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In this article, we prove the similarity �and, in the focusing case, the J-unitary
equivalence� of the free Hamiltonian and the restriction of the full Hamiltonian to
the maximal invariant subspace on which its spectrum is real for the matrix
Zakharov–Shabat system under suitable conditions on the potentials. This restric-
tion of the full Hamiltonian is shown to be a scalar-type spectral operator whose
resolution of the identity is evaluated. In the focusing case, the restricted full
Hamiltonian is an absolutely continuous, J-self-adjoint non-J-definitizable, opera-
tor allowing a spectral theorem without singular critical points. To illustrate the
results, two examples are provided. © 2010 American Institute of
Physics. �doi:10.1063/1.3377048�

I. INTRODUCTION

Consider the matrix Zakharov–Shabat system,

iJX��x,�� − V�x�X�x,�� = �X�x,��, x � R , �1.1�

where the prime denotes differentiation with respect to x�R, � is a spectral parameter, and

J = � Im 0m�n

0n�m − In
�, V�x� = �0m�m iq�x�

ir�x� 0n�n
� ,

with the entries of q�x� and r�x� belonging to L1�R�. Note that r�x�=q�x�† in the focusing case and
r�x�=−q�x�† in the defocusing case, where the dagger denotes the matrix conjugate transpose.
�The asterisk is used to denote the complex conjugate of a complex number.� For ��R, the Jost

solutions �̄, �, �, and �̄ and the Jost matrices � and � are defined by

��x,�� = ��̄�x,�� ��x,�� � = �e−i�xIm 0m�n

0n�m ei�xIn
� + o�1� = e−i�Jx + o�1�, x → + � , �1.2�

��x,�� = ���x,�� �̄�x,�� � = �e−i�xIm 0m�n

0n�m ei�xIn
� + o�1� = e−i�Jx + o�1�, x → − � . �1.3�

We refer the reader to Refs. 2, 8, and 21 for a detailed study of the asymptotic and analyticity
properties of the solutions to �1.1�. Therefore, we will use some of those results here without
proof.

Since the matrix Zakharov–Shabat system is first order, there exist, for each ��R, the so-
called transition matrices Al��� and Ar���, such that
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��x,�� = ��x,��Al���, ��x,�� = ��x,��Ar��� ,

hence Al��� and Ar��� are each other’s inverses. Then from �1.1� and �1.2� we obtain

��x,�� = e−i�Jx�Al��� + o�1��, x → − � , �1.4�

��x,�� = e−i�Jx�Ar��� + o�1��, x → + � . �1.5�

In order to state the asymptotics for complex �, we partition the transition matrices into blocks by
putting �throughout we adopt the following partitioning for �m+n�� �m+n� matrices G= � G1 G2

G3 G4
�,

where G1 is m�m, G2 is m�n, G3 is n�m, and G4 is n�n�

Al��� = �Al1��� Al2���
Al3��� Al4���

�, Ar��� = �Ar1��� Ar2���
Ar3��� Ar4���

� ,

where Al1 and Ar1 are of size m�m. The solutions ��x ,�� and ��x ,�� are analytic in ��C+ and
continuous in ��C+, and the same holds true for the matrices Al4��� and Ar1���. Here C+ and C−

denote the upper and lower open complex half planes, respectively. Moreover, for ��C+ we have

��x,�� = � e−i�x�Im + o�1�
o�1�

� , x → − �

e−i�x�Ar1��� + o�1�
o�1�

� , x → + � ,� �1.6a�

��x,�� = �ei�x� o�1�
Al4��� + o�1�

� , x → − �

ei�x� o�1�
In + o�1�

� , x → + � .� �1.6b�

It follows from earlier work �Ref. 8, Theorem 3.16, and Ref. 21, Theorem 5.3� that for ��C+,
det Ar1���=0 if and only if det Al4���=0, which is true if and only if � is an eigenvalue. If �
�R and det Ar1���=0 �or, equivalently, det Al4���=0�, then we call � a spectral singularity. For
the focusing scalar �m=n=1� Zakharov–Shabat system detailed results about spectral singularities

were obtained in Ref. 22. Similarly, �̄�x ,�� and �̄�x ,�� are analytic in ��C−, continuous in �
�C−, and obey

�̄�x,�� = � ei�x� o�1�
In + o�1�

� , x → − �

ei�x� o�1�
Ar4��� + o�1�

� , x → + � ,� �1.7a�

�̄�x,�� = �e−i�x�Al1��� + o�1�
o�1�

� , x → − �

e−i�x�Im + o�1�
o�1�

� , x → + � .� �1.7b�

For ��C−, det Ar4���=0 if and only if ��R, which is true if and only if � is an eigenvalue in the
lower half plane.

We now define the modified Jost functions F+�x ,�� and F−�x ,�� as follows:
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F+�x,�� = ���x,�� ��x,�� �, F−�x,�� = ��̄�x,�� �̄�x,�� � .

Then F��x ,�� is continuous in ��C� and analytic in ��C�. We introduce the scattering matrix

S��� and its inverse S̆��� by

F−�x,�� = F+�x,��JS���J, F+�x,�� = F−�x,��JS̆���J , �1.8�

where ��R. Putting

S��� = �Tr��� L���
R��� Tl���

�, S̆��� = �T̆l��� R̆���

L̆��� T̆r���
� ,

and taking x→ �� in the first of �1.8� we obtain the relations

Tr��� = Ar1���−1, Tl��� = Al4���−1, �1.9�

L��� = − Ar1���−1Ar2��� = Al2���Al4���−1, �1.10�

R��� = Ar3���Ar1���−1 = − Al4���−1Al3��� . �1.11�

In the same way, the second of �1.8� yields

T̆r��� = Ar4���−1, T̆l��� = Al1���−1, �1.12�

L̆��� = − Ar4���−1Ar3��� = Al3���Al1���−1, �1.13�

R̆��� = Ar2���Ar4���−1 = − Al1���−1Al2��� . �1.14�

In the focusing case �V�x�†=−V�x��, it is easily verified that

�Z�x,��†X�x,���� = 0 �1.15�

for any two solutions of �1.1�. In particular, this implies that ��x ,��†��x ,��=��x ,��†��x ,��
= I, where, throughout this paper, I= Im+n. Hence Al��� and Ar��� are unitary, and thus

Ar��� = Al���−1 = Al���†.

It further follows that �for ��R�

Tr��� = T̆l���†, Tl��� = T̆r���†, L��� = − L̆���†, R��� = − R̆���†, �1.16�

which implies JS���†J= S̆���. This means that S��� is J-unitary. In the defocusing case �V�x�
=V�x�†�, we have �Z�x ,��†JX�x ,����=0, and hence

Ar��� = Al���−1 = JAl���†J ,

so S��� is unitary. For later use, we note that from �1.2�–�1.5� and �1.8� we have, for ��R,

F+�x,�� = �e−i�Jx�Ar1��� 0m�n

Ar3��� In
� + o�1� , x → + �

e−i�Jx� Im Al2���
0n�m Al4���

� + o�1� , x → − � ,� �1.17a�
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F−�x,�� = �e−i�Jx� Im Ar2���
0n�m Ar4���

� + o�1� , x → + �

e−i�Jx�Al1��� 0m�n

Al3��� In
� + o�1� , x → − � .� �1.17b�

�Matrix� Zakharov–Shabat systems occur as the linear counterparts of nonlinear evolution
systems when we solve them by means of the inverse scattering transform. These nonlinear
systems include the �matrix� nonlinear Schrödinger equation, the �matrix� modified Korteweg–de
Vries equation, and the sine-Gordon equation.1–3 They are of major interest in applications as
diverse as fiber optics,15,29 surface waves on deep waters,34 plasma waves,25 transmission lines,35

dislocations in crystals,14 and surfaces of constant mean curvature.13 Many mathematicians, physi-
cists, and engineers have contributed to the development of a comprehensive theory of matrix
Zakharov–Shabat systems on the line �e.g., Refs. 2, 5, 8, 21, 23, and 31�. For a comprehensive
theory of the closely related canonical systems on finite intervals or on the half-line, we refer to
Ref. 6 and references therein.

In this article we prove the existence of wave operators W� on the direct sum Hm+n of m
+n copies of L2�R� which intertwine between the free Hamiltonian H0= iJ�d /dx� and the full
Hamiltonian H=H0−V= iJ�d /dx�−V in the sense that

W��	 − H0�−1 = �	 − H�−1PacW�,

where Pac is the projection onto the maximal H-invariant subspace which annihilates the eigen-
vectors and generalized eigenvalues of H corresponding to its nonreal eigenvalues. This result will
be obtained under the following natural hypotheses:

�a� there are no spectral singularities;
�b� the number of nonreal eigenvalues of H is finite.

Either condition is satisfied in the defocusing case and, in general, for potentials with suffi-
ciently small L1-norm. Also, condition �b� follows from condition �a�, because if there were an
infinite number of eigenvalues they would accumulate toward a point on the real axis �since they
are all contained in a compact region �Ref. 21, Theorem 6.1��, which would necessarily be a
spectral singularity. Hypothesis �a� implies that the reflection coefficients R��� and L��� and
transmission coefficients Tl��� and Tr��� are continuous functions of ��R.

In the defocusing case, the free and full Hamiltonians are both self-adjoint on Hm+n and the
difference of their resolvents is a trace-class operator �Ref. 9, proof of Theorem 4�. Standard
time-dependent scattering theory16,28,32,33 then implies the existence and asymptotic completeness
of the wave operators,

W� = lim
t→��

Pace
itHe−itH0, �1.18�

where Pac is the orthogonal projection onto the absolutely continuous subspace of H and the limits
are taken in the strong operator topology. As a result, either wave operator W� acts as a unitary
equivalence between H0 and the restriction of H to the range of Pac, while S= �W+�†W− is a unitary
operator on Hm+n, called the scattering operator. In the focusing case, the Hamiltonian H fails to
be self-adjoint and hence traditional methods cannot be applied. For this reason we generalize to
the present situation integral representations of wave operators involving limits of free and full
Hamiltonian resolvents33 when � approaches the real line, thereby relying on the concept of
H0-smoothness introduced by Kato.17 As in Ref. 17, we then prove the existence and asymptotic
completeness of W�, but not necessarily under small L1-norm restrictions. As a result, we prove
that, under conditions �a� and �b� above, iH generates a bounded strongly continuous group
	eitH
t�R on Hm+n and that W� can be written in the form �1.18�.

In proving H0-smoothness it is crucial to factorize the matrix potential as V=W�2�W�1� and to
show that W�1��	−H0�−1 and �	−H0�−1W�2�, as well as the Birman–Schwinger-type operator W�1�
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��	−H0�−1W�2�, are Hilbert–Schmidt. By also using a Prüfer transformation argument, Klaus and
Shaw23 have shown the nonexistence of nonreal eigenvalues of the scalar �m=n=1� focusing
Zakharov–Shabat system if �q�1
� /2, thus improving on previous nonoptimal bounds.3,26 Analo-
gous results were obtained for the focusing Manakov system �m=1 and n=2� in Ref. 20 and for
the general system �1.1� in Ref. 21.

In the focusing case H0 and H are J-self-adjoint on Hm+n but not J-definitizable, i.e., no
nontrivial polynomial of H0 and H is J-non-negative;7,24 details are given in the Appendix. Thus,
although H0 �as a self-adjoint operator� allows for a spectral theorem, no such result is known to
hold �or to follow directly from standard J-self-adjoint operator theory� for H. Nevertheless, under

conditions �a� and �b� above, the unitary equivalence of H0 and the restriction H̃ of H to the

maximal invariant subspace where the spectrum is real imply that H̃ is a scalar-type spectral
operator �Ref. 12, Chap. XVII, and Ref. 11, Pt. 4�. In the Appendix we compute the resolvent and
the resolution of the identity of H if conditions �a� and �b� are satisfied.

II. RELATIVE SMOOTHNESS

In this section we define relative smoothness �Ref. 17, Definition 1.2, and also Ref. 33, Chap.
4, where T0-smoothness is only defined for self-adjoint T0� and prove that �V�1/2 and �V�−1/2V† are
H0-smooth.

Following Ref. 17, let T0 be a closed and densely defined linear operator on a complex Hilbert
space H whose spectrum is a subset of the real line, and let A be a closed and densely defined
linear operator from H into the complex Hilbert space H�. Then A is called T0-smooth if the
domain D�T0� of T0 is contained in the domain D�A� of A and

sup
�0


−�

�

d��A�� � i� − T0�−1��2 � + �, � � H .

Then, for �0, the linear operators L�
� :H→L2�R ;H�� defined by

�L�
������ = A�� � i� − T0�−1�

are closed and hence bounded, as a result of the closed graph theorem. By the Banach–Steinhaus
theorem, the operators L�

� are uniformly bounded in �0. Hence

�
−�

�

d���A�� + i� − T0�−1��2 + �A�� − i� − T0�−1��2��1/2


 2��A�T0
��� , �2.1a�

where �A�T0
is the smallest possible constant for which �2.1a� holds for ��H and �0. For each

��H the vectors A��� i�−T0�−1� have nontangential a.e. limits as �→0+ which we denote by
A��� i0−T0�−1�. Consequently,

�
−�

�

d���A�� + i0 − T0�−1��2 + �A�� − i0 − T0�−1��2��1/2


 2��A�T0
��� , �2.1b�

where ��H.
Now let A be T0-smooth and B be T0

†-smooth. Then under the assumptions that

�i� Q�	� =
def

A�	−T0�−1B† is uniformly bounded in 	�C \R;
�ii� I−Q�	� is invertible for each 	�C \R;
�iii� �I−Q�	��−1 is uniformly bounded in 	�C \R,

there exists a closed and densely defined linear operator T on H without nonreal spectrum such
that
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�	 − T�−1 = �	 − T0�−1 + ��	 − T0�−1B†��I − Q�	��−1�A�	 − T0�−1� , �2.2�

where 	�C \R. Then T can be viewed as an extension of T0+B†A, T has only real spectrum, A is
T-smooth, and B is T†-smooth. �in Ref. 17 it is assumed that �Q�	���1 for 	�C \R instead of
�ii�–�iii�, but such a reduction in generality is not required.�

In this paper we will use the following generalization of the conditions �i�–�iii�:

�i’� Q�	�=A�	−T0�−1B† is uniformly bounded in 	�C \R;
�ii’� I−Q�	� is invertible for each 	 on 0� �Im 	�
�;
�iii’� �I−Q�	��−1 is uniformly bounded in 	 on 0� �Im 	�
�.

As we will argue below, assumptions �a� and �b� will guarantee that the norm limits I
−Q��� i0�, ��R, are also invertible and bounded. Then we can prove as in Ref. 17, cf. Theorem
1.5, that there exists a closed and densely defined linear operator T on H having its spectrum
outside the two strips 0� �Im 	�
� where �2.2� is valid. Then T can be viewed as an extension of
T0+B†A and A is T-smooth and B is T†-smooth in the sense that �2.1a� holds with the restriction
�
�.

For the sake of convenience, we prove the following two lemmas.8,9,23

Lemma 2.1: Let W�x� be an �m+n�� �m+n� matrix function having its entries in L2�R�. Then
for each nonreal 	 the operators W�	−H0�−1 and �	−H0�−1W are Hilbert–Schmidt on Hm+n.

Let us introduce the Fourier transform map F satisfying

�̂��� = �F����� = 
−�

�

dxei�Jx��x�, ��x� =
1

2�


−�

�

d�e−i�Jx�F����� .

Proof of Lemma 2.1: We compute

�F�	 − H0�−1WF−1�̂���� =
1

2�


−�

�

d�
Ŵ�� − ��

	 − �
�̂��� . �2.3�

It follows that �	−H0�−1W is Hilbert–Schmidt because

��	 − H0�−1W�HS =
1

2�
�

−�

�

d�
−�

�

d�
�Ŵ�� − ���HS

2

�	 − ��2 �1/2

=
1

2�� �

�Im 	�−�

�

d��Ŵ����HS
2 �1/2

� � .

Also W�	−H0�−1= ��	�−H0�−1W†�† is Hilbert–Schmidt. �

Lemma 2.2: Let W�1��x� and W�2��x� be �m+n�� �m+n� matrix functions having their entries
in L2�R�. Then, the operator-valued function 	�W�1��	−H0�−1W�2� from C+ into the Hilbert–
Schmidt operators is analytic and bounded on C+ and has a continuous continuation to C+; the
analogous result is true on C−.

Proof: It is easily verified that

��	 − H0�−1���x� =� � i
x

�

dyei	�y−x��up�y�

i
−�

x

dyei	�x−y��dn�y� � , Im 	  0

�− i
−�

x

dye−i	�x−y��up�y�

− i
x

�

dye−i	�y−x��dn�y� � , Im 	 � 0,� �2.4�

where �up�x�= �Im 0m�n���x�, �dn�x�= �0n�m In���x�, and ��Hm+n. Partitioning W�1��x� and
W�2��x� as follows:2
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W�s��x� = �W1
�s��x� W2

�s��x�
W3

�s��x� W4
�s��x�

�, s = 1,2,

we see that for Im 	0 the operator −iW�1��	−H0�−1W�2� is an �m+n�� �m+n� matrix of integral
operators on L2�R� with matrix integral kernel,

�W1
�1��x� W2

�1��x�
W3

�1��x� W4
�1��x�

��ei	�y−x���y − x�Im 0m�n

0n�m ei	�x−y���x − y�In
��W1

�2��y� W2
�2��y�

W3
�2��y� W4

�2��y�
�

= ei	�y−x���y − x��W1
�1��x�

W3
�1��x�

��W1
�2��y� W2

�2��y� �

+ ei	�x−y���x − y��W2
�1��x�

W4
�1��x�

��W3
�2��y� W4

�2��y� � , �2.5�

where ��t� denotes the Heaviside function. Therefore, its squared Hilbert–Schmidt norm is given
by


−�

�

dx
x

�

dye−�y−x�Im 	��W1
�1��x�

W3
�1��x�

��W1
�2��y� W2

�2��y� ��
HS

2

+ 
−�

�

dx
−�

x

dye−�x−y�Im 	��W2
�1��x�

W4
�1��x�

��W3
�2��y� W4

�2��y� ��
HS

2

.

Here the first double integral is less than �since Im 	0�


−�

�

dx��W1
�1��x�

W3
�1��x�

��
HS

2

· 
−�

�

dy��W1
�2��y� W2

�2��y� ��HS
2 .

The second double integral can be estimated analogously. Therefore, 	�W�1��	−H0�−1W�2� is
bounded on C+. Analyticity is obvious and continuity down to the real line follows from Ref. 30,
Theorem 2.21, since the requisite weak continuity is easily established. The proof for C− is the
same. �

Using the two polar decompositions,

q�x� = Uq�x��q�x�†q�x��1/2, r�x� = Ur�x��r�x�†r�x��1/2,

where Uq�x� and Ur�x� are partial isometries that are measurable in x�R, we get the polar
decomposition V�x�=UV�x��V�x��, where

UV�x� = � 0m�m iUq�x�
iUr�x� 0n�n

�, �V�x�� = ��r�x�†r�x��1/2 0m�n

0n�m �q�x�†q�x��1/2 � .

We now prove that �V�1/2 and �V�1/2UV
† are H0-smooth.

Theorem 2.3: Let the entries of V�x� belong to L1�R�. Then �V�1/2 and �V�1/2UV
† are H0

-smooth.
Proof: It suffices to prove that W is H0-smooth if W is an �m+n�� �m+n� matrix having its

entries in L2�R�. Using the factorization W�x�= �W�x� / �W�x����W�x��, where the first factor has
norm 
1 and �W�x�� acts as a scalar multiplication operator, we obtain, for any ��Hm+n,
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−�

�

d��W�� � i� − H0�−1��2
2 
 

−�

�

d���W�x����� � i� − H0�−1��up�2
2

+ 
−�

�

d���W�x����� � i� − H0�−1��dn�2
2.

Now, by �2.4�, Fubini’s theorem, and Parseval’s equation, we get for the �+� sign


−�

�

d���W�x����� + i� − H0�−1��up�2
2 = 

−�

�

dx�W�x��2e2�x
−�

�

d��
x

�

dye�i�−��y�up�y��2

= 2�
−�

�

dx�W�x��2e2�x
x

�

dye−2�y��up�y��2 
 2��W�2
2��up�2,

where �W�2
2=�−�

� dx�W�x��2. Similarly, we find


−�

�

d���W�x����� + i� − H0�−1��dn�2
2 
 2��W�2

2��dn�2.

For the ��� sign, we get the same results. Hence


−�

�

d��W�� � i� − H0�−1��2
2 
 2��W�2

2���2,

from which we see that W is H0-smooth and, by �2.1a�,

�W�H0



1
��

�W�2.

�

The following result shows that the conditions �ii’� and �iii’� are valid for 	 up to the real axis.
Theorem 2.4: Let the entries of V�x� belong to L1�R�. Then there is an r0�0 such that �I

−Q�	��−1 is uniformly norm bounded in 	 in 		�C+ : �	��r0
. An analogous result holds in the
lower half plane.

Proof: It suffices to show that �Q�	�2�HS goes to zero as �	�→� in C+ because then the claim
follows from �I−Q�	��−1= �I+Q�	���I−Q�	�2�−1. Note that from Lemma 2.2 we know that Q�	� is
bounded.

To estimate Q�	�2 we first observe that Q�	�2 is a block diagonal operator with integral kernel
�Q�	�2��x ,y�=diag�R1�x ,y ;	� ,R2�x ,y ;	��, where

R1�x,y ;	� = �r�x�†r�x��1/4H1�x,y ;	�Ur�y��r�y�†r�y��1/4.

Here

H1�x,y ;	� = �ei	�x−y�G1�x;	� x  y

ei	�y−x�G1�y ;	� x � y ,
�

G1�x;	� = e−2i	x
x

�

e2i	zq�z�dz ,

R2�x,y ;	� = �q�x�†q�x��1/4H2�x,y ;	�Uq�y��q�y�†q�y��1/4,

where
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H2�x,y ;	� = �ei	�x−y�G2�y ;	� , x  y

ei	�y−x�G2�x;	� , x � y ,
�

G2�x;	� = e2i	x
−�

x

e−2i	zr�z�dz .

It suffices to estimate the norm of the integral operator R1�x ,y ;	�. To this end, we note that by an
application of the Riemann–Lebesgue lemma �approximate r by a smooth function of compact
support and integrate by parts�, we have that

sup
x�R

�G1�x;	�� → 0, sup
x�R

�G2�x;	�� → 0, �	� → � .

Similar arguments have been used before to estimate the Jost solutions �Ref. 8, Sec. 3.2, and Ref.
19, Sec. 2� or to find bounds on the location of eigenvalues �Ref. 19, Theorem 3.1, and Ref. 21,
Theorem 6.1�. Put M1�	�=supx�R�G1�x ;	�� and Im 	=�. Then we can estimate the matrix norm of
the kernel R1�x ,y ;	� by

�R1�x,y ;	�� 
 �M1�	��r�x��1/2e−��x−y��r�y��1/2, x  y

M1�	��r�x��1/2e−��y−x��r�y��1/2, x � y .
�

By Lemma 2.2, the right-hand side is a Hilbert–Schmidt kernel whose Hilbert–Schmidt norm is
less than �1 /�2�M1�	��−�

� �r�x��dx. As a result, the norm of the kernel R1�x ,y ;	� tends to zero as
�	�→�. The same proof works for R2�x ,y ;	� and for Im 	�0. �

Putting T0=H0, A= �V�1/2, B=−�V�1/2UV
† , and hence H=T=T0+B†A �on suitable domains�, we

can now conclude that conditions �i’�–�iii’� are satisfied, and that I−Q��� �=W�	�; cf. �2.6a�
below� is invertible for all 	 within some strip 0� �Im 	�
�. Moreover, W�	� remains invertible in
the limit as 	 approaches the real axis from either above or below.

First, �i’� is a direct consequence of Lemma 2.2. Then putting

W�	� = I + �V�1/2�	 − H0�−1UV�V�1/2, �2.6a�

we get

�	 − H�−1 − �	 − H0�−1 = − �	 − H0�−1UV�V�1/2W�	�−1�V�1/2�	 − H0�−1. �2.6b�

Since �V�1/2 and UV�V�1/2 have their entries in L2�R�, by Lemma 2.1, the operators �	
−H0�−1UV�V�1/2 and �V�1/2�	−H0�−1 are Hilbert–Schmidt for nonreal 	. Therefore, �	−H�−1− �	
−H0�−1 is the product of two Hilbert–Schmidt operators and hence trace class. Moreover, accord-
ing to Lemma 2.2, W�	�− I is Hilbert–Schmidt for every nonreal 	 as are the limits W��� i0�− I
for ��R. Finally, �2.6� imply that 	 is a nonreal eigenvalue of H if and only if W�	� is nonin-
vertible. This result extends to spectral singularities: ��R is a spectral singularity if and only if
W��+ i0� is noninvertible, which is true if and only if W��− i0� is noninvertible. The proof given
in Ref. 19, Lemma 4.4, extends to the general matrix case. Recall that by our definition of spectral
singularity given below �1.6� together with �1.9�, � is a singularity of Tl�	� and Tr�	�. Conse-

quently, by �1.16�, it is also a singularity of T̆l�	� and T̆r�	�, which explains why W��� i0� are
both noninvertible. Since spectral singularities are ruled out by assumption �a� and eigenvalues
cannot accumulate toward the real axis by assumption �b�, there must be a strip of some width
�0 where �ii’� and �iii’� are true; the uniform boundedness in �iii’� follows from Theorem 2.4.

Let us apply Lemma 2.2 and, in particular, �2.5� to the case W�1��x�= �V�x��1/2 and W�2��y�
=UV�y��V�y��1/2, where 	=�+ i� with ��R and �0, and write �2.5� in the form �cf. Ref. 23,
Theorem 4.2�
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− �e−i�xIm 0m�n

0n�m ei�xIn
�� 0m�m w12�x,y�

w21�x,y� 0n�n
��e−i�yIm 0m�n

0n�m ei�yIn
� , �2.7�

where the outer matrix factors are premultiplications by unitary matrix functions which do not
affect the operator or Hilbert–Schmidt norm of the integral operator, and

w12�x,y� = e−��y−x���y − x��r�x�†r�x��1/4Uq�y��q�y�†q�y��1/4,

w21�x,y� = e−��x−y���x − y��q�x�†q�x��1/4Ur�y��r�y�†r�y��1/4.

Therefore, the Hilbert–Schmidt norm of the integral operator with kernel w12�x ,y� obeys

�w12�HS
2 = 

−�

�

dx
−�

�

dy tr�w12�x,y�†w12�x,y�� 
 
−�

�

dx
x

�

dye−2��y−x��r�x��HS�q�y��HS



1

2�−�

�

dx max��q�x��HS,�r�x��HS��2

. �2.8�

A similar estimate holds for �=Im 	�0. Estimate �2.8� is also valid for w21. Since the operator
norm of the middle factor in �2.7� is equal to max��w12� , �w21��, it is bounded by the square root
of the right-hand side of �2.8�. As a result, if the right-hand side of �2.8� is less than 1, that is,


−�

�

dx max��q�x��HS,�r�x��HS� � �2,

then the Hamiltonian H has no nonreal eigenvalues and no spectral singularities, and therefore the
transmission and reflection coefficients are continuous on the real line. A drawback of this result
is that it is not optimal in the sense that the constant �2 can, in fact, be replaced by a larger
constant, namely, � /2, and instead of the Hilbert–Schmidt norms of q�x� and r�x� we can take
their uniform matrix norms. This result is proven in Ref. 21 by using a different factorization for
W. For the convenience of the reader we rederive it here using the factorization in �2.7�. Let

m�x� = max��q�x��,�r�x���

�� · � denotes the uniform matrix norm�. Then w12�x ,y� satisfies the estimate �for ��0�

�w12�x,y�� 
 e−��y−x���y − x��r�x��1/2�q�y��1/2 
 e−��y−x���y − x�m�x�1/2m�y�1/2 =
def

��x,y�

�2.9�

and m�L1�R�. Now the norm of the operator associated with the kernel ��x ,y� is less than
�2 /���m�1 �where �m�1=�R�m�x��dx� if �0, and it becomes equal to this value in the limit as
�→0. This result follows from Ref. 19, cf. �4.10�, and Ref. 23, proof of Theorem 4.2. Alterna-
tively, it suffices to note that for �0, ��† has a non-negative symmetric kernel which is also
positivity improving on the essential support of m�x�. When �=0, ��† has eigenvalue �0

2, where
�0= �2 /���m�1, with corresponding non-negative eigenfunction m�x�1/2cos��1 /�0��−�

x m�y�dy�.
Hence, in view of the variational characterization of the largest eigenvalue and Ref. 32, Theorem
10.32, we conclude that

�w12� 

2

�
�m�1,

with strict inequality holding when �0. The same bound holds for �w21�.
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III. WAVE OPERATORS: STATIONARY THEORY

In this section we prove the existence and asymptotic completeness of the wave operators W�

if the matrix Zakharov–Shabat Hamiltonian does not have spectral singularities and therefore has
only finitely many nonreal eigenvalues. We follow the proof given in Ref. 17. In the defocusing
case we can rely on Ref. 33, Theorem IV 6.2, or on Pearson’s theorem �Ref. 32, Satz 22.19� to
arrive at the same result.

Suppose the Hamiltonian H satisfies the conditions �a� and �b� in Sec. I. Let Pac denote the
projection commuting with H onto the maximal H-invariant subspace of Hm+n that does not
contain any eigenvectors and generalized eigenvectors corresponding to nonreal eigenvalues. Put

W� = Pac + X�, Z� = Pac + Y�,

where

�X��,�� = �
1

2�i


−�

�

d���V�1/2�� � i0 − H0�−1�, �V�1/2UV
†��� � i0 − H�−1Pac�†�� ,

�3.1a�

�Y��,�� = �
1

2�i


−�

�

d���V�1/2�� � i0 − H�−1Pac�, �V�1/2UV
†��� � i0 − H0�−1�†�� .

�3.1b�

Either integral converges absolutely for � ,��H, since �V�1/2 and �V�1/2UV
† are H0-smooth, �V�1/2 is

H-smooth, and �V�1/2UV
† is H†-smooth. We also adopt from now on the convention that the inner

product in H is conjugate linear in the second factor. This will be needed for computations
involving contour integrations.

In the absence of nonreal eigenvalues of H, the following result is immediate from Ref. 17, cf.
Lemma 2.4 and Lemma 2.5, with the help of Theorem 2.3. We will prove Theorem 3.1 by similar
methods.

Theorem 3.1: Suppose H has no spectral singularities. Then the wave operators W� and Z�

given by (3.1) are well defined and satisfy

W�Z� = Pac, Z�W� = IH, �3.2a�

W��	 − H0�−1 = �	 − H�−1PacW�, �3.2b�

Z��	 − H�−1Pac = �	 − H0�−1Z�. �3.2c�

Proof: The assumption is equivalent to the statement that W��� i0� is invertible for each �
�R. By using Theorem 2.4 and �2.2� we also conclude that under the assumption of the theorem,
�V�1/2 is H-smooth and �V�1/2UV

† is H†-smooth.
We first prove �3.2b� and then �3.2a�. Note that then �3.2c� follows by multiplying �3.2b� on

the left and right by Z�.

�1� Put A= �V�1/2 and B=−�V�1/2UV
† . By replacing the vector � by �	−H0�−1� with Im 	0 in

�3.1a�, using

�� + i0 − H0�−1�	 − H0�−1 =
�	 − H0�−1 − �� + i0 − H0�−1

� − 	
, �3.3�

and applying Cauchy’s theorem to prove that
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1

2�i


−�

�

d�
�A�	 − H0�−1�,B��� − i0 − H�−1Pac�†��

� − 	
= 0, �3.4�

we get

�X+�	 − H0�−1�,�� =
1

2�i


−�

�

d�
�A�� + i0 − H0�−1�,B��� − i0 − H�−1Pac�†��

� − 	
. �3.5�

The step involving Cauchy’s theorem is justified by choosing a large semicircle in the lower
half plane to obtain a closed contour and noting that ��− i�−H�−1Pac has no singularities in
C− and that by Theorem 2.4 and �2.2� the contribution from the semicircle goes to zero
as its radius tends to infinity. Alternatively, we can use the fact that since B is
H†-smooth, the numerator underneath the integral sign in �3.4� is the boundary value of
an element in the Hardy space H2�C−�, whereas �� ��−	��−1 belongs to H2�C+� because
Im 	��0. Since, the boundary values of functions in H2�C+� and H2�C−� are orthogonal,
the integral in �3.4� is zero.

On the other hand, using �3.1a� and �3.3�, with i0−H0 replaced by −i0−H, we get

�X+�,��	 − H�−1Pac�†��

= −
1

2�i


−�

�

d��A�� + i0 − H0�−1�,B��� − i0 − H�−1Pac�†��	 − H�−1Pac�†��

=
1

2�i


−�

�

d�
�A�� + i0 − H0�−1�,B��� − i0 − H�−1Pac�†��

� − 	

−
1

2�i


−�

�

d�
�A�� + i0 − H0�−1�,B��	 − H�−1Pac�†��

� − 	
.

Using �3.5� and applying Cauchy’s integral formula to the last integral on the right-hand side
�closing the contour in the upper half plane�, we get

�X+�,��	 − H�−1Pac�†�� − �X+�	 − H0�−1�,�� = − �A�	 − H0�−1�,B��	 − H�−1Pac�†�� = − ���	

− H�−1PacB
†�A�	 − H0�−1�,�� = − �Pac�	

− H�−1�,�� + �Pac�	 − H0�−1�,�� ,

which implies that

�	 − H�−1PacX+ − X+�	 − H0�−1 = − �	 − H�−1Pac + Pac�	 − H0�−1.

Using W+= Pac+X+ we get one of �3.2b�. The other one is proven likewise.
�2� In �3.1b� with the plus sign we replace � by X+

†�. We get

�Y+�,X+
†�� = lim

�→0+

1

2�i


−�

�

d��A�� + i� − H�−1Pac�,B��� − i� − H0�−1�†X+
†��

= lim
�→0+

1

2�i


−�

�

d��X+��� − i� − H0�−1B†�A�� + i� − H�−1Pac�,��

= lim
�→0+

1

2�i


−�

�

d�
− 1

2�i


−�

�

d��F��,�,���,�B�� − i0 − H�−1Pac�†�� ,

where
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F��,�,�� = A�� + i0 − H0�−1��� − i� − H0�−1B†�A�� + i� − H�−1Pac.

Now

A�� + i0 − H0�−1��� − i� − H0�−1B†�w = A��� + i0 − H0�−1�� − i� − H0�−1B†�w

=
A��� − i� − H0�−1B†�w − A��� + i0 − H0�−1B†�w

� − � + i�

=
Q�� − i��w − Q�� + i0�w

� − � + i�
,

where Q�	�=A�	−H0�−1B†. Therefore, apart from terms vanishing as �→0+, we have

�Y+�,X+
†�� �

1

4�2  d�d�
�Q�� − i��A�� + i� − H�−1Pac�,B��� − i0 − H�−1Pac�†��

� − � + i�

−
1

4�2  d�d�
�Q�� + i0�A�� + i� − H�−1Pac�,B��� − i0 − H�−1Pac�†��

� − � + i�
,

where the integrals are defined with respect to � ,��R. In the first term we evaluate the
integral with respect to �, and in the second term we change the order of integration and
evaluate the integral with respect to �. As a result, apart from terms vanishing as �→0+ we
have

�Y+�,X+
†�� �

1

2�i


−�

�

d��Q�� − i��A�� + i� − H�−1Pac�,B��� − i� − H�−1Pac�†��

−
1

2�i


−�

�

d��Q�� + i0�A�� + 2i� − H�−1Pac�,B��� − i0 − H�−1Pac�†�� .

Taking �→0+ under the integral signs we get

�Y+�,X+
†�� =

1

2�i


−�

�

d��Q�� − i0�A�� + i0 − H�−1Pac�,B��� − i0 − H�−1Pac�†��

−
1

2�i


−�

�

d��Q�� + i0�A�� + i0 − H�−1Pac�,B��� − i0 − H�−1Pac�†�� .

Using �2.2� we get

�Y+�,X+
†�� =

1

2�i


−�

�

d�

� ��A�� + i0 − H0�−1 − A�� + i0 − H�−1�Pac�,B��� − i0 − H�−1Pac�†��

+
1

2�i


−�

�

d�

� �A�� + i0 − H�−1Pac�,�− B�� + i0 − H0
†�−1Pac

† + B��� − i0 − H�−1Pac�†���

=
1

2�i


−�

�

d���A�� + i0 − H0�−1Pac�,B��� − i0 − H�−1Pac�†��

− �A�� + i0 − H�−1Pac�,B�� + i0 − H0�−1Pac
† ���

= − �X+Pac�,�� − �Y+�,Pac
† �� .

Therefore, X+Y++X++Y+=0, which implies
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W+Z+ = �Pac + X+��Pac + Y+� = Pac.

In the same way we prove that Z+W+= IH �alternatively, following Ref. 17, p. 267, we can
replace V by �V and use analyticity in � to prove that Z� : Im Pac→Hm+n and W� :Hm+n
→ Im Pac are each other’s inverses� as claimed. �

We note that in the defocusing case, where H is self-adjoint and has only real spectrum, the
assumption of Theorem 3.1 implies that the spectrum of H is absolutely continuous �Ref. 18,
Theorem 2.4�, which was proven before in Ref. 9 for potentials whose entries w�x� satisfy
�−�

� dx�1+ �x���w�x���+�.

IV. WAVE OPERATORS: TIME-DEPENDENT THEORY

In this section we write the wave operators obtained under the conditions of Theorem 3.5 in
the more familiar time-dependent form.

Suppose T0 is a closed and densely defined linear operator on a complex Hilbert space H with
only real spectrum and assume that iT0 generates a bounded strongly continuous group on H.
Writing

− i
0

�

dtei�te−�te−itT0x = �� + i� − T0�−1x , �4.1a�

+ i
−�

0

dtei�te�te−itT0x = �� − i� − T0�−1x , �4.1b�

where �0, x�H, and ��R, we see that a closed linear operator from H into the complex
Hilbert space H� is T0-smooth if and only if

�
−�

�

dt�Ae−itT0x�2�1/2


 const . �x�, x � H ,

where �A�T0
is the smallest such constant. For self-adjoint T0, various characterizations of

T0-smoothness and �A�T0
were given in Ref. 18 �also Ref. 33, Theorem 4.3.1�.

Lemma 4.1: Suppose there are no spectral singularities. Then −iH generates a bounded
strongly continuous group on Hm+n .

Proof: Under the hypotheses of this lemma, �V�1/2UV
† is H0-smooth and �V�1/2 is H-smooth. We

may then apply �4.1a� in the form

− i
0

�

dtei�te−�t�V�1/2e−itH� = �V�1/2�� + i� − H�−1�

to define the vector-valued L2-function �V�1/2e−itH� of t�R for each ��Hm+n. Likewise we define
the vector-valued L2-function �V�1/2UV

†eitH0� for each ��Hm+n. We now define for � ,��Hm+n

�e−itH�,�� =
def

�e−itH0�,�� − i
0

t

ds��V�1/2e−isH�, �V�1/2UV
†ei�t−s�H0�� .

As a result, the operator e−itH so defined depends continuously on t�R in the weak operator
topology and is uniformly bounded in t�R. Taking the Fourier transform we get the resolvent
identity involving H0 and H. This in turn implies that e−itH has the group property. Using Ref. 27,
Theorem II 1.3, we see that 	e−itH
t�R+ is a bounded strongly continuous semigroup. In the same
way we prove that 	eitH
t�R+ is a bounded strongly continuous semigroup. �

Theorem 4.7: Suppose there are no spectral singularities. Then the wave operators W� and
Z� satisfy
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W� = lim
t→��

Pace
itHe−itH0, �4.2a�

Z� = lim
t→��

eitH0e−itHPac, �4.2b�

where the limits are taken in the strong operator topology on Hm+n.
Proof: According to Lemma 4.1, we may assume that iH �and hence also −iH†� generates a

bounded strongly continuous group. Following the derivation of Cook’s lemma �Ref. 32, Theorem
11.7�, we have for � ,��H

d

dt
�Pace

itHe−itH0�,�� = − i��V�1/2e−itH0�, �V�1/2UV
†e−itH†

Pac
† �� , �4.3�

where the H0-smoothness of �V�1/2 and the H†-smoothness of �V�1/2UV
† imply that the right-hand

side belongs to L1�R ;dt� for each � ,��H. Integrating �4.3� over �t ,�� or �−� , t�, we see that

�Pace
itHe−itH0� ,�� is absolutely continuous in t�R and has finite limits ��̃�� ,�� as t→ ��,

which proves the existence of the limits in �4.2a� in the strong operator topology �Ref. 27,
Theorem II 1.3�. In fact,

��̃��,�� = ��,�� � i
R�

ds��V�1/2e−isH0�, �V�1/2UV
†e−isH†

Pac
† �� .

Using �4.1� we get

��̃��,�� = ��,�� �
1

2�i


−�

�

d���V�1/2�� � i0 − H0�−1�, �V�1/2UV
†��� � i0 − H�−1Pac�†��

= �W��,�� ,

which proves �4.2a�. Equation �4.2b� is proven in the same way. �

V. EXAMPLES

In this section we discuss two examples which shed some light on what happens when
spectral singularities or eigenvalues are present.

Example 5.1: In the first example H is neither of the focusing nor defocusing type. Let m
=n=1,

q�x� = �e−x��x�, r�x� = �ex��− x� ,

where �, ��0. Thus �1.1� reads �using the notation introduced in the proof of Lemma 2.2�

��up�� = − i��up + �e−x��x��dn,

��dn�� = − �ex��− x��up + i��dn.

A straightforward calculation of the Jost functions yields
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F+��,x� =�e−i�Jx�1 +
���e�2i�−1�x − 1�

�1 – 2i��2

�e�2i�−1�x

2i� − 1

�

2i� − 1
1 � , x  0

e−i�Jx� 1
�

2i� − 1

�e�1–2i��x

2i� − 1
1 +

���e�1–2i��x − 1�
�1 − 2i��2

� , x � 0,�
F−��,x� =�e−i�Jx�1

��e�2i�−1�x − 1�
2i� − 1

0 1
� , x  0

e−i�Jx� 1 0

��e�1−2i��x − 1�
2i� − 1

1 � , x � 0.�
Using �1.8� gives

Tl��� = Tr��� =
�1 – 2i��2

�1 + ��� − 2i���1 − ��� − 2i��
, � � C+,

T̆l��� = T̆r��� = 1, � � C−,

and for ��R,

L��� =
��2i� − 1�

�1 + ��� − 2i���1 − ��� − 2i��
,

R��� =
��2i� − 1�

�1 + ��� − 2i���1 − ��� − 2i��
,

L̆��� =
�

1 – 2i�
, R̆��� =

�

1 – 2i�
.

Set a=���. We immediately see by looking at the transmission coefficients that there is exactly
one purely imaginary eigenvalue �0= �i /2��a−1� in the upper half plane, provided that a1. The
corresponding eigenvector is

���0,x� =��
e−�1/2��a+1�x

− ��/�e�1/2��1−a�x � , x  0

� e�1/2��a−1�x

− ��/�e�1/2��a+1�x � , x � 0.�
If a�1, then there are no eigenvalues and, if a=1, then �=0 is a spectral singularity. For a�1,
the wave operators Z� �and W�� exist and Pac= I2. In fact, we can compute Z� explicitly. To avoid
lengthy expressions, we pick a particular vector �0�x� and compute Z+�0. We set �0�x�
= ��0

up�x� ,�0
dn�x��T and choose �0

up�x�=e−x��x�, �0
dn�x�=0. We do not restrict a for the moment and
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first proceed to determine ��x , t� =
def

�e−itH�0��x� for t�0 by solving the underlying partial differ-
ential equation �PDE�, �t=−iH�, which reads

�t
up = �x

up − �e−x��x��dn,

�t
dn = − �ex��− x��up − �x

dn,

with initial condition ��x ,0�=�0�x�. When a1, the fact that Pac� I2 will be taken into account
later. With the help of the Laplace transform method we find

�up�x,t� = � e−t−x

1 − a2 +
ae−�1/2��1−a��t+x�

2�1 + a�
−

ae−�1/2��1+a��t+x�

2�1 − a� ���t + x�, x � 0,

�up�x,t� = e−x−t +
ae−x

2�a2 − 1�
��1 + a�e−�1/2��1+a��t−x� − 2ae−t+x + �a − 1�e�1/2��a−1��t−x����t − x�, x  0,

�dn�x,t� =
− �ex

2�a2 − 1�
�− �1 + a�e−�1/2��1+a��t+x� + 2e−t−x + �− 1 + a�e−�1/2��1−a��t+x����t + x�, x � 0,

�dn�x,t� =
− �

2�a2 − 1�
�− �1 + a�e−�1/2��1+a��t−x� + 2e−t+x + �− 1 + a�e−�1/2��1−a��t−x����t − x�, x  0.

When a=1, we have to take the limit as a→1 in the above expressions �see below�. Using the fact
that the free time evolution is given by �eitH0���x�= ��up�x− t� ,�dn�x+ t��, we find, by taking the
�pointwise� limit as t→+�,

�Z+�0��x� =
1

2�1 − a2�
��2e−x + a�1 − a�e−�1/2��1−a�x − a�1 + a�e−�1/2��1+a�x���x�

��2ex − �1 − a�e�1/2��1−a�x − �1 + a�e�1/2��1+a�x���− x�
� . �5.1�

If a�1, then the components of the right-hand side of �5.1� are in L2�R� and �5.1� agrees with the
strong limit according to �4.2b�. For example, consider �up�x , t� for x0. Then �up�x− t , t� con-
tains the term

ae−x+t

2�a + 1�
e�1/2��a−1��2t−x� =

a

2�a + 1�
eate�−1/2��a+1�x, t 
 x 
 2t .

Over the given interval, the L2 norm of this term is O�e−�1−a�t/2�. Hence it goes to zero precisely
because a�1. The other terms can be dealt with similarly.

For a=1 we have

�up�x,t� =
e−t−x

4
�3 + et+x − t − x���t + x�, x � 0,

�up�x,t� =
e−t−x

4
�4 + et − ex�1 + t − x����t − x�, x  0,

�dn�x,t� =
�e−t

4
�1 − et+x − t − x���t + x�, x � 0,
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�dn�x,t� =
− �e−t

4
�et + ex�− 1 + t − x����t − x�, x  0.

Now, if we apply eitH0 to this vector and let t→+�, we do get a pointwise �for each x� limit,
namely,

�Z+�0��x� = � �1/4�e−x�3 + ex − x���x�
��/4��− 1 + ex + xex���− x�

� .

We see that the right-hand side is bounded but not in L2. It follows that the wave operators do not
exist in either the strong or the weak topology of L2.

Let us also take a closer look at the case a1. Using a contour integral we compute for the
eigenprojection P�0

acting on �0:

�P�0
�0��x� =

1

2�a + 1�
· ��

ae−�a+1�x/2

− �e−�a−1�x/2 � , x  0

� ae�a−1�x/2

− �e�a+1�x/2 � , x � 0.�
Then Pac= I2− P�0

. Using this in �4.2b� and solving the corresponding PDE by means of a Laplace
transform, which is now more involved since the initial condition does not vanish on x�0, we
obtain

�Z+�0��x� =
1

2�a2 − 1�
· ��

− 2e−x + a�a + 1�e−�a+1�x/2

��a − 1�e−�a−1�x/2 � , x  0

� a�a − 1�e�a−1�x/2

��− 2ex + �a + 1�e�a+1�x/2�
� , x � 0.�

As it should be, the components of the right-hand side are in L2�R�.
Example 5.2: This example concerns the focusing case. Let n=m=1, q�x�=�0 if 0
x


1, q�x�=0 otherwise, and r�x�=q�x�. Let �0�x� denote the vector with components

�0
up�x� = 1, x � �0,1�, �0

up�x� = 0, x � �0,1�, �0
dn�x� = 0.

For this potential, H has no eigenvalues so long as �
� /2 but there is a spectral singularity at
�=0 when �=� /2. Again, we use a Laplace transform to compute �t�x , t�= �e−itH�0��x�. To this
end we have to solve

�t
up = �x

up, �t
dn = − �x

dn, x � �0,1� ,

�t
up = �x

up − ��dn, �t
dn = − �x

dn − ��up, x � �0,1� ,

with ��x ,0�=�0�x�. Let �̂�x ,s�= ��̂up�x ,s� , �̂dn�x ,s��T denote the Laplace transform of ��x , t�. Let

D�s� = w�s�cosh���s�� + s sinh���s�� ,

where ��s�=�s2−�2. Then

�̂�x,s� =�
s

��s�2 −
s��s�cosh���s�x� + �2 sinh���s��1 − x�� + s2 sinh���s�x�

��s�2D�s�

−
�

��s�2 +
����s�cosh���s��1 − x�� + s sinh���s��1 − x�� + s sinh���s�x��

��s�2D�s�
�

for 0
x
1, and
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�̂�x,s� = ��̂up�0,s�esx

0
�, x � 0, �̂�x,s� = � 0

�̂dn�1,s�e−sx�, x  1,

where �̂1�0,s� and �̂2�1,s� can be obtained from the equation for 0
x
1. As a function of s,

�̂�x ,s� is meromorphic for every x, despite appearances to the contrary. For example, s=� is a

removable singularity. Note that if we replace ��s� by −��s�, the function �̂�x ,s� is unchanged,
since D�s� is odd in w�s�, so there are only even powers in the Taylor expansion in powers of w�s�
of �̂�x ,s�. A calculation also shows that D�s�=esAr1�is���s�, where Ar1�is� is given by �1.6a�. This
holds for Re s�0. A zero s1 of D�s� in the right half plane corresponds to an eigenvalue �1

= is1 of H. Since the eigenvalues of H are all purely imaginary, the zeros of D�s� in the right half
plane must lie on the real axis. If �
� /2, then there are no eigenvalues and so D�s� has no zeros

in the right half plane. But if �=� /2, then D�0�=0 and �̂�x ,s� has a pole of order of 1 at s=0.
There are no zeros on the imaginary axis �except for 0�, and there exists a �0, such that there are
no zeros in 	s :Re s�−�
 \ 	0
. There is an infinite sequence of zeros in the second quadrant,
together with the complex conjugate values in the third quadrant, which, for large absolute values,
are located at

sn = �ni − ln�n� + ln��/�2��� − i�/2 + O�ln�n�/n�, n → + � .

In every infinite strip a
Re s
b the function �̂up�x ,s� is of order O�s−1� as �s�→+� uniformly in

the strip and uniformly in 0
x
1, and, similarly, �̂dn�x ,s�=O�s−2�. Moreover, in view of the

oscillatory behavior of �̂up�x ,s� as Im s→+�, a closer inspection shows that the integrals


−�

�

eity�̂up�x,− � + iy�dy

converge uniformly for t�T0 �any T0� and for 0
x
1 �cf. Ref. 10, p. 237�. It follows,
using the Riemann–Lebesgue lemma, that

1

2�i


−�−i�

−�+i�

est�̂up�x,s�ds = o�e−�t�, t → + � ,

uniformly in 0
x
1. The same result holds for �dn�x ,s� but the justification is easier since it is
O�s−2�. As a consequence, we can apply standard results on the inverse Laplace transform and
conclude that �see Ref. 10, Chap. 35�

lim
s→0

s�̂�x,s� = lim
t→+�

��x,t� = � cos��x/2�
− sin��x/2�

�, 0 
 x 
 1,

uniformly in 0
x
1, and

lim
s→0

s�̂�x,s� = lim
t→+�

��x,t� = �1

0
�, x � 0,

lim
s→0

s�̂�x,s� = lim
t→+�

��x,t� = � 0

− 1
�, x  1.

Suppose 0
x
1 and apply the free time evolution to ��x , t�. This yields, for the upper compo-
nent, �up�x− t , t�, for t
x
 t+1. For large t this is close to cos���x− t� /2� �with an exponentially
small error�. Hence,
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t

t+1

��up�x − t,t��2dx→” 0, t → + � ,

showing that Z+�0 does not exist as a strong limit according to �1.18�. However, this piece goes to
zero weakly. If we consider x�0, then �up�x , t�=�up�0, t+x� for t+x�0 and zero otherwise.
Hence, �up�x− t , t�=�dn�0,x� for x− t�0 and t+ �x− t�=x0, i.e., on 0�x� t. Since �dn�0,x�
→1 as x→+�, the limit as t→+� of �up�x , t� does not exist in the strong or weak sense; it only
exists in the pointwise sense. An analogous result holds for the lower component.

VI. CONCLUSIONS

Under the conditions �a� and �b� we have proved that the restriction H̃ of the full Hamiltonian
H to the maximal invariant subspace, where its spectrum is real, is similar to the free Hamiltonian
H0, while H has at most finitely many nonreal eigenvalues with eigenvectors and generalized
eigenvectors living in a finite-dimensional subspace. In the focusing case, where H0 and H are

J-self-adjoint, the free Hamiltonian and the thus restricted full Hamiltonian H̃ are J-unitarily
equivalent. Since H0 is self-adjoint, J-self-adjoint but not J-definitizable, and absolutely continu-
ous with �uniform� spectral multiplicity m+n, we can draw the following conclusions.

�1� H is a spectral operator and its restriction H̃ to the maximal invariant subspace where its
spectrum is real and is scalar-type spectral.

�2� H̃ is absolutely continuous.
�3� H̃ has a �uniform� spectral multiplicity of m+n.
�4� H̃ is J-self-adjoint but not J-definitizable.

A direct proof of these facts, which does not rely on wave operators and Kato smoothness,
will be given in Appendix. As a result, in the focusing case a spectral theorem applies to H, where
the resolution of the identity does not have the so-called singular critical points �Ref. 6, p. 211�.24
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APPENDIX: RESOLVENT OF THE HAMILTONIAN

In this section we derive an expression for the resolvent of the matrix Zakharov–Shabat
Hamiltonian H in terms of either modified Jost functions or Jost solutions. We will use this
expression to answer the four assertions made in Sec. VI. Since the argument involves taking the
limit Im 	→0, assumptions �a� and �b� from Sec. I will be crucial. In other words, the derivation
requires that det Al1���=det Ar4��� and det Ar1���=det Al4��� do not vanish for ��R, or, equiva-
lently, that the reflection and transmission coefficients are continuous in ��R.

Let us partition ��x ,	�−1 and ��x ,	�−1 as follows:

��x,	�−1 =��̆�x,	�

�̆̄�x,	�
�, ��x,	�−1 = ��̆̄�x,	�

�̆�x,	�
� ,

where x ,	�R. Here �̆�x ,	� and �̆̄�x ,	� are m� �m+n� matrices and �̆̄�x ,	� and �̆�x ,	� are n
� �m+n� matrices.

Theorem A.1: If 	�C \R is not an eigenvalue and ��Hm+n we have
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��	 − H�−1���x� = 
−�

�

dyG�x,y ;	���y� , �A1�

where

G�x,y ;	� =�
− i��x,	�Tr�	��̆�y,	�J, 	 � C+, y  x

+ i��x,	�Tl�	��̆�y,	�J, 	 � C+, y � x

+ i�̄�x,	�T̆l�	��̆̄�y,	�J, 	 � C−, y � x

− i�̄�x,	�T̆r�	��̆̄�y,	�J, 	 � C−, y  x .
� �A2�

The spectral projections of H onto the generalized eigenspaces of H can be obtained by computing
the residues of �	−H�−1 at the discrete eigenvalues.

Proof: The general assumption means that the modified Jost matrices F��x ,	� are invertible
for each 	�R and for each 	�C� that is not an eigenvalue of H. For given ��Hm+n we now
seek ��Hm+n, such that �	−H��=�, or

	��x,	� − iJ
��

�x
�x,	� + V�x���x,	� = ��x� .

Writing ��x ,	�=F��x ,	����x ,	�, we get

��F��x,�� − i�J
�F�

�x
�x,�� + V�x�F��x,��

vanishes
����x,�� − iJF��x,��

���

�x
�x,�� = ��x� ,

whence

���

�x
�x,	� = iF��x,	�−1J��x� .

Using �1.6� we see that

�+
up�x,	� = − i

x

�

dy�Im 0m�n �F+�y,	�−1J��y� ,

�+
dn�x,	� = + i

−�

x

dy�0n�m In �F+�y,	�−1J��y�

for 	�C+ not an eigenvalue, and

�−
up�x,	� = + i

−�

x

dy�Im 0m�n �F−�y,	�−1J��y� ,

�−
dn�x,	� = − i

x

�

dy�0n�m In �F−�y,	�−1J��y�

for 	�C− not an eigenvalue. We may obviously write
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���x,	� = 
−�

�

dyG0�x,y ;	���y� ,

where

G0�x,y ;	� =�
−

i

2
�I + J��JF+�y,	�−1J�, 	 � C+, y  x

−
i

2
�I − J��JF+�y,	�−1J�, 	 � C+, y � x

+
i

2
�I + J��JF−�y,	�−1J�, 	 � C−, y � x

+
i

2
�I − J��JF−�y,	�−1J�, 	 � C−, y  x ,

�
which implies �A1�, where

G�x,y ;	� = �
− iF+�x,	� 1

2 �I + J��JF+�y,	�−1J�, 	 � C+, y  x

− iF+�x,	� 1
2 �I − J��JF+�y,	�−1J�, 	 � C+, y � x

+ iF−�x,	� 1
2 �I + J��JF−�y,	�−1J�, 	 � C−, y � x

+ iF−�x,	� 1
2 �I − J��JF−�y,	�−1J�, 	 � C−, y  x .

� �A3�

We now use the relations

F+�x,	� = ��x,	��Ar1�	� 0m�n

Ar3�	� In�n
� = ��x,	�� Im Al2�	�

0n�m Al4�	�
� ,

F−�x,	� = ��x,	�� Im Ar2�	�
0n�m Ar4�	�

� = ��x,	��Al1�	� 0m�n

Al3�	� In
�

to write

JF+�x,	�−1J = �Tr�	� 0m�n

R�	� In
�J��x,	�−1J = � Im L�	�

0n�m Tl�	�
�J��x,	�−1J ,

JF−�x,	�−1J = � Im R̆�	�

0n�m T̆r�	�
�J��x,	�−1J = �T̆l�	� 0m�n

L̆�	� In
�J��x,	�−1J .

Inserting these expressions in �A3� and using 1
2 �I+J�= Im � 0n�n and 1

2 �I−J�J=0m�m � �−In�, we
obtain
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G�x,y ;	� =�
− i���x,	� 0�m+n��n ��Tr�	� 0m�n

0n�m 0n�n
�� �̆�y,	�

0n��m+n�
�J

	 � C+,y  x ,

+ i�0�m+n��m ��x,	� ��0m�m 0m�n

0n�m Tl�	�
��0m��m+n�

�̆�y,	�
�J

	 � C+,y � x ,

+ i��̄�x,	� 0�m+n��n ��T̆l�	� 0m�n

0n�m 0n�n
�� �̆̄�y,	�

0n��m+n�
�J

	 � C−,y � x ,

− i�0�m+n��m �̄�x,	� ��0m�m 0m�n

0n�m T̆r�	�
��0m��m+n�

�̆̄�y,	�
�J ,

	 � C−,y  x ,

�
which implies �A2�. �

We remark that the above expressions for the Green’s function agree with those derived in a
different way21 for potentials V whose entries are only in Lloc

1 �R�. We can establish the connection
between the two as follows. It suffices to consider the case Im 	0. We will use the symbol # to
designate quantities that are associated with the adjoint matrix Zakharov–Shabat system, that is,

�1.1� with potential V#�x�=V�x�†. Let �̄#�x ,	�� and �̄#�x ,	�� denote the solutions defined by �1.7a�
and �1.7b� with corresponding matrices Ar4

# �	�� and Al1
# �	��, respectively. In Ref. 21, Sec. 4, two

matrices, called F�x ,	�= �F1�x ,	� F2�x ,	��= ���x ,	� ��x ,	�� and F̂�x ,	��= �F̂1�x ,	�� F̂2�x ,	���
= ��̄#�x ,	�� �̄#�x ,	��� were introduced, and it was noted that

JF�x,	��− Tl�	� 0n�m

0m�n Tr�	�
�F̂�x,	��† = I .

Since

F�x,	� = F+�x,	��0m�n Im

In 0n�m
� ,

we get

JF+�x,	�−1J = �0n�m Tr�	�
Tl�	� 0m�n

�F̂�x,	��†.

Inserting this in the first of �A3� yields

G�x,y ;	� = − i��x,	�Tr�	��̄#�x,	��†, 	 � C+, y  x ,

which is easily seen to be equal to the second equation in Ref. 21, Eq. �4.10�, if we note that

K2�	�−1=Tr�	�, ��x ,	�=F2�x ,	�, �̄#�x ,	��= F̂2�x ,	��, and that the resolvent studied there is �H
−	�−1 while here it is �	−H�−1.

The expressions for G�x ,y ;	� have finite limits as 	 approaches the real line from above or
from below. Using �1.6� in �A3� we can write G�x ,y ;	� as follows:
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G�x,y ;	 + i0� = � − i��x,	�� Im 0m�n

R�	� 0n�n
��J��y,	�−1J� , y  x

− i��x,	��0m�m 0m�n

R�	� In
��J��y,	�−1J� , y � x ,�

G�x,y ;	 − i0� = �+ i��x,	�� Im R̆�	�
0n�m 0n�n

��J��y,	�−1J� , y � x

+ i��x,	��0m�m R̆�	�
0n�m In

��J��y,	�−1J� , y  x ,�
where 	�R. Notice that we only need to know the Jost matrix from the left and its inverse for
	�R. Alternatively, using the Jost matrix from the right and its inverse we can write

G�x,y ;	 + i0� = �− i��x,	�� Im L�	�
0n�m 0n�n

��J��y,	�−1J� , y  x

− i��x,	��0m�m L�	�
0n�m In

��J��y,	�−1J� , y � x ,�
G�x,y ;	 − i0� = � + i��x,	�� Im 0m�n

L̆�	� 0n�n
��J��y,	�−1J� , y � x

+ i��x,	��0m�m 0m�n

L̆�	� In
��J��y,	�−1J� , y  x .�

Irrespective of the sign of �x−y� we then get for 	�R

1

2�i
lim

�→0+
	G�x,y ;	 − i�� − G�x,y ;	 + i��


=
1

2�
��x,	�� Im R̆�	�

R�	� In

��J��y,	�−1J�

=
1

2�
��x,	�� Im L�	�

L̆�	� In
��J��y,	�−1J� . �A4�

We can now justify the first two assertions of Sec. VI. For ��� we easily obtain from �A4� that
H is a scalar-type spectral operator with resolution of the identity given by

����,��;x,y� =
def

lim
�→0+

1

2�i


�

�

d	�G�x,y ;	 − i�� − G�x,y ;	 + i��� .

Since this expression is continuously differentiable with respect to � and �, the spectral measure
� is absolutely continuous with Radon–Nikodym derivative,

��d	;x,y�/d	 =
1

2�
��x,	�� Im R̆�	�

R�	� In

�J��y,	�−1J . �A5�

Thus,11,12 under conditions �a� and �b� from Sec. I, the restriction H̃ of H to the invariant subspace

where the spectrum is real is given by �t��dt� �restricted to the domain of H̃�, where ��dt� is the
integral operator with kernel �A5�. In the focusing case the projections ���� ,��� given by �A5� are

all J-self-adjoint because in this case R̆�	�=−R�	�† and ��x ,	�†=��x ,	�−1 for 	�R by �1.15�.
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The third statement made in Sec. VI regarding the spectral multiplicity of H̃ follows from the fact

that by Theorem 3.1 the free Hamiltonian H0 is similar to the restriction H̃ of H on the absolutely
continuous subspace. Since by a Fourier transform, H0 is unitarily equivalent to the direct sum of
m+n copies of the multiplication operator by the independent variable on L2�R�, the claim follows
Ref. 4, Sec. 72.

To establish the fourth assertion, we note that in the focusing case the projections ���� ,���
given by �A5� are all J-self-adjoint because in this case R̆�	�=−R�	�† and ��x ,	�†=��x ,	�−1 for
	�R by �1.15�. Moreover, the Radon–Nikodym derivative �A5� of the spectral measure � is an
invertible matrix of order m+n whose norm and that of its inverse are bounded away from zero
and infinity uniformly in �x ,	��R2. Indeed, this follows from the inversion formula,

� Im R̆�	�
R�	� In

�−1

= � �Im + R�	�†R�	��−1 R�	�†�In + R�	�R�	�†�−1

− R�	��Im + R�	�†R�	��−1 �In + R�	�R�	�†�−1 � ,

in combination with the continuity of R�	� and the fact that �R�	��→0 as 	→ ��. Thus, H̃ is
similar to the operator of multiplication by the independent variable on Hm+n endowed with the
scalar product,

�f ,g� = 
−�

�

���d	�f�	�,g�	�� = 
−�

�

d	����	�f�	�,g�	�� ,

where the brackets denote the usual scalar product in Cm+n that is antilinear in the vector on the

right. The operator H̃ is J-self-adjoint with respect to the indefinite scalar product,

�f ,g�J = 
−�

�

�J��d	�f�	�,g�	�� = 
−�

�

d	�J���	�f�	�,g�	�� .

Finally, H̃ is not J-definitizable in the sense that there exists no nontrivial polynomial p such that

p�H̃� is J-positive, i.e., in the sense that �Jp�H̃�h ,h� is non-negative for every h in the range of Pac.

Indeed, if this were the case, then by J-unitary equivalence between H̃ and H̃0, the multiplication
operator by the independent variable on Hm+n, there would exist a polynomial p, such that

�p�H̃0�h,h� = �
j=1

m 
−�

�

d	p�	��hj�	��2 − �
j=m+1

m+n 
−�

�

d	p�	��hj�	��2

is non-negative for each h= 	hj
 j=1
m+n in Hm+n, which is obviously not the case.
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