
Acta Appl Math (2013) 127:169–191
DOI 10.1007/s10440-012-9797-9

An Alternative Approach to Integrable Discrete
Nonlinear Schrödinger Equations

Francesco Demontis · Cornelis van der Mee

Received: 2 July 2012 / Accepted: 21 December 2012 / Published online: 19 January 2013
© Springer Science+Business Media Dordrecht 2013

Abstract In this article we develop the direct and inverse scattering theory of a discrete
matrix Zakharov-Shabat system with solutions Un and W n. Contrary to the discretization
scheme enacted by Ablowitz and Ladik, a central difference scheme is applied to the posi-
tional derivative term in the matrix Zakharov-Shabat system to arrive at a different discrete
linear system. The major effect of the new discretization is that we no longer need the follow-
ing two conditions in theories based on the Ablowitz-Ladik discretization: (a) invertibility of
IN −UnW n and IM −W nUn, and (b) IN −UnW n and IM −W nUn being nonzero multiples
of the respective identity matrices IN and IM .

Keywords Inverse scattering transform · Integrable discrete nonlinear Schroedinger
equation · Marchenko method

1 Introduction

The system of integrable discrete nonlinear Schrödinger (IDNLS) equations

i
d

dτ
Un = Un+1 − 2Un + Un−1 − Un+1W nUn − UnW nUn−1, (1.1a)

−i
d

dτ
W n = W n+1 − 2W n + W n−1 − W n+1UnW n − W nUnW n−1, (1.1b)

where n is an integer labeling “position” and Un and W n are N × M and M × N matrix
functions depending on “time” τ ∈ R, has been studied extensively ever since the seminal
papers [2–4] on the N = M = 1 case, where the inverse scattering transform (IST) method to
solve the initial-value problem for (1.1a), (1.1b) was first introduced. The spectral problem
to which the nonlinear evolution equations (1.1a), (1.1b) were associated by means of the
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IST, is the discrete matrix Zakharov-Shabat system

vn+1 =
(

zIN Un

W n z−1IM

)
vn, (1.2)

where IN is the identity matrix of order N , z is a complex spectral parameter, and the
potentials {Un}∞

n=−∞ and {W n}∞
n=−∞ satisfy the �1-condition

∞∑
n=−∞

(‖Un‖ + ‖W n‖
)
< +∞. (1.3)

The focusing case occurs if W n = −U †
n for each integer n, where the dagger denotes conju-

gate matrix transposition; the defocussing case occurs if W n = Un for each integer n. The
direct and inverse scattering theory for (1.2) was studied as early as 1981 [14, 15]. Com-
prehensive accounts of its scattering theory were given in [6] and [24]. In [6, 24] the matrix
equations (1.1a), (1.1b) were studied in detail using the IST. In [1, 25] the defocussing
N = M = 1 problem was studied for potentials not vanishing as n → ±∞.

When viewing the matrix IDNLS equation as a finite difference approximation of the
matrix NLS equation, it has the same applications as the matrix NLS equation, namely elec-
tromagnetic wave propagation in nonlinear media [22, 27], surface waves on sufficiently
deep waters [27], and signal propagation in optical fibers [16, 17]. Apart from that, the ma-
trix IDNLS equation has applications to the dynamics of a discrete curve on an ultraspherical
surface [12], the dynamics of triangulations of surfaces [18], and Hamiltonian flows [20,
23].

Equation (1.2) can be viewed as the finite difference approximation of the (N + M)-
Zakharov-Shabat system in the position variable x ∈ R, where the derivative with respect to
x is replaced by the forward difference term [vn+1 −vn]/h, the potentials u(x) and w(x) are
replaced by Un = hu(nh) and W n = hw(nh), and the spectral parameter k ∈ R is replaced
by z = e−ikh = 1 − ikh + O(h2). This forward difference scheme leads to the spectral prob-
lem (1.2) which lacks forward-backward symmetry and requires the assumption that the
square matrix of order N + M describing the transition vn �→ vn+1 is invertible for each
n ∈ Z. In fact, the authors of [6, 24] found it useful to essentially “scalarize” the nonlinear
evolution system (1.1a), (1.1b) by requiring the potentials {Un}∞

n=−∞ and {W n}∞
n=−∞ to also

satisfy the condition

UnW n = W nUn = cnIN , n ∈ Z, (1.4)

where N = M and, for each n ∈ Z, cn(�= 1) is an unknown complex number. Assuming (1.4),
in the focusing case the scattering matrix, when multiplied by a weight matrix, appears to
be symplectically unitary [10]. No weight factor is needed to prove the symplectic unitarity
of the scattering matrix for the continuous-position Zakharov-Shabat system [6].

The next difficulty in solving the IDNLS system (1.1a), (1.1b) using the IST based on the
discrete Zakharov-Shabat system (1.2) regards the Marchenko method. Although condition
(1.4) is not required to derive the Marchenko equations [6, Eqs. (5.2.151) and (5.2.153)] and
the “renormalized” Marchenko equations [6, Eqs. (5.2.158)], it is to be assumed in order to
retrieve the IDNLS solution from the renormalized Marchenko solution. Without assuming
condition (1.4), a priori information on the IDNLS solution is required. After the N -soliton
and breather solutions to (1.1a), (1.1b) under condition (1.4) were derived before in terms
of solutions to N × N linear systems [24, Eq. (3.43)], breather solutions were constructed
before by using the Hirota method [7], and one and two soliton solutions were derived by



An Alternative Approach to Integrable Discrete Nonlinear Schrödinger 171

various methods [5], an extensive family of IDNLS solutions in terms of triplets of matrices
parametrizing the Marchenko kernel was derived in [10, 11].

In this article the apparent difficulty in solving the IDNLS system by using the IST based
on the scattering theory for the discrete equation (1.2) is overcome by replacing (1.2) by the
discrete matrix Zakharov-Shabat system

vn+1(z) − vn−1(z)

2ih
= J

(
λIN un

wn λIM

)
vn(z), (1.5)

where J = diag(IN ,−IM), {un}∞
n=−∞ and {wn}∞

n=−∞ are potentials, h > 0 is the discretiza-
tion step size, λ = (z − z−1)/2ih is a spectral parameter, and the �1-condition (1.3) is as-
sumed. Thus (1.5) arises from the matrix Zakharov-Shabat system by a central finite dif-
ference scheme. The essential spectrum coincides with λ ∈ [−h−1, h−1] and with z ∈ T, T

being the unit circle. As for (1.2), the focusing case occurs if wn = −u†
n for each n ∈ Z; the

defocussing case occurs if wn = u†
n for each n ∈ Z.

Equation (1.5) as the linear counterpart to (1.1a), (1.1b) has none of the problems inherent
in choosing (1.2) as its linear counterpart. Since (1.5) can be written in the form

(
vn+1(z)

vn(z)

)
=

⎛
⎜⎜⎝

λIN un IN 0N,M

−wn −λIM 0M,N IM

IN 0N,M 0N,N 0N,M

0M,N IM 0M,N 0M,M

⎞
⎟⎟⎠

(
vn(z)

vn−1(z)

)
, (1.6)

where the square coupling matrix of order N + M is nonsingular, we do not need to assume
the invertibility of IN −unwn and IM −wnun for each n ∈ Z in order to compute vn(z) from
vn±1(z) and vn±2(z) uniquely. Furthermore, getting the potentials from the Marchenko equa-
tions proceeds in very much the same way as for the continuous Zakharov-Shabat system
and does not require renormalization of the Marchenko kernel. Also, in the focusing case the
scattering matrix S(z) is J -unitary in the sense that S(z)−1 = JS(z)†J ; in the defocussing
case S(z) is a unitary matrix.

Although we have given a full description of the IST to solve the matrix IDNLS system
(1.1a), (1.1b) using the scattering theory of (1.5), we have not been able to furnish a Lax
pair {L,A}, where

(Lv)n = J
vn+1 − vn−1

2ih
−

(
0N,N un

wn 0M,M

)
vn

is the operator rewrite of (1.5) and the usual compatibility condition Lt + LA − AL = 0
reduces to the matrix IDNLS system (1.1a), (1.1b). We have also not found an AKNS pair
{Xn,T n} of matrices depending on λ such that V n+1 = XnV n is the rewrite of (1.6), [V n]t =
T nV n, and the compatibility condition [Xn]t + XnT n − T n+1Xn = 0 reduces to the matrix
IDNLS system. Such a pair, where vn+1 = Xnvn is the rewrite of (1.2), [vn]t = T nvn, and
the preceding compatibility condition reduces to the matrix IDNLS system, is known (cf.
[6, Eq. (5.1.2)] and [24, Eqs. (2.3)–(2.4)]). Finding at least one such pair involving a rewrite
of (1.5) would be most desirable, in spite of their redundancy in formulating the IST and
solving the initial-value problem for (1.1a), (1.1b).

The time evolution of the reflection coefficients, norming constants, and Marchenko ker-
nels associated with the discrete Zakharov-Shabat system (1.2) leading to IDNLS solutions
has been explained in detail in [6], also without assuming condition (1.4). The renormalized
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Marchenko equations given in [6, 10, 24] have the form

κ(n, j ; τ) +
(

0N,N

IN

)
F (n + j ; τ) +

∞∑
j ′=n+1

κ
(
n, j ′; τ)

F
(
j + j ′; τ) = 02N,N , (1.7a)

κ(n, j ; τ) +
(

IN

0N,N

)
F (n + j ; τ) +

∞∑
j ′=n+1

κ
(
n, j ′; τ)

F
(
j + j ′; τ) = 02N,N , (1.7b)

where j ≥ n+1 and the Marchenko kernels F and F are given. On the other hand, within the
scattering theory of (1.2) it is possible to derive alternative Marchenko equations satisfied
for j ≤ n − 1, where the summation index j ′ runs from −∞ to n − 1. These equations
can be derived without assuming condition (1.4) and coincide exactly with the Marchenko
equations (5.4c)–(5.4d) below [11]. The crux of the matter is that the Marchenko equations
(5.4c)–(5.4d) below will also be derived within the scattering theory of (1.5). Thus the same
Marchenko equations and the same formulas to pass from the Marchenko solutions to the
potentials are derived within the scattering theories of two different linear spectral problems,
(1.2) and (1.5). Consequently, the same time varying Marchenko solutions are found and
hence the same time varying potentials when departing from the same initial potentials.
This can only mean that we have in fact found an IST method for solving the IDNLS system
(1.1a), (1.1b) based on the scattering theory of (1.5) which, quite obviously, does not require
assuming condition (1.4).

If we allow the potentials to be time dependent such that (1.1a), (1.1b) are satisfied, then
the Marchenko kernels F (n; τ) and F (n; τ) satisfy the evolution equations

i
d

dτ
F (n; τ) = F (n + 2; τ) − 2F (n; τ) + F (n − 2; τ), (1.8a)

−i
d

dτ
F (n; τ) = F (n + 2; τ) − 2F (n; τ) + F (n − 2; τ). (1.8b)

For N = M = 1, Eqs. (1.8a), (1.8b) may be considered as the equations of motion of a
Hamiltonian system with Hamiltonian

H = i
∑
n odd

[
F (n + 2; τ) − F (n; τ)

][
F (n + 2; τ) − F (n; τ)

]
,

where {F (2s + 1; τ)}∞
s=−∞ are the coordinates and {F (2s + 1; τ)}∞

s=−∞ are the correspond-
ing momenta. The inverse scattering transform can then be viewed as a canonical transfor-
mation between Hamiltonian systems.

The explicit matrix IDNLS solutions obtained in [11] by using matrix triplets to
parametrize the Marchenko kernels do not necessarily satisfy condition (1.4) nor the condi-
tion of invertibility of IN −unwn. In retrospect, this is not surprising, because these solutions
can be obtained by the IST method based on the linear spectral problem (1.5). In any case,
the explicit solutions that do satisfy condition (1.4), are included in our description. It was
also shown in [11] that the matrix IDNLS solutions obtained converge to known explicit so-
lutions of the matrix NLS equation as the discretization step h vanishes. We shall therefore
not present these solutions in this article.

Let us now describe the contents of the subsequent sections. In Sect. 2 we introduce the
Jost solutions and derive their continuity and analyticity properties. In Sect. 3 we introduce
the transition coefficients translating the n → +∞ asymptotics of the Jost solutions into
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their n → −∞ asymptotics or vice versa and derive their continuity and analyticity prop-
erties. In Sect. 4 we define the reflection and transmission coefficients and introduce the
scattering matrix. In Sect. 5 we derive the Marchenko integral equations and indicate how
the potentials are to be found from their solutions. Appendix A contains estimates on the
discrete Fourier transforms of the Jost solutions. In Appendix B we use parity symmetry to
decouple the Marchenko equations as much as possible.

2 Jost Solutions

In this section we define the Jost solutions for the discrete matrix Zakharov-Shabat system
(1.5) and derive their continuity and analyticity properties.

For z ∈ T we define the Jost solutions φn(z), φn(z), ψn(z), and ψn(z) as those solutions
of (1.5) that satisfy the asymptotic conditions

φn(z) ∼ zn

(
IN

0M,N

)
, φn(z) ∼ z−n

(
0N,M

IM

)
, as n → −∞, (2.1a)

ψn(z) ∼ z−n

(
0N,M

IM

)
, ψn(z) ∼ zn

(
IN

0M,N

)
, as n → +∞. (2.1b)

Their unique existence will be proven below [cf. Proposition 2.1]. We observe that for 0 �=
z ∈ C the Jost matrices (φn(z) φn(z)) and (ψn(z) ψn(z)) approach nonsingular matrices as
n → +∞ and n → −∞, respectively.

Equation (1.5) displays parity symmetry: If vn(z) is a solution to (1.5), then ṽn(z) =
(−1)nJvn(−z)J is also a solution to (1.5). Thus the Jost solutions have the parity properties:

(
ψn(z) ψn(z)

) = (−1)nJ
(
ψn(−z) ψn(−z)

)
J, (2.2a)(

φn(z) φn(z)
) = (−1)nJ

(
φn(−z) φn(−z)

)
J. (2.2b)

Equation (1.5) also displays inversion symmetry: If vn(z) is a solution to (1.5), then
ṽn(z) = (−1)nJvn(z)J is a solution to the system obtained from (1.5) by replacing λ by
−λ. Inversion symmetry implies (2.2a), (2.2b).

Let us now introduce the following Faddeev condition on the potentials:

∞∑
n=−∞

(
1 + |n|)(‖un‖ + ‖wn‖

)
< +∞. (2.3)

We can then derive the following existence result for Jost solutions, reminiscent of the result
valid for the Schrödinger equation on the line [8, 13, 19].

Proposition 2.1 (Existence of Jost solutions) Suppose either potential {un}∞
n=−∞ and

{wn}∞
n=−∞ satisfies the �1-condition (1.3). Then for ±i �= z ∈ T there exist unique Jost so-

lutions ψn(z), ψn(z), φn(z), and φn(z) of the discrete matrix Zakharov-Shabat system (1.5)
that satisfy (2.1a), (2.1b). Moreover, if these potentials satisfy the Faddeev condition (2.3),
then for z ∈ T there exist unique Jost solutions ψn(z), ψn(z), φn(z), and φn(z) of the discrete
matrix Zakharov-Shabat system (1.5) that satisfy (2.1a), (2.1b).
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Proof Let us define the Faddeev functions by

Mn(z) = z−nφn(z), Mn(z) = znφn(z), (2.4a)

Nn(z) = znψn(z), Nn(z) = z−nψn(z). (2.4b)

Observing that λJ = (Z − Z−1)/2ih, we put

V n =
(

0N,N un

wn 0M,M

)
.

Then, writing vn(z) = mn(z)Z
n for a solution of (1.5), we get

[
mn+1(z)Z − Zmn(z)

] = −Z−1
[
mn(z)Z − Zmn−1(z)

]
Z−1 + 2ihJV nmn(z).

Putting

�n(z) = mn(z)Z − Zmn−1(z),

we get by iteration

�n(z) = (−1)pZp�n+p(z)Zp + 2ihJ

p−1∑
τ=0

(−1)τZτ+1V n+τmn+τ (z)Z
τ+1,

�n(z) = (−1)pZ−p�n−p(z)Z−p − 2ihJ

p−1∑
τ=0

(−1)τZ−τV n−τ−1mn−τ−1(z)Z
−τ .

Now note that, as p → +∞, �n+p(z) vanishes for vn(z) = (ψn(z) ψn(z)) and �n−p(z)

vanishes for vn(z) = (φn(z) φn(z)), while ‖Z±p‖ = 1. Consequently, we obtain

mn+1(z) = Zmn(z)Z
−1 + 2ihJ

∞∑
τ=0

(−1)τZτ+1V n+τ+1mn+τ+1(z)Z
τ ,

mn−1(z) = Z−1mn(z)Z + 2ihJ

∞∑
τ=0

(−1)τZ−τ−1V n−τ−1mn−τ−1(z)Z
−τ ,

respectively.
Let us now solve the linear difference equation system

mn+1(z)Z − Zmn(z) = F+
n (z), mn(z)Z − Zmn−1(z) = F−

n−1(z),

for given inhomogeneous term F±
n (z) under the asymptotic condition that mn(z) → IN+M

as n → ±∞, respectively. We get by iteration

mn(z) = Z−pmn+p(z)Zp −
p−1∑
τ=0

Z−τ−1F +
n+τ (z)Z

τ ,

mn(z) = Zpmn−p(z)Z−p +
p−1∑
τ=0

ZτF −
n−τ−1(z)Z

−τ−1.
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Using that mn±p(z) tend to diagonal matrices which evidently commute with Z, we take the
limit as p → +∞ and get

(
Nn(z) Nn(z)

) = IN+M −
∞∑

ŝ=0

Z−ŝ−1F +
n+ŝ

(z)Zŝ

= IN+M − 2ihJ

∞∑
s=0

(
s∑

τ=0

(−1)τZ−s+2τ

)

× V n+s+1

(
Nn+s+1(z) Nn+s+1(z)

)
Zs+1, (2.5a)

(
Mn(z) Mn(z)

) = IN+M +
∞∑

ŝ=0

ZŝF −
n−ŝ−1(z)Z

−ŝ−1

= IN+M − 2ihJ

∞∑
s=0

(
s∑

τ=0

(−1)τZs−2τ

)

× V n−s−1

(
Mn−s−1(z) Mn−s−1(z)

)
Z−s−1. (2.5b)

Now observe that

s∑
τ=0

(−1)τZ−s+2τ =
{

[Z−s + (−1)sZs+2][IN+M + Z2]−1, z �= ±i,

(s + 1)(±i)−sIN+M, z = ±i.
(2.6a)

s∑
τ=0

(−1)τZs−2τ =
{

[Zs+2 + (−1)sZ−s][IN+M + Z2]−1, z �= ±i,

(s + 1)(±i)sIN+M, z = ±i,
(2.6b)

where we have used well-known expressions for partial sums of geometric series. Using
(2.6a), (2.6b) we easily prove that (2.4a), (2.4b) are uniquely solvable by iteration, because
of the estimate (1.3) used uniformly in z on compact subsets of T \ {±i} and the estimate
(2.3) used uniformly in z ∈ T. This completes the proof. �

Writing

F up = (
IN 0N,M

)
F , F dn = (

0M,N IM

)
F ,

for any matrix F having N + M rows, we now write (2.5a), (2.5b) as the following eight
Volterra equations:

N
up
n (z) = IN − 2ihz

∞∑
j=n+1

(
j−n−1∑
τ=0

(−1)τ z2τ

)
ujN

dn
j (z), (2.7a)

N
dn
n (z) = 2ihz

∞∑
j=n+1

(
j−n−1∑
τ=0

(−1)τ z2(j−n−τ−1)

)
wjN

up
j (z), (2.7b)

Nup
n (z) = −2ihz−1

∞∑
j=n+1

(
j−n−1∑
τ=0

(−1)τ z2(τ+n+1−j)

)
ujN

dn
j (z), (2.7c)
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Ndn
n (z) = IM + 2ihz−1

∞∑
j=n+1

(
j−n−1∑
τ=0

(−1)τ z−2τ

)
wjN

up
j (z), (2.7d)

Mup
n (z) = IN − 2ihz−1

n−1∑
j=−∞

(
n−j−1∑
τ=0

(−1)τ z−2τ

)
ujM

dn
j (z), (2.7e)

Mdn
n (z) = 2ihz−1

n−1∑
j=−∞

(
n−j−1∑
τ=0

(−1)τ z2(τ−n+j+1)

)
wjM

up
j (z), (2.7f)

M
up
n (z) = −2ihz

n−1∑
j=−∞

(
n−j−1∑
τ=0

(−1)τ z2(n−j−τ−1)

)
ujM

dn
j (z), (2.7g)

M
dn
n (z) = IM + 2ihz

n−1∑
j=−∞

(
n−j−1∑
τ=0

(−1)τ z2τ

)
wjM

up
j (z). (2.7h)

Under the Faddeev condition (2.3), we easily prove that N
up
n (z), N

dn
n (z), M

up
n (z), and

M
dn
n (z) are continuous in |z| ≤ 1, are analytic in |z| < 1, and behave as IN + O(z2), O(z),

O(z), and IM + O(z2) as z → 0. Under the same condition we prove that Nup
n (z), Ndn

n (z),
Mup

n (z), and Mdn
n (z) are continuous in |z| ≥ 1, are analytic in |z| > 1, and behave as O(z−1),

IM + O(z−2), IN + O(z−2), and O(z−1) as |z| → +∞. If we only assume (1.3), certain
Faddeev function blocks may have discontinuities as z → ±i from the appropriate left or
right-hand side of the unit circle.

Let us denote by W p,q the set of all sums of absolutely convergent Fourier series whose
coefficients are complex p × q matrices. Then W p,q has a natural norm with respect to
which it is a complex Banach space, namely

‖Y‖ =
∞∑

n=−∞
‖Yn‖, Y (z) =

∞∑
n=−∞

znYn.

It is a complex Banach algebra if p = q . By a famous result by Wiener [26], this algebra is
inverse closed in the sense that Y −1 ∈ W p,p whenever Y ∈ W p,p and detW(z) �= 0 for each
z ∈ T.

By W p,q
+ we denote the subspace of W p,q consisting of those sums of Fourier series

having an analytic continuation to the unit disk. On the other hand, by W p,q
− we denote

the subspace of W p,q consisting of the sums of those Fourier series having an analytic
continuation to the exterior of the unit disk, the point at infinity included.

In order to prove that, under condition (2.3), Mn(z), Mn(z), Nn(z), and Nn(z) belong to
W N+M,N

+ , W N+M,M
− , W N+M,N

− , and W N+M,M
+ , respectively, we put

N
up
n (z) =

∞∑
j=n

zj−nK
up

(n, j), N
dn
n (z) =

∞∑
j=n

zj−nK
dn

(n, j), (2.8a)

Nup
n (z) =

∞∑
j=n

zn−jKup(n, j), Ndn
n (z) =

∞∑
j=n

zn−jKdn(n, j), (2.8b)

Mup
n (z) =

n∑
j=−∞

zj−nLup(n, j), Mdn
n (z) =

n∑
j=−∞

zj−nLdn(n, j), (2.8c)
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M
up
n (z) =

n∑
j=−∞

zn−jL
up

(n, j), M
dn
n (z) =

n∑
j=−∞

zn−jL
dn

(n, j), (2.8d)

where the Fourier coefficients are to be determined. Then obviously

K
up

(n,n) = IN , K
dn

(n,n) = 0M,N , (2.9a)

Kup(n,n) = 0N,M, Kdn(n,n) = IM, (2.9b)

Lup(n,n) = IN , Ldn(n,n) = 0M,N , (2.9c)

L
up

(n,n) = 0N,M, L
dn

(n,n) = IM. (2.9d)

Let us now prove that the Faddeev functions belong to some W p,q
± .

Proposition 2.2 (Jost solutions as Fourier sums) There are matrices K(n, j) and K(n, j)

satisfying

∞∑
j=n

(∥∥K(n, j)
∥∥ + ∥∥K(n, j)

∥∥)
< +∞

such that

ψn(z) =
∞∑

j=n

z−jK(n, j), ψn(z) =
∞∑

j=n

zjK(n, j). (2.10)

Analogously, there exist matrices L(n, j) and L(n, j) satisfying

n∑
j=−∞

(∥∥L(n, j)
∥∥ + ∥∥L(n, j)

∥∥)
< +∞

such that

φn(z) =
n∑

j=−∞
zjL(n, j), φn(z) =

n∑
j=−∞

z−jL(n, j). (2.11)

Proof We apply (2.8a)–(2.8d) to convert (2.7a)–(2.7h) into the following identities:

K
up

(n, j) = −2ih

[(j−n−1)/2]∑
τ=0

(−1)τujK
dn

(j,2j − 2τ − n − 1), (2.12a)

K
dn

(n, j) = 2ih

[(j−n−1)/2]∑
τ=0

(−1)j−n−τ−1wjK
up

(j,2j − 2τ − n − 1), (2.12b)

Kup(n, j) = −2ih

[(j−n−1)/2]∑
τ=0

(−1)j−n−τ−1ujK
dn(j,2j − 2τ − n − 1), (2.12c)

Kdn(n, j) = 2ih

[(j−n−1)/2]∑
τ=0

(−1)τwjK
up(j,2j − 2τ − n − 1), (2.12d)
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where j ≥ n + 1 and [x] = max{n ∈ Z : n ≤ x}. Using (2.9a) and (2.9b) we get

K
dn

(n,n + 1) = 2ihwn+1, Kup(n,n + 1) = −2ihun+1, (2.13)

as well as K
up

(n,n + 1) = 0N,N and Kdn(n,n + 1) = 0M,M . In the same way we obtain

Lup(n, j) = −2ih

[(n−j−1)/2]∑
τ=0

(−1)τujL
dn(j,2j + 2τ − n + 1), (2.14a)

Ldn(n, j) = 2ih

[(n−j−1)/2]∑
τ=0

(−1)n−j−τ−1wjL
up(j,2j + 2τ − n + 1), (2.14b)

L
up

(n, j) = −2ih

[(n−j−1)/2]∑
τ=0

(−1)n−j−τ−1ujL
dn

(j,2j + 2τ − n + 1), (2.14c)

L
dn

(n, j) = 2ih

[(n−j−1)/2]∑
τ=0

(−1)τwjL
up

(j,2j + 2τ − n + 1), (2.14d)

where j ≤ n − 1. Using (2.9c) and (2.9d) we get

Ldn(n,n − 1) = 2ihwn−1, L
up

(n,n − 1) = −2ihun−1, (2.15)

as well as L
up

(n,n − 1) = 0N,N and Ldn(n,n − 1) = 0M,M . Putting

∥∥K•(n, ·)∥∥
1
=

∞∑
j=n

∥∥K•(n, j)
∥∥,

∥∥L•(n, ·)∥∥
1
=

n∑
j=−∞

∥∥L•(n, j)
∥∥,

where K• ∈ {Kup,Kdn,K
up

,K
dn} and L• ∈ {Lup

,L
dn

,Lup,Ldn}, we get the estimates

∥∥K
up

(n, ·)∥∥
1
≤ 1 + 2h

∞∑
j=n+1

‖uj‖
∥∥K

dn
(j, ·)∥∥

1
,

∥∥K
dn

(n, ·)∥∥
1
≤ 2h

∞∑
j=n+1

‖wj‖
∥∥K

up
(j, ·)∥∥

1
.

Using Proposition A.1 we obtain the estimates

∥∥K
up

(n, ·)∥∥
1
≤ exp

(
4h2UnWn

)
,

∥∥K
dn

(n, ·)∥∥
1
≤ 2hUn exp

(
4h2UnWn

)
,

where Un = ∑∞
j=n+1 ‖uj‖ and Wn = ∑∞

s=n+1 ‖ws‖. Similar estimates can be derived for the
other quantities. �

Equations (2.2a), (2.2b) and (2.4a), (2.4b) imply that

(
Mn(z) Mn(z)

) = J
(
Mn(−z) Mn(−z)

)
J, (2.16a)(

Nn(z) Nn(z)
) = J

(
Nn(−z) Nn(−z)

)
J. (2.16b)
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Thus K
up

(n,m), Kdn(n,m), Lup(n,m), and L
dn

(n,m) vanish if m − n is odd, and
K

dn
(n,m), Kup(n,m), Ldn(n,m), and L

up
(n,m) vanish if m − n is even.

Proposition 2.3 (Uniform boundedness of Jost solutions) Let either potential {un}∞
n=−∞

and {wn}∞
n=−∞ satisfy the �1-condition (1.3). Then for ±i �= z ∈ T the Jost solutions ψn(z),

ψn(z), φn(z), and φn(z) of the discrete matrix Zakharov-Shabat system (1.5) are uniformly
bounded in n ∈ Z.

Proof Since Jost solutions and corresponding Faddeev functions differ by a unimodular
factor, it suffices to prove Proposition 2.3 for Faddeev functions. We shall therefore focus
on the solutions to the system (2.7a)–(2.7b). Putting C(z) = |2z/(z2 + 1)| for 0 �= i ∈ T, we
arrive at the following estimates:

∥∥N
up
n (z)

∥∥ ≤ 1 + 2hC(z)

∞∑
j=n+1

‖uj‖
∥∥N

dn
n (z)

∥∥,

∥∥N
dn
n (z)

∥∥ ≤ 2hC(z)

∞∑
j=n+1

‖wj‖
∥∥N

up
n (z)

∥∥.

Summing these two inequalities and applying Proposition A.1 we get

∥∥N
up
n (z)

∥∥ + ∥∥N
dn
n (z)

∥∥ ≤ exp

(
hC(z)

∞∑
j=n+1

max
(‖uj‖,‖wj‖

))
,

which completes the proof. �

For z ∈ T we use the bounds
∣∣∣∣∣
j−n−1∑
τ=0

(−1)τ z2τ

∣∣∣∣∣ ≤ j − n,

∣∣∣∣∣
j−n−1∑
τ=0

(−1)τ z2(j−n−τ−1)

∣∣∣∣∣ ≤ j − n,

plus the preceding argument to arrive at the estimate

∥∥N
up
n (z)

∥∥ + ∥∥N
dn
n (z)

∥∥ ≤ exp

(
2h

∞∑
j=n+1

(j − n)max
(‖uj‖,‖wj‖

))
,

valid under the Faddeev condition (2.3). Thus for z = ±i the uniform boundedness result
only holds in exceptional circumstances.

3 Transition Coefficients

In this section we prove, for 0 �= z ∈ T, the existence of so-called transition matrices T (z)

and T (z) such that

(
φn(z) φn(z)

) = (
ψn(z) ψn(z)

)
T (z), (3.1a)

(
ψn(z) ψn(z)

) = (
φn(z) φn(z)

)
T (z), (3.1b)
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where

T (z) =
(

a(z) b(z)

b(z) a(z)

)
, T (z) =

(
c(z) d(z)

d(z) c(z)

)
.

Here a(z), b(z), a(z), b(z), c(z), d(z), c(z), and d(z) are called transition coefficients.
Using (2.4a), (2.4b), we write (3.1a), (3.1b) in the form

(
Mn(z) Mn(z)

) = (
Nn(z) Nn(z)

)
ZnT (z)Z−n, (3.2a)

(
Nn(z) Nn(z)

) = (
Mn(z) Mn(z)

)
ZnT (z)Z−n, (3.2b)

Because the left-hand sides of (3.2a) and (3.2b) tend to IN+M as n → −∞ and n → +∞,
respectively, the transition matrices T (z) and T (z) are each other’s inverses whenever ±i �=
z ∈ T.

Using Proposition 2.3 and letting n → ±∞ in each block of (3.2a), (3.2b), we immedi-
ately have the following justification of the existence of the transition coefficients.

Proposition 3.1 (Expressing transition coefficients) Let the potentials {un}∞
n=−∞ and

{wn}∞
n=−∞ satisfy the Faddeev condition (2.3). Then for ±i �= z ∈ T we have

a(z) = IN − 2ihz

z2 + 1

∞∑
j=−∞

ujM
dn
j (z), (3.3a)

a(z) = IM + 2ihz

z2 + 1

∞∑
j=−∞

wjM
up
j (z), (3.3b)

b(z) = 2ihz

z2 + 1

∞∑
j=−∞

z2jwjM
up
j (z), (3.3c)

b(z) = − 2ihz

z2 + 1

∞∑
j=−∞

z−2jujM
dn
j (z), (3.3d)

c(z) = IN − 2ihz

z2 + 1

∞∑
j=−∞

ujN
dn
j (z), (3.3e)

c(z) = IM + 2ihz

z2 + 1

∞∑
j=−∞

wjN
up
j (z), (3.3f)

d(z) = 2ihz

z2 + 1

∞∑
j=−∞

z2jwjN
up
j (z), (3.3g)

d(z) = − 2ihz

z2 + 1

∞∑
j=−∞

z−2jujN
dn
j (z), (3.3h)

where the series are absolutely convergent uniformly in z belonging to any compact subset
of T \ {±i}.

Using the invertibility of the transition matrices, we easily obtain
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Proposition 3.2 For ±i �= T, the N ×N matrix a(z) is invertible iff the M ×M matrix c(z)

is invertible, and the M ×M matrix a(z) is invertible iff the N ×N matrix c(z) is invertible.

Proof Indeed, if a is invertible, then d = −a−1bc and (a − ba−1b)c = IN . If c is invertible,
then b = −c−1da and (c − dc−1d)a = IM . Also, if a is invertible, then d = −a−1bc and
(a − ba−1b)c = IM . If c is invertible, then b = −c−1da and (c − dc−1d)a = IN . �

An (N + M) × (N + M) matrix E is called J -unitary if

E†JE = J.

It is easily verified that the J -unitary matrices form a group which is invariant under the
operation E �→ E†.

Proposition 3.3 (Wronskian relation) In the focusing case the transition matrices T (z) and
T (z) are unitary whenever z ∈ T\{±i}. In the defocussing case the transition matrices T (z)

and T (z) are J -unitary whenever z ∈ T \ {±i}.

Proof For z ∈ T, let vn(z) and ṽn(z) be square matrix solutions of (1.5). Then, in the focus-
ing case,

J ṽn+1(z)
†J − J ṽn−1(z)

†J = −2ih
[
J ṽn(z)

†J
]
J

(
λIN −un

−wn λIM

)

= −2ih
[
J ṽn(z)

†J
](

λIN un

wn λIM

)
J,

where we have used that wn = −u†
n. Thus, we get the Wronskian relation

[
J ṽn+1(z)

†J − J ṽn−1(z)
†J

]
Jvn(z) = −J ṽn(z)

†
[
vn+1(z) − vn−1(z)

]
.

Hence the expression

ṽn+1(z)
†vn(z) + ṽn(z)

†vn+1(z)

does not depend on n ∈ Z whenever z ∈ T. Equating the asymptotic behaviors of this ex-
pression as n → ±∞, we obtain for vn = ṽn = (ψn ψn)

T (z)†
(
Z + Z−1

)
T (z) = Z + Z−1,

where Z = Z† = diag(zIN , z−1IM). For vn = ṽn = (φn φn) we get

T (z)†
(
Z + Z−1

)
T (z) = Z + Z−1.

For vn = (ψn ψn) and ṽn = (φn φn) we obtain

T (z)†
(
Z + Z−1

) = (
Z + Z−1

)
T (z).

However, Z + Z−1 = (z + z−1)IN+M , a nonsingular multiple of the identity matrix unless
z = ±i. Thus for z ∈ T \ {±i} we get

T (z)†T (z) = IN+M, T (z)†T (z) = IN+M, T (z)† = T (z),
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as claimed.
In the defocussing case, we prove instead that

ṽn+1(z)
†Jvn(z) + ṽn(z)

†Jvn+1(z)

does not depend on n ∈ Z. In this case we get

T (z)†JT (z) = J, T (z)†JT (z) = J, T (z)† = JT (z)J,

which completes the proof. �

Let us return to parity symmetry. Using (2.2a), (2.2b) and (3.1a), (3.1b) it is easily shown
that the transition matrices satisfy the parity relations

T (z) = JT (−z)J, T (z) = JT (−z)J. (3.4)

4 Reflection and Transmission Coefficients

In this section we define the reflection and transmission coefficients and derive the
Marchenko equations if there are no spectral singularities. By a spectral singularity at
z ∈ T \ {±i} we mean a complex number ±i �= z ∈ T for which at least one of the matrices
a(z) [or, equivalently, c(z)] and a(z) [or, equivalently, d(z)] is singular. Parity symmetry
implies that z ∈ T \ {±i} is a spectral singularity whenever −z is.

Assume there are no spectral singularities. Then (3.1a), (3.1b) can be written as the fol-
lowing Riemann-Hilbert problems:

ψn(z) = [
φn(z) − ψn(z)b(z)

]
a(z)−1,

ψn(z) = [
φn(z) − ψn(z)b(z)

]
a(z)−1,

φn(z) = [
ψn(z) − φn(z)d(z)

]
c(z)−1,

φn(z) = [
ψn(z) − φn(z)d(z)

]
c(z)−1.

Defining the transmission coefficients t r (z), t r (z), t l (z), and t l (z) and the reflection coeffi-
cients ρ(z), ρ(z), �(z), and �(z) by

t r (z) = a(z)−1 = c(z) − d(z)c(z)−1d(z), (4.1a)

t r (z) = a(z)−1 = c(z) − d(z)c(z)−1d(z), (4.1b)

ρ(z) = b(z)a(z)−1 = −c(z)−1d(z), (4.1c)

ρ(z) = b(z)a(z)−1 = −c(z)−1d(z), (4.1d)

t l (z) = c(z)−1 = a(z) − b(z)a(z)−1b(z), (4.1e)

t l (z) = c(z)−1 = a(z) − b(z)a(z)−1b(z), (4.1f)

�(z) = d(z)c(z)−1 = −a(z)−1b(z), (4.1g)

�(z) = d(z)c(z)−1 = −a(z)−1b(z), (4.1h)
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we can write the Riemann-Hilbert problems in the following way:

ψn(z) = φn(z)t r (z) − ψn(z)ρ(z), (4.2a)

ψn(z) = φn(z)t r (z) − ψn(z)ρ(z), (4.2b)

φn(z) = ψn(z)t l (z) − φn(z)�(z), (4.2c)

φn(z) = ψn(z)t l (z) − φn(z)�(z). (4.2d)

In other words,

(
ψn(z) φn(z)

) = (
φn(z) ψn(z)

)
JS(z)J, (4.3a)

(
φn(z) ψn(z)

) = (
ψn(z) φn(z)

)
JS(z)J, (4.3b)

where the matrices given by

S(z) =
(

t r (z) �(z)

ρ(z) t l (z)

)
, S(z) =

(
t l (z) ρ(z)

�(z) t r (z)

)
,

are called scattering matrices. The alternative representations of the reflection coefficients
in (4.1a)–(4.1h) follow from the fact that the transition matrix T (z) in (3.1a) is the inverse
of the transition matrix T (z) in (3.1b). Equations (4.3a), (4.3b) and (2.2a), (2.2b) imply the
parity symmetry relations

S(z) = JS(−z)J, S(z) = JS(−z)J,

which implies that the transmission coefficients are even functions of z and the reflection
coefficients are odd functions of z. Finally, in the focusing case S(z) and S(z) are J -unitary
matrices. In particular, for ±i �= z ∈ T we have

t l (z) = t r (z)
†, t l (z) = t r (z)

†, �(z) = −�(z)†, ρ(z) = −ρ(z)†. (4.4)

In the defocussing case the scattering matrices are unitary.
Using the Faddeev condition (2.3), we easily prove that, when multiplied by (1+z2)/2iz,

the matrix functions IN − a(z), a(z) − IM , b(z), b(z), c(z) − IN , IM − c(z), d(z), and d(z)

belong to W N,N
− , W M,M

+ , W M,N , W N,M , W N,N
+ , W M,M

− , W N,M , and W M,N , respectively. For
instance, in the case of (3.3a) we have

1 + z2

2iz

[
IN − a(z)

] = h

∞∑
s=0

z−s

∞∑
k=−∞

ukL
dn(k, k − s),

where, for U−∞ = ∑∞
k=−∞ ‖uk‖ and W−∞ = ∑∞

k=−∞ ‖wk‖,

∞∑
s=0

∥∥∥∥∥
∞∑

k=−∞
ukL

dn(k, k − s)

∥∥∥∥∥ ≤ 2h2U−∞W−∞ exp
(
4h2U−∞W−∞

)
< +∞.

Let us now write the reflection coefficients as follows:

ρ(z) =
∞∑

s=−∞
zs ρ̂(s), ρ(z) =

∞∑
s=−∞

z−s ρ̂(s), (4.5a)
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�(z) =
∞∑

s=−∞
zs �̂(s), �(z) =

∞∑
s=−∞

z−s �̂(s). (4.5b)

Parity symmetry implies that ρ̂(s), ρ̂(s), �̂(s), and �̂(s) vanish if s is even.
In analogy with the situation for the Schrödinger equation on the line [8, 13], we say that

the generic case holds at z = ±i if the four matrices (1 + z2)a(z), (1 + z2)a(z), (1 + z2)c(z)

and (1 + z2)c(z) have nonsingular matrices as their limits as z → ±i along T. In all other
cases, we say that the exceptional case holds at z = ±i. Because of parity symmetry, the
generic or the exceptional case can only hold at both points z = ±i or not hold at both
points z = ±i. We therefore omit the clause “at z = ±i” when discussing these cases.

Proposition 4.1 (Scattering coefficients as Fourier sums) Let the potentials {un}∞
n=−∞ and

{wn}∞
n=−∞ satisfy the Faddeev condition (2.3). Assume there are no spectral singularities,

and the generic case holds. Then the reflection and transmission coefficients belong to W p,q

for certain p and q .

Proof Clearly (1 + z2)/2iz belongs to W 1,1 and hence a(z)− IN , a(z)− IM , c(z)− IN , and
c(z) − IM belong to some W p,q when multiplied by (1 + z2)/2iz. Thus [(1 + z2)/2iz]a(z),
[(1 + z2)/2iz]a(z), [(1 + z2)/2iz]c(z), and [(1 + z2)/2iz]c(z) belong to W p,q for certain
p,q . Because we are in the generic case and there are no spectral singularities, these four
matrices are nonsingular for each z ∈ T. By Wiener’s theorem [26], their respective inverses
2izt r (z)/(1 + z2), 2izt r (z)/(1 + z2), 2izt l (z)/(1 + z2), and 2izt l (z)/(1 + z2) belong to
W p,q for certain p,q . This is also the case for the transmission coefficients, since they arise
by multiplying these matrix functions by (1 + z2)/2iz.

Analogously, under the Faddeev condition (2.3) the left-hand sides of (3.3c), (3.3d),
(3.3g), and (3.3h) multiplied by (z2 + 1)/2iz belong to W p,q for certain p,q . Since
2izt r (z)/(1 + z2), 2izt r (z)/(1 + z2), 2izt l (z)/(1 + z2), and 2izt l (z)/(1 + z2) also belong
to W p,q for certain p,q , their respective products, i.e., the reflection coefficients, belong to
W p,q for certain p,q . �

5 Marchenko Equations

Throughout this section we assume that the reflection coefficients ρ,� ∈ W N,M and ρ,� ∈
W M,N . This occurs, for instance, if the generic case holds and there are no spectral sin-
gularities. We shall derive the Marchenko equations, first if the poles of the corresponding
transmission coefficients are finite in number and simple and then more generally. We shall
also apply parity symmetry to write the Marchenko equations in a form more suitable for
deriving closed form solutions.

Use (2.4a), (2.4b) to write (4.2a)–(4.2d) in the form

Nn(z) = Mn(z)t r (z) − z−2nNn(z)ρ(z),

Nn(z) = Mn(z)t r (z) − z2nNn(z)ρ(z),

Mn(z) = Nn(z)t l (z) − z−2nMn(z)�(z),

Mn(z) = Nn(z)t l (z) − z2nMn(z)�(z),
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respectively. Putting

t r (z) = t r0(z) +
∑

k

t rk

z − ζk

, t r (z) = t r0(z) +
∑

k

t rk

z − ζ k

, (5.1a)

t l (z) = t l0(z) +
∑

k

t lk

z − ζ k

, t l (z) = t l0(z) +
∑

k

t lk

z − ζk

, (5.1b)

where t r0 ∈ W N,N
− , t r0 ∈ W M,M

+ , t l0 ∈ W N,N
+ , and t l,0 ∈ W M,M

− , ζk are finitely many distinct
numbers with |ζk| > 1, and ζ k are finitely many distinct numbers with 0 < |ζ k| < 1, we
obtain

Nn(z) =
(

IN

0M,N

)
+

∑
k

Mn(ζk)t rk

z − ζk

− Π+
(
z−2nNn(z)ρ(z)

)
, (5.2a)

Nn(z) =
(

0N,M

IM

)
+

∑
k

Mn(ζ k)t rk

z − ζ k

− Π−
(
z2nNn(z)ρ(z)

)
, (5.2b)

Mn(z) =
(

IN

0M,N

)
+

∑
k

Nn(ζ k)t lk

z − ζ k

− Π−
(
z−2nMn(z)�(z)

)
, (5.2c)

Mn(z) =
(

0N,M

IM

)
+

∑
k

Nn(ζk)t lk

z − ζk

− Π+
(
z2nMn(z)�(z)

)
. (5.2d)

Here Π+ and Π− are the natural projections of W p,q onto W p,q
+ and W p,q

− , respectively.
Let us now introduce the so-called norming constants Crk , Crk , C lk , and C lk such that

Mn(ζk)t rk = ζ−2n
k Nn(ζk)Crk, Mn(ζ k)t rk = −ζ

2n

k Nn(ζ k)Crk, (5.3a)

Nn(ζ k)t lk = −ζ
−2n

k Mn(ζ k)C lk, Nn(ζk)t lk = ζ 2n
k Mn(ζk)C lk . (5.3b)

Recalling that the transmission coefficients are even functions of z, their residues at the
poles ±ζk (or ±ζ k) add up to zero. Taking into account the parity properties of the Faddeev
functions we see that the norming constants pertaining to the poles ±ζk (or ±ζ k) coincide.

Substituting (5.3a), (5.3b) into (5.2a), (5.2b) and using (2.8a)–(2.8d), we collect the co-
efficients in the four power series in z or z−1 and obtain the Marchenko equations

K(n,m) +
∞∑

j=n

K(n, j)F r (j + m) =
(

IN

0M,N

)
δn,m, (5.4a)

K(n,m) +
∞∑

j=n

K(n, j)F r (j + m) =
(

0N,M

IM

)
δn,m, (5.4b)

for m ≥ n, and

L(n,m) +
n∑

j=−∞
L(n, j)F l (j + m) =

(
IN

0M,N

)
δn,m, (5.4c)

L(n,m) +
n∑

j=−∞
L(n, j)F l (j + m) =

(
0N,M

IM

)
δn,m, (5.4d)
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where m ≤ n. Here δn,m is the Kronecker delta. The Marchenko kernels are given by

F r (s) = ρ̂(s) +
∑

k

ζ
−(s+1)
k Crk, F r (s) = ρ̂(s) +

∑
k

ζ
s−1
k Crk, (5.5a)

F l (s) = �̂(s) +
∑

k

ζ
−(s+1)

k C lk, F l (s) = �̂(s) +
∑

k

ζ s−1
k C lk . (5.5b)

Given the parity properties of the norming constants explained above, we see that F r (s),
F r (s), F l (s), and F l (s) vanish if s is even. Using (2.9a)–(2.9d) we write (5.4a)–(5.4d) as
follows:

K(n,m) +
(

0N,M

IM

)
F r (n + m) +

∞∑
j=n+1

K(n, j)F r (j + m) = 0, (5.6a)

K(n,m) +
(

IN

0M,N

)
F r (n + m) +

∞∑
j=n+1

K(n, j)F r (j + m) = 0, (5.6b)

for m ≥ n + 1, and

L(n,m) +
(

0N,M

IM

)
F l (n + m) +

n−1∑
j=−∞

L(n, j)F l (j + m) = 0, (5.6c)

L(n,m) +
(

IN

0M,N

)
F l (n + m) +

n−1∑
j=−∞

L(n, j)F l (j + m) = 0, (5.6d)

where m ≤ n− 1. Here the zeros in the right-hand sides are zero matrices with N +M rows
and either N or M columns.

To generalize the Marchenko equations (5.6a)–(5.6d) to the case where the transmis-
sion coefficients have finitely many, not necessarily simple, poles, we write the Marchenko
kernels in the form

F r (s) = ρ̂(s) + CrA
−(s+1)
r Br , F r (s) = ρ̂(s) + CrA

s−1
r Br ,

F l (s) = �̂(s) + ClA
−(s+1)

l Bl, F l (s) = �̂(s) + ClA
s−1
l Bl,

by introducing the four matrix triplets, (Ar,Br,Cr), (Ar,Br,Cr), (Al,Bl,Cl), and
(Al,Bl,Cl), having the following properties:

(i) Ar , Br , and Cr are p × p, p × M , and N × p matrices, respectively, and Ar has only
eigenvalues of modulus larger than one.

(ii) Ar , Br , and Cr are p × p, p × N , and M × p matrices, respectively, and Ar is a
nonsingular matrix which has only eigenvalues of modulus less than one.

(iii) Al , Bl , and Cl are p ×p, p ×m, and N ×p matrices, respectively, and Al is a nonsin-
gular matrix which has only eigenvalues of modulus less than one.

(iv) Al , Bl , and Cl are p × p, p × N , and M × p matrices, respectively, and Al has only
eigenvalues of modulus larger than one.

The representations (5.5a), (5.5b) are reproduced by taking Al = Ar = diag(ζk) and Al =
Ar = diag(ζ k).
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Recall that the Marchenko kernels vanish for even arguments s. Taking A = Al = Ar and
A = Al = Ar and writing

A =
(

A 0
0 −A

)
, Br =

(
Br

Br

)
, Cr = (

Cr Cr

)
, (5.7a)

A =
(

A 0
0 −A

)
, Br =

(
Br

Br

)
, Cr = (

Cr Cr

)
, (5.7b)

and similarly with the subscript l instead of r , we obtain

F r (s) = ρ̂(s) + [
1 + (−1)s+1

]
Cr A−(s+1)Br , (5.8a)

F r (s) = ρ̂(s) + [
1 + (−1)s+1

]
Cr As−1 Br , (5.8b)

F l (s) = �̂(s) + [
1 + (−1)s+1

]
Cl A−(s+1)Bl , (5.8c)

F l (s) = �̂(s) + [
1 + (−1)s+1

]
Cl As−1 Bl . (5.8d)

Using parity symmetry in the form (5.8a)–(5.8d), the Marchenko equations (5.6a)–(5.6d)
can be decoupled further. For details we refer to Appendix B.

Let us now discuss the focusing case.

Proposition 5.1 (Symmetries of the Marchenko kernel) In the focusing case the Marchenko
kernels satisfy the conjugation symmetry relations

F r (s) = −F r (s)
†, F l (s) = −F l (s)

†. (5.9)

Moreover, the Marchenko equations (5.6a)–(5.6d) are uniquely solvable.

Proof Consider the focusing case. Then (4.4) and (4.5a), (4.5b) imply that

ρ̂(s) = −ρ̂(s)†, �̂(s) = −�̂(s)†.

In the case of finitely many simple poles of the transmission coefficients, we get ζ k = 1/ζ ∗
k

from (4.4). Using (5.1a), (5.1b) we get for the residues

t lk = −[ζk]2t
†
rk, t rk = −[ζk]2t

†
lk, t lk = −[ζ k]2t†

rk, t rk = −[ζ k]2t†
lk .

For the norming constants we get in a similar way

C lk = −[ζk]2C
†
rk, Crk = −[ζk]2C

†
lk, C lk = −[ζ k]2C†

rk, Crk = −[ζ k]2C†
lk .

The unique solvability of (5.6a)–(5.6d) is a standard argument [6, 9]. �

The conjugation relations (5.9) can be used to reduce the number of independent matrix
triplets from four to two. In fact, in the focusing case we define

A = A†−1
, Br = A†−1 C †

r , Cr = −B†
r A†−1

, (5.10a)

A = A†−1
, Bl = A†−1 C †

l , Cl = −B†
l A†−1

. (5.10b)

The simplifications resulting from (5.10a), (5.10b) have been used to simplify the explicit
matrix IDNLS solutions obtained in [11] in the focusing case.
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Appendix A: Summation by Parts Formula

Let {bk}∞
k=n be a sequence of nonnegative numbers. Then in [6, Lemma A.2] the following

fundamental equality has been established:

∞∑
k=n

bk

( ∞∑
j=k+1

bj

)m

= 1

m + 1

( ∞∑
j=n

bj

)m+1

− B(m)
n , (A.1)

where B(m)
n ≥ B

(m)

n+1 ≥ B
(m)

n+2 ≥ · · · ≥ 0.
Although the general form of the discrete Gronwall inequality is well-known [21, Corol-

lary 1.6.2], here we apply (A.1) to prove the version needed.

Proposition A.1 (Gronwall’s inequality) Suppose {pk}∞
k=n and {qk}∞

k=n are sequences of
nonnegative numbers such that the series

∑∞
k=n+1 qk converges and

pn ≤ 1 +
∞∑

k=n+1

qkpk. (A.2)

Then

pn ≤ exp

( ∞∑
k=n+1

qk

)
. (A.3)

Proof Iterating (A.2) we get

pn ≤ 1 +
∞∑

s=1

∞∑
k1=n+1

qk1

∞∑
k2=k1+1

qk2

∞∑
k3=k2+1

qk3 . . .

∞∑
ks=ks−1+1

qks

≤ 1 +
∞∑

s=1

1

s!

( ∞∑
k=n+1

qk

)s

= exp

( ∞∑
k=n+1

qk

)
,

where (A.1) has been used repeatedly. �

Appendix B: Marchenko Equations in More Detail

In this appendix, we decouple (5.6a)–(5.6d) by using that the Marchenko kernels vanish for
even values of their arguments. Equations (B.1a)–(B.3d) below have been used in [11] to de-
rive explicit matrix IDNLS solutions by using matrix triplets to parametrize the Marchenko
kernels.

Let us decouple (5.6a) and (5.6b), using that the Marchenko kernels F r (s) and F r (s)

vanish for even s. We get
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K
up

(n,n + 2σ)

=
∞∑

σ ′′=0

F r

(
2
[
n + σ ′′] + 1

)
F r

(
2
[
n + σ ′′ + σ

] + 1
)

+
∞∑

σ ′=1

K
up(

n,n + 2σ ′) ∞∑
σ ′′=0

F r

(
2
[
n + σ ′ + σ ′′] + 1

)
F r

(
2
[
n + σ ′′ + σ

] + 1
)
,

(B.1a)

Kup(n,n + 2σ + 1)

= −F r

(
2[n + σ ] + 1

)

+
∞∑

σ ′=0

Kup
(
n,n + 2σ ′ + 1

) ∞∑
σ ′′=1

F r

(
2
[
n + σ ′ + σ ′′] + 1

)
F r

(
2
[
n + σ ′′ + σ

] + 1
)
,

(B.1b)

K
dn

(n,n + 2σ + 1)

= −F r

(
2[n + σ ] + 1

)

+
∞∑

σ ′=0

K
dn(

n,n + 2σ ′ + 1
) ∞∑

σ ′′=1

F r

(
2
[
n + σ ′ + σ ′′] + 1

)
F r

(
2
[
n + σ ′′ + σ

] + 1
)
,

(B.1c)

Kdn(n,n + 2σ)

=
∞∑

σ ′′=0

F r

(
2
[
n + σ ′′] + 1

)
F r

(
2
[
n + σ ′′ + σ

] + 1
)

+
∞∑

σ ′=1

Kdn
(
n,n + 2σ ′) ∞∑

σ ′′=0

F r

(
2
[
n + σ ′ + σ ′′] + 1

)
F r

(
2
[
n + σ ′′ + σ

] + 1
)
.

(B.1d)

Equations (B.1a) and (B.1d) are valid for σ ≥ 1, whereas (B.1b) and (B.1c) are valid for
σ ≥ 0. This distinction in the ranges of the summation index σ is to bear in mind when
deriving exact solutions to (1.5). The potentials are then computed as follows:

un = i

2h
Kup(n − 1, n), wn = −i

2h
K

dn
(n − 1, n). (B.2)

Let us decouple (5.6c) and (5.6d), using that the Marchenko kernels F l (s) and F l (s)

vanish for even s. We get

Lup(n,n − 2σ)

=
∞∑

σ ′′=0

F l

(
2
[
n − σ ′′] − 1

)
F l

(
2
[
n − σ ′′ − σ

] − 1
)

+
∞∑

σ ′=1

Lup
(
n,n − 2σ ′) ∞∑

σ ′′=0

F l

(
2
[
n − σ ′ − σ ′′] − 1

)
F l

(
2
[
n − σ ′′ − σ

] − 1
)
, (B.3a)
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L
up

(n,n − 2σ − 1)

= −F l

(
2[n − σ ] − 1

)

+
∞∑

σ ′=0

L
up(

n,n − 2σ ′ − 1
) ∞∑

σ ′′=1

F l

(
2
[
n − σ ′ − σ ′′] − 1

)
F l

(
2
[
n − σ ′′ − σ

] − 1
)
,

(B.3b)

Ldn(n,n − 2σ − 1)

= −F l

(
2[n − σ ] − 1

)

+
∞∑

σ ′=0

Ldn
(
n,n − 2σ ′ − 1

) ∞∑
σ ′′=1

F l

(
2
[
n − σ ′ − σ ′′] − 1

)
F l

(
2
[
n − σ ′′ − σ

] − 1
)
,

(B.3c)

L
dn

(n,n − 2σ)

=
∞∑

σ ′′=0

F l

(
2
[
n − σ ′′] − 1

)
F l

(
2
[
n − σ ′′ − σ

] − 1
)

+
∞∑

σ ′=1

L
dn(

n,n − 2σ ′) ∞∑
σ ′′=0

F l

(
2
[
n − σ ′ − σ ′′] − 1

)
F l

(
2
[
n − σ ′′ − σ

] − 1
)
. (B.3d)

Equations (B.3a) and (B.3d) are valid for σ ≥ 1, whereas (B.3b) and (B.3c) are valid for
σ ≥ 0. This distinction in the ranges of the summation index σ is to bear in mind when
deriving exact solutions of (1.5). The potentials are then computed as follows:

un = i

2h
L

up
(n + 1, n), wn = −i

2h
Ldn(n + 1, n). (B.4)
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