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On unbounded eigenvalues in particle-transport theory 

By C. V. M. van der Mee and C. E. Siewert *, Dept.  of Physics and Ast ronomy,  
The Free  University,  Amsterdam, The  Nether lands  

I. I n t r o d u c t i o n  

It is sometimes assumed in the field of particle-transport theory that there can be 
unbounded eigenvalues only for c = 1, that for c > 1 there is always an imaginary 
eigenvalue, that there can be no finite repeated eigenvalues and that there can be no 
eigenvalues off the real and imaginary axes; in this work we produce explicit counter 
examples to all of these ideas. 

We consider the particle-transport equation [1, 2] written as 

C L 1 

= Pz ~')  ~b (z,/~') dp' (1) I.t-~z ~b(z,p) + ~b(z,l~) -~ ~=o(21 + 1)APz(/~)_S1 

where the constantsf~ are the coefficients in a Legendre representation of the redistribu- 
tion function 

L 

p(~) = Z ( 2 l +  1)f~P~(r fo = 1. (2) 
1 = 0  

We note that p (~) > 0 for all ~ e [ -  1, 1] and that p (~) is normalized so that 

I 

I P(r de = 2. (3) 
- 1  

For steady-state applications in radiative transfer [1] the constant c is the single-scattering 
albedo and, as such, is confined to the segment [0,1] of the real axis. For applications in 
the field of neutron-transport theory [2] the constant c represents the mean number of 
secondary neutrons per collision, and thus any real value of c > 0 can be considered. 
Recalling other applications [3], we note that an equation of the form of Eq. (1) with, in 
general, complex values of c is obtained after Laplace transformation of the time- 
dependent particle-transport equation. 

In this study concerning c e [0, oo) we focus our attention on the case c > 1. Consid- 
ering now that c is the mean number of neutrons per collision, we note that the redistri- 
bution function p (4) can be expressed in terms of the individual laws for anisotropic 
scattering and anisotropic fission. Here we assume only that p (~) _> 0 for all ~ ~ [ - 1 ,  1]. 

Seeking solutions of Eq. (1) of the form 

0; (~,/~) = e -  "/~ ~0 (~,/~), (4) 
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we find that  the "discrete eigenvaIues" ~ must  be zeros of the dispersion function 

1 dp 
A (~) = 1 + z ~ 0 0 , ) - - ,  ~ r [ -  1, 1], (5) 

-1 # - - z  

where the "characteristic function" ~k (#) is given by 

L 

~k 0z) = c E (21 + 1)f~ Pz (/*) at (#). (6) 
2 1 = 0  

Here the polynomials g~ (p) are those used by Chandrasekhar  [1], i.e., 

h,#g,(,u) = (l + I)#,+ 1 (p) + l#t_ 1 (#) (7) 

with go (/t) = 1 and 

ht = ( 2 / +  1)(1 - cf3. (8) 

In this paper  we report  the findings of our study concerning the number  and the 
location in the complex plane of the zeros of the dispersion function A (z) for the class of 
problems defined by c > 1, L = 2 and A (oo) = 0. For  this case we also compute the 
polynomial  solutions of Eq. (1). By focusing our attention on this specific class of prob-  
lems we demonstrate  clear examples of situations not previously encountered for the 
more  studied cases of c < 1. For  example, we find that  A (z) can have a zero of order four 
at infinity, we find that  A (z) can have a finite double zero and we find that A (z) can have 
zeros off the real and imaginary axes. 

As we intend to investigate in detail cases that  yield unbounded eigenvalues, we 
summarize here previously reported [4] expressions for the first three terms in an expan- 
sion of A(z) for Izl ~ oo. Thus for Iz l  ~ m we write 

a2 a, A(z) ~ A(oo) + -fi + -~ + .. .  (9) 

where 
L 

A(oo) = YI(1 - cf3, (10) 
l = 0  

L 

a 2 = - -  c Y. ftBl (11) 
/ = 0  

and 
L 

a,, = -  c Z,  f , C , .  
l=O 

Here W o = 1, B o = 1/3, Co = 1/5 and, for l .> 0, 

and 

(2i + 1) I4~l+ 1 = h z W l, 

(2l + 1)Bt+ 1 = hzB l + 
(I + 2) 2 12 

(2 l + 5) (21 + 3) hz W~ 21 - 1 W~_ i 

(I + 2) 2 12 
( 2 1 + l )  C~+1=h~Cz4 ( 2 1 + 5 ) ( 2 1 + 3 ) h t T ~  2 1 - 1 T t - 1  

where 

[(I+3) 2 (t+2)2 7 
T~ = B, + 2 1 +  S [ 2 I + 7 + ~tt 7 - 5  ] W~ . 

(12) 

(13) 

(14) 

(15) 

(16) 
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II. Unbounded eigenvalnes for L = 2 and c > 1 

In order to be able to exhibit our analysis of unbounded eigenvalues and the 
corresponding solutions of Eq. (1) in a particularly explicit way, we restrict our  attention 
here to the case of quadratically anisotropic scattering and fission. We thus consider 

p(r = 1 + 3f: P: (0  + 5f2 P2 ( 0 ,  (17) 

and in order to have p(~) > 0 for r s [ - 1 ,  1] we consider only those real values of f :  and 
f z  that satisfy the necessary and sufficient conditions 

1 If~[ < �89 + 5f2), - : < f 2  < ~ ,  (18a) 

and 

f ? < s f ( 2 - - 5 f 2 ) , = g  2 ~ - -< f2<~ ,=  ( lSb)  

reported by Dawn and Chen [5]. As we consider c > 1 there clearly are only two ways 
that A (z) can vanish as I zl + 0% viz. cf: = 1 and cf2 = 1. We therefore proceed to 
investigate these two possibilities. 

A: The case of: = 1. We note first of all that  Eqs. (18) can be satisfied only for 
c > ~ and f2 restricted by 

~[ ( L~l'/21_ ~ ~[ ( - L~1/21r J' x / ~ - < c < 2  , (19a) 
i- 1-c2 ] I<A< 1 +  1 

and 

3--C<f2<i[ ( 3"~i/2 l 5c = ~  1 +  1 - - ~ ]  _], 2 = < c < o o .  (19b) 

Considering c > x/~ and only those values off2 that  are allowed by Eqs. (19), we can use 
the argument  principle [6] to deduce that  A (z) has exactly one + pair of zeros in addition 
to the pair that  exists at infinity. If we now compute  a 2 from the equations given in the 
Introduction we find 

3If2 9--4C 1 (20) 
a~  = ~ c  " 

Thus in the event that 

9 - 4 c  
f z  = 5 c ' (21) 

which can happen only for 7/4 _< c < 2, it is apparent  that both pairs of discrete eigenva- 
lues come together at infinity. Of  course if a 2 + 0 the sign of a 2 determines if the finite 
pair of eigenvalues is real (a2 < 0) or imaginary (a 2 > 0). To summarize our conclusions 
for the case cfl  = 1 andfz  restricted by Eqs. (~) ,  we find that a) A (z) has a pair  of zeros 
at infinity plus one _+ pair of real zeros for x /3  < c < 7/4, b) A (z) has a pair of zeros at 
infinity plus one + pair of imaginary zeros for 2 < c < oc and c) A ( z )  has, for 
7/4 _< c _< 2, one pair of  zeros at infinity plus one +_ real pair if 5 cf2 < 9 - 4 c or one + 
imaginary pair if 5 cf2 > 9 - 4 c; for 5 cfz = 9 --  4 c the second pair of zeros becomes 
unbounded so that  for this case A (z) has all four zeros at infinity. To  conclude this case 
we find the solutions to Eq. (1) corresponding to unbounded eigenvalues to be 

01 (z,/~) = P1 (#) (22 a) 
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and 

1 [p  o 2(c--1)  )1 0z (z,/2) = z P1 (,u) + 3 (c 1-----~ (12) ~ 22 7 f2  P2 (# 

plus, if 5 c f  2 = 9 -- 4 c, 

2 Z I P ~  5 1 1 1 )  03(z,u) = ~2P~(u) + 3 ( c -  (u) - 5P2(u) + c _--2-f P3(u) 

and 

(22 b) 

(23 a) 

@4(z ,p)  = ~:aPI(/I) + (P) - ~ P 2 ( #  + c--Z-f P3(/z) c - 1  

1 2 1 1 5  )] 
-- 7(c-- 1) 16(c-- 1) P2(#) + P4(# - (23b) 

B :  The case cf2 = 1. For this case we find that Eqs. (18) yield c => 5/2 and the 
restrictions 

If, IN - c ] j  , < c < 1 0 ,  (24a) 

and 

[f~] =< ~(1 + 5) ,  10__<c< oo. (24b) 

Again we can 
for all c > 5/2 provided f1 satisfies the conditions 

- - < f x <  - -  2 = 

[ 5 ( 2  5 ) ]  1/2 13c-- 10 
--  -- <=fl <= 9 c ( c - -  1)' Co -< c -< 10, 

and 

use the argument principle [6] to show that A (z) has two + pairs of zeros 

(25 a) 

(25 b) 

1 3 c , 0  
- 1 + < f l  <= 9 c ( c -  1)' 10 _< c _  oo, (25c) 

where c o ~ 3.2603 is the real solution of 

270c 3 -  1384c ~ + 1880c -  775 = 0. (26) 

It is not difficult to show that of these two pairs of zeros, one pair is at infinity and the 
other is purely imaginary. Considering now the other values of c > 5/2 and fl  allowed by 
Eqs. (24), but excluded from Eqs. (25), we find that A (z) has three + pairs of zeros for 

~ - c -  ]~ <f~ __< - Co_<C_< I0, (271) 

and 

9 c ( c - 1 )  = ~  1+  , 1 0 = < c < o c .  (27b) 

Of these three pairs of zeros, we find that one pair is always at infinity. For 27 cft  < 55 
we find, in addition to the pair at infinity, that there are one real pair and one purely 
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imaginary pair of zeros. For  27 r  = 55 we find that there are two pairs of zeros at infinity 
plus one purely imaginary pair of zeros. For  27 eft > 55 we find, in addition to the pair 
at infinity, that there can be either two pairs of purely imaginary zeros or two pairs of 
zeros that are neither real nor  imaginary. We have found here, for example, that A (z) has 
zeros off the real and imaginary axes for c = 9 and f l  = 0.4. We note that the conclusions 
drawn on the location of the zeros of A (z) for 27 cfl > 55 were based on computational 
evidence obtained from the exact solutions of A (z) = 0 given in Ref. 4. We note that 
Davison [7], Kug~er [8] and Protopopescu and SjSstrand [9] have also found cases where 
the eigenvalues can be off the real and imaginary axes. 

For  c __< i the finite zeros ofA (z) are known to be simple [10]. For  c > 1 this need not 
be the case. As the zeros of A (z) occur in __. and conjugate pairs, as the zeros of A (z) 
depend, for the considered case of cf2 = 1, continuously on c and f l  and as we have 
computational evidence of the existence of zeros off the real and imaginary axes, we 
conclude that A (z) can have a pair of double, finite imaginary zeros for 27 cfl > 55 and 
for suitable values of c and f l .  

For  the case cfz = 1 we find the appropriate solutions to Eq. (1) to be 

r ~ (L #) = P2 (#) (28 a) 

and 

02(~,~)  -- ~ e 2 ( . )  + g 3(1 - cfO ~'~ (") - & ( #  (2ab) 

plus, if 27 cf~ = 55, 

and 

6 [1 ~ )] 24[_ 3_3_..___ ] 
,/,3 (.r,.u) = -? & (~) + ~.c e, (~)  - &( ,u  +35L8(c_1)eo(~)+&(~) (28c) 

8 [ 7 2 9  4 )3 
+ 7 1120(c - 1) P~ (/~) -- 5 P3 (#) - P5 (# �9 (28 d) 
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Abstract 

The dispersion function derived from particle-transport theory is analyzed for the specific case 
of a three-term redistribution law in order to define those c > I cases for which there can be either 
one or two pairs of unbounded eigenvalues, and the elementary solutions corresponding to the 
unbounded eigenvalues are reported. 

Zusammenfassung 

Die Dispersions-Funktion, die vonder  Teilchen-Transport-Theorie erhalten wurde, wird ana- 
lysiert ffir den besonderen Fall eines dreigliedrigen Neuverteilungsgesetzes, um die F~ille c > 1 zu 
definieren, ffir die entweder ein oder zwei Paare yon unbegrenzten Eigenwerten existieren. Die 
zugehrrigen elementaren L6sungen werden angegeben. 
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