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Following the recent analyses of extinction by Berg et al. [J Opt Soc Am A

2008;25:1504–1513; J Opt Soc. Am A 2008;25:1514–1520], we show that although it

is possible to define and measure the extinction cross section for a single particle using a

detector of light facing the incident beam, this requires certain theoretical assumptions

and experimental precautions.
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1. Introduction

There are two conventional ways to define the extinction cross section Cext for a particle embedded in a non-absorbing
host medium [1,2]. The operational way is used to define Cext as a direct optical observable in the context of modeling the
response of a detector of light facing the incident beam. The analytical way is used to define Cext by integrating the Poynting
vector of the total electromagnetic field over the surface of a large imaginary sphere centered at the particle and
representing this integral as the difference between extinction and scattering components (see, e.g., Section 2.8 of [2]).
Whereas the operational definition remains valid in the case of an absorbing host medium [3–6], the analytical definition
becomes highly problematic if even applicable (see [7] and references therein).

In two recent publications, Berg et al. [8,9] revisited the operational definition of Cext and concluded that the practical
measurement of Cext for a single particle may require the detector surface to subtend a very large solid angle around the
direction of incidence, whereas extinction measurements for a random group of particles are free of this problem.
The former conclusion appears to be paradoxical since the derivation of Cext in [2] is based on the Saxon expansion of the
incident plane wave into incoming and outgoing spherical waves containing solid-angle delta functions centered at the
exact backscattering and forward-scattering directions, respectively. As such, it may seem to imply that the practical
measurement of Cext only requires the surface of the far-field detector to be larger than the particle projection.

In this note we give a simple explanation of this paradox and demonstrate that the classical operational definition of Cext

works well theoretically, except in singularly idealistic circumstances. Yet the practical use of the operational definition
requires certain precautions. In a sense, our paper is intended to clarify and refine the discussion of the operational
definition of the extinction cross section on p. 74 of Bohren and Huffman [10].
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2. Theoretical analysis

For simplicity, we will consider scattering of scalar time-harmonic waves and omit the common factor expð�iotÞ; where
i ¼ (�1)1/2 and o is the angular frequency. The field illuminating a particle is given by u0 expðikninc � rÞ, where k is the
wave number, r is the position vector originating at a point P inside the particle, and ninc is the unit vector in the incidence
direction (Fig. 1). The scattered field in the far zone is given by u1ðr̂Þ expðikrÞ=r, where r ¼ |r| and r̂ ¼ r=r ¼ n̂

sca
is the

unit vector in the scattering direction. Note that the dimension of u1 is that of u0 multipled by the dimension of length.
The infinite homogeneous medium surrounding the scattering object is assumed to be nonabsorbing, and so k is
real-valued.

Let us integrate the total intensity over a circular detector surface S perfectly centered at and exactly normal to the
incidence direction (Fig. 1). The surface is perfectly flat and coincides with a z ¼ R plane, where the z axis originates at P and
is directed along ninc. Assuming that D/25R, where D is the diameter of the sensitive area, we have for a point O on the
detector surface:

r � Rþ
r2

2R
. (1)

The total intensity at this point is then given by

u0 expðikRÞ þ
u1ðr̂Þ expðikrÞ
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2 þ

2

R
Re½un

0u1ðr̂Þ expðikr2=2RÞ�. (2)

Since it is the complex exponential factor on the right-hand side of this formula that ultimately leads to the optical
theorem, we will simplify the analysis by assuming that u1ðr̂Þ ¼ constant ¼ u1, which is usually referred to as the case of
‘‘isotropic scattering’’ by a ‘‘point-like particle’’. Integrating the intensity (2) over the entire detector area, we find

pD2

4
ju0j

2 þ
2

R
Re un

0u1

Z 2p

0
dy
Z D=2

0
drr expðikr2=2RÞ

( )

¼
pD2

4
ju0j

2 �
4p
k

Im un
0 u1 1� exp

ikD2

8R

 !" #( )
. (3)

This formula is, in fact, quite remarkable and confirms one of the main results of [8]: the detector signal is a frequently and
strongly oscillating function of the diameter of the detector surface (or, equivalently, of the acceptance solid angle
subtended by the detector surface as viewed from the particle). Furthermore, the amplitude of the oscillations does not
decrease with increasing D or R. This does appear to make the measurement of Cext (according to its operational definition)
highly problematic.
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Fig. 1. Integration of the total intensity over a circular detector surface.
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Fig. 2. Integration of the total intensity over a square detector surface.
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Let us now consider a square detector surface (Fig. 2). Now the surface integral can be computed using rectangular
Cartesian coordinates. We then have
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where

CðaÞ ¼
Z a

0
dx cos

px2

2

� �
(5)

and

SðaÞ ¼
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0
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px2

2

� �
(6)

are Fresnel integrals. Using the rational approximations [11]
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f ðaÞ � 1þ 0:926a
2þ 1:792aþ 3:104a2

, (9)

gðaÞ � 1

2þ 4:142aþ 3:492a2 þ 6:670a3
, (10)

we can conclude that although the second term on the right-hand side of Eq. (4) is an oscillating function of L, the
amplitude of the oscillations decreases with increasing L, and the integral over the detector surface approaches the well-
known limit [1]

L2
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4p
k

Imfun
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To help illustrate the significance of Eqs. (3) and (4), the main functional form of these equations is plotted in Fig. 3 as a
function of the ‘‘detector size parameter’’ kL. For simplicity, the amplitude of the incident wave u0 is taken to be unity and
the amplitude of the forward scattered wave is taken as u1 ¼ expðip=4Þ: One can see the asymptotic damping of Eq. (4) as
roughly 1/kL and the lack of damping for Eq. (3). Notice that both curves oscillate about the value �Im u1 ¼ � sinðp=4Þ;
thereby showing that Cext is ultimately determined by the phase and magnitude of the scattered wave in the forward
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Fig. 3. Examples of the behavior of the integrals in Eqs. (3) and (4) as a function of the ‘‘detector size parameter’’ kL. The main functional form of the

integral in Eq. (3) is shown in blue and its curve is the solid blue line. Likewise, Eq. (4) is shown in red and its curve is the dashed red line. The dotted black

line indicates a 1/kL functionality, and one can see its similarity to the large-argument behavior of Eq. (4). Both curves oscillate about a value of

�Im u1 ¼ � sinðp=4Þ; as shown by the gray straight dashed line assuming the values of u0, u1 and kR indicated. Note that the substitution D ¼ L has been

made, recall Figs. 1 and 2. Also note that the restriction of Eq. (12) is not satisfied here. The values of kR and kL selected are such that only the general

behavior of Eqs. (3) and (4) is shown.
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direction. This is, of course, expected from the optical theorem, see Eq. (34) in [8]. This result shows that the operational
definition of Cext can work in the case of a square detector surface for large enough kL. Furthermore, one can easily derive a
formula for the angular diameter of the detector (as viewed from the particle) that ensures better than 1% accuracy of the
measurement of Cext:

L

R
4200

ffiffiffiffiffiffi
p
kR

r
¼ 200

ffiffiffiffiffiffi
l

2R

r
, (12)

where l is the wavelength in the surrounding medium. Obviously, the requisite angular size decreases rather slowly with R.
However, the actual angular variability of u1ðr̂Þ for wavelength-sized and larger particles, especially those lacking spherical
symmetry, is likely to result in a significantly less demanding condition than Eq. (12).

Eq. (12) refines the generic requirement kL2/4Rb4p quoted on [10, p. 74] below Eq. (3.32).
3. Discussion

The above analysis can be used to explain the somewhat paradoxical results of [8,9]. Indeed, it shows that the
operational definition of Cext fails only if one considers the highly idealistic case of a perfectly circular detector surface
perfectly centered at and exactly normal to the line drawn through the particle origin in the incidence direction. This
conclusion is consistent with the numerically exact Lorenz–Mie results reported in [8] as well as with the requirement to
exclude a circular detector boundary in the derivation of Eq. (3.32) on [10, p. 74]. Any deviation from this perfect geometry
mitigates the problem. For example, imperfect centering of the circular detector surface, essentially any other shape of the
detector surface, or random movements of the particle(s) during the measurement can restore the validity of the
operational definition of Cext under conditions similar to and perhaps even weaker than Eq. (12). This happens because the
high-frequency oscillations caused by the complex exponential expðikD2=8RÞ in Eq. (3) get effectively averaged out. In fact,
this is exactly what the results of [9] for a finite group of arbitrarily positioned particles imply. Obviously, the measurement
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of extinction for a group of randomly moving particles should be long enough to ensure ergodicity and average out
dynamic-scattering effects [12,13].

The reason that the circular detector case appears to be special is because the surfaces of constant phase of the far-field
scattered wave intercept the detector in circular contours that are exactly centered on and degenerate in shape with the
detector. Consequently, when the detector radius D/2 increases, the phase of the scattered wave on the detector’s edge
advances uniformly over the entire detector-edge circumference. To compare this to the square detector case, one can think
of the square as being separated into a circular surface of radius L/2 and four ‘‘corner pieces’’. The phase of the far-field
scattered wave varies over the circular portion as L is increased exactly as is it does for the circular detector. However, the
corner pieces experience a different functionality of scattered-wave phase advance with increasing L. This adds extra
oscillations to the energy flow that are not in ‘‘harmony’’ with the circular part, evidently resulting in a damping of the
integral.

The importance of our analysis is at least three-fold. First, it confirms the classical operational definition of the
extinction cross section [1,2]. Second, it reinforces the validity of the analyses of extinction in the case of an absorbing host
medium in [3–7]. Third, it facilitates the practical measurement of Cext for a single particle.

Still, the criterion (12) appears to be quite damaging to the operational definition and measurement of the extinction
cross section. For example, evaluating Eq. (12) for R ¼ 1 m and l ¼ 532 nm implies L410 cm, although, as we have already
mentioned, the situation can be expected to improve for wavelength-sized and larger particles, especially those lacking
perfect spherical shape. All in all, Eq. (12) implies that although the use of the Saxon expansion in the operational definition
of the extinction cross section allows the angular size of the detector surface to become infinitesimal as R tends to infinity,
the geometrical size of the detector surface must still grow as the square root of R.
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