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Closed form solutions to the matrix sine-Gordon equation
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An explicit solution formula for the sine-Gordon equation in terms of matrix triplets (A, B, C), where A
ispxp,Bispx1and Cis1 x p, is generalized by removing the limitations on the matrix sizes. The
matrix sine-Gordon equation it satisfies is identified.
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1. Introduction

The (scalar) sine-Gordon equation appears in many interesting contexts, such as the description of sur-
faces of constant negative Gaussian curvature (Bour, 1862; Eisenhart, 1960), magnetic flux propagation
in Josephson junctions (McLaughlin & Scott, 1978; Mineev & Shmidt, 1980) and propagation of defor-
mations along the DNA double helix (Gaeta et al., 1994; Lennholm & Hornquist, 2003; Salerno, 1991;
Yakushevich, 2004). Because of the importance of the applications in which the sine-Gordon equation
arises (see Aktosun ef al., 2010 for details), it is not surprising that different approaches, such as the IST
(Ablowitz et al., 1973), and Darboux and Bécklund transformations (Gu et al., 2005; Rogers & Schief,
2002), were developed to get exact solutions. These exact solutions are written in terms of elementary
functions and, in Lamb (1980) and Poppe (1983), the reader can find many of the solutions coming from
the methods cited above.

In Aktosun et al. (2010), we have presented a family of explicit solutions to the sine-Gordon
equation

Uy = sin(u) ey
by writing the integral kernel of the Marchenko equation in the form
Qx+y;)=Ce O A g

where (A, B, C) is a suitable triplet of real matrices. The sine-Gordon solution is obtained by solving
the Marchenko integral equation by separation of variables and integrating the resulting expression
with respect to x € R. Various representations of the solutions were obtained which are in agreement
with results by Schiebold (2002) who has used matrix triplets as well but not the Marchenko method.
The methods used in Aktosun et al. (2010) and Schiebold (2002) lead to the usual (anti)kink, soliton—
(anti)soliton interaction and breather solutions (Lamb, 1980), but also to a plethora of multipole soliton
solutions.

Starting from the real matrices A, B and C of sizes p X p, p x 1 and 1 x p, respectively, where all of
the eigenvalues of A have positive real parts, in Aktosun et al. (2010) we have derived the sine-Gordon
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solution formula

u(x,t) = —4 /OO dyCleX (/AT 4 per2d=(/2i7 p-ip, 2

X

where

o0
P= / dse™™BCe™*.
0

However, if we allow A, B and C to be p x p, p x n and m x p matrices, where all of the eigenvalues
of A have positive real parts, then (2) still makes sense. The question now is how to generalize the
non-linear evolution equation (1) and to show that (2) satisfies this generalized sine-Gordon equation.

The paper is organized as follows: in Section 2, we give the AKNS pair which allows us to ‘discover’
the matrix version of the sine-Gordon equation. In Section 3, we introduce the scattering coefficients,
state their time evolution law and write the Marchenko integral equation. Generalizing in an easy way
the results obtained in Aktosun ef al. (2010), we arrive at various equivalent formulas for the integrable
matrix sine-Gordon equation. Finally, in Section 4, we discuss an interesting example.

2. AKNS pair
Consider the (m + n) x (m + n) matrices X (x, A; 1) and T'(x, A; ¢) given by

1
—ixl, —— .
¥ [z 2Mx T:L C S 3)
1 . ’ S, —C,)°
Eui l)\.In 45 ° °

where = u(x, ) is an m x n matrix function and the dagger denotes the matrix conjugate transpose.
Then (X, T) is an AKNS pair for some non-linear evolution system to be specified below if

X, +XT=T,+TX. “4)
Substitution of (3) into (4) yields
Co=—1u,S, — 1Suf, (5a)
(Co)e=—3Seuy — ulS, (5b)
Sy =2iM[uy — ST+ u,Co + 1 Cu,, (5¢)
(S)e = —2ir[uly, — Sl + LulC + Lc.ul. (5d)

Letting (5¢) and (5d) be true for arbitrary A, we get the identities
S = Uyt So = uil’ (6)
which implies that S, = S* and the two equations in (6) reduce to the single non-linear evolution system

Uy =S @)
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310 F. DEMONTIS AND C. VAN DER MEE

and its adjoint. Further, using (5a), (5b) and (6), we have
c'=c, ci=c,.

Note that differential system (5) can be written in the concise form
( c. s > 1 (c s ) Opsm 1ty
(So)x _(Co)x _2 So _Co —u; On><n
1 Ome M.X C S
2 < i > (S —C ) : ®
—Uy Oan ° °

where the matrix with blocks C, S, S, and —C, is selfadjoint for each x € R. Being a commutator, the

right-hand side of (8) has zero trace and hence

C S
TrC—-TrC,=Tr <S. —C.) =TrJ =m—n.

On the differential system (5), we impose both of the asymptotic conditions
C=Im’ C. =Ina S=0m><n’ Se =0nxm, (9)

as x — +oo.

In the scalar case (m = n = 1), for real-valued « and under condition (9), we obtain C = C, = cos(u)
and S =S, = sin(u). This solution of differential system (8) satisfies both of the asymptotic conditions
(9) whenever u — 2m_m for some integers my as x — F0o. Hence, in this case, the non-linear evolution
equation is given by the sine-Gordon equation

Uy = Sinu. (10)

Let us now consider the matrix case. Introduce the (m + n) x 2 matrix

T
I1 = < @ Om?;]> s
On><1 Ty

where nf and 711 are column vectors of length m and n and I7 *IT = I,. Thus, 77, and 74 are row vectors

of euclidean norm 1 (i.e. mn;' = 714711 =1). Define, for some real scalar function v(x,?), the m x n
matrix function

u(x, 1) = 71, v(x, )74 (11)

and construct the (m + n) x (m + n) matrix function

. . . ; g
m(cosv)mT T (SN V)7,
T="Ln (COSV sy )n"‘:’( eosvm - mi(sinv)my ) (12)

4 Smy —COsV 4 \ my(sinvym]  —my(cos vy,
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Then, the left-hand side of (8) can be written as
(" siny v, Ccosv ot
VyCOSV v sinvy ’
Taking into account that I7 IT=1,, the right-hand side of (8) has the form

II (cosv  sinv o 0 v HT_E 0 v o (€osY sinv I
2 \sinv —cosv —v, 0 2 \—=-v, O siny —cosv ’

Hence, (8) is satisfied, provided the following choices are made:

C =m(cos v)7tl+ = cos((uu")'?),
S =y (sinv)7; = sinc((uu’)"?)u,
S, = my(sinv)m; = sinc((u'u)" /',
C, = —my(cos v)rrl = cos((uTu)l/z),
where (uu™)'/? and (u"u)'/? are the non-negative hermitian square roots of uu' and u'u, respectively,

sinc(z) = sin z/z, and, for any square matrix w, cos(w) and sinc(w) are defined by means of their power
series. Thus, the matrix function u(x, ) defined by (11) satisfies the non-linear evolution equation

e = sinc((uu")?)u, (13)

provided the real scalar function v(x, f) satisfies the sine-Gordon equation (10) and v(x, 1) — 2my for
some integers my as x — 00. Thus, the non-linear evolution equation (13) can be solved by using the
IST method and we have found its AKNS pair.

More generally, we need to solve the differential system (8) under the simultaneous conditions (9)
to find the non-linear evolution equation (7) that generalizes the sine-Gordon equation.

3. Solutions to the matrix sine-Gordon equation

Following Ablowitz et al. (2004, Section 4.2.4) and taking into account (9), we consider the differential
systems

ve=Xv, v,=Tv. (14)

Using that u, — 0 as x — F00, the two differential systems reduce to

. i
Ve=—iAJy, v, = HJV, (15)

whe_re J=1I,® g—]n). Let us denote the Jost solutions of the matrix Zakharov—Shabat system v, = Xv
by ¥, ¥, ¢ and ¢. Then

(Fx0) Yxn)=e Ly, +o(1)], x— 400,

(p(h.xit) @G x:0))

e M Ly +o(1)], x— —o0.
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Introduce the time-dependent functions
VOt =" xn, W) =e Py G,
P =e"o( 0, dOxn=e P01 0),

as solutions to (14). Then

Iﬁt = (T - ilin+n> &7 wt = <T + ilm+n) w’

4) 4)

¢ = (T - leH) ¢, b= (T + ;AIW) ¢.
Using that

P hx; 1) =Y (A, X3 D (A1) + ¥ x: Dap (A 1),

GOux; 1) =Y (A, x; Nar (s 1) + ¥ (O X3 Dan (43 1),
as well as

an (A0 ap(i;n)
ar3()\;t) ar4()";t)

(VOux Yxn) =e Ly, + o], x— +oo,

(p(h,x;1) (;_S(A,x;t))zei“x< >+o(1), x — 400,

we obtain by taking the asymptotics as x — +00

0 (A1) =Opsems  01ara (A5 1) = 0y,

i i
atarS ()\7 t) = _ﬁarS ()\7 t), 8;(1,2()\; t) = ﬁarZ()"; t)-

Hence, a,;(1; 1) and a,4(X; t) do not depend on ¢, whereas
ap(in) =e"an(1:0),  as(sn) =e " as(1;0).
Consequently, the reflection coefficients defined by
RGOS0 =as(snan(sn™ L) = —an 050 ap(s0),

satisfy the time evolution identities

R t) =e " R(1;0), L(A;1) =e**L(1;0).
Writing

1 [ - 1 [ .
p(y;t) = — / drePR(G 0, Lyt = — / dre ™LA 1),
2 J_ 27 J_

o0 [e.¢]

and differentiating with respect to y and ¢, we get the partial differential equations

Pyt = %,0’ Ly = —%Z,
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provided p, €, p, and ¢, are matrix functions having their entries in L'(R). Then the left and right
Marchenko kernels are given by

1 o0 . _

Q2i(y;0) = o / dreMR(A 1) + Cre e~/ g (16a)
T J—o00
1 [ : , A=

2,0, = o / dre ™ ML(A;t) + Cp et e/ B, (16b)
T J—c0

where (A;, B;, C;) and (A,, B,, C,) are matrix triplets such that A; and A, only have eigenvalues with
positive real parts. In this way, the two Marchenko kernels satisfy the partial differential equations

20w =32, (@2)y=-12.

Let us define, for each (m 4+ n) x p matrix G, G** = (I,, 0,,,,)G and Gi = (Onm  1,)G. Now write

(&(A,x; 1 Y,x; t)) =e MY 4 /00 dy (I_((x,y; 1 Kx,y; t)) e MY,

X

Then, the left Marchenko equations are given by
oo o0 .
K™ (x,y50) — 2,0+ ;07 + / & / dvK"P (e v D0+ 502+ 30T =0, (170)
X X
_ o0 o) B )
Ky + i+ [ de [ ORO G020+ 50 2450 =0 (1TH)

where y > x. Substituting, in the reflectionless case, the right-hand side of (16a) into (17), we can solve
the Marchenko equations (17) explicitly by separation of variables. Mimicking the calculations detailed
in Aktosun ef al. (2010), we obtain

K™ (x,y;1) = B F(x;1) " e~ 094 ¢l (18a)

K®(x,y;0) = —CE(x;1)"' e 074 B, (18b)
where

F=e? + Qe N, Ext=e?+NeQ,
o0 ¥ T o0 . ¥
0= / dse™ C/C e, N= / ds e’SA’B,B,' e,
0 0
with the quantity 8 defined by
B =2xA, + 3iA] .

It is worthwhile noting that Q and N are semi-definite selfadjoint. The Lyapunov solutions Q and N are
invertible if and only A; has the minimal matrix order among all triplets (A;, B;, C;) having the same
Marchenko kernel {C;e™'B;: x € R} (Aktosun et al., 2010). Moreover, F(x;f) = E(x;1)". Tt is well
known (see, e.g. Ablowitz et al., 2004) that the solutions of the non-linear evolution equation (7) can be
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found from the solutions of the Marchenko equations (17) as follows:

u(x, t)=—4/ dsK"P (s, s; 1), u(x, t)T=4/ dsK¥ (s, 5; 7).

X

We thus get the following solution formula:

u@0=—4/ dsB/F(s;1)”'C]. (19)

4. An example

Let us consider the following matrix triplet:

1 1 1 0
Al:(O 1)» Bz=12=(0 1), C=( 0.

Taking into account that

1 1
- oz
Q=/ dseAicice=| 2 4|,
0 bl
4 4
3 1
oo N - -
N=/ ds e_‘?A’BlB;L e = 4 4 ,
0 L
4 2
i il 1 0
QZWATH/2A] T vty A
2
t
o 2=/ _ 212 I —2x+ 5).
0 1
we explicitly calculate
Flot) = 2]+ Qe 24—/
1 1 3 1
— o2rHi/2 ! t 0 422 2 4 1 —2x+ ! 4 4
- n—< 1 11 2 11
5 L BV L
4 4 2
7 by t 1 x ¢
2x+1/2 —2x—t/2 | T —2x—t/2 | __ _ 7 _
e [w+4 1J ¢ [4 2+J

t 1 x t 3 X t
2et/2 |5, L | L X T 2eAtf2 g am2t2 | 2 X T
¢ {x 2]+e [4 8+3J e e L6+4 1A
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Therefore,

5 t t 7
detF(x;t)=e4X+’+ |:8+x_4+x2_);+]6:| +7e74x7t.

Using (19), we finally get

3 X t

2x-+t/2 -t | 2 b
wn e e {16 *a 16}
u(x, f) = ———
det F'(x;1)

t 1 x t
2c+1/2 | o ° —2x—1/2 -
e [ X + 2] +e {4 + 3 32]
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