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1. Introduction

In this article we study the one-dimensional linear Boltzmann equation

∂f

∂t
(v, t) + a(t)

∂f

∂v
(v, t) + ν(v)f(v, t) =

∫ ∞

−∞

k(v, v̂)ν(v̂)f(v̂, t) dv̂, (1.1)

where t ≥ s, with initial condition

f(v, s) = fs(v), (1.2)

where f(v, t) is a space-averaged distribution function for electrons moving with
velocity v at time t in a weakly ionized gas, a(t) is the electrostatic acceleration
assumed to depend on time only, ν(v) is the collision frequency and k(v, v̂) is the
scattering kernel for collisions with the velocity changing from v̂ to v. Because
of the hypothesis that ionization and recombination effects balance each other,
we have

k(v, v̂) ≥ 0,

∫ ∞

−∞

k(v, v̂) dv ≡ 1.

Further, we assume that ν(v) and a(t) are locally L1 and ν(v) is almost every-
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where positive. Introducing the Banach spaces L1(R, dv) and L1(R, νdv) with
their respective norms

‖g‖1 =

∫ ∞

−∞

|g(v)| dv, ‖g‖ν =

∫ ∞

−∞

ν(v)|g(v)| dv,

we can pose the above problem as an initial-value problem for vector functions
f(t), t ≥ s, on L1(R, dv) for given initial vector fs ∈ L1(R, dv). In that case,
(Kg)(v) =

∫ ∞

−∞
k(v, v̂)ν(v̂)g(v̂) dv̂ is a positive isometry from L1(R, νdv) into

L1(R, dv). The physics of the problem demands the existence of a unique so-
lution f(t), t ≥ s, in L1(R, dv) for given fs ∈ L1(R, dv) which is nonnegative if
fs ≥ 0.

Equation (1.1) belongs to a class of so-called time dependent kinetic equa-
tions which have been studied using the method of characteristics or by the
semigroup method [3, 8, 2]. Here we study a particular kinetic equation within
the framework of evolution families [10].

Let us describe the contents of the various sections. In Section 2 we prove
the existence of a unique solution within the context of bounded evolution
families. This means that we prove the existence of a family of bounded linear
operators S(t,s), t ≥ s, on L1(R, dv) such that

1. (t, s) 7→ S(t, s)g is a bounded strongly continuous function on {(t1, t2) ∈
R

2 : t1 ≥ t2} for every g ∈ L1(R, dv),

2. for t ≥ r ≥ s we have the product rule S(t, r)S(r, s) = S(t, s), and

3. for s ∈ R we have S(s, s) = I, the identity operator.

The unique solution can then be written as f(t) = S(t, s)fs. Adopting a pro-
cedure reminiscent of the one used in [7] (also [1, 4]), we construct S(t, s) by
iterating the Duhamel integral equation

S(t, s)g = S0(t, s)g +

∫ t

s
S(t, τ)KS0(τ, s)g dτ,

where f̂(t) = S0(t, s)fs, t ≥ s, is the solution of equations (1.1)-(1.2) with
k(v, v̂) ≡ 0. The latter solution is easily obtained in closed form. It turns out
that, under very weak hypotheses, the norm of the initial distribution fs ≥ 0
is preserved, i.e. ‖f(t)‖1 ≡ ‖fs‖1, t ≥ s, which corresponds physically to the
preservation of the number of electrons when ionization and recombination are
in dynamic equilibrium. We also give a separate uniqueness proof.
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Let us define what we mean by a (mild) solution of equations (1.1)-(1.2).
Suppose a(t) is Lipschitz continuous and q ∈ L1(R×[s, T ]; dvdt) for every T > s.
Then the initial-value problem

∂f

∂t
(v, t) + a(t)

∂f

∂v
(v, t) + ν(v)f(v, t) = q(v, t), t ≥ s, (1.3)

f(v, s) = fs(v), (1.4)

can be solved uniquely for f ∈ L1(R× [s, T ]; dvdt) by integration along charac-
teristics. More precisely (cf. [3]), if we define W0(t, s) and S0(t, s) by

[W0(t, s)g](v) = g

(
v −

∫ t

s
a(σ)dσ

)
, v ∈ R, (1.5)

[S0(t, s)g](v) = M0(t, s; v)[W0(t, s)g](v), v ∈ R, (1.6)

where

M0(t, s; v) = exp

(
−

∫ t

s
ν

(
v −

∫ t

ρ
a(σ) dσ

)
dρ

)
,

then the (distributional) solution is given by

f(v, t) = [S0(t, s)fs](v) +

∫ t

s
[S0(t, τ)q(τ)](v) dτ ; (1.7)

moreover, if q : [0, T ] → L1(R, dv) is (strongly) continuous, then f : [0, T ] →
L1(R, dv) is (strongly) continuous as well. Then by a mild solution of equations
(1.1)-(1.2) on the interval [s, T ] we mean a strongly measurable vector function
f ∈ L1(R× [s, T ], νdvdt) such that (1.7) is satisfied for q(t) = Kf(t). Note that
under this definition q ∈ L1(R × [s, T ], dvdt) so that f ∈ L1(R × [s, T ], dvdt).
In Section 2 we will, in fact, prove the existence of a mild solution of equations
(1.1)-(1.2) under the condition that the quantity

M(T, s) = sup
−∞<v<∞

∫ T

s
ν

(
v +

∫ ρ

s
a(σ) dσ

)
dρ (1.8)

is finite. At the same time we will prove that f : [s, T ] → L1(R, dv) is (strongly)
continuous, although f : [s, T ] → L1(R, νdv) need not be defined for every
t ∈ [s, T ]. The solution obtained will turn out to satisfy two forms of the
Duhamel equation, namely (2.8) and (2.14). In Section 2 we will actually
establish the solvability of (2.8) and (2.14) under much weaker conditions on
a(t), ν(v) andK, although (2.14) must be weakened to (2.9) ifM(t, s) is infinite.
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The general idea of Section 2 will be to prove the existence of the evolution
family {S(t, s)}t≥s pertaining to equations (1.1)-(1.2) under hypotheses on a(t),
ν(v) and K sufficient to define this evolution family but far more general than
what is required under practical circumstances.

In Section 4 we derive basically the same results in the Banach spaces
L1

N (R), N ≥ 1, of measurable functions h : R → C bounded with respect
to the norm ‖g‖1,N =

∫ ∞

−∞
|g(v)|(1 + v2)N/2dv. Assuming that fs ∈ L1

N (R),
information on the large time behavior of ‖S(t, s)fs‖1,N provides information
on the large time behavior of the N -th velocity moment of f(t). For N = 1,
this will give us sufficient conditions in order that the average velocity remains
bounded as t→ +∞. The special case ν(v) ≡ ν0 is worked out in detail.

2. The Evolution Families Involved

Suppose a(t) is a real function in L1,loc(R, dv), ν(v) is a nonnegative function
in L1,loc(R, dt) which is almost everywhere positive, and K is a positive linear
operator from L1(R, νdv) into L1(R, dv) such that

‖Kg‖1 = ‖g‖ν , g ≥ 0 in L1(R, νdv). (2.1)

Then, as one easily verifies, the operators W0(t, s) and S0(t, s), t ≥ s ≥ 0,
defined by (1.5) and (1.6) form an evolution family on L1(R, dv), i.e. [10] for
U = W0 or U = S0 and X = L1(R, dv) the following conditions are fulfilled:

1. The function (t, s) 7→ U(t, s)g is strongly continuous on {(t1, t2) ∈ R
2 :

t1 ≥ t2} for every g ∈ X;

2. For t ≥ r ≥ s we have U(t, r)U(r, s) = U(t, s);

3. For s ∈ R we have U(s, s) = I;

4. The operator norm ‖U(t, s)‖ ≤Meω(t−s) for some M,ω ∈ R.

The evolution family is called bounded if the fourth condition is fulfilled for
ω = 0.

Proposition 2.1. For t ≥ s we have

‖S0(t, s)g‖1 +

∫ t

s
‖S0(τ, s)g‖ν dτ = ‖g‖1 , g ≥ 0 in L1(R, dv). (2.2)
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Proof. Writing the second term on the left-hand side of (2.2) as a double
integral over (v, τ) ∈ R × [s, t], transforming the v-variable according to v →
v+

∫ t
s a(σ)dσ and changing the order of integration we get for g ≥ 0 in L1(R, dv)

∫ t

s
‖S0(τ, s)g‖ν dτ

=

∫ ∞

−∞

[∫ t

s
ν

(
v+

∫ τ

s
a(σ) dσ

)
exp

(
−

∫ τ

s
ν

(
v+

∫ ρ

s
a(σ) dσ

)
dρ

)
dτ

]
g(v)dv

=

∫ ∞

−∞

(
1 − exp

(
−

∫ t

s
ν

(
v +

∫ ρ

s
a(σ) dσ

)
dρ

))
g(v)dv.

Writing the last line as the difference of two integrals and changing the variable
of the second integral via v → v −

∫ t
s a(σ) dσ, we obtain (2.2).

From (2.2) it is immediate that, for t ≥ s, S0(t, s) is a positive contraction
on L1(R, dv).

For n ∈ N, t ≥ s and g ∈ L1(R, dv) we define recursively

Sn(t, s)g =

∫ t

s
Sn−1(t, τ)KS0(τ, s)g dτ. (2.3)

Then an induction argument based on (2.1) and (2.2) shows that each of the op-
erators Sn(t, s) is well-defined and is, in fact, a positive contraction on L1(R, dv).
By a more involved induction argument one may prove the following

Proposition 2.2. For n ∈ N, t ≥ s and g ≥ 0 in L1(R, dv) we have

Sn(t, s)g =

∫ t

s
S0(t, τ)KSn−1(τ, s)g dτ, (2.4)

n∑

j=0

‖Sj(t, s)g‖1 +

∫ t

s
‖Sn(τ, s)g‖ν dτ = ‖g‖1 . (2.5)

Proof. For the sake of convenience, let us attach the subscript n to equations
(2.3)-(2.5). Then (2.4)1 is true by definition and (2.5)0 is a restatement of (2.2).
Now let us assume that (2.4)n and (2.5)n are true. Since (2.3)n+1 is merely the
definition of Sn+1(t, s), we have by virtue of (2.3)n+1 and (2.4)n and after
changing the order of integration

Sn+1(t, s)g =

∫ t

s
S0(t, ρ)K

∫ ρ

s
Sn−1(ρ, τ)KS0(τ, s)g dτdρ,
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which, by (2.3)n, coincides with the right-hand side of (2.4)n+1 and hence proves
(2.4)n+1. Next, using (2.4)n+1 and the additivity of the norm on L1(R, νdv)
and changing the order of integration we find

∫ t

s
‖Sn+1(t, s)g‖ν dτ =

∫ t

s

∫ t

ρ
‖S0(τ, ρ)KSn(ρ, s)g‖ν dτdρ.

Applying (2.2) and (2.1) we get

∫ t

s
‖Sn+1(t, s)g‖ν dτ=

∫ t

s
‖Sn(t, s)g‖ν dτ −

∥∥∥∥
∫ t

s
S0(t, ρ)KSn(ρ, s)g dρ

∥∥∥∥
1

,

which, with the help of (2.5)n and (2.4)n+1, can be rewritten as the right-hand
side of (2.5)n+1.

In order to introduce a third evolution family S(t, s) as the sum of the op-
erators Sn(t, s), we need to prove the strong continuity of Sn(t, s). To do so,
we notice that the integrals appearing in equations (2.3) and (2.4) are abso-
lutely convergent Bochner integrals [5] with values in L1(R, dv) and derive the
following lemma.

Lemma 2.3. Suppose that G(τ) is Bochner integrable on [s, t] with values

in L1(R, dv). Then for every g ∈ L1(R, dv) we have

lim
h↓0

∫ t

s
‖[S0(t+ h, τ) − S0(t, τ)]G(τ)‖1 dτ = 0.

Proof. Let G(τ) be a measurable step function on [s, t] with values in
L1(R, dv). Then there exists a partition of [s, t] into the finitely many mea-
surable subsets E1, . . . , En such that G(τ) ≡ gj for τ ∈ Ej (j = 1, 2, . . . , n).
Then

∫ t

s
‖[S0(t+h, τ)−S0(t, τ)]G(τ)‖1dτ ≤

n∑

j=1

∫ t

s
‖[S0(t+h, τ)−S0(t, τ)]gj‖1dτ,

which vanishes as h ↓ 0, because S0(t, s)gj is strongly continuous in the first
time variable.

Next, consider the operator Lh defined by

LhH =

∫ t

s
[S0(t+ h, τ) − S0(t, τ)]H(τ)dτ.

Then Lh is a bounded linear operator from L1(R× [s, t], dvdτ) into L1(R, dv) of
norm ≤ 2, while ‖LhH‖1 vanishes as h ↓ 0 if H(τ) is a measurable step function
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on [s, t] with values in L1(R, dv). Since the measurable step functions on [s, t]
with values in L1(R, dv) form a dense linear subspace of L1(R× [s, t], dvdτ), we
see that ‖LhH‖1 vanishes as h ↓ 0 for every H(τ) in this space.

Proposition 2.4. For all n ∈ N and g ∈ L1(R, dv), Sn(t, s)g is a strongly

continuous function on {(t1, t2) ∈ R
2 : t1 ≥ t2}.

Proof. Let h > 0. Then for n ≥ 0, t ≥ s and g ∈ L1(R, dv) we have

‖[Sn+1(t+ h, s) − Sn+1(t, s)]g‖1

≤

∫ t+h

t
‖S0(t+ h, τ)KSn(τ, s)g‖1 dτ

+

∫ t

s
‖[S0(t+ h, τ) − S0(t, τ)]KSn(τ, s)g‖1 dτ

≤

∫ t+h

t
‖Sn(τ, s)|g|‖ν dτ

+

∫ t

s
‖[S0(t+ h, τ) − S0(t, τ)]KSn(τ, s)g‖1 dτ

≤

n∑

j=0

‖[Sj(t+ h, s) − Sj(t, s)]|g|‖1

+

∫ t

s
‖[S0(t+ h, τ) − S0(t, τ)]KSn(τ, s)g‖1 dτ,

where we have used (2.5)n twice. The last term vanishes as a result of Lemma
2.3 and (2.5)n. If we now, inductively, assume that

‖[Sj(t+ h, s)−Sj(t, s)]g‖1

vanishes as h ↓ 0 for j = 0, 1, . . . , n, then the leftmost side of the above
string of inequalities also vanishes as h ↓ 0. Consequently, the expression
‖[Sn(t+ h, s) − Sn(t, s)]g‖1 vanishes as h ↓ 0, for every n ∈ N.

Next, for g ≥ 0 in L1(R, dv) we compute

‖[Sn+1(t, s+ h) − Sn+1(t, s)]g‖1

≤

∫ s+h

s
‖Sn(t, τ)KS0(τ, s)g‖1 dτ

+

∫ t

s+h
‖Sn(t, τ)K[S0(τ, s+ h) − S0(τ, s)]g‖1 dτ
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≤

∫ s+h

s
‖S0(τ, s)g‖ν dτ +

∫ t

s+h
‖S0(τ, s+ h)|[I − S0(s+ h, s)]g|‖ν dτ

≤

∫ s+h

s
‖S0(τ, s)g‖ν dτ + ‖[I − S0(s+ h, s)]g‖1 ,

where we have used (2.2). We now apply (2.2) as well as the strong continuity
properties of S0 to prove that the above expression vanishes as h ↓ 0.

For t ≥ s and g ≥ 0 in L1(R, dv),
{∑n

j=0 Sj(t, s)g
}∞

n=0
is an increasing

sequence of nonnegative functions in L1(R, dv) whose norms are bounded above
by the norm of g, as one easily verifies from (2.5)n. Hence, this sequence
converges in the norm of L1(R, dv). As a result, we may define a bounded
positive operator S(t, s) on L1(R, dv) by the absolutely convergent series

S(t, s)g =
∞∑

n=0

Sn(t, s)g. (2.6)

By construction, S(t, s) is a contraction on L1(R, dv). Moreover, for g ≥ 0 in
L1(R, dv) we have ‖S(t, s)g‖1 = ‖g‖1 if and only if

lim
n→∞

∫ t

s
‖Sn(τ, s)g‖ν dτ = 0. (2.7)

Proposition 2.5. For t ≥ s we have the two Duhamel formulas

S(t, s)g = S0(t, s)g +

∫ t

s
S(t, τ)KS0(τ, s)g dτ, (2.8)

< S(t, s)g, ψ >=< S0(t, s)g, ψ > +

∫ t

s
< S0(t, τ)KS(τ, s)g, ψ > dτ, (2.9)

where g ∈ L1(R, dv) and ψ ∈ L∞(R, dv). The integral in (2.8) is an absolutely

convergent Bochner integral with values in L1(R, dv). The integral in (2.9) is

absolutely convergent.

Proof. Let g ≥ 0 in L1(R, dv) and ψ ≥ 0 in L∞(R, dv). Then (2.3)n and
(2.3)n+1 imply

n+1∑

j=0

< Sj(t, s)g, ψ > =< S0(t, s)g, ψ >
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+

∫ t

s

〈


n∑

j=0

Sj(t, τ)


KS0(τ, s)g, ψ

〉
dτ,

while (2.4)n and (2.4)n+1 imply

n+1∑

j=0

< Sj(t, s)g, ψ > =< S0(t, s)g, ψ >

+

∫ t

s

〈
S0(t, τ)K




n∑

j=0

Sj(τ, s)


 g, ψ

〉
dτ.

Straight applications of the monotone convergence theorem yield the “weak”
version of (2.8) as well as (2.9). In order to prove (2.8) itself, it suffices to
show that the integral in (2.8) is an absolutely convergent Bochner integral in
L1(R, dv), which is clear from (2.2) and the contractivity of S(t, s).

If ν(v) is bounded, then both (2.8) and (2.9) may be replaced by corre-
sponding Duhamel formulas where the integrals are Bochner integrals which
are absolutely convergent in the operator norm on L1(R, dv). On the other
hand, if, for t ≥ s, the quantity M(t, s) defined by (1.7) is finite, then we have
for g ≥ 0 in L1(R, dv)

‖S0(t, s)g‖1 ≥ e−M(t,s) ‖g‖1 ,∫ t

s
‖S0(τ, s)g‖ν dτ ≤

(
1 − e−M(t,s)

)
‖g‖1 .

(2.10)

The evolution families W0 and S0 can then be extended to arbitrary t, s ∈ R

by extending (1.5) and (1.6) to t ≥ s and defining the inverses of the operators
in (1.5) and (1.6) by

[W0(s, t)g](v) = g

(
v +

∫ t

s
a(σ) dσ

)
, v ∈ R, (2.11)

[S0(s, t)g](v) = M0(s, t; v)[W0(s, t)g](v), v ∈ R,

where

M0(s, t; v) = exp

(
+

∫ t

s
ν

(
v +

∫ ρ

s
a(σ) dσ

)
dρ

)
(2.12)

and t ≥ s. Moreover, we have for g ≥ 0 in L1(R, dv)
∫ t

s
‖S(τ, s)g‖ν dτ ≤

∫ t

s
‖S0(τ, s)g‖ν dτ
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+

∫ t

s

(
1 − e−M(t,ρ)

)
‖S(ρ, s)g‖ν dρ,

where M(t, s) is defined by (1.8). Clearly, M(t, ρ) ≤ M(t, s) for s ≤ ρ ≤ t.
Then

∫ t

s
‖S(τ, s)g‖ν dτ ≤ eM(t,s)

∫ t

s
‖S0(τ, s)g‖ν dτ ≤

(
eM(t,s) − 1

)
‖g‖1 . (2.13)

Hence, f(t) = S(t, s)fs, t ≥ s, is a mild solution of equations (1.1)-(1.2) on
[s, T ] if M(t, s) is finite. In that case, the second Duhamel formula (2.9) may
be replaced by

S(t, s)g = S0(t, s)g +

∫ t

s
S0(t, τ)KS(τ, s)g dτ, (2.14)

where the integral is an absolutely convergent Bochner integral with values in
L1(R, dv). If a(t) ≡ a > 0 is constant, we have

M(t, s) = sup
−∞<v<∞

1

a

∫ v+a(t−s)

v
ν(v̂) dv̂,

and hence (2.14) is true in the strong sense if ν ∈ Lp(R, dv) for some 1≤ p ≤ ∞
(cf. [6] for p = 1).

Theorem 2.6. The operators {S(t, s)}t≥s form an evolution family con-

sisting of positive contraction operators on L1(R, dv). In particular, the follow-

ing conditions are fulfilled:

1. The function (t, s) 7→ S(t, s)g is bounded and strongly continuous on

{(t1, t2) ∈ R
2 : t1 ≥ t2} for every g ∈ L1(R, dv);

2. For t ≥ r ≥ s we have S(t, r)S(r, s) = S(t, s);

3. For s ∈ R we have S(s, s) = I, the identity operator.

Proof. Condition 1 is just a restatement of Proposition 2.4 and Condition 3
is obvious. In order to prove Condition 2, we first assume that ν(v) is bounded
and hence that K is a bounded operator on L1(R, dv). In that case, the Duhamel
formulas (2.8) and (2.14) are valid while the integrals appearing in them are
Bochner integrals absolutely convergent in the operator norm on L1(R, dv).
Condition 2 can then be verified in a completely algebraic fashion. Indeed, for
t ≥ r ≥ s we compute:

S(t, r)S(r, s) =

[
S0(t, r) +

∫ t

r
S(t, τ)KS0(τ, r) dτ

]
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×

[
S0(r, s) +

∫ r

s
S0(r, σ)KS(σ, s) dσ

]

= S0(t, s) +

∫ r

s
S0(t, σ)KS(σ, s) dσ

+

∫ t

r
S(t, τ)K

[
S0(τ, s) +

∫ r

s
S0(τ, σ)KS(σ, s) dσ

]
dτ,

where we have applied the product rule for S0. Now write
∫ r
s =

∫ t
s −

∫ t
r in the

second term and
∫ r
s =

∫ τ
s −

∫ τ
r in the interior integral of the third term on the

right-hand side and apply the Duhamel formulas on [s, t] and [s, τ ], respectively.
We get

S(t, r)S(r, s) = S(t, s) −

∫ t

r
S0(t, σ)KS(σ, s) dσ

+

∫ t

r
S(t, τ)KS(τ, s) dτ −

∫ t

r

∫ t

σ
S(t, τ)KS0(τ, σ)KS(σ, s) dτds.

If we now change the integration variable in the third term from τ to s and
change the order of integration in the fourth term, we obtain

S(t, r)S(r, s) = S(t, s)

+

∫ t

r

[
−S0(t, σ) + S(t, σ) −

∫ t

σ
S(t, τ)KS0(τ, σ) dτ

]
KS(σ, s) dσ.

Since the expression between square brackets vanishes, Condition 2 is clear if
ν(v) is bounded.

To deal with arbitrary ν(v), we put νm(v) = max {ν(v),m} and Kmg =

K
(

νm

ν g
)

and define the operators S
[m]
0 (t, s), S

[m]
n (t, s) and S[m](t, s) by

S
[m]
0 (t, s) = S0(t, s), S[m]

n (t, s) =

∫ t

s
S

[m]
n−1(t, τ)KmS0(τ, s) dτ,

S[m](t, s) =
∞∑

n=0

S[m]
n (t, s),

where n ∈ N and t ≥ s. Then, by the boundedness of νm(v), the previous
techniques can be applied to prove that the operators

{
S[m](t, s)

}
t≥s

form an

evolution family on L1(R, dv) consisting of positive contraction operators and,
more precisely, that the following conditions are fulfilled:

1. S[m](t, s)g is a bounded strongly continuous function on {(t1, t2) ∈ R
2 :

t1 ≥ t2} for every g ∈ L1(R, dv);



248 C. van der Mee

2. For t ≥ r ≥ s we have S[m](t, r)S[m](r, s) = S[m](t, s);

3. For s ∈ R we have S[m](s, s) = I, the identity operator.

Moreover, for every g ≥ 0 in L1(R, dv) we have the following monotonicity
properties:

1. 0 ≤ S
[m]
n (t, s)g ≤ S

[m+1]
n (t, s)g ≤ Sn(t, s)g;

2. 0 ≤ S[m](t, s)g ≤ S[m+1](t, s)g ≤ S(t, s)g,

where the right-hand side belongs to L1(R, dv). Thus there exist bounded pos-

itive operators S̃n(t, s) and S̃(t, s) which arise as the strong limits of S
[m]
n (t, s)

and S[m](t, s), respectively, as m → ∞. Straightforward induction with re-
spect to n and summation over n then imply that S̃n(t, s) = Sn(t, s) and
S̃(t, s) = S(t, s). Passing to the limit as m → ∞ in the product rule for
S[m] yields Condition 2 for arbitrary ν(v).

Suppose there exists a strongly measurable function f : [s, t] → L1(R, dv)
such that

∫ t
s ‖f(τ)‖ν dτ is finite and

f(t) = S0(t, s)g +

∫ t

s
S0(t, τ)Kf(τ) dτ (2.15)

for some g ∈ L1(R, dv). Then, iterating (2.15) n times we get [cf. (2.4)]

f(t) =

n∑

j=0

Sj(t, s)g +

∫ t

s
Sn(t, τ)Kf(τ) dτ, (2.16)

where the finiteness of
∫ t
s ‖f(τ)‖ν dτ justifies the changes in the order of inte-

gration required to obtain the integral term in (2.16). Since

∞∑

n=0

∥∥∥∥
∫ t

s
Sn(t, τ)Kf(τ) dτ

∥∥∥∥
1

≤

∫ t

s

∞∑

n=0

‖Sn(t, τ)K|f(τ)|‖1 dτ

≤

∫ t

s
‖S(t, τ)K|f(τ)|‖1 dτ ≤

∫ t

s
‖f(τ)‖ν dτ < +∞,

the second term on the right-hand side of (2.16) vanishes in the norm of
L1(R, dv) as n→ ∞. As a result,

f(t) =
∞∑

j=0

Sj(t, s)g = S(t, s)g,
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so that the Duhamel equation (2.14) is satisfied. Consequently, if M(t, s) is
finite, then f(τ) = S(τ, s)g is the only strongly measurable function f : [s, t] →
L1(R, dv) such that

∫ t
s ‖f(τ)‖ν dτ is finite and (2.15) holds true. Another

corollary of the above reasoning is that f(t) = S(t, s)fs is the unique mild
solution on [s, T ] of equations (1.1)-(1.2) if a(t) is Lipschitz continuous on [s, T ]
and M(T, s) is finite.

Now suppose there exists a strongly measurable function F : [s, t] →
L(L1(R, dv)), the Banach algebra of bounded operators on L1(R, dv), such that
‖F (·)‖L(L1(R,dv)) is essentially bounded on [s, t] and for all g ∈ L1(R, dv)

F (σ)g = S0(t, σ)g +

∫ t

σ
F (τ)KS0(τ, σ)g dτ, s ≤ σ ≤ t. (2.17)

Then, iterating (2.17) n times we obtain

F (σ)g =
n∑

j=0

Sj(t, σ)g +

∫ t

σ
F (τ)KSn(τ, σ)g dτ, (2.18)

where the essential boundedness of F (τ) justifies the changes in the order of
integration required to find the integral term in (2.18). Let us denote the
essential supremum of ‖F (·)‖L(L1(R,dv)) by γ. Because [cf. (2.5)]

∥∥∥∥
∫ t

σ
F (τ)KSn(τ, σ)g dτ

∥∥∥∥
1

≤ γ

∫ t

σ
‖Sn(τ, σ)|g|‖ν dτ = γ



‖g‖1 −

n∑

j=0

‖Sj(t, σ)|g|‖1



 ,

the second term on the right-hand side of (2.18) vanishes in the norm of
L1(R, dv) as n → ∞ and uniformly in σ on [s, t], provided ‖S(t, σ)h‖1 = ‖h‖1

for s ≤ σ ≤ t and all h ≥ 0 in L1(R, dv). In that case, F (σ) = S(t, σ) for
s ≤ σ ≤ t. Thus, under the above provision, F (σ) = S(t, σ) is the only es-
sentially bounded function F : [s, t] → L(L1(R, dv)) satisfying (2.17) for all
g ∈ L1(R, dv). Necessary and sufficient conditions as well as sufficient condi-
tions for this provision to be true are given in Proposition 2.7 below. Two of
the sufficient conditions are the finiteness of M(t, s) and the boundedness of
ν(v).

The physics of the problem suggests that the total number of electrons is
independent of time. In mathematical terms this means that ‖S(t, s)g‖1 = ‖g‖1
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for every g ≥ 0 in L1(R, dv). This property is indeed true under weak assump-
tions on ν(v) and K, as indicated by the following result. In the statement of
this result, we need the operator L(t,s) defined by

(L(t,s)F )(ρ) =

∫ ρ

s
KS0(ρ, τ)F (τ) dτ, s ≤ ρ ≤ t. (2.19)

It is immediate that L(t,s) is a positive contraction on L1(R×[s, t]; dvdρ). More-
over, if 1 were to be an eigenvalue of L(t,s), then there would exist a nontrivial
function G ≥ 0 in L1(R × [s, t]; dvdρ) such that L(t,s)G = G. Then a simple
calculation would give [cf. (2.2)]

∥∥L(t,s)G
∥∥

1
=

∫ t

s
(‖G(τ)‖1 − ‖S0(t, τ)G(τ)‖1) dτ,

which would be strictly less than the norm of G. Hence, 1 cannot be an eigen-
value of L(t,s).

Proposition 2.7. Let t ≥ s. The following three assertions are equivalent:

1. ‖S(t, s)g‖1 = ‖g‖1 for every g ≥ 0 in L1(R, dv);

2. For each g ≥ 0 in L1(R, dv), the integral
∫ t
s ‖Sn(τ, s)g‖ν dτ vanishes as

n→ ∞;

3. 1 does not belong to the residual spectrum of L(t,s).

In particular, these three assertions are true if either one of the following con-

ditions is satisfied:

1. ν(v) is bounded;

2. L(t,s) is a weakly compact operator on L1(R × [s, t]; dvdρ);

3. The quantity M(t, s) defined by (1.8) is finite.

Proof. The equivalence of assertions 1 and 2 is given by (2.7). To prove
that these two assertions are equivalent to the third assertion, we observe that{∥∥[L(t,s)]

nF
∥∥

1

}∞

n=0
is a decreasing sequence of nonnegative numbers whenever

F ≥ 0 in L1(R × [s, t]; dvdρ). The limit of this sequence can be represented
in the form < F,Ψ >=

∫ ∞

−∞

∫ t
s F (v, ρ)Ψ(v, ρ) dρdv where Ψ ≥ 0 in L∞(R ×

[s, t]; dvdρ). In terms of the adjoint [L(t,s)]
∗ of L(t,s) on L∞(R× [s, t]; dvdρ), we

have [L(t,s)]
∗Ψ = Ψ.
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Now, note that
∫ t
s ‖Sn(τ, s)g‖ν dτ =

∥∥[L(t,s)]
nG

∥∥
1

with G(τ) ≡ g, when-

ever g ≥ 0 in L1(R, dv). Hence, if the second assertion is not true, then the
corresponding G(τ) ≡ g ≥ 0 has the property that < G,Ψ > is strictly positive.
As a consequence, Ψ is nontrivial and hence 1 is in the point spectrum of the
adjoint [L(t,s)]

∗. Because 1 cannot be in the point spectrum of L(t,s), it must
belong to its residual spectrum, thus contradicting the third assertion.

If 1 belongs to the residual spectrum of L(t,s), then 1 also belongs to the
point spectrum of the adjoint [L(t,s)]

∗ and hence there is a nontrivial Ψ ≥ 0
in L∞(R × [s, t]; dvdρ) such that [L(t,s)]

∗Ψ = Ψ. It is possible to choose some
F ≥ 0 in L1(R× [s, t]; dvdρ) with < F,Ψ > strictly positive, and for this F one
may, in fact, choose a measurable step function on [s, t] with the finitely many
“values” g1, . . . , gm in L1(R, dv). Putting g = g1 + · · ·+ gm and replacing F by
F (τ) ≡ g ≥ 0, the quantity < F,Ψ > remains strictly positive, but it is now seen
to arise also as the limit of

∫ t
s ‖Sn(τ, s)g‖ν dτ as n→ ∞, which contradicts the

second assertion. Consequently, the three assertions are equivalent, as claimed.
Let us now consider the three sufficient conditions for assertions 1-3. If ν(v)

is bounded, then it is immediate from (2.19) that for all F ∈ L1(R× [s, t]; dvdρ)

∥∥[L(t,s)]
nF

∥∥
1
≤

(t− s)n ‖ν‖n
∞

n!
‖F‖1 , (2.20)

so that in this case L(t,s) is quasinilpotent and hence 1 does not belong to its
spectrum. Next, if L(t,s) is weakly compact, its square is compact and thus 1
cannot be in its residual spectrum. Finally, using (2.1), (1.8), (2.10) and (2.19)
we have

∥∥L(t,s)F
∥∥

1
≤

∫ t

s

(
1 − e−M(t,τ)

)
‖F (τ)‖1 dτ ≤(1 − exp {−M(t, s)}) ‖F‖1

(2.21)
if M(t, s) is finite. Hence 1 cannot belong to the spectrum of L(t,s).

If a(t) ≡ a > 0 is constant, then S(t, s) = S(t−s). In this case the sufficient
condition 3 is satisfied if ν ∈ Lp(R, dv) for some 1 ≤ p ≤ ∞, in accordance with
[7].

3. Using the Evolution Semigroup

If {U(t, s)}t≥s is an evolution family on a Banach space X, then {etΓU }t≥0

defined by (
etΓU f

)
(τ) = U(τ, τ − t)f(τ − t), τ ∈ R, (3.1)
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is a strongly continuous semigroup on the Banach space Lp(R;X) of strongly
measurable functions f : R → X bounded with respect to the norm ‖f‖p =[∫ ∞

−∞
‖f(t)‖p dt

]1/p
, 1 ≤ p < +∞. On the other hand, if {U(t, s)}t≥s is a

strongly measurable family of bounded linear operators on X such that (3.1)
defines a strongly continuous semigroup on X, then the algebraic properties
U(t, r)U(r, s) = U(t, s) for t ≥ r ≥ s and U(s, s) = I for s ∈ R are satisfied but
U(t, s) need not be strongly continuous in (t, s). However, {U(t, s)}t≥s is an
evolution family onX if and only if {etΓU }t≥0 is a strongly continuous semigroup
on the Banach space C0(R;X) of strongly continuous functions f : R → X such
that limτ→±∞ ‖f(τ)‖ = 0. For evolution semigroups we refer to [9, 11].

In the present situation we may view etΓU , with p = 1 and U any of W0, S0

and S, as an operator on L1(R2, dvdt). We then have

(
etΓW0 f

)
(τ, v) = f

(
v −

∫ τ

τ−t
a(σ) dσ, τ − t

)
;

(
etΓS0f

)
(τ, v) = M0(τ, τ − t; v)f

(
v −

∫ τ

τ−t
a(σ) dσ, τ − t

)
.

Then for f ≥ 0 in L1(R2, dvdt) we get

‖etΓW0 f‖1 = ‖f‖1;

‖etΓS0 f‖1 = ‖f‖1 −

∫ ∞

−∞

∫ τ+t

τ
‖S0(σ, τ)f(τ)‖ν dσdτ ;

‖etΓSf‖1 = ‖f‖1 − lim
n→∞

∫ ∞

−∞

∫ τ+t

τ
‖Sn(σ, τ)f(τ)‖ν dσdτ.

The evolution semigroup {etΓS}t≥0 has the property

‖etΓSf‖1 = ‖f‖1, f ≥ 0 in L1(R2, dvdt), (3.2)

if and only if

lim
n→∞

∫ ∞

−∞

∫ τ+t

τ
‖Sn(σ, τ)f(τ)‖ν dσdτ = 0. (3.3)

One may consider f(v, τ, t) =
(
etΓSf0

)
(v, τ) as the unique solution of the

kinetic equation

∂f

∂t
(v, τ, t) +

∂f

∂τ
(v, τ, t) + a(τ)

∂f

∂v
(v, τ, t) + ν(v)f(v, τ, t) (3.4)

=

∫ ∞

−∞

k(v, v̂)ν(v̂)f(v̂, τ, t) dv̂, (3.5)
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with initial condition
f(v, τ, 0) = f0(v, τ), (3.6)

where R
2 is the phase space of velocity-time points (v, τ) and semigroup meth-

ods on the function space L1(R2, dvdt) are to be applied.
Equations (3.5)-(3.6) may be studied using the methods of [7] without re-

lying on evolution families. The equivalence of (3.2) and (3.3) and Proposition
2.7 are then virtually immediate. Indeed, as in [7] one defines the evolution
semigroup as follows:

etΓSf =
∞∑

n=0

[
etΓS

]
n
f, f ≥ 0 in L1(R2, dvdt),

where one establishes inductively
([
etΓS

]
0
f
)
(τ) =

(
etΓS0f

)
(τ) = S0(τ, τ − t)f(τ − t);

([
etΓS

]
n
f
)
(τ) =

∫ t

0

[
e(t−σ)ΓS

]
n−1

K
[
eσΓS

]
0
f dσ = Sn(τ, τ − t)f(τ − t).

Here we have extended K to an operator from L1(R2, νdvdt) into the space
L1(R2, dvdt). Then

∫ t

0

∥∥[
eσΓS

]
n
f
∥∥

ν
dσ =

∫ ∞

−∞

∫ t

0
‖Sn(τ, τ − σ)f(τ − σ)‖ν dσdτ

=

∫ ∞

−∞

∫ t

0
‖Sn(τ + σ, τ)f(τ)‖ν dσdτ =

∫ ∞

−∞

∫ τ+t

τ
‖Sn(σ, τ)f(τ)‖ν dσdτ,

which implies the equivalence of (3.2) and (3.3) as a consequence of the corre-
sponding result in [7].

4. Evolution Families in Weighted L
1-Spaces

In this section we will change the Banach space setting of the problem from
L1(R, dv) to L1

N (R) for some N ≥ 1 where L1
N (R) is the Banach space of

measurable functions h : R → C which are bounded with respect to the norm

‖h‖1,N =

∫ ∞

−∞

|h(v)|(1 + v2)N/2 dv. (4.1)

We will study the three evolution families {W0(t, s)}t≥s, {S0(t, s)}t≥s, and

{S(t, s)}t≥s on the Banach space L1
N (R) which, for any N ≥ 1, is continu-

ously and densely imbedded in L1(R, dv). We will prove that (1) W0(t, s)g,
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S0(t, s)g and S(t, s)g belong to L1
N (R) if g ∈ L1

N (R), and (2) these vectors de-
pend continuously on t and s in the norm of L1

N (R). Throughout this section
we assume that

κ = ess sup
bv∈R

∫ ∞

−∞

k(v, v̂)(1 + v2)N/2 dv

is finite. As a result, K defined by (Kg)(v) =
∫ ∞

−∞
k(v, v̂)ν(v̂)g(v̂) dv̂ for

some nonnegative measurable function k(v, v̂) acts as a bounded operator from
L1(R, νdv) into L1

N (R) and its norm is given by κ.

Proposition 4.1. {W0(t, s)}t≥s is an evolution family on L1
N (R) which

extends to all t, s ∈ R. The norm of the operator W0(t, s) on L1
N (R) is given

by Φ(|
∫ t
s a(σ) dσ|)N where

Φ(α) =
1

2

(
α+ (α2 + 4)1/2

)
, α ≥ 0. (4.2)

Proof. From (1.5) we have for g ≥ 0 in L1
N (R) after a simple change of

variable

‖W0(t, s)g‖1,N =

∫ ∞

−∞




1 +
(
v +

∫ t
s a(σ) dσ

)2

1 + v2




N/2

× g(v)(1 + v2)N/2 dv,

so that the operator norm of W0(t, s) on L1
N (R) is the N -th power of the

maximum of the function

ϕα(v) =

(
1 + (v + α)2

1 + v2

)1/2

, v ∈ R,

where α =
∫ t
s a(σ) dσ. This maximum equals Φ(|α|). The same result can be

derived from (2.11) if t ≤ s. Applying the principle of dominated convergence,
we see that the expression ‖[W0(t1, s1) −W0(t, s)]g‖1,N vanishes as (t1, s1) →
(t, s), which proves the strong continuity of W0.

Proposition 4.2. {S0(t, s)}t≥s is an evolution family on L1
N (R) which

extends to all t, s ∈ R if the quantity M(t, s) defined by (1.8) is finite for t ≥ s.

The norm of the operator S0(t, s) on L1
N (R) is given by

N(t, s) = ess sup
v∈R




1 +
(
v +

∫ t
s a(σ) dσ

)2

1 + v2




N/2
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× exp

(
−

∫ t

s
ν

(
v +

∫ ρ

s
a(σ) dσ

)
dρ

)
, (4.3)

which is bounded above by Φ(|
∫ t
s a(σ) dσ|)N with Φ(α) as in (4.2).

Proof. The proof of this proposition is the same as the proof of Proposition
4.1, except for using (1.6) and (2.12) instead of (1.5) and (2.11).

If M(t, s) defined in (1.8) is finite, the norm of S0(s, t) on L1
N (R) for t ≥ s

is given by

N(s, t) = ess sup
v∈R




1 +
(
v −

∫ t
s a(σ) dσ

)2

1 + v2




N/2

× exp

(
+

∫ t

s
ν

(
v −

∫ t

ρ
a(σ) dσ

)
dρ

)
,

which is bounded above by exp {M(t, s)}Φ(|
∫ t
s a(σ) dσ|)N . We also have for

t ≥ s

exp[−M(t, s)]Φ

(
|

∫ t

s
a(σ) dσ|

)N

≤ ‖S0(t, s)‖L1

N
(R)≤Φ

(
|

∫ t

s
a(σ) dσ|

)N

. (4.4)

Moreover, for ν(v) ≡ ν0 we have

N(t, s) = Φ

(∣∣∣∣
∫ t

s
a(σ) dσ

∣∣∣∣
)N

× e−ν0(t−s).

The next two propositions involve the operators S(t, s) instead of S0(t, s).

Theorem 4.3. Suppose the quantity M(t, s) defined by (1.8) is finite for

t ≥ s ≥ 0. Then {S(t, s)}t≥s is an evolution family on L1
N (R).

Proof. Let g ≥ 0 in L1
N (R). From (2.14) we obtain with the help of (2.13)

‖S(t, s)g‖1,N ≤ ‖S0(t, s)g‖1,N + κ

∫ t

s
‖S0(t, τ)‖L1

N
(R) ‖S(τ, s)g‖1,N dτ

≤ sup
s≤τ≤t

N(t, τ)
(
‖g‖1,N + κ (exp {M(t, s)} − 1) ‖g‖1

)
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≤ sup
s≤τ≤t

N(t, τ) (1 + κ (exp {M(t, s)} − 1)) ‖g‖1,N . (4.5)

Put F (t, s)g = S(t, s)g−S0(t, s)g. Then F (t, s)g=
∫ t
sS0(t, τ)KS(τ, s)g dτ while

for h ≥ 0 we have

[F (t+ h, s) − F (t, s)]g =

∫ t+h

t
S0(t+ h, τ)KS(τ, s)g dτ

+

∫ t

s
[S0(t+ h, τ) − S0(t, τ)]KS(τ, s)g dτ.

The first term on the right-hand side vanishes in the norm of L1
N (R) as h ↓ 0,

as a result of (2.13) and the boundedness of K as an operator from L1(R, νdv)
into L1

N (R). The second term vanishes as a consequence of Proposition 2.3
phrased in the norm of L1

N (R). Also, for h ≥ 0 we have from (2.8)

[F (t, s + h) − F (t, s)]g

=

∫ t

s+h
S(t, τ)K[S0(τ, s + h)−S0(τ, s)]g dτ−

∫ s+h

s
S(t, τ)KS0(τ, s)g dτ.

In the norm of L1
N (R), the second term on the right-hand side vanishes as h ↓ 0,

as a result of (4.5) and (2.2). In the norm of L1
N (R), the first term has as an

upper bound some multiple of the expression

∫ t

s+h
‖S0(τ, s+ h)|[I − S0(s+ h, s)]g|‖ν dτ ≤ ‖[I − S0(s+ h, s)]g‖1 ,

which vanishes as h ↓ 0. Hence, S(t, s)g depends continuously on t and s in the
norm of L1

N (R).

Theorem 4.4. Let γ be a constant such that ν(v)≤ γ(1 + v2)N/2. Then

{S(t, s)}t≥s is an evolution family on L1
N (R).

Proof. First, note that

‖Kg‖1,N ≤ κ ‖g‖ν ≤ κγ ‖g‖1,N , g ≥ 0 in L1
N (R).

Then K is a bounded operator on L1
N (R) and we can apply a standard pertur-

bation result [10].
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If (1) N(t, s) ≤ c0e
−λ(t−s), (2) M(t, s) is finite, and (3) K is a bounded

operator from L1(R, dv) into L1
N (R) of norm κ1, then the norm of S(t, s) as an

operator acting on L1
N (R) is bounded above by

c0

(
e−λ(t−s) + κ1

∫ t

s
e−λ(t−τ) dτ

)
= c0

(
e−λ(t−s) +

κ1

λ

{
1 − e−λ(t−s)

})

≤ c0 max
(
1,
κ1

λ

)
.

This situation occurs if (1) ν(v) ≡ ν0, (2) |
∫ t
s a(σ) dσ| ≤ C for t ≥ s, and (3) K

is a bounded linear operator from L1(R, νdv) into L1
N (R). In that case, we get

from (4.5) (with c0 = Φ(C)N , κ1 = κν0 and λ = ν0) the upper bound κΦ(C)N .
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