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Closed form solutions to the matrix sine-Gordon equation
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An explicit solution formula for the sine-Gordon equation in terms of matrix triplets (A, B, C), where A
is p × p, B is p × 1 and C is 1 × p, is generalized by removing the limitations on the matrix sizes. The
matrix sine-Gordon equation it satisfies is identified.
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1. Introduction

The (scalar) sine-Gordon equation appears in many interesting contexts, such as the description of sur-
faces of constant negative Gaussian curvature (Bour, 1862; Eisenhart, 1960), magnetic flux propagation
in Josephson junctions (McLaughlin & Scott, 1978; Mineev & Shmidt, 1980) and propagation of defor-
mations along the DNA double helix (Gaeta et al., 1994; Lennholm & Hörnquist, 2003; Salerno, 1991;
Yakushevich, 2004). Because of the importance of the applications in which the sine-Gordon equation
arises (see Aktosun et al., 2010 for details), it is not surprising that different approaches, such as the IST
(Ablowitz et al., 1973), and Darboux and Bäcklund transformations (Gu et al., 2005; Rogers & Schief,
2002), were developed to get exact solutions. These exact solutions are written in terms of elementary
functions and, in Lamb (1980) and Pöppe (1983), the reader can find many of the solutions coming from
the methods cited above.

In Aktosun et al. (2010), we have presented a family of explicit solutions to the sine-Gordon
equation

uxt = sin(u) (1)

by writing the integral kernel of the Marchenko equation in the form

Ω(x + y; t)= C e−(x+y)A e−(t/2)A−1
B,

where (A, B, C) is a suitable triplet of real matrices. The sine-Gordon solution is obtained by solving
the Marchenko integral equation by separation of variables and integrating the resulting expression
with respect to x ∈R. Various representations of the solutions were obtained which are in agreement
with results by Schiebold (2002) who has used matrix triplets as well but not the Marchenko method.
The methods used in Aktosun et al. (2010) and Schiebold (2002) lead to the usual (anti)kink, soliton–
(anti)soliton interaction and breather solutions (Lamb, 1980), but also to a plethora of multipole soliton
solutions.

Starting from the real matrices A, B and C of sizes p × p, p × 1 and 1 × p, respectively, where all of
the eigenvalues of A have positive real parts, in Aktosun et al. (2010) we have derived the sine-Gordon
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solution formula

u(x, t)= −4
∫ ∞

x
dyC[e2xA+(1/2)tA−1 + P e−2xA−(1/2)tA−1

P]−1B, (2)

where

P =
∫ ∞

0
ds e−sABC e−sA.

However, if we allow A, B and C to be p × p, p × n and m × p matrices, where all of the eigenvalues
of A have positive real parts, then (2) still makes sense. The question now is how to generalize the
non-linear evolution equation (1) and to show that (2) satisfies this generalized sine-Gordon equation.

The paper is organized as follows: in Section 2, we give the AKNS pair which allows us to ‘discover’
the matrix version of the sine-Gordon equation. In Section 3, we introduce the scattering coefficients,
state their time evolution law and write the Marchenko integral equation. Generalizing in an easy way
the results obtained in Aktosun et al. (2010), we arrive at various equivalent formulas for the integrable
matrix sine-Gordon equation. Finally, in Section 4, we discuss an interesting example.

2. AKNS pair

Consider the (m + n)× (m + n) matrices X (x, λ; t) and T(x, λ; t) given by

X =

⎛
⎜⎝−iλIm −1

2
ux

1

2
u†

x iλIn

⎞
⎟⎠ , T = i

4λ

(
C S
S• −C•

)
, (3)

where u = u(x, t) is an m × n matrix function and the dagger denotes the matrix conjugate transpose.
Then (X , T) is an AKNS pair for some non-linear evolution system to be specified below if

Xt + XT = Tx + TX . (4)

Substitution of (3) into (4) yields

Cx = − 1
2 uxS• − 1

2 Su†
x , (5a)

(C•)x = − 1
2 S•ux − 1

2 u†
xS, (5b)

Sx = 2iλ[uxt − S] + 1
2 uxC• + 1

2 Cux, (5c)

(S•)x = −2iλ[u†
xt − S•] + 1

2 u†
xC + 1

2 C•u†
x . (5d)

Letting (5c) and (5d) be true for arbitrary λ, we get the identities

S = uxt, S• = u†
xt, (6)

which implies that S• = S† and the two equations in (6) reduce to the single non-linear evolution system

uxt = S (7)
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310 F. DEMONTIS AND C. VAN DER MEE

and its adjoint. Further, using (5a), (5b) and (6), we have

C† = C, C†
• = C•.

Note that differential system (5) can be written in the concise form

(
Cx Sx

(S•)x −(C•)x

)
= 1

2

(
C S
S• −C•

)(
0m×m ux

−u†
x 0n×n

)

− 1

2

(
0m×m ux

−u†
x 0n×n

)(
C S
S• −C•

)
, (8)

where the matrix with blocks C, S, S• and −C• is selfadjoint for each x ∈R. Being a commutator, the
right-hand side of (8) has zero trace and hence

Tr C − Tr C• = Tr

(
C S
S• −C•

)
= Tr J = m − n.

On the differential system (5), we impose both of the asymptotic conditions

C = Im, C• = In, S = 0m×n, S• = 0n×m, (9)

as x → ±∞.
In the scalar case (m = n = 1), for real-valued u and under condition (9), we obtain C = C• = cos(u)

and S = S• = sin(u). This solution of differential system (8) satisfies both of the asymptotic conditions
(9) whenever u → 2m±π for some integers m± as x → ±∞. Hence, in this case, the non-linear evolution
equation is given by the sine-Gordon equation

uxt = sin u. (10)

Let us now consider the matrix case. Introduce the (m + n)× 2 matrix

Π =
(
π

†
1 0m×1

0n×1 π
†
4

)
,

where π†
1 and π†

4 are column vectors of length m and n and Π†Π = I2. Thus, π1 and π4 are row vectors
of euclidean norm 1 (i.e. π1π

†
1 = π4π

†
4 = 1). Define, for some real scalar function v(x, t), the m × n

matrix function

u(x, t)= π
†
1 v(x, t)π4 (11)

and construct the (m + n)× (m + n) matrix function

T = i

4λ
Π

(
cos v sin v
sin v − cos v

)
Π† = i

4λ

(
π1(cos v)π†

1 π1(sin v)π†
4

π4(sin v)π†
1 −π4(cos v)π†

4

)
. (12)
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Then, the left-hand side of (8) can be written as

Π

(−vx sin v vx cos v
vx cos v vx sin v

)
Π†.

Taking into account that Π†Π = I2, the right-hand side of (8) has the form

Π

2

(
cos v sin v
sin v − cos v

)
Π†Π

(
0 vx

−vx 0

)
Π† − Π

2

(
0 vx

−vx 0

)
ΠΠ†

(
cos v sin v
sin v − cos v

)
Π†.

Hence, (8) is satisfied, provided the following choices are made:

C = π1(cos v)π†
1 = cos((uu†)1/2),

S = π1(sin v)π†
4 = sinc((uu†)1/2)u,

S• = π4(sin v)π†
1 = sinc((u†u)1/2)u†,

C• = −π4(cos v)π†
4 = cos((u†u)1/2),

where (uu†)1/2 and (u†u)1/2 are the non-negative hermitian square roots of uu† and u†u, respectively,
sinc(z)= sin z/z, and, for any square matrix w, cos(w) and sinc(w) are defined by means of their power
series. Thus, the matrix function u(x, t) defined by (11) satisfies the non-linear evolution equation

uxt = sinc((uu†)1/2)u, (13)

provided the real scalar function v(x, t) satisfies the sine-Gordon equation (10) and v(x, t)→ 2m±π for
some integers m± as x → ±∞. Thus, the non-linear evolution equation (13) can be solved by using the
IST method and we have found its AKNS pair.

More generally, we need to solve the differential system (8) under the simultaneous conditions (9)
to find the non-linear evolution equation (7) that generalizes the sine-Gordon equation.

3. Solutions to the matrix sine-Gordon equation

Following Ablowitz et al. (2004, Section 4.2.4) and taking into account (9), we consider the differential
systems

vx = Xv, vt = Tv. (14)

Using that ux → 0 as x → ±∞, the two differential systems reduce to

vx = −iλJv, vt = i

4λ
Jv, (15)

where J = Im ⊕ (−In). Let us denote the Jost solutions of the matrix Zakharov–Shabat system vx = Xv
by ψ̄ , ψ , φ and φ̄. Then(

ψ̄(λ, x; t) ψ(λ, x, t)
)= e−iλJx[Im+n + o(1)], x → +∞,(

φ(λ, x; t) φ̄(λ, x; t)
)= e−iλJx[Im+n + o(1)], x → −∞.
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312 F. DEMONTIS AND C. VAN DER MEE

Introduce the time-dependent functions

Ψ̄ (λ, x; t)= eit/4λψ̄(λ, x; t), Ψ (λ, x; t)= e−it/4λψ(λ, x; t),

Φ(λ, x; t)= eit/4λφ(λ, x; t), Φ̄(λ, x; t)= e−it/4λφ̄(λ, x; t),

as solutions to (14). Then

ψ̄t =
(

T − i

4λ
Im+n

)
ψ̄ , ψt =

(
T + i

4λ
Im+n

)
ψ ,

φt =
(

T − i

4λ
Im+n

)
φ, φ̄t =

(
T + i

4λ
Im+n

)
φ̄.

Using that

φ(λ, x; t)=ψ(λ, x; t)ar3(λ; t)+ ψ̄(λ, x; t)ar1(λ; t),

φ̄(λ, x; t)=ψ(λ, x; t)ar4(λ; t)+ ψ̄(λ, x; t)ar2(λ; t),

as well as

(
φ(λ, x; t) φ̄(λ, x; t)

)= e−iλJx

(
ar1(λ; t) ar2(λ; t)
ar3(λ; t) ar4(λ; t)

)
+ o(1), x → +∞,

(
ψ̄(λ, x; t) ψ(λ, x; t)

)= e−iλJx[Im+n + o(1)], x → +∞,

we obtain by taking the asymptotics as x → +∞
∂tar1(λ; t)= 0m×m, ∂tar4(λ; t)= 0n×n,

∂tar3(λ; t)= − i

2λ
ar3(λ; t), ∂tar2(λ; t)= i

2λ
ar2(λ; t).

Hence, ar1(λ; t) and ar4(λ; t) do not depend on t, whereas

ar2(λ; t)= eit/2λar2(λ; 0), ar3(λ; t)= e−it/2λar3(λ; 0).

Consequently, the reflection coefficients defined by

R(λ; t)= ar3(λ; t)ar1(λ; t)−1, L(λ; t)= −ar1(λ; t)−1ar2(λ; t),

satisfy the time evolution identities

R(λ; t)= e−it/2λR(λ; 0), L(λ; t)= eit/2λL(λ; 0).

Writing

ρ(y; t)= 1

2π

∫ ∞

−∞
dλ eiλyR(λ; t), �(y; t)= 1

2π

∫ ∞

−∞
dλ e−iλyL(λ; t),

and differentiating with respect to y and t, we get the partial differential equations

ρyt = 1
2ρ, �yt = − 1

2�,
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provided ρ, �, ρt and �t are matrix functions having their entries in L1(R). Then the left and right
Marchenko kernels are given by

Ωl(y; t)= 1

2π

∫ ∞

−∞
dλ eiλyR(λ; t)+ Cl e−yAl e−(1/2)tA−1

l Bl, (16a)

Ωr(y; t)= 1

2π

∫ ∞

−∞
dλ e−iλyL(λ; t)+ Cr eyAr e−(1/2)tA−1

r Br, (16b)

where (Al, Bl, Cl) and (Ar, Br, Cr) are matrix triplets such that Al and Ar only have eigenvalues with
positive real parts. In this way, the two Marchenko kernels satisfy the partial differential equations

(Ωl)yt = 1
2Ωl, (Ωr)yt = − 1

2Ωr.

Let us define, for each (m + n)× p matrix G, Gup = (Im 0m,n)G and Gdn = (0n,m In)G. Now write

(
ψ̄(λ, x; t) ψ(λ, x; t)

)= e−iλJx +
∫ ∞

x
dy
(
K̄(x, y; t) K(x, y; t)

)
e−iλJy.

Then, the left Marchenko equations are given by

Kup(x, y; t)−Ωl(x + y; t)† +
∫ ∞

x
dz
∫ ∞

x
dvKup(x, v; t)Ωl(v + z; t)Ωl(z + y; t)† = 0m,n, (17a)

K̄dn(x, y; t)+Ωl(x + y; t)+
∫ ∞

x
dz
∫ ∞

x
dvK̄dn(x, v; t)Ωl(v + z; t)†Ωl(z + y; t)= 0n,m, (17b)

where y> x. Substituting, in the reflectionless case, the right-hand side of (16a) into (17), we can solve
the Marchenko equations (17) explicitly by separation of variables. Mimicking the calculations detailed
in Aktosun et al. (2010), we obtain

Kup(x, y; t)= B†
l F(x; t)−1 e−(y−x)A†

l C†
l , (18a)

K̄dn(x, y; t)= −ClE(x; t)−1 e−(y−x)Al Bl, (18b)

where

F(x; t)= etβ† + Q e−tβN , E(x; t)= etβ + N e−tβ†
Q,

Q =
∫ ∞

0
ds e−sA†

l C†
l Cl e−sAl , N =

∫ ∞

0
ds e−sAl BlB

†
l e−sA†

l ,

with the quantity β defined by

β = 2xAl + 1
2 tA−1

l .

It is worthwhile noting that Q and N are semi-definite selfadjoint. The Lyapunov solutions Q and N are
invertible if and only Al has the minimal matrix order among all triplets (Al, Bl, Cl) having the same
Marchenko kernel {Cl e−xAl Bl : x ∈R} (Aktosun et al., 2010). Moreover, F(x; t)= E(x; t)†. It is well
known (see, e.g. Ablowitz et al., 2004) that the solutions of the non-linear evolution equation (7) can be
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314 F. DEMONTIS AND C. VAN DER MEE

found from the solutions of the Marchenko equations (17) as follows:

u(x, t)= −4
∫ ∞

x
dsKup(s, s; t), u(x, t)† = 4

∫ ∞

x
dsK̄dn(s, s; t).

We thus get the following solution formula:

u(x, t)= −4
∫ ∞

x
dsB†

l F(s; t)−1C†
l . (19)

4. An example

Let us consider the following matrix triplet:

Al =
(

1 1
0 1

)
, Bl = I2 =

(
1 0
0 1

)
, Cl = (1 0).

Taking into account that

Q =
∫ ∞

0
ds e−sA†

l C†
l Cl e−sAl =

⎛
⎜⎝

1

2
−1

4

−1

4

1

4

⎞
⎟⎠ ,

N =
∫ ∞

0
ds e−sAl BlB

†
l e−sA†

l =

⎛
⎜⎝

3

4
−1

4

−1

4

1

2

⎞
⎟⎠ ,

e2xA†
l +(1/2)tA†

l

−1

= e2x+t/2

(
1 0

2x − t

2
1

)
,

e−2xAl−(1/2)tA−1
l = e−2x−t/2

(
1 −2x + t

2
0 1

)
,

we explicitly calculate

F(x; t)= e2xA†
l +(1/2)tA†

l

−1

+ Q e−2xAl−(1/2)tA−1
l N

= e2x+t/2

(
1 0

2x − t

2
1

)
+ e−2x−t/2

⎛
⎜⎝

1

2
−1

4

−1

4

1

4

⎞
⎟⎠
(

1 −2x + t

2
0 1

)⎛⎜⎝
3

4
−1

4

−1

4

1

2

⎞
⎟⎠

=

⎛
⎜⎜⎝

e2x+t/2 + e−2x−t/2

[
7

16
+ x

4
− t

16

]
e−2x−t/2

[
−1

4
− x

2
+ t

8

]

e2x+t/2

[
2x − t

2

]
+ e−2x−t/2

[
−1

4
− x

8
+ t

32

]
e2x+t/2 + e−2x−t/2

[
3

16
+ x

4
− t

16

]
⎞
⎟⎟⎠ .
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Therefore,

det F(x; t)= e4x+t +
[

5

8
+ x − t

4
+ x2 − xt

2
+ t2

16

]
+ 5

256
e−4x−t.

Using (19), we finally get

ux(x, t)= 4

det F(x; t)

⎛
⎜⎜⎝

e2x+t/2 + e−2x−t/2

[
3

16
+ x

4
− t

16

]

e2x+t/2

[
−2x + t

2

]
+ e−2x−t/2

[
1

4
+ x

8
− t

32

]
⎞
⎟⎟⎠ .
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