Hilbert-Schmidt operators [cf. Proposition 2] except possibly on a dis-
crete subset of C \ R. These identities in turn imply
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(λ−H0)−1 − (λ−H0)−1V1V2R(λ) = (λ−H0)−1

− (λ−H0)−1V1W (λ)−1V2(λ−H0)−1 = R(λ),

(λ−H0)−1 − (λ−H0)−1V †2 V
†
1 R(λ)† = (λ−H0)−1

− (λ−H0)−1V †2 [W (λ)†]−1V †1 (λ−H0)−1 = R(λ)†,

which again imply

(λ−H0)−1 − [(λ−H0)−1V1][V2R(λ)] = R(λ), (50a)

(λ−H0)−1 − [R(λ)V1][V2(λ−H0)−1] = R(λ). (50b)

Equations (50) imply that R(λ)† = R(λ) and hence that H̃ is a selfadjoint operator
onHn+m. Moreover, H̃ is an extension of H0−V (which can in principle be defined
on the dense domain H2

n+m, but not as a closed operator). We therefore define the
full Hamiltonian H as follows:

H = H̃.

If the entries of V belong to L1(R)∩L2(R), then H = H̃ has the same domain as
H0, namely H1

n+m.
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