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In this article we derive explicit solutions of the matrix integrable discrete nonlinear Schrödin-
ger equation by using the inverse scattering transform and the Marchenko method. The Marchenko
equation is solved by separation of variables, where the Marchenko kernel is represented in separated
form, using a matrix triplet (A, B, C). Here A has only eigenvalues of modulus larger than one. The
class of solutions obtained contains the N-soliton and breather solutions as special cases. We also
prove that these solutions reduce to known continuous matrix NLS solutions as the discretization
step vanishes.

Keywords: Ablowitz–Ladik model; exact solutions; Marchenko method; integrable discrete nonlinear
Schrödinger equation.

1. Introduction

In this article we derive explicit solutions of the system of integrable discrete nonlinear
Schrödinger (IDNLS) equations

i
d

dτ
un = un+1 − 2un + un−1 − un+1wnun − unwnun−1, (1.1a)

−i d
dτ

wn = wn+1 − 2wn + wn−1 − wn+1unwn − wnunwn−1, (1.1b)

where n is an integer labeling “position” and un and wn are N ×M and M × N matrix
functions depending on “time” τ ∈ R. The focusing case occurs if wn = −u†

n for each
integer n, where the dagger denotes conjugate matrix transposition. Equations (1.1) can in
principle be viewed as a discretization of the matrix nonlinear Schrödinger (NLS) equations
(5.2) below, where the “position” variable x ∈ R. As such, they have applications to electro-
magnetic wave propagation in nonlinear media [21, 27], surface waves on deep waters [27],
and signal propagation in optical fibers [15, 16]. On their own behalf, these equations have
applications to Heisenberg spin chains [18], self-trapping on a dimer [19], the dynamics of a
discrete curve on an ultraspherical surface [11], the dynamics of triangulations of surfaces
[17], and Hamiltonian flows [20, 24].
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The IST method associates (1.1) to the discrete Zakharov–Shabat system

vn+1 =
(
zIN un

wn z−1IM

)
vn, (1.2)

where z is the (complex) spectral parameter and IN − unwn is assumed nonsingular for
each n ∈ Z (which is always true in the focusing case) and the potentials {un}∞n=−∞ and
{wn}∞n=−∞ satisfy the �1-condition

∞∑
n=−∞

{‖un‖ + ‖wn‖} < +∞. (1.3)

Here ‖·‖ denotes any matrix norm. The direct and inverse scattering of the discrete
Zakharov–Shabat system (1.2) has been studied as early as in 1981 [13, 14]. More com-
plete accounts have been given in [26; 4, Chap. 5]. In all of these sources it is assumed that
the discrete eigenvalues of (2.2) are algebraically and geometrically simple.

In most of the IDNLS literature it appeared convenient to make the so-called assumption
(always satisfied for N = M = 1) that N = M and

unwn = wnun = cnIN , n ∈ Z, (1.4)

where {1 − cn}∞n=−∞ is a sequence of nonzero complex numbers. In fact, a major part
of [4, Chap. 5] is only valid under condition (1.4). In particular, the way to pass from
the solutions of their Marchenko equations (5.2.161) to the potentials un and wn (i.e.,
[4, Eqs. (5.2.160)]) can only be applied under condition (1.4). Nevertheless, a thorough
analysis of [4, Chap. 5] taught us that their Jost solution and transition coefficient material
does not require condition (1.4). Thus in this article we do not use condition (1.4).

The scalar (N = M = 1) IDNLS equation was first studied by Ablowitz and Ladik [1–
3] by the inverse scattering transform (IST) method. The matrix equations (1.1) were
studied in detail using the IST method by Ablowitz, Prinari, and Trubatch [4, Chap. 5]
and, assuming condition (1.4), by Tsuchida, Ujino and Wadati [26]. Under condition (1.4),
Tsuchida et al. have also derived the N -soliton and breather solutions to (1.1) in terms of
solutions to N × N linear systems [26, Eq. (3.43)]. Some of these breather solutions were
constructed before by using the Hirota method [8].

If we allow the potentials to be time dependent in such a way that (1.1) are satisfied,
then the time evolution of the scattering data is such that the Marchenko kernels F (n; τ)
and F̄ (n; τ) known in the literature satisfy the discrete evolution equations

i
d

dτ
F (n; τ) = F (n+ 2; τ) − 2F (n; τ) + F (n− 2; τ), (1.5a)

−i d
dτ

F̄ (n; τ) = F̄ (n+ 2; τ) − 2F̄ (n; τ) + F̄ (n− 2; τ). (1.5b)

As can be verified by substitution, explicit solutions to (1.5) can be written as follows:

F (n; τ) = Ce−iτ(A−A−1)2A−(n+1)B, (1.6a)

F̄ (n; τ) = C̄eiτ(Ā−Ā−1)2Ān−1B̄, (1.6b)
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where

(i) A, B and C are complex p × p, p × N and M × p matrices, respectively, and A is a
matrix having only eigenvalues of modulus larger than one;

(ii) Ā, B̄ and C̄ are complex p̄ × p̄, p̄ ×M and N × p̄ matrices, respectively, and Ā is a
nonsingular matrix which has only eigenvalues of modulus less than one.

Equations (1.6) allow us to solve the time evolved Marchenko equations, (3.7) below, explic-
itly in terms of the two matrix triplets by separation of variables and to derive the explicit
matrix IDNLS solutions un(τ) and wn(τ).

Representations of Marchenko kernels of the type

F (x, τ) = CexAe−iτϕ(A)B,

where the time factor e−iτϕ(A) commutes with A, have been successfully used to find closed
form solutions of integrable nonlinear evolution equations in terms of matrix exponentials
and solutions of Lyapunov and/or Sylvester equations. We mention results for the KdV [7],
NLS [5, 9, 10], and sine-Gordon equations [6]. Similar results were obtained for the sine-
Gordon [23] and Toda lattice equations [22] with the help of matrix or operator triplets, but
without using Marchenko theory. If the position variable is an integer, n, then integer matrix
powers take the place of matrix exponentials. Such explicit solutions provide a concise way
to write closed form solutions, which can equivalently be expressed in terms of trigonometric
and polynomial functions of x (or n) and t by “unpacking” the matrix exponentials, integer
matrix powers and matrix inverses appearing in these formulas.

It appears [4, 26] that the spectrum of the discrete matrix Zakharov–Shabat system
(1.2) is invariant under the sign inversion z �→ −z and that, as a result, the Marchenko
kernels F (n; τ) and F̄ (n; τ) vanish if n is an even integer. Thus further constraints on the
triplets (A,B,C) and (Ā, B̄, C̄) are required to represent the Marchenko kernels in the form
(1.6). In fact, the matrix triplets have to be decomposed as in (4.3) below in terms of matrix
triplets (A,B, C) and (Ā, B̄, C̄), where A and Ā have half the matrix orders that A and Ā

have.
In this article we state many results regarding the scattering theory of the discrete

Zakharov–Shabat system without further ado. Only if an almost clone of the proof is not
available in [4, 26], we give a complete proof, especially if it is needed in deriving an alterna-
tive and new pair of Marchenko equations. In contrast to [4, 26], we introduce transmission
coefficients, left reflection coefficients, and, more importantly, an alternative pair of Mar-
chenko equations whose solutions yield the potentials un and wn without having to assume
condition (1.4). We have given more details on the sign inversion symmetry reduction of
the Marchenko equations to make the derivation of our solution formulas more transparent.

Let us discuss the contents of the various sections. In Sec. 2 we introduce preliminaries on
the Jost solutions and scattering coefficients along with their basic properties. We formulate
the various analyticity properties by writing the Jost solutions and scattering coefficients
as sums of absolutely convergent Fourier series. In Sec. 3 we apply sign inversion symmetry
to reduce the Marchenko equations and discuss conjugation symmetry to get a further
reduction specific to the focusing case. In Sec. 4 we write the matrix IDNLS solutions
un(τ) in terms of matrix triplets (A,B,C) and (Ā, B̄, C̄), both without symmetries on the
potential and in the focusing case. In Sec. 5 we prove that our IDNLS solutions converge
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to the matrix NLS solutions derived in [5, 9, 10] as the discretization step tends to zero. In
Sec. 6 we provide two interesting examples. Finally, the discrete Gronwall inequality applied
in Sec. 2 and the alternative Marchenko equations are derived in Appendices A and B.

We notice that overlined quantities constitute an established notation inherited from [4]
which has nothing to do with complex conjugation. The complex conjugate of a complex
number z is written as z∗, whereas the conjugate transpose of a matrix A is written as A†.

2. Jost Solutions and Scattering Coefficients

In this section we define the Jost solutions, the transition coefficients expressing their
linear dependence, and the reflection and transmission coefficients. We essentially follow
[4, Chap. 5], although, unlike the authors of [4], we emphasize continuity and analyticity
properties as the natural consequence of dealing with sums of absolutely convergent Fourier
series and define transmission coefficients and scattering matrices explicitly. Occasionally
we state (and prove) some results not found in [4].

Let us define the four Jost solutions φn(z), φ̄n(z), ψn(z) and ψ̄n(z) as those (N+M)×N ,
(N +M) ×M , (N +M) ×M and (N +M) × N matrix solutions to (1.2) satisfying the
asymptotic conditions

φn(z) ∼ zn

(
IN

0MN

)
, φ̄n(z) ∼ z−n

(
0NM

IM

)
, n→ −∞, (2.1a)

ψn(z) ∼ z−n

(
0NM

IM

)
, ψ̄n(z) ∼ zn

(
IN

0MN

)
, n→ +∞. (2.1b)

Since the discrete matrix Zakharov–Shabat system is a homogeneous first order difference
equation, we can reduce any pair of (N +M)× (N +M) matrix solutions to each other by
postmultiplication by a matrix not depending on n. We thus define the transition coefficient
matrices T (z) and T̄ (z) by

(
φn(z) φ̄n(z)

)
=
(
ψ̄n(z) ψn(z)

)
T (z), (2.2a)(

ψ̄n(z) ψn(z)
)

=
(
φn(z) φ̄n(z)

)
T̄ (z), (2.2b)

where IN −unwn (and hence IM −wnun) is assumed nonsingular for each n ∈ Z and T (z)
and T̄ (z) are each other’s inverses. Writing

T (z) def=
(

a(z) b̄(z)
b(z) ā(z)

)
, T̄ (z) def=

(
c̄(z) d(z)
d̄(z) c(z)

)
,

we obtain the transition coefficients a(z) and c̄(z), b(z) and d̄(z), ā(z) and c(z), and b̄(z)
and d(z), of respective sizes N ×N , M ×N , M ×M and N ×M .

Proposition 2.1. Suppose IN − unwn is nonsingular for each n ∈ Z. Then there exist
unique Jost solutions ψn(z), ψ̄n(z), φn(z) and φ̄n(z) of the discrete matrix Zakharov–Shabat
system (1.2) that satisfy (2.1).
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Proof. We only give the proof for ψn(z) and ψ̄n(z). Let us define the Faddeev functions as
follows:

Mn(z) = z−nφn(z), M̄n(z) = znφ̄n(z),

Nn(z) = znψn(z), N̄n(z) = z−nψ̄n(z).

Put Z =
(

zIN 0NM

0MN z−1IM

)
and Un =

(
0NN un

wn 0MM

)
. Then (1.2) implies that(

Mn+1(z) M̄n+1(z)
)
Z = (Z + Un)

(
Mn(z) M̄n(z)

)
.

Writing this equation in short-hand notation as

mn+1(z)Z = (Z + Un)mn(z),

and iterating it backward we get

mn(z) = Zpmn−p(z)Z−p +
n−1∑

k=n−p

Zn−k−1Ukmk(z)Zk−n.

Letting p→ +∞ and using (2.1a) we get

(
Mn(z) M̄n(z)

)
= IN+M +

n−1∑
k=−∞

Zn−k−1Uk

(
M k(z) M̄k(z)

)
Zk−n.

Breaking up this equation into the usual column blocks, we get

Mn(z) =
(
IN

0MN

)
+ z−1

n−1∑
k=−∞

(
IN 0NM

0MN z−2(n−k−1)IM

)
UkMk(z), (2.3a)

M̄n(z) =

(
0NM

IM

)
+ z

n−1∑
k=−∞

(
z2(n−k−1)IN 0NM

0MN IM

)
UkM̄k(z), (2.3b)

which completes the proof.

Theorem 2.2. Suppose IN −unwn is nonsingular for each n ∈ Z. Then the Jost solutions
can be represented as follows:

ψn(z) =
∞∑

j=n

z−jK(n, j), ψ̄n(z) =
∞∑

j=n

zjK̄(n, j), (2.4a)

φn(z) =
n∑

j=−∞
zjL(n, j), φ̄n(z) =

n∑
j=−∞

z−jL̄(n, j), (2.4b)

where
∞∑

j=n

{‖K(n, j)‖ + ‖K̄(n, j)‖} +
n∑

j=−∞
{‖L(n, j)‖ + ‖L̄(n, j)‖} < +∞.

As a result, znψn(z) and z−nφn(z) are continuous in |z| ≥ 1, are analytic in |z| > 1, and
tend to K(n, n) and L(n, n) as |z| → +∞. Similarly, z−nψ̄n(z) and znφ̄n(z) are continuous
in |z| ≤ 1 and analytic in |z| < 1.
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Proof. Let us only prove (2.4b). Breaking up (2.3) into up and down blocks we get

M (up)
n (z) = IN + z−1

n−1∑
k=−∞

ukM
(dn)
k (z), (2.5a)

M (dn)
n (z) =

n−1∑
k=−∞

z−2(n−k)+1wkM
(up)
k (z), (2.5b)

M̄
(up)
n (z) =

n−1∑
k=−∞

z2(n−k)−1ukM̄
(dn)
k (z), (2.5c)

M̄
(dn)
n (z) = IM + z

n−1∑
k=−∞

wkM̄
(up)
k (z). (2.5d)

We now write (2.4b) in the form

Mn(z) =
∞∑

s=0

z−sL(n, n− s), M̄n(z) =
∞∑

s=0

zsL̄(n, n− s). (2.6)

Using the bullet for up and down components, we define

‖K•(n, ·)‖1 =
∞∑

s=0

‖K•(n, n+ s)‖, ‖L•(n, ·)‖1 =
∞∑

s=0

‖L•(n, n− s)‖,

and similarly for the overlined quantities.
Substituting (2.6) into (2.5a) we get

L(up)(n, n) = IN , L(up)(n, n− s− 1) =
n−1∑

k=−∞
ukL

(dn)(k, k − s),

so that

‖L(up)(n, ·)‖1 ≤ 1 +
n−1∑

k=−∞
‖uk‖‖L(dn)(k, ·)‖1. (2.7a)

Substituting (2.6) into (2.5b) we get

L(dn)(n, n) = 0MN , L(dn)(n, n− s− 1) =
n−1∑

k=−∞
wkL

(up)(k, k − s+ 2(n− k − 1)),

so that

‖L(dn)(n, ·)‖1 ≤
n−1∑

k=−∞
‖wk‖‖L(up)(k, ·)‖1. (2.7b)

Substituting (2.6) into (2.5c) we get

L̄
(up)(n, n) = 0NM , L̄

(up)(n, n− s− 1) =
n−1∑

k=−∞
ukL̄

(dn)(k, k − s+ 2(n− k − 1)),
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so that

‖L̄(up)(n, ·)‖1 ≤
n−1∑

k=−∞
‖uk‖‖L̄(dn)(k, ·)‖1. (2.7c)

Substituting (2.6) into (2.5d) we get

L̄
(dn)(n, n) = IM , L(dn)(n, n− s− 1) =

n−1∑
k=−∞

wkL̄
(up)(k, k − s),

so that

‖L̄(dn)(n, ·)‖1 ≤ 1 +
n−1∑

k=−∞
‖wk‖‖L̄(up)(k, ·)‖1. (2.7d)

Adding (2.7a) and (2.7b) we get the estimate

‖L(up)(n, ·)‖1 + ‖L(dn)(n, ·)‖1

≤ 1 +
n−1∑

k=−∞
max(‖uk‖, ‖wk‖)(‖L(up)(k, ·)‖1 + ‖L(dn)(k, ·)‖1),

which, by Proposition A.1, yields

‖L(up)(n, ·)‖1 + ‖L(dn)(n, ·)‖1 ≤ exp

( ∞∑
k=−∞

max(‖uk‖, ‖wk‖)
)
.

A similar estimate for the corresponding overlined matrices follows by adding (2.7c) and
(2.7d). We have thus proved (2.4b).

With some effort one may verify that

K(n, n) =

(
0NM

∆−1
n

)
, K̄(n, n) =

(
Ω−1

n

0MN

)
,

L(n, n) =
(
IN

0MN

)
, L̄(n, n) =

(
0NM

IM

)
,

where

Ωn = · · · (IN − un+2wn+2)(IN − un+1wn+1)(IN − unwn), (2.8a)

∆n = · · · (IM − wn+2un+2)(IM − wn+1un+1)(IM − wnun). (2.8b)

Using that ‖unwn‖ and ‖wnun‖ are both dominated by 1
2(‖un‖2 + ‖wn‖2), the absolute

convergence of the infinite products in (2.8) can be derived from the �2-condition

∞∑
n=−∞

{‖un‖2 + ‖wn‖2
}
< +∞, (2.9)

which follows immediately from (1.3).
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Using the analyticity properties of the Jost solutions we can write (2.2) as the Riemann–
Hilbert problems (

ψ̄n(z) φ̄n(z)
)

=
(
φn(z) ψn(z)

)
JS(z)J, |z| = 1, (2.10a)(

φn(z) ψn(z)
)

=
(
ψ̄n(z) φ̄n(z)

)
JS̄(z)J, |z| = 1, (2.10b)

where J =
(

IN 0NM

0MN −IM

)
and

S(z) =
(

tr(z) �(z)
ρ(z) tl(z)

)
, S̄(z) = S(z)−1 =

(
t̄l(z) ρ̄(z)

�̄(z) t̄r(z)

)
,

are called scattering matrices. The quantities tr(z), tl(z), t̄l(z) and t̄r(z) are referred to as
transmission coefficients, while ρ(z), �(z), ρ̄(z) and �̄(z) are called reflection coefficients.

A unimodular complex number z is called a spectral singularity if at least one of the
“diagonal” transition coefficients a(z), ā(z), c(z) and c̄(z) is singular.

Theorem 2.3. Suppose there are no spectral singularities. Then the following is true:

(i) The reflection coefficients are continuous in |z| = 1 and are in fact sums of absolutely
convergent Fourier series.

(ii) The transmission coefficients tr(z) and tl(z) are continuous in |z| ≥ 1, are meromor-
phic in |z| > 1 with at most finitely many poles, and tend to IN and limn→+∞ ∆n =∏∞

k=−∞ (IM − wkuk), respectively, as |z| → +∞. They are sums of absolutely
convergent Fourier series.

(iii) The transmission coefficients t̄r(z) and t̄l(z) are continuous in |z| ≤ 1, are mero-
morphic in |z| < 1 with at most finitely many, nonzero, poles, and tend to IM and
limn→+∞ Ωn =

∏∞
k=−∞ (IN − ukwk), respectively, as z → 0. They are sums of abso-

lutely convergent Fourier series.
(iv) The transmission coefficients tl(z) and tr(z) have the same poles and pole orders for

|z| > 1, while t̄l(z) and t̄r(z) have the same poles and pole orders for 0 < |z| < 1.

Proof. Using (2.4) and the asymptotic behavior of the various blocks as n → ±∞, we
obtain

a(z) = IN + z−1
∞∑

k=−∞
ukM

(dn)
k (z) = IN +

∞∑
k=−∞

z−k−1ukφ
(dn)
k (z)

= IN + z−2
∞∑

k=−∞
ukL

(dn)(k, k − 1) +O(z−3), z → ∞, (2.11a)

ā(z) = IM + z

∞∑
k=−∞

wkM̄
(up)
k (z) = IM +

∞∑
k=−∞

zk+1wkφ̄
(up)
k (z)

= IM + z2
∞∑

k=−∞
wkL̄

(up)(k, k − 1) +O(z3), z → 0, (2.11b)
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Integrable Discrete Nonlinear Schrödinger Equation

c̄(z) = IN − z−1
∞∑

k=−∞
ukN̄

(dn)
k (z) = IN −

∞∑
k=−∞

z−k−1ukψ̄
(dn)
k (z)

= IN −
∞∑

k=−∞
ukK̄

(dn)(n, n+ 1) +O(z), z → 0, (2.11c)

c(z) = IM − z

∞∑
k=−∞

wkN
(up)
k (z) = IM −

∞∑
k=−∞

zk+1wkψ
(up)
k (z)

= IM −
∞∑

k=−∞
wkK

(up)(n, n+ 1) +O(z−1), z → ∞, (2.11d)

where we used L(up)(n, n) = IN and (2.8b) to derive (2.11). As a result, we have shown that
a(z), ā(z), c̄(z) and c(z) are discrete Fourier transforms of �1-sequences with the correct
analyticity properties. Further,

c̄(0) = lim
n→−∞ K̄

(up)(n, n) =


 ∞∏

k=−∞
(IN − ukwk)


−1

, (2.12a)

while (2.11d) implies that

c(∞) = lim
n→−∞ K(dn)(n, n) =


 ∞∏

k=−∞
(IM − wkuk)


−1

. (2.12b)

In (2.12a) the infinite product is ordered . . . (IN − uk+1wk+1)(IN − ukwk) . . . , whereas in
(2.12b) it is ordered . . . (IM −wk+1uk+1)(IM −wkuk) . . . . Consequently, the inverses of c̄(0)
and c(∞) exist.

Using (2.4) we obtain

b(z) =
∞∑

k=−∞
z2k+1wkM

(up)
k (z) =

∞∑
k=−∞

zk+1wkφ
(up)
k (z), (2.13a)

b̄(z) =
∞∑

k=−∞
z−2k−1ukM̄

(dn)
k (z) =

∞∑
k=−∞

z−k−1ukφ̄
(dn)
k (z), (2.13b)

d̄(z) = −
∞∑

k=−∞
z2k+1wkN̄

(up)
k (z) = −

∞∑
k=−∞

zk+1wkψ̄
(up)
k (z), (2.13c)

d(z) = −
∞∑

k=−∞
z−2k−1ukM

(dn)
k (z) = −

∞∑
k=−∞

z−k−1ukψ
(dn)
k (z). (2.13d)

Equations (2.13) are valid if |z| = 1. Because of (1.3), they show that b(z), b̄(z), d̄(z) and
d(z) are discrete Fourier transforms of �1-sequences.

3. Marchenko Equations

In this section we write down the alternative Marchenko equations in terms of the scattering
data. The corresponding Marchenko kernels are the sums of two contributions, one derived
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F. Demontis & C. Van der Mee

from the Fourier coefficients of a reflection coefficient and the other derived from the poles of
a transmission coefficient and so-called norming constants. In the second half of this section
we shall exploit the invariance of the discrete Zakharov–Shabat spectrum under the sign
inversion z �→ −z to reduce the number of quantities to be computed by a factor of two.

Assuming there are no spectral singularities, we write the reflection coefficients as the
absolutely convergent Fourier series

ρ(z) =
∞∑

s=−∞
zsρ̂(s), ρ̄(z) =

∞∑
s=−∞

z−sˆ̄ρ(s), (3.1a)

�̄(z) =
∞∑

s=−∞
zsˆ̄�(s), �(z) =

∞∑
s=−∞

z−s�̂(s). (3.1b)

Under the condition that the poles of the transmission coefficients are all simple, we define
the Marchenko kernels

F (j) = �̂(j) +
∑

k

ζj−1
k Ck, F̄ (j) = ˆ̄�(j) −

∑
k

ζ̄
−(j+1)
k C̄k. (3.2)

Here ζk, with |ζk| > 1, are the finitely many simple poles of tr(z) and tl(z), whereas ζ̄k,
with 0 < |ζ̄k| < 1, are the finitely many simple poles of t̄l(z) and t̄r(z). The quantities Ck

and C̄k are called the norming constants. Using the Kronecker delta δnj, the Marchenko
equations are then given by

L(n, j) =
(
IN

0MN

)
(IN − unwn)−1δnj −

n∑
j′=−∞

L̄(n, j′)F̄ (j′ + j), (3.3a)

L̄(n, j) =
(

0NM

IM

)
(IM − wnun)−1δnj −

n∑
j′=−∞

L(n, j′)F (j′ + j), (3.3b)

where j ≤ n [See Appendix B]. The potentials can then be expressed in terms of the solutions
to (3.3) as follows:

un = L̄
(up)(n + 1, n), (3.4a)

wn = L(dn)(n + 1, n). (3.4b)

In the focusing case the Marchenko equations are easily seen to be uniquely solvable.
If the transmission coefficients have multiple poles, the Marchenko equations (3.3) and

the expressions (3.4) for the potentials in terms of their solutions do not change. The bound
state terms in (3.2) become much more complicated, because each pole term gets replaced
by a number of terms equal to the corresponding pole order [cf. (4.1) below].

It is easily verified that, for each solution vn(z) of (1.2), also ṽn(z) = (−1)nJvn(−z)
is a solution of (1.2). As a result, we get for the Jost functions and transition coefficient
matrices the sign inversion symmetries(

ψ̄n(−z) ψn(−z)) = (−1)nJ
(
ψ̄n(z) ψn(z)

)
J,(

φn(−z) φ̄n(−z)) = (−1)nJ
(
φn(z) φ̄n(z)

)
J,

T (−z) = JT (z)J, T̄ (−z) = JT̄ (z)J,
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Integrable Discrete Nonlinear Schrödinger Equation

so that the transmission coefficients are even functions of z (and hence the discrete
Zakharov–Shabat spectrum is invariant under sign inversion) and the reflection coefficients
are odd functions of z. Therefore the functions ρ̂(s), ˆ̄ρ(s), �̂(z) and ˆ̄�(z) appearing in (3.1)
vanish if s is even. Using (2.4) together with the sign inversion symmetry of the Jost func-
tions, we get (

K̄(n, j) K(n, j)
)

= (−1)j−nJ
(
K̄(n, j) K(n, j)

)
J,(

L(n, j) L̄(n, j)
)

= (−1)n−jJ
(
L(n, j) L̄(n, j)

)
J.

Therefore, L(dn)(n, j) and L̄
(up)(n, j) vanish if j−n is even, while L(up)(n, j) and L̄

(dn)(n, j)
vanish if j − n is odd. From these symmetry properties we see that the Marchenko kernels
F (s) and F̄ (s) vanish if s is even.

Breaking up the Marchenko equations (3.3) for quantities like L(n, j) into separate
equations for quantities like L(up)(n, j) and L(dn)(n, j) and executing one iteration of each
resulting coupled pair of equations in order to get them decoupled, we arrive at so-called
uncoupled Marchenko equations whose Marchenko kernels have the form

L(j, j′) def=
n−1∑

j′′=−∞
F 1(j′ + j′′)F 2(j′′ + j).

These kernels L(j, j′) vanish if one of j, j′ is even and the other is odd. As a result, the
uncoupled Marchenko equations can be decoupled further.

Let us now write (3.3) in the form

L(n, j) = −
(

0NM

IM

)
F̄ (n+ j) −

n−1∑
j′=−∞

L̄(n, j′)F̄ (j′ + j), (3.5a)

L̄(n, j) = −
(
IN

0MN

)
F (n+ j) −

n−1∑
j′=−∞

L(n, j′)F (j′ + j), (3.5b)

where j ≥ n+ 1. Then the potentials are given by

un = L̄
(up)(n+ 1, n), wn = L(dn)(n+ 1, n). (3.6)

Let us decouple (3.5) further as follows:

L(up)(n, n− 2σ) =
∞∑

σ′′=0

F (2[n − σ′′] − 1)F̄ (2[n − σ′′ − σ] − 1)

+
∞∑

σ′=1

L(up)(n, n − 2σ′)

×
∞∑

σ′′=0

F (2[n− σ′ − σ′′] − 1)F̄ (2[n − σ′′ − σ] − 1), (3.7a)
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L̄
(up)(n, n− 2σ − 1) = −F (2[n − σ] − 1)

+
∞∑

σ′=0

L̄
(up)(n, n− 2σ′ − 1)

×
∞∑

σ′′=1

F̄ (2[n − σ′ − σ′′] − 1)F (2[n − σ′′ − σ] − 1), (3.7b)

L(dn)(n, n− 2σ − 1) = −F̄ (2[n − σ] − 1)

+
∞∑

σ′=0

L(dn)(n, n− 2σ′ − 1)

×
∞∑

σ′′=1

F (2[n − σ′ − σ′′] − 1)F̄ (2[n − σ′′ − σ] − 1), (3.7c)

L̄
(dn)(n, n− 2σ) =

∞∑
σ′′=0

F̄ (2[n − σ′′] − 1)F (2[n − σ′′ − σ] − 1)

+
∞∑

σ′=1

L̄
(dn)(n, n− 2σ′)

×
∞∑

σ′′=0

F̄ (2[n − σ′ − σ′′] − 1)F (2[n − σ′′ − σ] − 1). (3.7d)

Equations (3.7a) and (3.7d) are valid for σ ≥ 1, whereas (3.7b) and (3.7c) are valid for
σ ≥ 0. This distinction in the ranges of the summation index σ is to bear in mind when
deriving exact solutions of (1.1).

4. IDNLS Solutions in Terms of Matrix Triplets

In this section we write the solutions of the Marchenko equations in terms of suitable matrix
triplets if the reflection coefficients vanish. Once the time evolution of the scattering data
has been taken into account as well as the maximal reduction of the Marchenko equations,
we quickly arrive at explicit IDNLS solutions.

Using two matrix triplets, we generalize the expressions (3.2) for the Marchenko kernels
as follows:

F (j) = �̂(j) + CAj−1B, F̄ (j) = ˆ̄�(j) + C̄Ā−(j+1)B̄, (4.1)

where the triplets (A,B,C) and (Ā, B̄, C̄) have the following properties:

(i) A, B and C are p × p, p × N and M × p matrices, respectively, and A is a matrix
having only eigenvalues of modulus larger than one, and

(ii) Ā, B̄ and C̄ are p̄× p̄, p̄×M and N × p̄ matrices, respectively, and Ā is a nonsingular
matrix which has only eigenvalues of modulus less than one.
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Integrable Discrete Nonlinear Schrödinger Equation

If the poles of the transmission coefficients are all simple, we can recover the original expres-
sions (3.2) by taking

A = diag(ζ1, . . . , ζp), B =


1

...
1


, C =

(
C1 · · · Cp

)
, (4.2a)

Ā = diag(ζ̄1, . . . , ζ̄p̄), B̄ =


C̄r1

...
C̄rp̄


, C̄ =

(−1 · · · −1
)
, (4.2b)

where the norming constants are encoded by one of C or B̄. Here p̄ is the number of poles
of t̄l(z) or t̄r(z).

Because the Marchenko kernels F (s) and F̄ (s) vanish if s is even, we need to restrict
the generality of the above matrix triplets by writing

A =
(A 0

0 −A
)
, B =

(B
B
)
, C =

(C C), (4.3a)

Ā =
(Ā 0

0 −Ā
)
, B̄ =

(B̄
B̄
)
, C̄ =

(C̄ C̄). (4.3b)

If the transmission coefficients only have simple poles, then the triplets (4.2) can be made to
correspond to (4.3) by properly ordering the poles, because norming constants corresponding
to ± pairs of poles coincide. Consequently,

F (j) = �̂(j) + [1 + (−1)j+1]CAj−1B, (4.4a)

F̄ (j) = �̂(j) + [1 + (−1)j+1]C̄Ā−(j+1)B̄. (4.4b)

In the focusing case, we have the following conjugation symmetry relations for the
Marchenko kernels:

F̄ (j) = −F (j)†. (4.5)

Equations (4.5) lead to uniquely solvable Marchenko equations and focusing potentials.
Relating the matrix triplets to each other in the following way:

Ā = A†−1
, B̄ = A†−1C†, C̄ = −B†A†−1

, (4.6)

we get Marchenko kernels of the form (4.1) that satisfy the conjugation symmetry
relation (4.5).

Let us return to the general case. Put

Q =
∞∑

σ=0

Ā2σB̄CA−2σ, N =
∞∑

σ=0

A−2σBC̄Ā2σ. (4.7)

Because the spectral radii of A−1 and Ā are strictly less than one, the series in (4.7) are
absolutely convergent. It is immediate that Q and N are the unique solutions of the matrix
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equations (cf. [12, Theorem 18.1], using that A2 and Ā2 do not have eigenvalues in common)

Q− Ā2QA−2 = B̄C, N −A−2NĀ2 = BC̄.
Suppose the Marchenko kernels are given by (4.4), where the reflection coefficients van-

ish. In other words, assume the Marchenko kernels to be given in terms of suitable matrix
triplets. Then each of the four uncoupled Marchenko equations (3.7) can be solved by sepa-
ration of variables, using well-known techniques detailed in [5, 9]. The results will be listed
in Proposition 4.1 and Theorems 4.2 and 4.3. If we employ a matrix triplet (A,B, C), we
end up solving the Marchenko equations (3.7) and deriving the potentials with the help of
(3.6).

By separation of variables and using the Marchenko equations (3.7) we easily derive the
following result.

Proposition 4.1. Suppose the Marchenko kernels are given by (4.4), where the reflection
coefficients vanish. Then the Marchenko equations (3.7) have the solutions

L(up)(n, n− 2σ) = 4C[I − 4A2(n−1)NĀ−2(n−1)QA−2]−1A2(n−1)NĀ−2(n−σ)B̄,
L̄

(up)(n, n− 2σ − 1) = −2CA2[I − 4A2(n−2)NĀ−2(n−1)Q]−1A2(n−σ−2)B,
L(dn)(n, n− 2σ − 1) = −2C̄Ā−2[I − 4Ā−2(n−1)QA2(n−2)N ]−1Ā−2(n−σ−1)B̄,

L̄
(dn)(n, n− 2σ) = 4C̄[I − 4Ā−2nQA2(n−2)NĀ2]−1Ā−2nQA2(n−σ−1)B,

provided the matrix inverses appearing in these expressions exist. In this case the potentials
are given by

un = −2C[A−2n − 4NĀ−2nQA−2]−1B,
wn = −2C̄[Ā2(n+1) − 4QA2(n−1)NĀ2]−1B̄.

Let us now take into account the time dependence of the scattering data. Then for odd
j the Marchenko kernels (4.4) are to be modified as follows:

F (j; τ) =
1

2πi

∮
dz zj−1�(z)e−iτ(z−z−1)2 + 2CAj−1e−iτ(A−A−1)2B, (4.8a)

F̄ (j; τ) =
1

2πi

∮
dz

�̄(z)
zj+1

eiτ(z−z−1)2 + 2C̄eiτ(Ā−Ā−1)2Ā−(j+1)B̄, (4.8b)

where the contour integration is performed over the unit circle.
We now easily arrive at the following main theorem.

Theorem 4.2. Suppose the Marchenko kernels are given by (4.8), where the reflec-
tion coefficients vanish. Then the integrable discrete nonlinear Schrödinger solutions are
given by

un(τ) = −2C[A−2neiτ(A−A−1)2 − 4N eiτ(Ā−Ā−1)2Ā−2nQA−2]−1B, (4.9a)

wn(τ) = −2C̄[Ā2(n+1)e−iτ(Ā−Ā−1)2 − 4QA2(n−1)e−iτ(A−A−1)2NĀ2]−1B̄, (4.9b)

provided the matrix inverses in these expressions exist.
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Proof. It is sufficient to prove Theorem 4.2 for τ = 0 and then to make the following
changes in the final result:

B �→ e−iτ(A−A−1)2B, C̄ �→ C̄eiτ(Ā−Ā−1)2 , N �→ e−iτ(A−A−1)2N eiτ(Ā−Ā−1)2 ,

whereas A, C, B̄ and Q remain unchanged.

Let us return to the focusing case. Define the non-negative selfadjoint matrices

Q =
∞∑

σ=0

A†−2σC†CA−2σ, N =
∞∑

σ=0

A−2σBB†A†−2σ
, (4.10)

so that

Q = A†−1
Q, N = −NA†−1

.

Then Q and N are the unique solutions of the Stein equations [12]

Q −A†−2
QA−2 = C†C, N −A−2NA†−2

= BB†. (4.11)

Using (4.6) and (4.10) we now specialize Theorem 4.2 to the focusing case as follows.

Theorem 4.3 (Focusing case). Let the Marchenko kernel be given by

F (2s − 1) = −F̄ (2s − 1)† = 2CA2(s−1)e−iτ(A−A−1)2B.

Then the potential is given by

un(τ) = −2C[A−2neiτ(A−A−1)2 + 4NA†2(n−1)
eiτ(A†−A†−1

)2QA−2]−1B, (4.12)

where wn(τ) satisfies

wn(τ) = −un(τ)†, n ∈ Z.

Proof. Let us define the additional triplet (Ā, B̄, C̄) by (4.6). Then (4.12) follows immedi-
ately from (4.9a) and (4.10). Using (4.9b), (4.6) and (4.10) we derive

wn(τ) = 2B†[A†−2n
e−iτ(A†−A†−1

)2 + 4QA2(n−1)e−iτ(A−A−1)2NA†−2
]−1C†, (4.13)

which implies (4.12).

5. Continuous Matrix NLS Limit

In this section we prove that the matrix IDNLS solutions obtained converge to solutions of
the continuous matrix NLS equations as the discretization step size vanishes. We restrict
ourselves to the focusing case while pointing out that in general the convergence proof is
not essentially different.
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First of all, we observe that

i
d

dt
Un =

Un+1 − 2Un + Un−1

h2
− Un+1W nUn − UnW nUn−1, (5.1a)

−i d
dt

W n =
W n+1 − 2W n + W n−1

h2
− W n+1UnW n−W nUnW n−1, (5.1b)

is the discretization of the continuous matrix Zakharov–Shabat system

iU t = Uxx − 2UWU , (5.2a)

−iW t = W xx − 2WUW , (5.2b)

obtained by using the following finite differencing scheme:

Un(t) = U(nh, t), W n(t) = W (nh, t).

Equations (5.2) reduce to (1.1) when employing the following rescaling [4, Eq. (3.2.6)]:

un = hUn, wn = hW n, τ = (t/h2).

Taking into account (4.12) where all of the eigenvalues of A have modulus larger than
one, we rescale the matrix triplet (A,B, C) as follows:

A �→ ehA, B �→
√
hB, C �→

√
hC. (5.3)

Here the new triplet (A,B,C) is such that A has only eigenvalues with positive real part.
We easily get

eiτ(A−A−1)2 �→ e4it
(

sinh(hA)
h

)2

∼ e4itA2
as h→ 0+. (5.4)

Moreover, using the trapezoid rule

∫ ∞

0
dxF (x) ∼ h


1

2
F (0) +

∞∑
j=1

F (jh)




valid for C2-functions belonging to L1(R+), we see that

Q =
∞∑

j=0

A†−2jC†CA−2j �→ h

∞∑
j=0

e−2jhA†
C†Ce−2jhA



∫ ∞

0
dz e−2zA†

C†Ce−2zA =
1
2
Q, (5.5a)

N =
∞∑

j=0

A−2jBB†A†−2j �→ h

∞∑
j=0

e−2jhABB†e−2jhA†



∫ ∞

0
dz e−2zABB†e−2zA†

=
1
2
N, (5.5b)
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where

Q =
∫ ∞

0
dz e−zA†

C†Ce−zA, N =
∫ ∞

0
dz e−zABB†e−zA†

.

Applying the rescaling (5.3) to (4.12) we get

Un(t) = −2
h
C[A−2neih

−2t(A−A−1)2 + 4NA†2(n−1)
eih

−2t(A†−A†−1
)2QA−2]−1B

= −2C
[
e−2nhAe4it

(
sinh(hA)

h

)2

+ 4
N

2
e2nhA†

e−2hA†
e4it

(
sinh(hA†)

h

)2Q

2
e−2hA

]−1

B

(5.6)

With the help of (5.4) and (5.5) we calculate the limit of (5.6) as the step size h goes to
zero while x = nh, obtaining

Un ∼ −2C [e−2xAe4itA2
+Ne2xA†

e4itA†2

Q]−1B. (5.7)

In [5, 9, 10], explicit solutions of the continuous focusing matrix NLS equation have
been derived by solving the Marchenko equations by separation of variables, leading to the
solution formula (5.7).

6. Examples

In this section we work out two illustrative examples. The first one regards multipole solu-
tions which can be easily treated by using the (A,B,C) method discussed in this paper.
The second one involves the physically relevant (see, for example, [15, 16]) Manakov case,
where N = 2 and M = 1.

Example 6.1 (Nonscalar multipole solutions). In the focusing case we consider the
triplet (A,B, C) defined by

A =
(

1 − i −1
0 1 − i

)
, B =

(
2 1
1 2

)
, C =

(
3 2
4 5

)
.

Then the solutions of the corresponding Stein equations (4.11) are given by

Q =




14 − 14i
70
3

− 14i

52
3

− 122
3
i

460
9

− 566
9
i


, N =



−236

27
+

326
27

i −46
9

+
10
3
i

−10
3

+
70
9
i −8

3
+

8
3
i


.

It is not a good idea to write explicitily the 2 × 2 solutions of (1.1) by unzipping (4.12)
and (4.13), because the expressions obtained are very long and take two to three pages!
However, by using Mathematica to compute un(τ) and wn(τ) by means of (4.12) and (4.13)
for various values of τ and substituting the result into (1.1), we have found our solutions
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Fig. 1. Real part of the first component of un(τ ) for n fixed (on the left) and t fixed (on the right).

to satisfy (1.1) within an error of at most 10−15. A Mathematica notebook producing the
IDNLS solution is available on request.

Example 6.2 (Manakov solution). Consider the focusing case, where A = (3), B = (2),
C =

(
1 1

)
and (4.6) holds. Then the corresponding Stein equations (4.11) admit as solu-

tions

Q =
(

81
40

)
, N =

(
81
20

)
.

We easily calculate (by hand or by using computer algebra) the potentials un(τ) and wn(τ)
via formulas (4.12) and (4.13), obtaining

un(τ) =




−4

3−2ne
64
9

iτ + 1
20034+2ne

64
9

iτ

−4

3−2ne
64
9

iτ + 1
20034+2ne

64
9

iτ




wn(τ) =
( 4

3−2ne−
64
9

iτ + 1
20034+2ne−

64
9

iτ

4

3−2je−
64
9

iτ + 1
20034+2ne−

64
9

iτ

)
.

By using Mathematica we have checked that (1.1) is satisfied.
In Fig. 1 we have plotted the real part of the first component of un(τ) for fixed n and

for fixed τ , respectively.

Appendix A. The Discrete Gronwall Inequality

In this appendix we derive the following discrete Gronwall inequality.

Proposition A.1. Suppose {pk}∞k=n and {qk}∞k=n are two sequences of non-negative num-
bers such that the series

∑∞
k=n+1 qk converges and

pn ≤ 1 +
∞∑

k=n+1

qk pk. (A.1)
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Then

pn ≤ exp


 ∞∑

k=n+1

qk


. (A.2)

Proof. Iterating (A.1) we get

pn ≤ 1 +
∞∑

s=1

∞∑
k1=n+1

qk1

∞∑
k2=k1+1

qk2

∞∑
k3=k2+1

qk3 . . .
∞∑

ks=ks−1+1

qks

≤ 1 +
∞∑

s=1

1
s!


 ∞∑

k=n+1

qk


s

≤ exp


 ∞∑

k=n+1

qk


,

where [4, Eq. (A.1.3)] has been used repeatedly.

Appendix B. Derivation of the Marchenko Equations

In this appendix we derive the Marchenko equations (3.3) under the condition that the
transmission coefficients only have simple poles.

We first write (2.10) in the form

φn(z) = ψ̄n(z)t̄l(z) − φ̄n(z)�̄(z), (B.1a)

φ̄n(z) = ψn(z)tl(z) − φn(z)�(z). (B.1b)

We now write the transmission coefficients in the form

tr(z) = tr0(z) +
∑

k

trk

z − ζk
, tl(z) = tl0(z) +

∑
k

tlk

z − ζk
, (B.2a)

t̄r(z) = t̄r0(z) +
∑

k

t̄rk

z − ζ̄k
, t̄l(z) = t̄l0(z) +

∑
k

t̄lk

z − ζ̄k
, (B.2b)

where tl0(z) and tr0(z) are analytic for |z| > 1 and t̄l0(z) and t̄r0(z) are analytic for |z| < 1.
We can thus write

φn(ζk)trk = ψn(ζk)Crk, φ̄n(ζk)t̄rk = ψ̄n(ζk)C̄rk, (B.3a)

ψn(ζ̄k)tlk = φn(ζ̄k)C lk, ψ̄n(ζ̄k)t̄lk = φ̄n(ζ̄k)C̄ lk, (B.3b)

where the so-called norming constants Crk, C̄rk, C lk and C̄ lk have the same ranges as tlk,
t̄lk, trk and t̄rk, respectively.

Now we employ the following identities:

1
z − ζk

= −
∞∑

σ=0

ζ−σ−1
k zσ, |z| < |ζk|, (B.4a)

1
z − ζ̄k

=
∞∑

σ=0

ζ̄σ
k z

−σ−1, |z| > |ζ̄k|. (B.4b)
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Starting from (B.1a) we get with the help of (B.3b)

Mn(z) = N̄n(z)t̄l0(z) +
∑

k

N̄n(z) − N̄n(ζ̄k)
z − ζ̄k

t̄lk

+
∑

k

ζ̄−2n
k M̄n(ζ̄k)C̄ lk

z − ζ̄k
− z−2nM̄n(z)�̄(z).

Using (B.4b) we then get the Marchenko equation

L(n, j) =
(
IN

0MN

)
(IN − unwn)−1δnj

−
n∑

j′=−∞
L̄(n, j′)

[
−
∑

k

ζ̄
−(j′+j+1)
k C̄lk + ˆ̄�(j′ + j)

]
︸ ︷︷ ︸

F̄ l(j′+j)

. (B.5a)

Finally, starting from (B.1b) we get with the help of (B.3b)

M̄n(z) = Nn(z)tl0(z) +
∑

k

Nn(z) − Nn(ζk)
z − ζk

tlk

+
∑

k

ζ2n
k Mn(ζk)C lk

z − ζk
− z2nMn(z)�(z).

Now write down the component analytic inside the disk by deleting terms analytic outside
the disk and vanishing at infinity to get

∞∑
s=0

zsL̄(n, n+ s) =
(

0NM

IM

)
(IM − wnun)−1δnj +

∑
k

ζ2n
k Mn(ζk)C lk

z − ζk

−
∞∑

s=0

zs

∫ ∞

σ=0
L(n, n+ σ)�̂(2n + s+ σ).

Using (B.4a) we then get the Marchenko equation

L̄(n, j) =
(

0NM

IM

)
(IM − wnun)−1δnj

−
n∑

j′=−∞
L(n, j′)

[∑
k

ζj′+j−1
k C lk + �̂(j′ + j)

]
︸ ︷︷ ︸

F l(j′+j)

. (B.5b)
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