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Summary. Exact relationships are established between Stokes
parameters and several complex parameters which can be used to
describe polarized light. A detailed study is made of the phase
matrix, which plays a key role in multiple scattering theories and
occurs, for example, as the kernel of the radiative transfer
equation for a plane-parallel atmosphere. For various repre-
sentations of polarized light the nature of the transport equation
and several properties of the phase matrix are discussed.
Analytical expressions are obtained for the phase matrix and all of
its Fourier components by using the so-called addition theorem of
generalized spherical functions, which is derived from a similar
expression in angular momentum theory.
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1. Introduction

Sir George Stokes (1852) introduced a set of parameters which is
very useful to describe a polarized beam of radiation. When these
parameters are exactly specified for a beam of light, travelling in a
certain direction, one can easily deduce its intensity and state of
polarization, i.e. the degree of polarization, the plane of polariza-
tion and the ellipticity. With slight modifications Stokes’ repre-
sentation of polarized light has been used by Chandrasekhar
(1950) for a systematic treatment of radiative transfer in a plane-
parallel atmosphere in which Rayleigh scattering is the elemen-
tary scattering process. However, Rayleigh scattering is only valid
for particles that are small compared to the wavelength both
outside and inside the particle. In other cases the theory for single
scattering is much more complicated, let alone the multiple
scattering theory. A comprehensive treatment of single scattering
has been presented by Van de Hulst (1957) who also used Stokes
parameters to represent polarized light.

Kuscer and Ribari¢ (1959) employed a set of complex polar-
ization parameters in order to extend Chandrasekhar’s work to
more complicated scattering laws than Rayleigh’s. By also using
so-called generalized spherical functions they arrived at a transfer
equation for polarized light with an analytical expression for the
kernel (the phase matrix) consisting of series of functions having
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separated variables. The paper of Ku$€er and Ribari€ has served
as a basis for several other papers containing further develop-
ments (Lenoble, 1961 ; Herman and Lenoble, 1968 ; Herman, 1965,
1970; Domke, 1973, 1974a,b, 1975a—, 1976 ; Siewert, 1981, 1982;
Siewert and Pinheiro, 1982). However, although Kuscer and
Ribari¢ (1959) have provided a definition of their parameters in
terms of Stokes parameters for which they refer among others to
Chandrasekhar (1950) and Van de Hulst (1957), this does not
agree with some formulae in their paper. This may give rise to
discrepancies in the state of polarization of light emerging from an
atmosphere as computed with (i) a method in which the Kuscer-
Ribari¢ parameters are used, and (ii) a method in which only
Stokes parameters are employed. This is very unfortunate since
the transfer of polarized light is complicated to such an extent that
it is highly desirable to check formulae and numerical results (at
least for some cases) by calculating these in more than one way.

The main purpose of this paper is to provide fundamental
relationships relevant to the transfer of polarized light, which can
be used for various applications. Our treatment is based on
exactly the same Stokes parameters as employed by
Chandrasekhar (1950) and Van de Hulst (1957). The necessary
algebra is kept simple by taking advantage of several symmetry
relations. In view of the many ambiguities in the literature we pay
special attention to precise definitions and checks throughout this

paper.

2. Stokes parameters and their rotation properties

On defining Stokes parameters Chandrasekhar (1950) used only
real, trigonometric, wave functions to describe the vibrations of
the electric (and magnetic) vector in a lightbeam, whereas Van de
Hulst (1957) employed complex exponential functions. We will do
both and compare the results.

2.1. Trigonometric wave functions

Consider a strictly monochromatic beam of light. In a plane
perpendicular to the direction of propagation we choose rect-
angular axes ¢/ and r intersecting at some point, O, of the beam
(see Fig. 1). Defining £ and r as the unit vectors along the positive
/- and r-axis, respectively, we assume the direction of propagation
to be the direction of the vectorproduct r x £ (i.e. the directions of
r, £ and propagation are those of a right-handed Cartesian
system). The components of the electric vector can be written as

E,=8sin(wt—e,), & =Esin(wt—e,), (1)
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Fig. 1. The vibrational ellipse for the electric vector of a polarized
wave. The direction of propagation is into the paper. The
polarization is right-handed in this situation

where o =circular frequency, t=time and &9, &2, ¢,, and ¢, are
constants. The Stokes parameters, as defined by Chandrasekhar
(1950), are

I=[E71*+ &%, @
Q=01 -1&7°, (3
U =280 cos(e,—¢,), @)
V=280 sin(e,—¢,). )
Here

[P+ =7 (6)
is equal to the specific intensity of the beam (or to =~ ! times the
net flux when the beam is unidirectional). Consequently, the
Stokes parameters are four real quantities with the same physical
dimension.

The endpoint of the electric vector, generally, traces an ellipse
with a major axis making an angle, y, with the positive Z-axis, such
that 0=y <. This angle is obtained by rotating ¢ in the anti-
clockwise direction, as viewed in the direction of propagation,
until £ is directed along the major axis. We further use an angle S,
whose tangent is the ratio of the minor and the major axis of the
ellipse so that — /4 < f<n/4. The sign of § is positive or negative
according as the polarization is right-handed or left-handed as
viewed in the direction of propagation (see Fig.1). For example,
B =mn/4 means right-handed circular polarization in which case the
electric vector moves like a right-handed screw does when driven
into the direction of propagation.

It may be shown now that the Stokes parameters can also be
written as

I=[£72, (7
Q=[£°]%cos2B cos2y, @®)
U =[£°]?cos2fBsin2y, )

V=[&%7?sin28. (10)

This means that the plane of polarization (the orientation of the
ellipse) and the ellipticity follow from Q, U, and V via

tan2y=U/Q, 1y
sin2B=V/Q*+ U*+VH)V2, 12)

Since |B| <7/4 we have cos2f =0 so that, according to Eq.(8), Q
has the same sign as cos2y. Therefore, from the different values of

 differing by 7/2 which satisfy Eq. (11) we must choose that value
which gives cos2y the same sign as Q.

When a beam of light is not strictly monochromatic, 63, o
and g,—e¢, are, in general, time-dependent and we must take time
averages of the individual waves, in particular, in Egs.(2)}H6).
Even then the light may still be fully polarized in which case
Egs. (7) through (12) remain valid with the only modification that
[£°72 must be regarded as a time average. Generally, however, the
light will be incompletely polarized. It may then be taken as a
mixture of a beam of natural (unpolarized) light and a fully
polarized beam. The latter has an ellipse with an orientation and
ellipticity which can still be derived from Egs.(11) and (12). The
degree of polarization of any beam with Stokes parameters I, Q,
U,and Vis

0=(Q* 4+ U+ VA)U3I<1. (13)

Stokes parameters are always defined with respect to a plane
of reference, namely the plane through ¢ and the direction of
propagation. Although the choice of the reference plane is arbi-
trary, in principle, observational or theoretical circumstances may
make a certain plane preferable to others. Therefore, we now
consider a rotation of the co-ordinate axes ¢ and r through an
angle, « =0, in the anti-clockwise direction, when looking in the
direction of propagation. Since a beam of arbitrarily polarized
light is always equivalent to two independent streams of fully,
oppositely polarized light, the transformation laws for the Stokes
parameters can always be obtained from Egs. (7)+10). From these
we find the Stokes parameters with respect to the new co-ordinate
system by making the transformation y—y—a if a <y (see Fig. 1).
Apparently, I and V are invariant for such a transformation but Q
and U change. On using primes to denote the Stokes parameters
in the new system, we derive from Egs.(8) and (9)

(14)
(15)

Q'=Qcos2a+ Usin2e,
U’'=—Qsin20+ U cos2o.

When we make the Stokes parameters elements of a column
vector and write

I
0
I={I,Q,U,V}=| |, (16)
U
14
we can state the result in matrix notation as
I'=Ll, a7
where the rotation matrix
1 0 0 0
L) 0 cos2a sin2x O (18)
o) = .
0 —sin2x cos2a O
0 0 0 1

It is easily verified that the same result holds for a>y, since in
Eqgs. (8) and (9) x may be replaced by y + = without changing the
left-hand sides. So far, we have essentially followed
Chandrasekhar’s (1950) discussion of the Stokes parameters,
although our range of § and y is smaller.

Rotation of co-ordinate axes often occurs when dealing with
polarized light. It is therefore, important to investigate whether it
can be done in a simpler way, for instance, by making linear
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combinations of the Stokes parameters. Now Egs. (8) and (9) show
that Q%+ U? is invariant under the transformation y—y—a,
which suggests to consider Q+iU and Q—iU, where i is the
imaginary unit (— 1)*/2. Thus from Egs.(8) and (9) we find

Q+iU=[¢%]%cos2p e'2*, (19)

where, generally, [£°]? represents a time average. We see that
Q+iU transforms very simply on rotation since its absolute value
is invariant and its argument changes from 2y into 2(y—o). In
other words, Q +iU needs to be multiplied by e~ *2*. Similarly, we
find for the rotation under consideration that Q—iU must be
multiplied by €2 The same results could have been obtained
from Egs.(14) and (15) by expressing Q'+iU’ in Q +iU. Hence, a
convenient set of parameters is

Q+iU
I+V
I-v

Q—iU

(20)

The factor % in this expression will be explained later. The effect of
a rotation through any angle o =0 in the anti-clockwise direction
when looking in the direction of propagation can now be written
as

I'=L (oI, (21)
where the new rotation matrix is
e”2* 0 0 0
L ()= 0 100 (22)
0 010
0 0 0 &%

Hence, the rotation matrix has become purely diagonal, but
instead of the real Stokes parameters we now use four other
parameters, two of which are complex, in general. It is clear that
several modifications of Eq.(20) are possible that also entail a
diagonal rotation matrix, such as the set {Q —iU, ¥,I,Q+iU}. The
only essential point in these considerations is that Q+iU and
Q—iU have simpler rotation properties than Q and U themselves.

2.2. Exponential wave functions

Following Van de Hulst (1957) we first consider a strictly
monochromatic beam of light travelling in the positive z-
direction. Choosing axes ¢ and r, as before, with »x¢ in the
direction of propagation we introduce complex oscillating func-
tions to write for the components of the electric field

E,=a,exp(—ic,) exp(— ikz +ioot) } 23)

E,=a, exp(—ie,) exp(—ikz+iwt),
where a, and a, are non-negative real quantities, k=2n/A and A
denotes the wavelength. The physical quantities are assumed to be

the real parts (denoted by Re) of these expressions.
The Stokes parameters are now defined as the real quantities

I=E,E¥+EE¥, (24)
Q=E,E¥—E,E*, (25)
U=E,E*+E,E¥, (26)
V=i(E,E*—E,E¥), 27

where throughout this paper an asterisk denotes the conjugate
complex value. Applying these formulae to Eq.(23) we get

I=a}+a?, (28)
Q=a;-a;, (29)
U=2a,a,cos(e, —¢,), (30)
V=2a,a,sin(e, —¢,). (31)

These Stokes parameters are the same as those defined by
Chandrasekhar (1950) and considered in the preceding section for
a particular point in the beam [cf. Eqs.(2)+5)]. Formally, this is
established by writing

&,=&2sin(wt—e,) = &2 cos(wt—e,—m/2)

=Re[ &2 exp(i(wt —e,)) exp(—in/2)] (32)
and a similar expression for £,. Henceforth, on using the term
“Stokes parameters” we mean the Stokes parameters as defined by
Chandrasekhar (1950) and Van de Hulst (1957), unless explicitly
stated otherwise.

A word of caution about these complex wave functions is in
order when books or papers of different authors are compared.
Suppose we had chosen E} and E} to represent the wave,
providing time factors e~ *". The real parts would have been the
same and so would I, Q, and U [cf. Egs.(24)<26)] but V would
have the opposite sign [cf. Eq.(27)]. However, Van de Hulst
(1957) has adopted time factors e**** throughout his book,
corresponding to the classical form of the complex refractive
index, and we will do the same in this paper.

We now wish to discuss the effect of a rotation of the co-
ordinate axes, starting with E, and E,. Writing these as elements of
a column vector and rotating the axes £ and r through an angle
o =0 in the anti-clockwise direction, when looking in the direction
of propagation, we find the new field components

- £
E] E]
To simplify this we note the close analogy with Egs. (14) and (15).

Thus we derive from Eq.(33)

E,+iE.=e *(E,+ iE,)}
E,—iE.=e"™(E,—iE,)|’

cosa sina (33)

—sina cosa

(34)

Consequently, if we define new components

55k Tl

E l/iliE

the effect of the rotation is described by

=6 S
EL] 0o e®E_]
The factor 2712 in Eq. (35) will be explained presently.
Standard methods of linear algebra may be used to obtain
Egs.(35) and (36) in a more formal way. The 2x2 matrix in
Eq.(33) is then diagonalized by determining its eigenvalues (™
and e~ ™) and the corresponding eigenvectors [{1,i} and {1, —i}]
which may be normalized to unity by means of a factor 27 /2,
Equation (35) then represents the necessary transformation to
replace Eq. (33) by the simpler Eq. (36). This entire process may be
interpreted as a change of the basis {1,0} and {0,1} to the basis
27 Y2{1,i} and 27 Y2{1, — i}, or, in other words, from two linearly

(33)

(36)
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polarized states (with perpendicular planes of polarization) to two
oppositely circularly polarized states. This last statement may be
understood by substituting a,=a,, &, —¢, = +7/2 in Eq.(23) and
taking the ratio

E
E’ =exp(Fin/2)=+1/i.

r

(37

The effect of a rotation of the co-ordinate axes on the Stokes
parameters may now be deduced as follows.
We find from Egs. (35) and (24)+27)

E,E*=XI1+V), (38)
E_E*={I-V), (39)
E_E* =40 +iU), (40)
E, E* =X0-iU). (41)

These quantities have simple properties upon rotating the co-
ordinate system through an angle «>0 in the anti-clockwise
direction, when looking in the direction of propagation, for E,
and E* need to be multiplied by ¢ and E_ and E* by e™* [cf.
Eq. (36)]. Working this out renders Egs. (20){22). When a wave is
not strictly monochromatic we must again take time averages, but
this does not change the rotation properties; in particular,
Egs. (20)22) remain valid. It is clear now that the factor $ in
Eq.(20) has been chosen in view of the normalization constant
27 Y2 for the vectors {1,i} and {1, —i}. Obviously, Eq. (20) may be
called a “circular polarization (CP)“ representation of polarized
light. It should be kept in mind, however, that there are other
representations which are equally entitled to such a name, like
HOo—-iU, I-V, 1+V, Q+iU}.

The transition from the Stokes vector I to I, can be written in
the form [cf. Egs.(16) and (20)]

I,=Al, (42)
where
01 i O
e @)
01 -i O
Conversely, we have
I=47'1, (44)
where
10
4= g (()) i @3
01-10

and the upper index —1 is used to denote the inverse of a matrix.
For later applications we note that whenever the Stokes
parameters of a beam are changed by some process according to

I'=GlI, (46)

where G is a 4 x4 matrix characterizing the process, this can
be expressed in the new parameters by

I'=Gl, @7

with

G,=A4GA™'. (48)

This follows from Eq. (46) by double application of Eq.(44) and
premultiplication of both sides by 4. As a check to the above
equations one may use Eq.(48) to obtain Eq.(22) from Eq.(18).

3. The scattering matrix

Suppose a beam of light is scattered by a single particle or a small
volume-element of particles. Let the scattering be independent
and without change of frequency. The plane containing the
incident and scattered beams is called the scattering plane. For
both the incident and scattered beams we choose r perpendicular
to the scattering plane and ¢ parallel to this plane in such a way
that the direction of rx¢ coincides with the direction of pro-
pagation. Using Stokes parameters, the scattering process can be
described by means of a 4 x4 matrix, which we shall call the
scattering matrix. It transforms the Stokes parameters of the
incident beam into those of the scattered beam, apart from a
constant factor (see Van de Hulst, 1957).
We consider a scattering matrix of the form

a,® b6 O 0
b,(0) a0 O 0
0 0 a0 b0
0 0 —by(0) a,0

where 00 <r is the scattering angle, ie. the angle between the
directions of the incident and scattered beams. This matrix
contains 6 real functions and is valid in various situations, such as
(i) scattering by an assembly of randomly oriented particles
each of which has a plane of symmetry (e.g. homogeneous spheres
or spheroids);
(i) scattering by an assembly having particles and their
mirror particles in equal numbers and with random orientation;
(iii) Rayleigh scattering with or without depolarization effects.
Inspection of Eq. (49) shows that

F(6)= 49)

F(6)=PF(O)P, (50)
where
P=diag(1,1, —1,1), (51)

which is a consequence of reciprocity. The tilde above a matrix
denotes its transpose. As a consequence of symmetry with respect
to the scattering plane one finds from Eq.(49)

F(0)=DF(0)D, (52)
where
D =diag(1,1, — 1, —1). (53)

In addition to the symmetry relations (50) and (52) (Van de Hulst,
1957 ; Hovenier, 1969) we have for scattering angles 0 and n the
special symmetry relations (cf. Van de Hulst, 1957)

a,(0)=a,(0), (54
b,(0)=b,(0)=0, (55)
ay(m) = —a(m), (56)
b,(m)=b,(n)=0. (57)
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The Stokes parameters of natural (unpolarized) light can be
written as {I,0,0,0}. Hence, neglecting polarization in scattering
problems amounts to keeping only a,(0)=%0 in the scattering
matrix.

Employing representation (20) for both the incident and
scattered beam we find the scattering matrix in this representation
via Eq. (48), viz.
F(0)=AF©)A~*. (58)

Performing the matrix multiplications yields

b,(6)—ib,(6)
a,(0)—a,0)
a,(6)+a,(9)
b,(6)+ib,(6)

a,(6)+a,(0)
b, (6)+ib,(6)
b,(6)—ib,(6)
a,(0)—a,(6)

b,(6)+ib,(6)
a,(0)+a,0)
a,(6)—a,(6)
b,(0)—ib,(6)

F(6)=3

This matrix contains four real functions (on both diagonals) and

two complex functions which are conjugates. Obviously
F(0)=F0). (60)

This is a reciprocity relation as follows by substituting Eq. (50) in
Eq. (58), taking the transpose on both sides and using the relations

PA=14"" (61)
and
A" 'P=24 (62)

which result from Egs. (43) and (45). As shown by Eq.(59) the
matrix F(6) is symmetric with respect to its center, i.e.

F (6)=MF ()M (63)
with
00 0 1
~ 0010
=M=M"1= ) 64
M=M=M 0100 4
1000

This corresponds geometrically to symmetry with respect to the
scattering plane as readily follows from Egs. (52) and (58) taking
into account that

ADA =M. (65)

Comparing Egs. (49) and (59) we see that, apparently, the price we
must pay for simpler rotation properties is a greater complexity of
the scattering matrix. We further assume that F(6) is normalized
in such a way that

1
— |} a,0)dw=1,

(66)
AT (imy

where do is an element of solid angle.

In multiple scattering problems where polarization is neglec-
ted it is often advantageous to expand the phase function, a,(6), in
Legendre polynomials. This is true, in particular, for obtaining
analytical expressions (see e.g. Chandrasekhar, 1950; Sobolev,
1975, Van de Hulst, 1980) which can be used in various methods
of solution. Thus we can write

a,(0)= i w,P,(cosb), (67)
- ¢=0

a,(0)—a,(9)
b,(8)—ib,(0)
b (O)+iby ()|
a,(0)+a,(0)

where w,=1, and P,(cosf) is the Legendre polynomial given by
Eq. (A.18) of the Appendix. Here we assume that

+1

| [a,(0)}?d(cosb)< co. (68)
21

The convergence of the series (67) is understood in the following
sense:

+1 L 2
Llim [ a,®— Y w,P,cosb)| d(cos§)=0. (69)
o =0

(59)

The expansion coefficients w, may be found from the identity

+1
w,=(+2) [ a,(0)P,(cosb)d(cosb). (70)
-1
Legendre polynomials are especially useful because they obey an
addition theorem (see also the next section).

In applications the series (67) is usually truncated after the
L™ term. As shown by Van der Mee (1982), when polarization is
neglected, the solution of the transport equation with phase
function

L
ak(0)= Y w,P/cosb) (71)
£=0
converges to the solution of the transport equation with un-
truncated phase function g,(6). Unfortunately, for nonnegative
phase functions a,(f) the truncations (71) may fail to be non-
negative, which means that a%(6) may not correspond to a physical
problem. As Feldman (1975) showed, one may replace (71) by the
non-negative approximants

o= 3 o (1—L)(1—L)P(cose)
! o ‘U L+l L+2) ¢ ’

and still the solution of the transport equation with phase
function (72) converges to the solution of the equation with phase
function a,(6).

When polarization is not neglected a useful set of functions for
making series expansions is provided by so-called generalized
spherical functions. These functions are denoted by P (x), and
defined and discussed in the Appendix. Here we limit m, n and I to
be integers such that m,n=—1, —I+1,...,1, or, in other words,

(73)

(72)

Izmax (ml, |n)) =3(m+n| + [m—nl).

For other choices of I one defines P! (x)=0. The generalized
spherical functions satisfy several nice properties, one of which is
the orthogonality relation

+1
§ Pralx)Pr(x)dx
=(—1ym* T Pro(X)Pr(x)*dx = —2—(— D™ "6y, (74)
Jpomeme 21+1
where the asterisk denotes the complex conjugate,

k,1=zmax(Jm|, |n|), and 6,,=1 if =k and vanishes if [+k.
A precise description of the expansion of functions in genera-
lized spherical functions is provided by the following.
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X

Fig. 2. Scattering by a local volume-element at O. Points N, P,
and P, are on a unit sphere. The direction of the incident light is
OP,. The scattered light is in the direction OP,. Here 0<¢’
—o<mn

4
|

\

Theorem. a) If the complex-valued function h(x) on the closed
interval [ — 1, + 1] is square integrable on this interval, i.e. if
+1
{ Ih(x)?dx< o0, (75)
-1

then there exist unique coefficients n,[l=max(|m|, |n|)] such that

the series expansion
e

Y NP (x)=h(x) (76)
1=max(|m|, [n])
holds true in the following sense:

+1 L 2
lim | |h(x)— Y mP.(x)| dx=0. (77)
Low —y 1=max(|m|, |n|)

b) Conversely, if a complex-valued function h(x) on [—1, +1]
admits the expansion (76) in the sense (77), it is square integrable
on [—1, +1] and the coefficients are given by

+1
=0+ (=1 | hx) Py(x)dx. (78)

This theorem is just an elaborated version of the statement (see
Appendix) that the functions /143 P! (x) for IZmax(|ml,|nl)
constitute a complete orthonormal system in the Hilbert space
L,[—1, +1] of square integrable functions on [—1, +1] with
inner product

+1
Sy= | fx)glx)*dx. (79)
-1
In general, the series (76) need not converge pointwise to h(x), even
if h(x) is continuous on [ —1, +1]. However, if h(x) satisfies the
Holder condition

[h(x)— h(y)l = M|x— yI" (80)

for some M,y>0 on a closed subset [c,d] of the open interval
(—1, + 1), then the series (76) converges pointwise at any cSx=d
and the convergence is uniform on [c,d]. This follows from Eq.

(A12) of the Appendix and the analogous property of Jacobi
polynomials (see e.g. Alexits, 1961, Theorem 1.3b). In particular, if
h(x) has a continuous derivative on (—1, +1), the series (76)
converges pointwise at —1<x< +1. The coefficients #,, are, in
general, complex, but when h(x) is a real-valued function the
products i" "y, are all real, since the functions P! (x) are real-
valued up to a factor i"~™ (see Appendix).

We shall now turn our attention to expansions of the elements
of the scattering matrices F(6) and F (f). Assume that the elements
of F(0) satisfy the square integrability condition

T |a(6)|* d(cosb) < co

-1

(i=1,2,3,4) (81)
and similarly for b,(0) and b,(6). Now the degree of polarization of
any beam [cf. Eq. (13)] can never be larger than one. Applying this
rule to the Stokes parameters of a beam of scattered light for
incident light with Stokes parameters {1,0,1,0} and {1,0,0,1},
respectively, we find

a,(0)Z[|b,(0)|* + 1b,(0)* +las(0)*]1"/* =0 (82
and
a,(6) = [1b,(0)1* + b, (0)* +1a,(6)*]"* 20. (83)

On the other hand, if we take incident light with Stokes parame-
ters {1,1,0,0} and {1, —1,0,0} we obtain

[a,(0)1% % 2a, ()b, (6) = [a,(0)]° £ 2a,(0)b,(6). (84)
By adding these two inequalities we find
a,(0)2a,(0)/ 20. 85)

Therefore, it is sufficient to assume that, as for unpolarized light,
condition (68) holds. In terms of the elements of the 2 x 2 matrix
which transforms {E, E,} on scattering (van de Hulst, 1957),
necessary and sufficient conditions are
+1

[ 1S0)* d(cosh) < o0, (86)
-1

where k=1,2,3,4. From Eq. (59), the preceding assumptions and
the square integrability of sums and differences of square integra-
ble functions it follows that the elements of F (6), as functions of
cosf, are also square integrable on [ — 1, +1]. Thus, according to
Eq. (76), we can expand each element of F(f) and F (6) in a series
of generalized spherical functions P! (cosf) where, in principle, we
can choose the integers m and n arbitrarily. However, a specific
choice of m and n may be preferable in a numerical or analytical
analysis of formulae containing F(6) or F (). An example of this
will be given in Sect. 4.3, while the expansions will be worked out
in detail in Sect. 4.4.

4. The phase matrix and the equation of transfer

To describe the transfer of polarized light in some scattering
medium we consider a small volume-element. We construct a
right-handed Cartesian co-ordinate system, fixed in space, having
its origin in the volume-element (see Fig. 2).

The direction of a beam is specified by an angle, 3(0=3=n),
which it makes with the positive z-axis and an azimuth angle,
@(0=¢p<2n). The latter is measured from the x-axis in the
clockwise sense, when looking in the direction of the positive
Z-axis.
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4.1. Using Stokes parameters

To describe the state of polarization of a beam we first use Stokes
parameters, but now the direction of £ is along the meridian plane
(plane through the beam and the z-axis) and r is perpendicular to
this plane. The direction of propagation is the direction of the
vectorproduct r X £. The directions of the incident and scattered
beams are represented in Fig. 2 by points, P, and P,, respectively,
on the surface of a unit sphere, having O as its center. Suppose
light travelling in a direction specified by & and ¢’ is scattered into
a direction specified by 3 and ¢, the scattering angle being 6. The
positive z-axis intersects the sphere in a point N. On the surface of
this sphere we have, in general, the spherical triangle NP, P,, with
sides <=, namely 3, &, and 6. We assume the scattering in the
volume-element to be governed.by a scattering matrix of the form
(49) with the normalization (66).

First, we consider situations for which 0<¢'—¢@<m. The
scattering plane makes angles ¢, (at P,) and o, (at P,) with the
meridian plane, where 0 <o, 0, <. Thus the angles of NP, P, are
0,, 0, and @' — ¢. The scattering process can now be described by
means of a matrix which must be postmultiplied by the Stokes
vector of the incident beam to yield the Stokes vector of the
scattered light (apart from a constant scalar depending on norma-
lizations and physical units). We shall call this matrix the phase
matrix. It may be written as

Z2(%,9;9,¢)=Un—0,)FO)L(—0,)

since first a rotation I{— ¢, ) is required to turn the meridian plane
at P, to the scattering plane and then a rotation I{n —0,) to turn
the scattering plane to the meridian plane at P,. Using Egs. (18)

87

X
Fig. 3. Same as Fig. 2, but here 0<p—¢' <=

one, which should be replaced by
95

where o=o0, or g,. When the denominator of Egs. (91) or (92)
becomes zero the appropriate limits must be taken.

Assuming no thermal emission in the medium, the source
function, extended to include polarization, is the vector (cf.
Chandrasekhar, 1950; Van de Hulst, 1980)

sin2¢ = —2(1—cos?6) ? coso,

m2n

a
— I | Z(3, 0,9, (¥, ¢)sin¥do'dy ,

and (49) we find 4n££ 8, 0;9, 0¥, ¢)sin¥de (96)

a,(6) b,(0)C, —b,00)8, 0
Z05.0.9.0) = b(0)C, C,a,(0)C,—S,a,0)S;, —C,a,(0)S,—S,a5(0)C, —b,0)S, (8)
A b, (6)S, S,a,(0)C,+C,a5(0)S, —S,a,(0)S,+C,a,(0)C, byOC, |’
0 —b,(0)S, —b,(0)C, a,(6)

where
where a is the albedo of single scattering. The equation of transfer

C,=cos20, Cz=0052‘72} (89) ~can now be written as

§,=sin26, §,=sin2o,

which, together with cos6, can be expressed in 3, ¢, &, and ¢’ with
the help of spherical trigonometry. Applying the cosine rule for 6,
8, and &, successively, we find

cosf=cos9cos¥ +sinIsind cos(¢p’ — @), (90)
cos3—cosd cosh
— Z 91
€080y sin¥sinf e
cos 3 —cosd cosd
— d 92
€089, sin9sinfd ©2)
We may further use
cos2o=2cos?o—1, 93)
sin20 =2(1—cos?0)"? coso, (94)
where ¢ is g, or g,.
In situations where O<@—¢'<m or, equivalently,

<@ —@<2n (see Fig. 3) we should take o, and ¢, between
—n and O when executing the rotations of the co-ordinate axes.
One way of treating this problem is to leave the preceding
formulae of this section as they are with the exception of the last

al(9, ) a’r .
=_I — Zi Y (% ’ 139/
" ds (9,¢)+4n” (8,0:%,0)(¥,¢)sinddo'd¥

e

©7)

where k, is the volume-extinction coefficient (dimension length ™)
and ds is an element of pathlength. Essentially, the same equation
has been derived by Chandrasekhar (1950, Chap. I, Eq. (212)) but
he only considered the case a=1 and used the parameters
(I+0Q)/2 and (I—Q)/2 instead of I and Q. When we ignore
polarization I(3, ¢) reduces to its first element, the specific in-
tensity, and Z(9, ¢; ¥, ¢") reduces to a,(6) according to Eq. (88).
Let us now consider a plane-parallel atmosphere with a
radiation field which is the same in each point of any horizontal
plane (see Fig. 4). There are no horizontal inhomogeneities. We
choose the positive z-axis along the vertical direction from bottom
to top. Optical depth is defined by
]
= | kdz (98)
so that t=0 at the top of the atmosphere and t=»b (say) at the
bottom. For a semi-infinite atmosphere b= co. As shown by Eqgs.
(88)+95) the phase matrix depends on only three variables,
namely the azimuthal difference ¢ — ¢’ and the zenith angles 9 and
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Fig. 4. Explanation of optical depth, 7, and direction cosine, u.
Azimuth is measured clockwise when looking from bottom to top

¥. Following the convention of Hovenier (1969), Sobolev (1975),
and Van de Hulst (1980) for direction cosines, we shall use
u= —cos9 and u'= —cos¥. Substituting this in Eqs. (90)H92) we
find

cosO=uw' +(1—u?)"*(1—uw?)? cos(p—¢'), (99)
—u+u cosf

coso, = (1 _ u/2)1/2(1 —C0829)1/2 ’ (100)

cosa, = —u'+ucosf (101)

(1 _ u2)1/2(1 _ C052 0)1/2 :
Thus the phase matrix Z(u,u',p—¢’) for any given scattering
matrix follows from Egs. (88) and (89) by using Egs. (99)-(101) and
(93)+95).

Symmetry relations for the phase matrix have been derived
and discussed by Hovenier (1969). A basic set of three equations is
provided by

Z(—u, —u,¢'—)=PZ(u,u,0— )P, (102)
Z(—u,—u,¢'—@)=Z(u,u, 0 —¢’), (103)
Z(u,,¢' —@)=DZ(u,u,p—¢)D (104)

from which other relations follow by making combinations. Here,
Eq. (102) is a reciprocity relation, Eq. (103) expresses the fact that
nothing changes in the scattering process when the equatorial
plane (the x—y plane in Fig. 2), together with the incident and
scattered beams, is turned upside down and, finally, Eq. (104) is
due to symmetry with respect to the meridian plane of incidence.
For comparison with other authors, who employ different con-
ventions, it is useful to point out that each of the following
changes corresponds to pre-and postmultiplication of the phase
matrix by D:

(i) changing the sense in which the azimuth is measured [cf.
Eq. (104)];

(ii) changing the signs of the direction cosines u and u’ [cf.
Eqgs. (103) and (104)];

(iii) employing polarization parameters {I,Q, —U, —V} in-
stead of {I,Q, U, V}. (Note that the first set is D times the second
set and that D=D"1)

Clearly, making two of these changes simultaneously has no
net effect since for any matrix K we have

K=D{DKD}D. (105)
The equation of transfer (97) can now be written as
dl(z, u,
wllw®) _ 1o
dt
a +1 2= , , L
+— | [ Zuwu,@o— o (t,u,0")de'du’ . (106)

4n 2y o

This is essentially the same equation as deduced by Chandrasekhar
(1950, Chap. I, Eq. (226)) but he used y= —u and p'= —u". When
the atmosphere is vertically inhomogeneous, the albedo of single
scattering, a, and the phase matrix Z(u,u', ¢ —¢’) may depend
on 7. However, we shall suppress this dependency in all formulae
of this paper. In practice, the equation of transfer must be solved
in conjunction with certain boundary conditions. In planetary
applications these are usually determined by the angular distri-
bution and state of polarization of light incident at the top [i.e.
I1(0,u, ) for 0<u=1] and the reflection properties of a plane
surface at the bottom.

Evidently, the dependence of Z(u, u’, ¢ — ¢') on its variables is
rather complicated. Some reduction is achieved by making
Fourier series expansions to handle the azimuth dependence.
Suppose we write -

Zuu,0—@y=Zu,u)+2 Y, [Z(u,u)cos{j(o— @)}
j=1

+Z%(u, u)sin {j(o — ¢')}] (107)

and

I(r,u,@)=I"(v,u)+2 Y [I%z,u)cosjo + I¥(z, u)sinje] .

j=1

(108)

Substituting these last two expressions in Eq. (106) and using the
well-known orthogonality properties of sines and cosines we can
decompose the equation of transfer into the set

dlco , +1
L S R e d (109)
dt 27
al(z,u) . a*tl . .
[ IC} _ Zc; ’ ch r
u— (T,u)+2_§1[ (4, W) (z, )
— Z5(u, u)S(t, w)] du (110)
dIsi(z, . +1 . )
uﬂ =—I(r,u)+ - | [Z%%(u, w9z, ')
dt 25
+Z%(u, u)S(t, w)du'], (111)
where j=1,2,....

Thus for each Fourier component j=1 we have two coupled
equations. The elements of the coefficient matrices Z%(u,u’) and
Z5i(u,u) are, in general, still complicated functions of u and
which may be found by numerical integration over azimuth (see
e.g. Hovenier, 1971 ; Hansen, 1971). An alternative procedure will
be discussed in Sect. 4.4.

We shall now discuss some general properties of Z%(u,u'),
Z(u, ') and Z%(u, v). Applying Eq. (102) to Eq. (107) we find the
symmetry relations

Ze(—u, —u)=PZ(u,u)P

Z(— ', —u)=PZ(u,u)P (112)
Z5(— ', —u)= — PZ%(u,u')P.

Similarly, Eq. (103) entails

Z(—u, —u)=Z(u,u)

Z9(—u, —u)=Z%u, ) (113)
Z5i(—u, —u)y= - Z%(u, ).

The symmetry relation (104) now takes the form
Z%u,u")=DZ(u,u')D

Z(u,u')=DZ(u,u)D (114)

Z%(u, ') = — DZ%(u, u)D..
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When we partition each 4 x 4 matrix into four 2 x 2 submatrices,
Eq. (114) implies that Z°(u, w') and Z%(u, ') have zero submatrices
on the trailing diagonal and Z%(u,«) on the leading diagonal.
Thus for j=1 only four non-zero submatrices are involved which
may be used to construct one 4 x 4 matrix from which Z%(u, u)

and Z%(u, 1) are easily derived. For example, take
Wiu,u')=Zu, w')— DZ%(u,w') = Z(u, ')+ Z*(u,u)D , (115)

where the equivalence of the two representations of W¥(u, ') is
immediate from Eq. (114). Using Eq. (114) again one finds the
converse equalities :

Zu,u) =3 {(Wi(u,u) + DW/(u,u)D},
Z53u, u) =L {(Wi(u, w')D — DWi(u, ')} .

(116)
(117)

Of course, other 4 x 4 matrices are possible (such as Z¢ + Z), but
the choice made in Eq. (115) is appropriate for later use in
Sect. 4.2.

One type of symmetry relation [namely, Eq. (104), or Eq.
(114)] was sacrified above to construct W4(u, u'). Thus Wi(u, w') will
satisfy two basic symmetry relations only. Using Eq. (115) we find
the symmetry relation

Wi(—u', —u)=PWi(u,u)P (118)
from Eq. (112), and the symmetry relation
DWi(—u, —u)D =Wiu,u) (119)

from Eqgs. (113) and (114).

4.2. Two basic types of solutions

After Fourier expansion the equation of transfer has been decom-
posed into the component Egs. (109)-111). In this subsection we
discuss a simplification of these equations with the help of Eq.
(115). When we premultiply both sides of Eq. (109) by D and use
Eq. (114), we find that if I°°(t, u) satisfies Eq. (109) then DI®(z, u)
also satisfies this equation. Taking the sum and difference we can
state the result as follows. Equation (109) admits two basic types
of solutions:
1. solutions for which

I°°(t,u)=DI*(t,u), (120)
implying that the Stokes parameters U and V vanish, and

2. solutions for which
I°°(t,u)= — DI*(z, u), (121)

implying that the Stokes parameters I and Q are zero. Apparently,
premultiplication of Eq. (109) by 41+ D) or (1— D), where 1
denotes the identity matrix, induces its decoupling into two two-
vector equations. The first one of these gives the solutions (120)
and the second one the solutions (121).

Similar properties can be derived in an analogous way for the
azimuth dependent terms. Multiplying Eq. (110) by D and Eq.
(111) by — D we find that if I(t, ) and I(z,u) form a pair of
solutions then this is also true for DI(t,u) and — DI*(,u).
Taking the sum and difference of these two pairs of solutions one
finds two basic types of solutions:

1. pairs of solutions I(t,u) and I*(z, u) for which

I°¥(t,u)=DI(t, u)

[U=0,V=0]
IFi(t,u) = — DIS(z,u) } (122)

[1=0,0=0],

2. pairs of solutions I%(t, u) and IS(t, ) for which
I¥(t,u)= —DI¥(z,u) [I=0,0=0] }
I¥(t,u) = DI’ (1, u) [U=0,V=0].

The existence of pairs of solutions of the types (122) and (123)
suggests a transformation of Egs. (110)~(111). If one defines

(123)

Yi(z,u) =31+ D)%(t,u)+ (1 — D)I¥(z,u), (124)
Xi(z, u)= —L(1— D)I%(z, u) + (1 + D)I¥(z, u), (125)
the transformed equations read as follows:
Yd . o )
uw =—-Y(t,u)+ é j Wiu, v')Y/(t,u)du', (126)
dr 27
axi(z, ) o .
u—d(:—l) = — X¥(z,u)+ g § Wi, w)Xi(x, u)du (127)
-1

where in both equations the kernel of the integral is given by Eq.
(115), thereby justifying our previous choice of W¥(u, ). Once
these equations are solved one may use the inverse relationships

IFi(r,u) =314 D)Y(r,u)— +(1— D)X¥(z,u), (128)
iz, u)=3(1— D)Y¥(z, u) + 4(1+ D)X¥(z, u), (129)

which follow from Egs. (124) and (125). Hence, by the transfor-
mation (124) and (125) we have arrived at equations for the new
real vector functions Y¥(t, u) and X’(t, u) of precisely the same form
[cf. Egs. (126) and (127)], although, generally, the boundary
conditions will be different. Instead of the coupled four-vector
Egs. (110) and (111) we have arrived at twice the same four-vector
equation with, generally, two different sets of boundary
conditions.

We have thus derived the nature of the solutions of Egs. (110)
and (111) by explicit use of the general symmetry relation (104). A
different route to the same results was followed by Kuser and
Ribari¢ (1959) for the azimuth independent term and by Siewert
(1981) for the azimuth dependent terms. For j=0 Eqgs. (116)119)
and Egs. (126)—(129) are valid also if we take Z%(u, u') zero. This
leads to the decoupling of Eq. (109) into two two-vector equations,
as we discussed before.

Finally, Egs. (124) and (125) transform solutions I¢(t, ) and
I5%(t,u) of Egs. (110) and (111) into solutions Y’(z, u) and X¥(t, u) of
Egs. (126) and (127), whereas Egs. (128) and (129) supply the
inverse transformation. Therefore, on transforming one pair of
equations into the other pair of equations solutions can neither be
lost nor created. In an analogous way one argues that the full
equation of transfer (106) does not have any more solutions than
can be obtained by solving the Fourier component equations
(109)(111). Thus through Egs. (108), (124), (125) and (128) and
(129) every solution of the full equation (106) is connected in a
unique way to solutions Y¥(z, u) and X“(z, u) of Egs. (126) and (127)
(i=0,1,2,...). For finite homogeneous layers the full equation of
transfer (106) can be proved to have a unique solution I(t, u, @)
when the boundary conditions (0, u, ) for u>0 and I(b, u, @) for
u<0 are specified, and the vectors I(t,u, ) satisfy the physical
condition of Eq. (13) whenever the boundary data I(0,u, ¢) (for
u>0) and I(b,u, @) (for u<0) satisfy Eq. (13) (Van der Mee, in
preparation). The analogous result for infinite homogeneous
layers can be proved also, provided one specifies 1(0, u, @) for u>0,
seeks for bounded solutions and assumes that a <1.

4.3. Using complex polarization parameters

On neglecting polarization the analytical discussion of Eq. (106) is
facilitated by making a series expansion (67) and using the well-
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known addition theorem of spherical harmonics. This provides an
equation of transfer for each Fourier component in which the
kernel is an infinite sum of functions, having their variables u and
u' separated. With polarization taken into account we can ge-

where the sum must run through n=2,0, —0, —2. Reciprocity
and symmetry with respect to the scattering plane give, re-
spectively [cf. Egs. (60) and (63)]

neralize the above procedure by using the complex parameters [F,(0)],,=[F(0)],,,=[F.(0)]_,._,- (141)
defined by Eq. (20) in conjunction with the expansions in genera- ) )
lized spherical functions discussed in Sect. 3. Directly from Eq. (59) we obtain
First we study the phase matrix in this representation. This
matrix can immediately be written as LF (0)] s [F(O)], - =Teal, (142)
Z(9,0:9,¢)=L(n—0c,)F (OL(—0)) (130) 2nd
or, for a plane-parallel atmosphere, (F 050 =[F.O) - (143)
Z (uu,p—¢)=L(n—0,)F (OL(—0,) (131)  Equations (131)«133) can now be written as
with [Z.(u, e, 0 = @),y =€""[F (0)],,,6™" (144)
L(—o0,)=diag(e’*"},1,1,e" 121 (132)  which agrees with Eq. (134). The expansion theorem of Sect. 3 now
implies that [cf. Egs. (76)+78)]
and
L(n—o,)=diag(e’?°2,1,1,e"292), (133) [F.(0)]1,..= Y gLP.(cosh) (145)
I=max(|m|, |n|)

Writing this out and omitting the variable 6 in the a’s and b’s we
obtain

20t +a,)  e27b, +ib,)  €2°b,—ib,) €27a,—a,)

e2°(b, +ib,) a,+a a,—a e 2°(p, —ib,)
VA ’ =1 ) 1 2 1 4 1 4 ) 1 2 , 134
(w1, 0 =¢)=3 e2’(b, —ib,) a,—a, a, +a, e"21(b, +ib,) (134)

2017, —q ) e 2%p, —ib,) e 2°b,+ib,) e 217 g,+a,)
where ¢, 0,, and § may be expressed in u,u’ and ¢ — ¢’ by means i, the sense
of Egs. (99)+101) and (93)+95). Evidently, according to Eq. (48), o . 5
we also have lim | |[F0)],— 5 g.P.(cosb)| dicosd)=0, (146)
Z(w i, 0= @)= AZ(wu,9—¢)A"", (135 e iy

th fici iven b

Using this relation and some matrix algebra one readily obtains where the coefficients are given by
from Egs. (102)-(104) [cf. Egs. (61), (62), and (65)] the symmetry +1
relations g£nn=(1+%) jl [Fc(x)}mnpinn(x)dx (147)

Z(—,—u¢' —0)=Z (i, 0—¢), (136)
Z(—u,~u,¢0'—9)=Z(uu,0p—¢), (137)
Z (u,u, @' —)=MZ (u, u,p— @M. (138)

These relations have the same explanations in terms of space and

time as Egs. (102)<104), respectively. In particular, Eq. (136) is a

reciprocity relation. Again, other relations are readily obtained by

making combinations of the above relations. The equation of

transfer may now be written as

u%u’_(p) = _IC(T’ u, (p)
drt

a +1 2n

+— [ [ Z(uu,o— ) (t,u,@)de'du’. (139)
4n —10

From now on we denote the elements of a fourvector by 2,0,
—0, —2 (instead of 1,2,3,4). We can then reformulate Egs.
(20)+22) by saying that the rotation considered causes the element
[1.],, to be multiplied by exp(—ima) where m=2,0, —0, —2. In
the same way we can label the rows of any 4 x4 matrix from
above to below by an index m and the columns from left to right
by an index n, both running through 2,0, —0, —2. Thus an
elementary scattering process is described by

[lc];n oc Z [Fc(e)]mn[lc]n > (140)

and where x=cosf. [Note that (—1)"*"=1 here since
m,n=2,0, —0, —2]. For P! (x) no distinction is made between
m,n=0 or —0. For the values of m, n used here all functions me,(x)
are real-valued [cf. Eq. (A1)]. From Eq.(147) and the properties of
the generalized spherical functions [see also Eq.(A6)] it follows
that Egs. (141)+(143) entail

Irn=Gom =9 = (148)
and
G G —m=1€315  gho=g5"¢. (149)

In Eq. (145) we have expanded the element mn in generalized
spherical functions with exactly the same lower indices. This is
natural if one considers certain properties of the rotation group
(cf. Domke, 1974a). We prefer, however, not to consider this group
and to give the two following reasons. The first reason is that this
provides the possibility of applying the addition theorem (see
Appendix). To explain the second reason we notice that

PL(+1)=0, m=*+n. (150)

So if in the series (145) the coefficients g!,, vanish starting from
some [, we find

[F.(0)],,=0, m*n; [F(n)],,=0, m*—n. (151)
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Using Eq. (59) one recovers the symmetry relations (54)57) for
this special case (cf. Domke, 1974a). In general (when g, does not
vanish starting from some I) this reasoning entails the pointwise
convergence of the series (145) for =0 or = and the elements mn
considered.

Let us apply the addition theorem [i.e., Eq. (A24)]

em2pP! (cosf)e:

1
= X (= 1Pexp(is(¢’ — @) P, )Py, ), (152)

s=-1
which leads to the elimination of the variables ¢, ¢,, and 6 and
provides expressions with separation of variables. Combining
Egs. (144), (145), and (152) yields

[Zc(u5 ul’ @ — (p/)]mn

1
= Y G X (—1explisie'— @) P WP, ). (153)

1=max(|m|,|n|) s=-1

Interchanging the order of summation this becomes

Z(uu,p—9¢)= _z Z75(u, w)exp(is(o’ — ), (154)
where
[Z%(u, )] =(—1) i G P W) PL, (') . (155)

I=ls|

From Eq. (154) and Egs. (136)138) we derive the symmetry
relations

ZH(—u, —w)=Zuu), (156)
Z(—u, —u)=Z (u,u), (157)
Z5(u, 1) =MZ5(u,u)M. (158)

Often the expansion coefficients g', are assumed to vanish
beyond a certain value for I This occurs, for instance, for Mie
scattering (van de Hulst, 1957) with a finite series expansion and
for Rayleigh scattering. On neglecting polarization it is known
that the solution of the equation of transfer with truncated
Legendre series expansion converges to the solution of this
equation with untruncated expansion (see Sect.3). Whether an
analogous result is valid for the equation of transfer of polarized
light is still an open problem. Furthermore, the truncations of a
phase matrix F(6), which maps Stokes vectors satisfying Eq. (13)
into Stokes vectors of the same type, need not have this physically
necessary property anymore. A readjustment of the series trun-
cation for polarized light [analogous to Eq.(72)] is another open
problem.

Kuscer and Ribari€ (1959) were the first to use a set of complex
polarization parameters in combination with generalized spheri-
cal functions. These parameters are defined in terms of their
Stokes parameters as

Q—iU
I-v
I+V

Q+iU

(159)

[SIES

For the definition of their Stokes parameters they refer simul-
taneously to Chandrasekhar (1950), Van de Hulst (1957), Fano
(1949), Falkoff and MacDonald (1951), and Walker (1954).
However, if we assume that I, Q, U, and V in Eq.(159) are the

same as those used by Chandrasekhar (1950) and Van de Hulst
(1957) and if we then use the lower index k for the set of Kuscer
and Ribaric, it can be written as [cf. Eq. (64)]

I, =MI,. (160)
Now according to Eq. (22) we have
L(t)=ML(M=L(—a), (161)
while Eq. (63) shows that
F (6)=MF (0)M =F (6). (162)
Writing [cf. Eq. (130)]
Z,3,0;%,0)=MZ(3,0;%,0)M

=ML (n—0,) MMF (O)MML (-0, )M, (163)
we find from Egs. (161), (162), and (22)
[Z,(8, 059, ¢)]py=e" "2 [F (6)]e ™" (164)

This equation, however, is not in agreement with a fundamental
equation in the paper of Kuscer and Ribaric (1959, their Eq. (19)).
Identifying, for 0 < ¢’ — ¢ <m, their y with n— o, and their x’ with
o, we easily see that the rotations do not agree, viz. the signs of
the exponents of e differ. Thus, we conclude that I, Q, U, and V in
Eq.(159) cannot be the same as those of Chandrasekhar (1950)
and Van de Hulst (1957). This is also clear from comparing our
Egs. (20)22) with an unnumbered equation of Kusfer and
Ribari¢ (1959) between their Egs. (3) and (4). Agreement could be
obtained by assuming that the Stokes parameters used by KuScer
and Ribari€ (1959), compared to those of Chandrasekhar (1950)
and Van de Hulst (1957), differ in sign for both U and V [cf. Egs.
(130) and (164)]. The same would be true, however, if only U
differs in sign, since I+ V is invariant under rotation. Hence, the
precise meaning of the parameters used by Kuscer and Ribari¢
cannot be determined in this way. Although they have also
defined their parameters in components of the electric field, the
problem with these definitions is that it is not stated, how the
direction of propagation and the directions of the field com-
ponents are oriented with respect to each other.

It is clear from the preceding sections and the above con-
siderations that papers based on the work of Kuscer and Ribari¢
(1959) must be handled with care. Generally, it has been assumed
that I, Q, U, and V in Eq.(159) are just the same as those of
Chandrasekhar (1950) and Van de Hulst (1957). Although this is
not true [at least not compatible with also using Eq. (19) of Kuscer
and Ribari¢], it does not necessarily affect all results, as is
exemplified by Eq. (162) or by scattering problems for which U=0
and V=0.

4.4. Connection between real and complex polarization parameters

In this subsection we exploit the connection between real and
complex polarization parameters to derive analytical expressions
for the matrices Z%(u, w), Z*(u,u’), and W¥(u,u). First we find a
Fourier decomposition of the equation of transfer in complex
representation. Put

0
I(t,u,0)= Y €I(t,u).

Using Egs. (154) and (165) the equation of transfer (139) may be
decomposed into the set of equations

dl{(r,u)
" v

(165)

+1
~ I, u)+g § Z3(u, )t )i (166)
-1
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The variables in the kernel of this equation can be separated by
using Eq. (155). Clearly each term in this expansion can be written
as the product of three matrices (cf. Domke, 1973, 1974a). For this
purpose we define the matrices

[P.ls(u)]mn =P£ns(u)5mn 2 [Gl]mn = g:nn > (167)
and rewrite the expansion (155) as follows:
Z5u,w)=(-1y Y, P{wG'Pu). (168)

I=}s|

This facilitates performing matrix operations with Z3(u,v).
Substitution of Egs.(155) or (168) now opens the possibility of
further analytical treatment of the equation of transfer, especially
for scattering matrices with a finite number of terms in their
expansions in generalized spherical functions. Usually complex
polarization parameters are used throughout the analysis, after
which the transition to real parameters (which is necessary to
interpret observations) can be made (cf. for example, Domke,
1975b, c, 1976).

We prefer to return to real parameters as soon as possible. In
accordance with Eq. (44) we write

P(t,uy=A" "Iz, u). (169)
Then Eq. (166) is easily transformed into
drIs , +1
WEY e+ 8] 2o wydn (170)
drt 2
where [cf. Eq. (48)]
Z5u,u)=A""Z;5u,u)A=(—1y Y A" 'PwG'P)A (171)
I=]s|
Next write
Zu,uy=2"(u,u)
Z9u i) =HZ () + Z 7w u)} (172)

Z9(u, )= —1i{Zu, w)— Z " (u, u)}

and analogous expressions for I°(t, u) and I¥(z, u). Using all these
expressions we recover Egs.(109)«(111), but now we can derive
analytical expressions for the kernels Z%(u,u’), Z%%u,u’), and
Zsi(u, ).

In order to make maximal use of the symmetry relations (114)
we employ the matrix W(u, ') of Eq.(115), in terms of which one
can easily express Z%(u, ') and Z%(u, v') [cf. Eqs.(116) and (117)].
From Egs. (115) and (172) we find

Wiu,u)=3Z(u,u)[1—iD]+1Z J(u,u)[1+iD]. (173)
We use the symmetry relation
Z (u,u)=DZu,u)D, (174)

which follows from Egs. (172) and (114), to eliminate Z~J(u, u')
from Eq.(173). This gives

Wiy, u)=4(1+iD)Z(u,u)(1—iD), (175)
which reduces the problem to finding an expansion for Z/(u, u').

In order to use Eq. (171) we first prove that

A 'G'A= MRB’R

=Y (176)

where A and A~ ! are given by Egs. (43) and (45),

R=diag(—1,1,1, —1) (177)
and BJ is the matrix (cf. Siewert, 1981)
Biw 0 O
o=y o, 00
Bi=
P40 0 ¢ —g (178)
0 0 ¢
with
4=g5+g5_5, Bi=900+96-0
Vz=_glzo_glz—o’ 51=gloo—gi)—o (179)
& =—igho—gh_o)s (i=04—0h_»
Next, with the help of Eq. (167) one computes that
—pia g (=2 . -
A= pa =0~ [0 ] . (150
where the matrix
—Piw 0 0 0
. 0 j T
Iiw= R.’('.‘) w0 (181)
0 —iTP(u) Rj(u) 0
0 0 0 —Piu)

Here Pj(u) is an associated Legendre function [cf. Appendix,
Eq.(A21)] and the special functions Rj(x) and T,(u) (cf. Siewert,
1981, 1982) are defined by

1/2
Ritw)= «)fﬁﬁ“;,} (P + P, (w0}, (182)
. 1 1/2 .
=40/ [0 ] (P . (183)

From Egs. (171), (176), and (180) we find an expansion for Z%(u, u').
Substituting this result in Eq. (175) we get

Wiu,u)=1 i (1+ iD)[i(u)RBIRI(W)(1— iD).

(184)
To simplify this expression we exploit the identities
(1 +iD)[Tj(w)R = Mi(u) (1+iD), (185)
RITi(u)(1—iD)=(1— iD)ITi(v), (186)
where the real matrix ITi(u) is given by
Pi(u) 0 0 0
. 0 Rj - T 0
0 -Tw Riw 0
0 0 0 Pi(u)
Further, inspection of Eq. (178) yields the symmetry relations
B/=DBiD, Bi=PBIP. (188)
Using the first one we finally get the expression
Wiu,u')= Y INwB]IIiW). (189)

I=j
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This equation, together with Egs. (116) and (117), provides
expansions for Z%u, ) and Z%(u, ') in which the variables are
separated. They constitute the analogue of Eq.(168) and are
especially useful for a quick return to expansions based on Stokes
parameters. An expansion for Z¢(u,u') is included in Eq. (189) by
writing Z(u, u’)= W°(u,'). Further, for j=0 the matrices IIj(u)
are particularly simple, because in this case T;/(u)=0 [cf. Eq.(183);
Appendix, Eq.(A6)]. Thus for j=0 the special form of IT{(u) and
Bj entails a decoupling of Egs. (126) and (127) into two two-vector
equations each, which checks with earlier results (cf. Sect. 4.2).

In the derivation of Eq. (189) presented here we utilized the
matrix representation (168) and various symmetry relations in
matrix form. An analytical expression of the form (189) was first
presented by Siewert (1981) who employed a different derivation.
In his paper the sense in which the azimuth is to be measured is
not specified. His result is the same as ours if we (i) equate his
AS(u, i) to our Wi(u,u') where s=j, u=u, =1, (ii)let the
matrices pertain to the same Stokes parameters, and (iii) let the
azimuth be measured in the opposite sense. Alternative ways to
relate the matrices are possible as explained in Sect. 4.1 [cf. Eq.
(105)]. Partial results for the case j=0 were previously obtained by
KuSCer and Ribari¢ (1959), Herman and Lenoble (1965), Dave
(1970), and Van de Hulst (1980).

Equation (189) is quite convenient to solve the equation of
transfer (cf. Sect.4.2). Generally, it may be advantageous to
diagonalize ITj(u) for j=1. For this reason one defines the
diagonalizing transformations

V2 0 0 0]

01-1 0

=102 0
00 o }2]

(190)

V2 00 0]

0 11 0
STy
0 00 J/2.

which are each others inverses, and computes

SHj(w)S™* =diag(P{(u), Ri(u) + T'(w), Ri(u) — T(u), Pi(u))

= DT gt o, — P — P 0. P ).
' (191)

If one defines
Vi, u')=(— 1YySWiu,u)S™*, (192)
then Eqgs. (189)<192) yield
Vi(u,u')= iﬁ’(u)@li’l(u'), (193)

I=j
where
P'(u)=diag(P} (u), — P\ (u), — P-, (), P} (u)), (194)

© European Southern Observatory °

and
B V2 W2 0
G |mV2 dh ol fm)2) (195)
WV2 g —3a)2
0 ~1)2 1)2 0
Note that
DSD=S"1. (196)
Thus with the help of Egs. (116) and (117) one finds
Z(u, ) =%(— 1YDS{DVi(u,u)+ V(u,u')D}S, (197)
Z5(u,u)= —H— 1Y{S™ 'V¥(u,u')SD — DS~ ' Vi(u,u')S} . (198)

For Z*(u,u') Eq. (197) provides a less elegant expression than Eq.
(189).

To compute the coefficients (179) we expand the elements of
the scattering matrix F(6) in generalized spherical functions.
Combining Egs. (59) and (145) we obtain

al(ﬂ) = [Fc(g)]oo + [Fc(e)]o—o

= Y (ghe+db_o)Phy(cosB)= 3 BPycosh), (199)
1=0 =0
a,(0)=[F (0)1,, +[F.0)],_,
= z=zz {gs,P5,(cosB)+g,_,P,_,(cosb)}, (200)
a;(0)=[F(6)],,—[F0)],_,
= z;iz {g5,P,,(cos0)—g,_, P, _,(cosh)}, (201)
a,(0)="L[F (8)]oo— LF0)]o-0
= i (gho—gh—_o)PholcosB)= Y. 8,P(cosb), (202)
=0 1=0
b(O)=[F(0)],0+[F(0)],_o= IZZ (950 + 95— o)Pyolcosb)
= (-2,
- 5[] e, 29

0

bz(e) = i[FC(e)]zo + i[Fc(a)]z— 0= Z - i(gé_o - glz—o)Plzo(COSB)

=2
& (-2
_,Z *{(z+2)!

=2
where, except for Egs. (200) and (201), (associated) Legendre
functions are used. To transform Egs. (200) and (201) into
expressions containing the coefficients (179) one needs the func-
tions Ri(cos6) and Ti(cosf). One gets

12
J &,P*(cosb), (204)

1/2

© 11—

a,()= Z [——g_é;' {o,R?(cos0)+{, THcosH)}, (205)

0=y [(l_z)!]m{c R (cos0)+a, T7(cos0)} (206)
as( )—lzzz 32 R¥(cos0) + o, T?(cosb)} .

The coefficients (179) may in principle be computed from Egs.
(147) and (59). For details we refer to Siewert (1982). For spheres
one can also start from the expansion coefficients of the Mie series
(Herman, 1965; Domke, 1975a; Bugayenko, 1976).
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Finally we make some remarks on the expression (189). The
symmetry relations for Rj(u) and TJ(u) are given by

Ri(—u)=+(= "R, Ti(—u)=— (= )" Ti)

[cf. Appendix, Eq. (A5)]. From the orthogonality properties (A13)
of the generalized spherical functions and Eqs. (182) and (183) one
finds the orthogonality property

R . 2 I+j)!

—j1 IHi(w) T (w)du = m(ﬂ,% 1;1, r = max(j,2)
(also Siewert and Pinheiro, 1982). As a check to Eq. (189) we use
Egs. (207) and (188) to recover the symmetry relations (118) and
(119).

Summarizing, for solving a particular scattering problem with
scattering matrix F(6) in the form of Eq. (49), we can use analytical
expressions involving only real polarization parameters. Complex
polarization parameters are employed only temporarily to be able
to utilize the addition theorem of generalized spherical functions.
Once the coefficients (179) have been computed, the real Fourier
components Z°u,u’), Z%u,u’) and Z%(u,u’) of the phase matrix
can be found from Egs. (116), (117), and (189) or, alternatively,
from Egs. (193), (197), and (198). These analytical expressions can
be used in various ways for solving problems of multiple scatter-
ing of polarized light. If one strives for “analytical” solutions, as
generalizations of similar solutions for problems in which polar-
ization is ignored, the separation of variables is a powerful tool to
express the final solution in functions of one angular variable. In
solution methods with a stronger numerical character the ex-
pressions mentioned above remove the need to numerically
integrate the phase matrix over azimuth.

(207)

(208)

Appendix

In this appendix functions are defined and discussed which in
radiative transfer theory are usually called generalized spherical
functions. Gelfand and Shapiro (1952) studied these primarily
through their connection to the rotation group. As we intend to
show, these functions also appear in the study of angular momen-
tum in quantum mechanics (e.g., Edmonds, 1957; Wigner, 1959;
Brink and Satchler, 1962). Because the frequent changes of
notational conventions and a number of misprints by Gelfand and
Shapiro (1952) have led to uncertainties, we have chosen alter-
native ways to present, in an elementary way, symmetry, orthogo-
nality, addition and recurrence properties. We exploit the con-
nection to angular momentum theory as well as properties of the
well-known Jacobi polynomials (see Szegd, 1939).

For integers m, n, [ with /=0 and —[<m, n=<1 one defines the
generalized spherical function

P:nn(x)=ﬂ,l,,,,i"_'"(1 — X)W1 4 x) Tt /2

I-n
'(i) {(1= "1 +x)""}, (A1)
dx
where the normalization constant &/ _is real and has the form
(—l)""‘[ (I+n)! 12
oL = A2
m 28 [(=-m)!d+m)!(I—n)! (42)

So, up to the factor i" ™ the function P! (x) is real-valued. For
other choices of integers m, n, | we set P! (x)=0. We remark that
although Gelfand and Shapiro (1952) studied the functions in Eq.
(A1), they used the name generalized spherical functions for these
functions when endowed with exponential factors.

On computing the (I—n)™ derivative in Eq. (A1) with the help
of Leibnitz’s rule

ul N!

d N
(a) (e = 3

applied for N=I1—n, f(x)=(1—x)'"™ and g(x)=(1+x)*™, one
obtains an expression for P! (x), which remains the same on
interchanging m and n. Thus

Pry(x) =Py, (x).

(;;)Kf(x) (%)N_Kg(x), (A3)

(Ad)

If one replaces x by — x in Eq. (A1), one derives the parity relation

P (=x)=(=1)""7"PL (x). (AS5)
From Egs. (A4) and (A5) it is easy to conclude that
P(x)=PL, _(x)=P,,(x). (A6)

Let us connect the functions P! (x) to angular momentum
theory. In a book of Brink and Satchler (1962) the following
function, introduced by Wigner (1959), is used:

. LG+m) G—m)! i+ m)! (—n) 1]V
donlP)= ;(_1) G+m—1)G—n—0)'t!(t+n—m)!

.(Cos%ﬁ)zj-ﬁ-m—n—Zt(sin%ﬂ)Zt‘Fn—m,

(A7)

where the sum is taken over all values of ¢ that lead to non-
negative factorials and 0= <. So the summation index ¢ runs
from g¢=max(o,m—n) up to o=min(j+m,j—n). Therefore,
d/ (B)=0 unless ¢ <o, which is equivalent to the restrictions j =0
and —j<m,n<j. Put x=cosf. Then 0<f <= implies that

cos3p=2"12(1+x)"2, sinjf=2""2(1—x)"2. (A8)

Substitution of Eq. (A8) in Eq. (A7) and rewriting the resulting
formula yields
(=1p" G+n)! 12
2 |j—m)! +m)! (j—n)!

.(1 — x)(m- n)/2(1 +x)—(m+n)/2

2 (—n! G+m)!
',;e(j—n—t)! t(j+m—r)!

(i—m)!
(t+n—m)!
With the help of Leibnitz’s rule (A3) [applied for N=j—n, f(x)

=(1+xy*"™and g(x)=(1—x)’"™] and Eqgs. (A1) and (A2) we write
Eq. (A9) in the form

&, (B)=1"""P} (cosp),

which is the connection seeked for. Edmonds (1957) uses a
function d¥(B), which is related to 4/ (f) and P/ (cosp) in the
following way:

d2(B)=(—1)"*"d (B)=i"""PJ (cosp),

The generalized spherical functions are also related to the Jacobi
polynomials P*(x) (e.g. Szegd, 1939). The exact relationship is
given by

4B =

,(1+x)j+m—t (—l)j_"_t(l—x)t+"_m. (A9)

0<p<m, (A10).

0f<m.

(A1)

(=i

2GThI2

sl(s+a+p)!
(s+a)!(s+p)!

Pl (x)=

}l/z(l—x)“/z(l+x)ﬂ/2P:B(x), (A12)

where a=|n—m|, f=|n+m|, s=]—max(|m|,|n|). This relationship
is most easily deduced by comparing our Egs. (A1) and (A2) with
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Eq. (IV.4.3.1) of Szeg6 (1939) for the case n=m =0 (when a=n—m,
B=n+m, s=1—n) and by extending this relationship using Eq.
(A6). From the analogous property of the Jacobi polynomials
(Szegd, 1939, Eq. (IV.4.3.3)) one now derives the orthogonality
property

f L ()PE (x)dx=(—1)y"*" _f P (x)P* (x)*dx

S (=10, (A13)

2l +1
For all integers m, n the functions |/I +§P£,m(x) [[=Zmax(|m], |n])]
form a complete orthonormal system of functions on [—1, +1],
as one may deduce from the completeness property of the Jacobi
polynomials (Szegd, 1939) and Egs. (A12) and (A13).

For polarization studies we always have m,ne {—2,0,2}. The
functions P! (x) are then easily calculated from a recurrence
relation. When the recurrence relation of the Jacobi polynomials
(Szego, 1939, Eq. (IV.4.5.1)) is transformed according to Eq.
(A12), one gets the following recurrence relation for P! (x) (cf.
Bugayenko, 1976):

1/ (I+12 =2 |/ (+1)>—m? P} (x)
+(+ 1))/ 12=n? |/IP—m* P\ 1 (x)

=QRI+D{I+1)x— mn}me,(x), [=max(|ml, |n|), (A14)
with
praxml () = (=)= [ (2max(ml, In)))! "2
m 2max(ml. 1n) | (1 — n)) ! (jm+ nl)!
S(1=x)Immnli2(g g x)m iz (A15)
For n=m=0 one obtains the recurrence relation
(I+ 1)PLE () + 1P (x) = 21+ 1)xPgo(x), 120, (A16)
with
PS,(x)=1 (A17)
for the usual Legendre polynomials
oo =B = 5 ] 21 (A1
For n=2, m=0 one has the recurrence relation
V(= 1)(1+3) P55 %)+ /(1= 2) (1+2) P (x)
=+ 1)xP,(x), 122, (A19)
with
P3,(0=1)/6(x*~1). (A20)

A final relationship is the one to associated Legendre functions.
Defining the associated Legendre function by

Pi()=(1 —x2) (%)j P, (L,j=0,1,2..) (A21)
we find

1 1/2
Pix)= ()J[El“;,] P y(x) (a22)

[cf. Eq. (A1) with m=0 and n=—j].
To find an addition formula for the generalized spherical
functions one starts from the closure formula in Appendix V and

Eq. (2.17) of the book of Brink and Satchler (1962). In their
notations and using Eq. (A10) one first writes

1
Z (— l)seis(w’—w)P:ns(_ COSS)

s=-1

P! (—cos¥)

1
=@ Y, 2L0,n-8, —mP.(¢p—¢,n—9,0)

s=-1

=" "Dl B, y) =€~ Py, (cOS e~ (A23)
where, according to the conventions of Fig. 2 of Brink and
Satchler (1962), the angles «, 8, y are the Euler angles of the rotation
resulting from first applying a rotation with Euler angles (¢ — ¢/,
n—9,0) and then a rotation with Euler angles (0,7—39, —n).
Computing a=n—o0,, =60, y=n—0, with the angles according
to Figs. 2 and 3 we finally obtain the addition theorem

(= 1y™*meimoz P (cosf)e™!
1
= Y (=17 9P (—cos) P (—cos9).

s=—1

(A24)

For 0< ¢’ — ¢ <m the connection between 3, ¥, ¢’ —¢ and o4, 05, 0
is given by Fig. 2 while for n < ¢’ — ¢ <2r this connection is given
by Fig. 3. For ¢’ — ¢ =0, or & the appropriate limits have to be taken.
For polarized light one has (—1)"*"=1. Analytical expressions
for the relations between the angles 3, ¥, ¢’ —¢ and g4, 7,, 0 are
given by Eqgs. (90)95). In this way we have obtained the addition
formula (A24) without using Gelfand and Shapiro (1952). Instead,
we employed the analogue in angular momentum theory. An
alternative derivation can be based on Edmonds (1957) and Wigner
(1959) using the fact that their analogues of the generalized spherical
functions appear in the representations of the three-dimensional
pure rotation group. In Eq. (A24) the relationship between the
angles is either formulated geometrically in terms of Figs. 2 and 3
or analytically in terms of Egs. (90)+95). For polarized light
Eq. (A24) is in agreement with the addition theorem used by
Kuscer and Ribari¢ (1959), who referred to Gelfand and Shapiro
(1952).
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