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Abstract

In this article we develop a finite difference (FDFD) method to compute the band

spectra of 2D photonic crystals without impurities. Exploiting periodicity to identify

discretization points differing by a period, the computational complexity of the algorithms

is reduced significantly. Numerical results on three test problems are presented.
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1. Introduction.

Two-dimensional (2D) pure photonic crystals [1,2] are dielectric media
whose dielectric constant ε only depends on x = (x, y) ∈ R2 and not on the
third cartesian coordinate z and, for certain linearly independent vectors
a1,a2 ∈ R2, satisfies the periodicity condition

(1) ε(x+m1a1 +m2a2) = ε(x), x = (x, y) ∈ R2,

where m1 and m2 are arbitrary integers. Letting c be the speed of light,
ω the angular frequency of the harmonic mode, and η = (ω/c)2, in the
transverse magnetic (TM) mode the electric field ψ satisfies the Helmholtz
equation [3]

(2) −∇2ψ = ηεψ,

whereas in the transverse electric (TE) mode the magnetic field ψ satisfies

(3) −∇ ·
(

1

ε
∇ψ
)

= ηψ.
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In either mode the field ψ points in the z-direction and only depends on
(x, y) ∈ R2. Using the Bloch representation

ψ(x,k) = eik·xφ(x,k),

where the wavevector k belongs to the first Brillouin zone [4] and φ satisfies
the periodicity condition

(4) φ(x+m1a1 +m2a2,k) = φ(x,k)

for any m1,m2 ∈ Z, we obtain instead of (2) and (3) the equations

(5) −∇2φ− 2ik · ∇φ+ ‖k‖2φ = ηεφ

for TM modes and

(6) −∇ ·
(

1

ε
∇φ
)
− i∇ ·

(
1

ε
kφ

)
− i1

ε
k · ∇φ+

‖k‖2

ε
φ = ηφ

for TE modes. Throughout the paper, ‖ · ‖ denotes the euclidean norm.
In the literature the photonic band spectra have been computed by

two basic families of methods: time domain methods and frequency domain
methods. The first is based on the numerical solution of a wave equation
followed by a Fourier analysis in the time variable to extract the spectrum.
In the frequency domain methods the band spectra are obtained by the nu-
merical solution of a Helmholtz-like equation for a selection of wavevectors
k. These numerical methods have been applied to a variety of model 2D
photonic crystals, where each elementary cell consists of two distinct dielec-
trically homogeneous materials, one forming an array of circles, squares, or
honey comb and the other being the background. We mention time domain
applications using the plane wave expansion (PWE) [5–10] and finite differ-
ence time domain (FDTD) [11–17] methods and frequency domain applica-
tions using the finite difference frequency domain (FDFD) [18–20], finite el-
ement frequency domain (FEFD) [21–29], multiple scattering (MS) [30–33],
and Fourier expansion (FE) [1,34,35] methods.

In this article we develop a finite difference domain (FDFD) method to
compute the spectra of the Helmholtz-like equations (5) and (6) for fixed
k ∈ R2. When varying k over the first Brillouin zone or any part of it
depending on the rotation and reflection symmetries of ε(x), we obtain
the band spectra for the TM and TE modes for given dielectric constant.
Choosing positive integers n,m and the division points

(7) xj,l = (j/n)a1 + (l/m)a2, (j, l) ∈ Z2,
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we can convert the finite difference frequency domain (FDFD) scheme for
(5) and (6) into linear systems of the type

(8) (C − ηD)φ,

where C and D are sparse positive definite matrices of order nm. The
periodicity condition (4) has been employed to identify the values of φ at
the division points xj,l and xj′,l′ whenever j − j′ is an integer multiple of
n and l − l′ an integer multiple of m. Partial results have been obtained
before in [36].

The numerical results have been obtained, in either mode, by the FDFD
method and compared with results obtained using the Fourier expansion
method of Joannopoulos et al. [1]. In Sec. 2 we shall discuss our imple-
mentation of the FDFD method in detail, first for rectangular 2D crystals
(where a1 ·a2 = 0) and then for oblique 2D crystals, in either mode. In Sec.
3 we discuss the circulant-diagonal matrix systems. In Sec. 4 we present
our numerical results and in Sec. 5 our conclusions.

2. Finite difference frequency domain.

In this section we discuss the finite difference method [37–39] in the
frequency domain to determine the spectra of 2D photonic crystals.

a. Rectangular photonic crystals. Let us formulate our FDFD me-
thod first for rectangular 2D crystals, where a1 = (a, 0) and a2 = (0, b).
Defining the division points as in (7), putting hx = (a/n), hy = (b/m),
φj,l = φ(xj,l), and εj,l = ε(xj,l) for any (j, l) ∈ Z2, collocating (5) (TM
mode) in xj,l, and discretizing by the usual central scheme, we obtain the
finite difference equation

−
φj+1,l − 2φj,l + φj−1,l

h2x
−
φj,l+1 − 2φj,l + φj,l−1

h2y

− 2ikx
φj+1,l − φj−1,l

2hx
− 2iky

φj,l+1 − φj,l−1
2hy

+ [k2x + k2y]φj,l

= ηεj,lφj,l,(9)

where k = (kx, ky) is a fixed wavevector in the first Brillouin zone. The
periodicity conditions (1) and (4) on the dielectric constant and the Bloch
corrected field allow us to make the identifications

εj,l = εj′,l′ , φj,l = φj′,l′ ,

whenever (j− j′)/n and (l− l′)/m are integers. As a result, we can convert
(9) into a linear system of the form (8) of order nm satisfied by the column
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vector with components φj,l for the following (j, l):

(10)


(j, l), j = 1, . . . , n− 1, l = 1, . . . ,m− 1,

(0, l), l = 1, . . . ,m− 1,

(j, 0), j = 1, . . . , n− 1,

(0, 0).

Notice that this procedure is equivalent to discretizing (5) on the two-
dimensional torus.

The finite difference scheme for (6) (TE mode) is less straightforward,
because the presence of the function (1/ε) in the differential operator in
situations where the physics of the problem requires (1/ε) to have jump dis-
continuities, requires some averaging of (1/ε). The finite difference scheme
used in the TE mode is the following:

− 1
2

(
1

εj+1,l
+

1

εj,l

)
φj+1,l − φj,l

h2x
− 1

2

(
1

εj,l
+

1

εj−1,l

)
φj,l − φj−1,l

h2x

− 1
2

(
1

εj,l+1
+

1

εj,l

)
φj,l+1 − φj,l

h2y
− 1

2

(
1

εj,l
+

1

εj,l−1

)
φj,l − φj,l−1

h2y

− ikx
1

εj+1,l
φj+1,l − 1

εj−1,l
φj−1,l

2hx
− iky

1
εj,l+1

φj,l+1 − 1
εj,l−1

φj,l−1

2hy

− ikx
1
εj,l
φj+1,l − 1

εj,l
φj−1,l

2hx
− iky

1
εj,l
φj,l+1 − 1

εj,l−1
φj,l

2hy

+ 1
4k

2
x

(
1

εj+1,l
+

2

εj,l
+

1

εj−1,l

)
φj,l + 1

4k
2
y

(
1

εj,l+1
+

2

εj,l
+

1

εj,l−1

)
φj,l

= ηφj,l,
(11)

where k = (kx, ky). Equation (11) is easily written in the form

1
2

(
1

εj+1,l
+

1

εj,l

)[
− 1

h2x
− ikx
hx

]
φj+1,l + 1

2

(
1

εj,l
+

1

εj−1,l

)[
− 1

h2x
+
ikx
hx

]
φj−1,l

+ 1
2

(
1

εj,l+1
+

1

εj,l

)[
− 1

k2y
− iky
hy

]
φj,l+1 + 1

2

(
1

εj,l
+

1

εj,l−1

)[
− 1

h2y
+
iky
hy

]
φj,l−1

+

{
1
4

(
1

εj+1,l
+

2

εj,l
+

1

εj−1,l

)[
2

h2x
+ k2x

]

+ 1
4

(
1

εj,l+1
+

2

εj,l
+

1

εj,l−1

)[
2

h2y
+ k2y

]}
φj,l = ηφj,l.

(12)
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Equations (9) and (12) can both be written in the form (8), where C is
a positive semidefinite hermitian matrix and D is a diagonal matrix with
positive diagonal entries. In the case of (12), D is the identity matrix of
order mn. In the case of (9), C is a two-index circulant matrix, i.e., its
entries C(j,l),(j′,l′) only depend on the remainders of j − j′ and l − l′ upon
division by n and m, respectively. In that case the eigenvalues of C are
given by the symbol [40–42]

k2x + k2y +
2

h2x
(1− cos θj) +

2kx
hx

sin θj +
2

h2y
(1− cosϕl) +

2ky
hy

sinϕl

=

(
kx +

sin θj
hx

)2

+

(
ky +

sinϕl
hy

)2

+
(1− cos θj)

2

h2x
+

(1− cosϕl)
2

h2y

=

(
kx +

2πj

a

)2

+

(
ky +

2πl

b

)2

+O(n−2 +m−2),(13)

where θj = (2πj/n) (j = 0, 1, . . . , n−1) and ϕl = (2πl/m) (l = 0, 1, . . . ,m−
1). The expression (13) is easily seen to be nonnegative and to vanish if and
only if kx = ky = j = l = 0. In the case of (12), after some algebra and
using that εj,l and φj,l only depend on the remainders of j and l upon
division by n and m, we get

η
∑
j,l

|φj,l|2 =
∑
j,l

1
4

(
1

εj+1,l
+

1

εj,l

)
(√

1

h2x
+ k2x −

1

hx

)2

[|φj,l|2 + |φj+1,l|2]

+
2

hx
|φj,l − eiωxφj+1,l|2

√
1

h2x
+ k2x

}

+
∑
j,l

1
4

(
1

εj,l+1
+

1

εj,l

)
(√

1

h2y
+ k2y −

1

hy

)2

[|φj,l|2 + |φj,l+1|2]

+
2

hy
|φj,l − eiωyφj,l+1|2

√
1

h2y
+ k2y

}
,

where for suitable phases ωx, ωy ∈ R

1

h2x
+
ikx
hx

=
1

hx
eiωx

√
1

h2x
+ k2x,

1

h2y
+
iky
hy

=
1

hy
eiωy

√
1

h2y
+ k2y.

As a result, in the case of (12), the matrix C is positive definite hermitian
and zero is an eigenvalue if and only if kx = ky = 0.
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b. Oblique photonic crystals. If the 2D photonic crystal is oblique,
we enact the coordinate transformation

(14) x = col(a1,a2)ξ =

(
a11 a21
a12 a22

)(
ξ
ζ

)
= AT ξ,

where ξ and ζ are orthogonal coordinates and a1 and a2 denote the trans-
posed rows of A. Then(

ξ
ζ

)
=

1

2π
col(b1, b2)x =

1

2π

(
b11 b12
b21 b22

)
x =

1

2π
Bx,

where b1 and b2 are the so-called reciprocal basis vectors, which implies
ATB = 2πI2. Using that

k · ∇φ =
1

2π
(Bk) · ∇ξφ,

∇2φ =
1

4π2

(
‖b1‖2∂

2φ

∂ξ2
+ ‖b2‖2∂

2φ

∂ζ2
+ 2b1 · b2 ∂

2φ

∂ξ∂ζ

)
,

and putting φ̃(ξ) = φ(A−1x), we get instead of (5) (TM mode)

− 1

4π2

(
‖b1‖2∂

2φ̃

∂ξ2
+ ‖b2‖2∂

2φ̃

∂ζ2
+ 2b1 · b2 ∂

2φ̃

∂ξ∂ζ

)
− i

π
(Bk) · ∇ξφ̃+ ‖k‖2φ̃(ξ) = η ε̃(ξ)φ̃(ξ),(15)

where ε̃(ξ) = ε(AT ξ) and b1 and b2 are the transposed row vectors of B.
Instead of (6) (TE mode) we obtain

− 1

4π2
b1 · ∇ξ

(
b1 · ∇ξφ̃

ε̃

)
− 1

4π2
b2 · ∇ξ

(
b2 · ∇ξφ̃

ε̃

)

− ik1
2π
b1 · ∇ξ

(
φ̃

ε̃

)
− ik2

2π
b2 · ∇ξ

(
φ̃

ε̃

)
+
‖k‖2

ε̃
φ̃ = ηφ̃.(16)

Putting hξ = (1/n) and hζ = (1/m), we then obtain from (15) (TM
mode) the finite difference scheme

− 1

4π2

(
‖b1‖2

φ̃j+1,l − 2φ̃j,l + φ̃j−1,l
h2ξ

+ ‖b2‖2
φ̃j,l+1 − 2φ̃j,l + φ̃j−1,l

h2ζ

+ 2b1 · b2
φ̃j+1,l+1 + φ̃j−1,l−1 − φ̃j+1,l−1 − φ̃j−1,l+1

4hξhζ

)

− i

π

(
(b1 · k)

φ̃j+1,l − φ̃j−1,l
2hξ

+ (b2 · k)
φ̃j,l+1 − φ̃j,l−1

2hζ

)
+ ‖k‖2φ̃j,l = ηε̃j,lφ̃j,l,

(17)
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where φ̃j,l = φ̃(j/n, l/m) = φ(ja1/n, la2/m). The linear system obtained
has the form (8), where D is a diagonal matrix with positive diagonal entries
ε̃j,l and C is a two-index circulant matrix with eigenvalues [40–42]

1

2π2

(
‖b1‖2

h2ξ
(1− cos θj) +

‖b2‖2

h2ζ
(1− cosϕl) +

b1 · b2
hξhζ

sin θj sinϕl

)

+
1

π

(
b1 · k
hξ

sin θj +
b2 · k
hζ

sinϕl

)2

+ ‖k‖2

=

∥∥∥∥k +
sin θj
2πhξ

b1 +
sinϕl
2πhζ

b2

∥∥∥∥2 +
1

π2

(
‖b1‖2

h2ξ
sin4(12θj) +

‖b2‖2

h2ζ
sin(12ϕl)

)

= ‖k + jb1 + lb2‖2 +O(n−2 +m−2),

(18)

where θj = (2πj/n) (j = 0, 1, . . . , n − 1) and ϕl = (2πl/m) (l =
0, 1, . . . ,m−1). Consequently, all eigenvalues of C are nonnegative and zero
is an eigenvalue if and only if kx = ky = j = l = 0. Moreover, they converge
to the exact eigenvalues of (5) with periodic conditions if ε(x, y) ≡ 1. For
TE modes we get from (16) the finite difference scheme

1
2

[
1

ε̃j+1,l
+

1

ε̃j,l

][
−‖b

1‖2

4π2h2ξ
+
b1 · k
2πihξ

]
φ̃j+1,l− 1

2

[
1

ε̃j,l
+

1

ε̃j−1,l

][
‖b1‖2

4π2h2ξ
+
b1 · k
2πihξ

]
φ̃j−1,l

+1
2

[
1

ε̃j,l+1
+

1

ε̃j,l

][
− ‖b

2‖2

4π2h2ζ
+
b2 · k
2πihζ

]
φ̃j,l+1− 1

2

[
1

ε̃j,l
+

1

ε̃j,l−1

][
‖b2‖2

4π2h2ζ
+
b2 · k
2πihζ

]
φ̃j,l−1

− b1 · b2

32π2hξhζ

[(
1

ε̃j,l+1
+

2

ε̃j,l
+

1

ε̃j+1,l

)
φ̃j+1,l+1 +

(
1

ε̃j−1,l
+

2

ε̃j,l
+

1

ε̃j,l−1

)
φ̃j−1,l−1

−
(

1

ε̃j,l+1
+

2

ε̃j,l
+

1

ε̃j−1,l

)
φ̃j−1,l+1 −

(
1

ε̃j,l−1
+

2

ε̃j,l
+

1

ε̃j+1,l

)
φ̃j+1,l−1

]
+

{
1
4

[
1

ε̃j+1,l
+

2

ε̃j,l
+

1

ε̃j−1,l

][
‖b1‖2

2π2h2ξ
+ k2x

]}
φ̃j,l

+

{
1
4

[
1

ε̃j,l+1
+

2

ε̃j,l
+

1

ε̃j−1,l

][
‖b2‖2

2π2h2ζ
+ k2y

]}
φ̃j,l = ηφ̃j,l,

(19)

where φ̃j,l = φ̃(j/n, l/m) = φ(ja1/n, la2/m).
In each of our numerical experiments the matrices C of systems (17)

and (19) have been positive definite for each k 6= (0, 0) and singular for
kx = ky = 0. For this reason we conjecture that this property holds true as
in the rectangular case.
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3. Analysis of the matrix systems.

The linear systems (9) (TM rectangular), (12) (TE rectangular), (17)
(TM oblique), and (19) (TE oblique) obtained by applying the FDFD me-
thod all have the form

(20) (C − ηD)φ = 0,

where C is a nonnegative hermitian matrix and D is a positive definite her-
mitian matrix, both of order mn. The generalized eigenvalues of the pencil
C−ηD, i.e., the values of η for which (20) has a nontrivial solution, coincide
with the eigenvalues of the nonnegative hermitian matrixD−1/2CD−1/2 and
are therefore nonnegative.

Let us first state the following monotonicity result on the eigenvalues
of linear pencils of the type (20). Its proof can easily be derived from the
minimax characterization of the eigenvalues [43, Thm. 8.7.1].

Theorem 3.1 (Courant-Fischer). Let C1 and C2 be nonnegative hermi-
tian matrices and D1 and D2 positive definite hermitian matrices having
the same order N . Suppose that, for each φ ∈ CN ,

(C1φ,φ) ≥ (C2φ,φ),(21a)

(D1φ,φ) ≤ (D2φ,φ).(21b)

Suppose λs1 ≤ λs2 ≤ . . . ≤ λsN denote the eigenvalues of the pencil Cs− ηDs,
where s = 1, 2. Then

(22) λ1r ≥ λ2r , r = 1, 2, . . . , N.

Proof. By the minimax principle [43, Thm. 8.3.2], we have

λsr = max
Lr

min
0 6=φ∈Lr

(Csφ,φ)

(Dsφ,φ)
, r = 1, 2, . . . , N, s = 1, 2,

where Lr is a linear subspace of CN of dimension N − r + 1. Now the
conclusion (22) is immediate from (21).

The linear systems of the type (20) obtained by using the FDFD me-
thod are composed of matrices C and D of order mn which depend on the
dielectric constant ε. When ε is increasing, for each φ ∈ Cmn the scalar
product (Cφ,φ) decreases and the scalar product (Dφ,φ) increases. As a
result of Theorem 3.1, the r-th smallest eigenvalue of the pencil C − ηD
decreases (r = 1, . . . ,mn).

8
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Let us now consider the detailed structure of the matrices C and D
obtained by applying the FDFD method. The matrices C and D are two-
index in the sense that their elements can be written as C(j,l),(j′,l′) and
D(j,l),(j′,l′), where (j, l) and (j′, l′) are as in (10).

In the TM mode the FDFD method leads to a linear system of the
type (20), where C is a two-index circulant tridiagonal matrix and D is a
positive diagonal matrix. Instead, in the TE mode the FDFD method leads
to a linear system of the form (20), where C is a two-index noncirculant
tridiagonal matrix and D is the identity matrix. In all four cases considered,
the matrix C is nonnegative hermitian and the matrix D is positive definite
hermitian.

In homogeneous media (ε(x, y) ≡ ε constant) it is possible to solve the
linear systems arising from the FDFD method explicitly. Since the corre-
sponding TM and TE modes lead to the same linear system (20) (except
for an irrelevant factor ε in both C and D), we discuss only the TM mode.
In the FDFD-TM case the eigenvalues of (20) are those of the two-index
circulant matrix divided by ε. Taking the limits of (13) (FDFD-TM, rect-
angular crystal) and (18) (FDFD-TM, oblique crystal), we obtain, apart
from a term of the order of O(n−2 + m−2), the exact eigenvalues η which
can be evaluated by separation of variables.

4. Numerical results.

In this section we present numerical results on the band spectra of 2D
photonic crystals obtained by using the FDFD method, illustrated in Sec.
2. These results are compared with each other and with those obtained by
using the MIT Photonic-Bands software which can be downloaded from the
website http://ab-initio.mit.edu/photons/index.html

All computations in this paper were performed using MatLab (version
7.11.0) on an AMD46 computer equipped with an Intel Core i7 860 pro-
cessor with a speed of 2.80 GHz. We developed a MatLab toolbox, called
2DPhotonics, which is available upon request.

The photonic crystal configurations considered in this section are those
depicted in Fig. 1 in the case of a rectangular lattice and in Fig. 2 in the
case of an oblique lattice, both considered before in [1]. More precisely, as
in [1], we considered the following configurations of photonic crystals:

a) a square distribution of dielectric rods (ε = 8.9, radius r = 0.2a)
embedded in air, a being the lattice constant (top half of Fig. 1);

b) a square distribution of dielectric veins (ε = 8.9, thickness 0.165a)
embedded in air, a being the lattice constant (bottom half of Fig. 1);

c) a triangular array of air columns drilled in a dielectric substrate

9
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(radius r = 0.48a, ε = 13), a being the lattice constant (Fig. 2).

In the cases a)-c) the band spectra in the TM and the TE modes have
been computed by using our FDFD method. For a comparison between our
results and the ones most quoted in the literature, we reported in Tables 1-4
the TM and TE spectra computed by our method and the MIT Photonic-
Band software mentioned above.

Figure 1. The top half of the figure shows a photonic crystal composed of a square
distribution of dielectric rods (ε = 8.9, r = 0.2a) embedded in air and the corresponding
Brillouin zone. The Γ-point corresponds to kx = ky = 0, the X-point to kx = π/a and
ky = 0 and finally at the M -point one has kx = ky = π/a, a being either period. The
bottom half of the figure shows a photonic crystal composed of a square distribution of
dielectric veins (ε = 8.9, thickness 0.165a) in air and the corresponding Brillouin zone.

4.1. Two rectangular lattices.

Firstly we note that, as ε(x, y) is invariant under the group of automor-
phisms of the square lattice, it is sufficient to choose the wavevector k in
one eighth of the Brillouin zone [4] (Fig. 1). As a consequence we computed
the band spectrum by solving the eigenvalue problems (9), (12) for different
wavevectors varying, as specified below, on the boundary of the blue region
shown in Fig. 1:

1. kx ∈ [0, π/a], ky = 0,

10
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Figure 2. The figure shows a photonic crystal made of a triangular array of air columns
drilled in a dielectric substrate (r = 0.48a, ε = 13) and the corresponding Brillouin zone.
The Γ-point corresponds to kx = ky = 0, the M -point to kx = 0 and ky = 2π/(

√
(3)a)

and finally at the K-point one has kx = 2π/(3a) and ky = 2π/(
√

(3)a), where the period
parallelogram is a rhombus with sides a.

2. kx = π/a, ky ∈ [0, π/a],
3. kx ∈ [0, π/a], ky ∈ [0, π/a].

k TM TE

kx ky FE FDFD FE FDFD

0.0 0.0 0.000000 0.000000 0.000000 0.000000
0.2 0.0 0.139465 0.139226 0.180051 0.180634
0.4 0.0 0.254053 0.254376 0.353842 0.353964
0.5 0.1 0.280546 0.280765 0.428562 0.428803
0.5 0.3 0.306291 0.306913 0.506456 0.506872
0.5 0.5 0.324533 0.324677 0.553457 0.553002
0.3 0.3 0.268305 0.268478 0.378416 0.378652
0.1 0.1 0.099665 0.099742 0.127688 0.127521

Since in our FDFD method a regular grid is used and recalling the
monotonicity property proved in Sec. 3, the dielectric constant ε(x, y) has
been sampled both in a defect and in an excess approximation and their
arithmetic average is assumed to be the effective approximation. For the
sake of clarity, let us explain this procedure for the case where the photonic
crystal is composed of dielectric rods (top half of Fig. 2). The dielectric con-
stant has been sampled first in a defect approximation where the dielectric
values different from one have been selected for the grid points inside the
disk with radius r = 0.2a, and then in an excess approximation where the
dielectric values equal to one have been selected for the grid points outside
the disk with radius r = 0.2a. The right-hand side of Fig. 3 shows the di-
electric constant distribution on a 20×20 regular grid both in the defect and

11
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k TM TE

kx ky FE FDFD FE FDFD

0.0 0.0 0.633721 0.633134 0.827543 0.827157
0.2 0.0 0.636577 0.636717 0.758997 0.758070
0.4 0.0 0.641358 0.641721 0.710275 0.710756
0.5 0.1 0.631219 0.631115 0.698984 0.698468
0.5 0.3 0.580532 0.580332 0.651086 0.651573
0.5 0.5 0.552753 0.552103 0.601662 0.601329
0.3 0.3 0.579892 0.579910 0.655872 0.656392
0.1 0.1 0.625651 0.625721 0.784024 0.784706

Figure 3. The left half of the figure shows the band structure corresponding to the defect
and excess grid approximation for TM modes for the photonic crystal made of dielectric
rods embedded in air (top half of Fig. 2). The corresponding 20 × 20 grids are shown on
the right half.

the excess approximations and the left-hand side shows the corresponding
band spectra.

As proved in Sec. 3, the absolute and relative errors behave like
n−2 +m−2 (where n and m are the numbers of grid points in the x and y
direction, respectively) when ε(x, y) is constant (homogeneous case). Our

12
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Figure 4. The figure on the right shows the TM and TE spectra for a square array of
dielectric columns in air (top half of Fig. 1), while the figure on the left shows the TM
and TE spectra for a square array of dielectric veins in air (bottom half of Fig. 1).

k TM TE

kx ky FE FDFD FE FDFD

0.0 0.0 0.000000 0.000000 0.000000 0.000000
0.2 0.0 0.106607 0.106311 0.123318 0.123706
0.4 0.0 0.203708 0.203262 0.226933 0.226088
0.5 0.1 0.233776 0.233182 0.255797 0.255031
0.5 0.3 0.264042 0.264648 0.311166 0.311463
0.5 0.5 0.297267 0.297914 0.357971 0.357276
0.3 0.3 0.216367 0.216914 0.257825 0.257496
0.1 0.1 0.141421 0.141637 0.088332 0.088046

k TM TE

kx ky FE FDFD FE FDFD

0.0 0.0 0.485054 0.485498 0.615396 0.615744
0.2 0.0 0.466427 0.466223 0.631361 0.631639
0.4 0.0 0.470366 0.470268 0.676816 0.676011
0.5 0.1 0.453313 0.453083 0.681243 0.681899
0.5 0.3 0.392038 0.392523 0.588334 0.588583
0.5 0.5 0.349106 0.349896 0.528361 0.528095
0.3 0.3 0.389044 0.389547 0.551563 0.551149
0.1 0.1 0.421794 0.421188 0.602741 0.602809

numerical experiments confirm this result. In particular, taking a 60 × 60
grid we obtained a 10−3 error. As the exact eigenvalues are not known in the
inhomogeneous case, we compared the results obtained by our method with
those obtained by Joannopoulos et al. [1] using the MIT Photonic-Bands

13
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software (FE method). The numerical results thus obtained are reported
in Tables 1-4, where the eigenvalues shown have been computed using a
100 × 100 grid for the FDFD method and a 128 × 128 grid for the FE
method. In each table, the eigenvalues thus obtained and associated to the
wavevectors k reported, are labeled as FE and FDFD, respectively. The
results illustrate that the two methods give essentially the same numerical
results.

4.2. An oblique lattice.

We computed the spectrum solving the eigenvalue problems (17) and
(19) for fixed k values. This time we are dealing with an oblique lattice and
in this case it is sufficient [1] to consider k varying on the boundary of the
blue region of the Brillouin zone (Fig. 2) as follows:

1. kx = 0, ky ∈ [0, 2π/(
√

3a)],
2. kx ∈ [0, 2π/(3a)], ky = 2π/(

√
3a),

3. kx ∈ [2π/(3a), 0], ky ∈ [2π/(
√

3a), 0].

Figure 5. TM and TE spectra obtained by the FDFD method for photonic crystal made
of a triangular distribution of rods embedded in a dielectric medium (see Fig. 2).

As in Subsec. 4.1, the dielectric function ε(x, y) has been sampled first
in a defect approximation and then in an excess approximation, but this
time for r = 0.48a. We considered a 60× 60 grid. The corresponding band
structures for both the TM and TE modes are shown in Fig. 5. In this
figure the results obtained by using the FE software mentioned above have
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not been plotted, as they are visually indistinguishable from the results
obtained by our FDFD method.

5. Conclusions.

In this paper we propose a finite difference frequency domain method
to determine the spectra of two-dimensional photonic crystals. We also
compare the results thus obtained with each other and with those obtained
by the MPB software [1]. Our numerical experiments illustrate that the two
methods produce essentially the same results in all cases considered. This
does not imply that the methods used are equally effective. Actually, the
results could be quite different, especially when either the dielectric function
ε(x, y) is strongly variable on the elementary cell or a larger number of
spectral bands has to be computed.

We note that the FDFD method, when applied to homogeneous media,
gives the exact results for the TM and TE modes, which is not true when
we apply the FE method. Moreover, whereas the FE method, when applied
to discontinuous media, requires a regularization of the dielectric function
ε(x, y) in order to speed up the convergence of the Fourier series, our method
does not require any regularization of ε(x, y), which simplifies the use of
the method and makes it easily extendable to the 3D case, because the 3D
domains involved are parallelepipeds and hence quite regular. Moreover, the
FDFD method generates eigenvalues (see Sec. 3) that are decreasing with
respect to the dielectric function, something which is not clear in the case
of the FE method. It is worthwhile to note that, from the numerical point
of view, this monotonicity property can be used to obtain error estimates
for the numerical results.
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