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a b s t r a c t

In this paperwepropose anew finite element frequencydomain (FEFD)method to compute
the band spectra of 2D photonic crystals without impurities. Exploiting periodicity to
identify discretization points differing by a period, it increases the effectiveness of the
algorithm and reduces significantly its computational complexity. The results of an
extensive experimentation indicate that our method offers an effective alternative to the
most quoted methods in the literature.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

In this article we develop a finite element method for the Maxwell equations relevant to 2D photonic crystals [1,2] and
employ the resulting generalized eigenvalue problems to determine their band spectra. In photonic crystals there is no
accumulation of electric charge, no electric current and nomagneticmaterial. As a consequence, assuming dielectric isotropy
of the stationary medium and using harmonic modes, the Maxwell equations, which govern light transmission in photonic
crystals, reduce to the following system of equations:

∇ · [εE] = 0, [Coulomb’s law] (1.1a)
∇ × H − iκεE = 0, [Ampère’s law] (1.1b)
∇ × E + iκH = 0, [Faraday’s law] (1.1c)
∇ · H = 0. [Absence of free magnetic poles] (1.1d)

Here E and H are the electric and magnetic fields, ε is the dielectric constant (which depends on position x ∈ R2 but not
on time t), and the spectral parameter κ =

ω
c is the ratio of the harmonic angular frequency ω and the lightspeed c. In

2D photonic crystals, the dielectric constant, for certain linearly independent vectors a1, a2 ∈ R2, satisfies the periodicity
condition

ε(x + m1a1 + m2a2) = ε(x), (1.2)

where m1 and m2 are arbitrary integers. In the 2D case the harmonic modes can be decomposed into two independent
polarizations, the transverse magnetic (TM) mode and the transverse electric (TE) mode. In the TM mode the electric field
ψ satisfies the Helmholtz equation [3]

− ∇
2ψ = ηεψ, (1.3)
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whereas in the TE mode the magnetic field ψ satisfies

− ∇ ·


1
ε
∇ψ


= ηψ. (1.4)

In (1.3) and (1.4), η = κ2 is the spectral parameter allowing one to identify the band spectra and the field ψ points in the
z-direction and only depends on (x, y) ∈ R2. Using the Bloch representation

ψ(x, k) = eik·xφ(x, k),

where the wavevector k belongs to the first Brillouin zone [4] and φ satisfies the periodicity condition

φ(x + m1a1 + m2a2, k) = φ(x, k) (1.5)

for anym1,m2 ∈ Z, we obtain instead of (1.3) and (1.4) the equation

− ∇
2φ − 2ik · ∇φ + ∥k∥

2φ = ηεφ (1.6)

for TM modes and the equation

− ∇ ·


1
ε
∇φ


− i∇ ·


1
ε
kφ


− i
1
ε
k · ∇φ +

∥k∥
2

ε
φ = ηφ (1.7)

for TEmodes. In (1.6) and (1.7), as throughout the paper, ∥·∥ denotes the Euclidean norm. Our goal is to find the eigenvalues
η as a function of k varying in the first Brillouin zone.

Several numerical methods have been proposed for the solution of the Maxwell equations in the case of 1D, 2D and
3D periodic dielectric media. Depending on the problem, algorithms working either in the time or frequency domain or
algorithms working in real or reciprocal space have been proposed. Among the frequency domain methods, we refer to the
Fourier expansion (FE) method [1,5,6], the finite difference frequency domain (FDFD) method [7,8], and the finite element
frequency domain (FEFD) method [9–17]. From what we know, all of the FEFD methods proposed so far have a higher
computational complexity than the FE and FEFD methods proposed in [1,7], respectively. The reason is probably due to
an inefficient use of the periodicity conditions. The method presented here is the only FEFD method that exploits these
conditions efficiently, converting the initial problem into a generalized eigenvalue problem whose matrices are strongly
structured. As a consequence, it allows us to increase the accuracy of the computation of spectral bands, as well as to reduce
its computational complexity. More precisely, choosing positive integers n,m and the division points

xj,l = (j/n)a1 + (l/m)a2, (j, l) ∈ Z2, (1.8)

as in [7], we can convert the FEFD method for the TM and TE cases into linear systems of the type

(A − ηB)φ = 0, (1.9)

where A and B are sparse positive definite matrices of order nm. As a consequence, our method approximates η by solving
the generalized eigenvalue problem (1.9).

The outline of the paper is as follows: in Section 2, we illustrate the implementation of our method in the rectangular
and oblique 2D crystal cases. Section 3 is devoted to the analysis of the generalized eigenvalue problem to solve, while in
Section 4wepresent the results of extensive numerical experimentation. These results have been obtained by using our FEFD
method and by comparing themwith those obtained by using both our FDFDmethod [7] and the FEmethod of Joannopoulos
et al. [1], which is the most quoted and used method in the photonic crystals area. Section 5 is devoted to our conclusions.

2. Finite element frequency domain (FEFD)

In this sectionwe illustrate the finite elementmethod thatwe developed in the frequency domain to compute the spectra
of 2D photonic crystals. As far as the notation is concerned we refer to [18].
a. Rectangular case. Setting A = {t1a1 + t2a2 : 0 ≤ t1, t2 < 1}, let us define the complex Hilbert spaces Hper and H1

per

consisting of those measurable complex-valued functions φ on R2 which satisfy the periodicity condition (1.5) and are
finite with respect to the following respective squared norms:

∥φ∥
2
Hper

=


A
dxdy |φ(x, y)|2,

∥φ∥
2
H1
per

=


A
dxdy(|φ(x, y)|2 + ∥∇φ(x, y)∥2).

As a consequence of the first Green identity and the periodicity condition, we see that φ ∈ H1
per is a variational solution to

(1.6) (TM mode) if
A
dxdy{∇φ · ∇v∗

− 2i[k · ∇φ]v∗
+ ∥k∥

2φv∗
− ηεφv∗

} = 0, (2.1)
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Fig. 1. In the left half of the figure some periodic linear spline functions (2.3) are displayed and in the right half their support in the case of a 4× 4 regular
mesh.

for every v ∈ H1
per. Analogously, we call φ ∈ H1

per a distributional solution to (1.7) (TE mode) if
A
dxdy


1
ε
∇φ · ∇v∗

− iv∗k · ∇


1
ε
φ


−

i
ε
v∗k · ∇φ +

∥k∥
2

ε
φv∗

− ηφv∗


= 0, (2.2)

for every v ∈ H1
per.

Restricting ourselves to rectangular 2D crystals where a1 = (a, 0) and a2 = (0, b), and putting hx = (a/n), hy = (b/m),
we interpolate φ ∈ H1

per as follows:

Φj,l(x, y) =

∞
s=−∞

∞
σ=−∞

ϕ


x − xns+j,mσ+l

hx


ϕ


y − yns+j,mσ+l

hy


, (2.3)

where xns+j,mσ+l = (xns+j,mσ+l, yns+j,mσ+l) and

ϕ(x) =


1 − |x|, −1 ≤ x ≤ 1,
0, x ≤ −1 or x ≥ 1,

is a linear spline supported on [−1, 1] (Fig. 1). Then each function Φj,l(x, y) belongs to H1
per and satisfies the periodicity

conditions

Φj+n,l(x, y) = Φj,l+m(x, y) = Φj,l(x, y), (j, l) ∈ Z2.

Furthermore, {Φj,l(x, y) : (j, l) ∈ Z2
} is a partition of unity in the sense that

∞
j=−∞

∞
l=−∞

Φj,l(x, y) = 1, (x, y) ∈ R2.

Let us denote by Sn,m the nm-dimensional subspace of H1
per spanned by the linear spline functions Φj,l(x, y) (j =

0, 1, . . . , n − 1, l = 0, 1, . . . ,m − 1), and let us write down the variational equations (2.1) and (2.2) for φ, v ∈ Sn,m.
Substituting

φ(x, y) =

n−1
j′=0

m−1
l′=0

φj′,l′Φj′,l′(x, y)

and v = v∗
= Φj,l, from (2.1) we obtain the linear system (TMmode) of order nm

n−1
j′=0

m−1
l′=0

φj′,l′

 a

0
dx
 b

0
dy {(∇Φj′,l′ + iΦj′,l′k) · (∇Φj,l − iΦj,lk)}

= η

n−1
j′=0

m−1
l′=0

φj′,l′

 a

0
dx
 b

0
dy ε(x, y)Φj′,l′(x, y)Φj,l(x, y) (2.4)
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whose unknowns are the values of φ(x, y) at the interpolation points of the photonic cell 0 ≤ x ≤ a, 0 ≤ x ≤ b. From (2.2)
(TE mode) we obtain instead

n−1
j′=0

m−1
l′=0

φj′,l′

 a

0

 b

0

dx dy
ε(x, y)

{(∇Φj′,l′ + iΦj′,l′k) · (∇Φj,l − iΦj,lk)}

= η

n−1
j′=0

m−1
l′=0

φj′,l′

 a

0
dx
 b

0
dyΦj′,l′(x, y)Φj,l(x, y). (2.5)

The linear systems (2.4) and (2.5) constitute the finite element schemes to compute the eigenvalues η for fixed wavevector
k for the TM and TE modes, respectively.

In the homogeneous case (ε(x, y) ≡ ε constant) the generalized linear systems (2.4) and (2.5) coincidewhenwe consider
a regular grid (hx = hy = h) on a square domain (a = b). In this case the corresponding matrices A and B of (1.9) have the
following structured forms:

A =



α β2 0 β∗

2 β1 γ1 0 γ2 0 0 0 0 β∗

1 γ ∗

2 0 γ ∗

1
β∗

2 α β2 0 γ2 β1 γ1 0 0 0 0 0 γ ∗

1 β∗

1 γ ∗

2 0
0 β∗

2 α β2 0 γ2 β1 γ1 0 0 0 0 0 γ ∗

1 β∗

1 γ ∗

2
β2 0 β∗

2 α γ1 0 γ2 β1 0 0 0 0 γ ∗

2 0 γ ∗

1 β∗

1
β∗

1 γ ∗

2 0 γ ∗

1 α β2 0 β∗

2 β1 γ1 0 γ2 0 0 0 0
γ ∗

1 β∗

1 γ ∗

2 0 β∗

2 α β2 0 γ2 β1 γ1 0 0 0 0 0
0 γ ∗

1 β∗

1 γ ∗

2 0 β∗

2 α β2 0 γ2 β1 γ1 0 0 0 0
γ ∗

2 0 γ ∗

1 β∗

1 β2 0 β∗

2 α γ1 0 γ2 β1 0 0 0 0
0 0 0 0 β∗

1 γ ∗

2 0 γ ∗

1 α β2 0 β∗

2 β1 γ1 0 γ2
0 0 0 0 γ ∗

1 β∗

1 γ ∗

2 0 β∗

2 α β2 0 γ2 β1 γ1 0
0 0 0 0 0 γ ∗

1 β∗

1 γ ∗

2 0 β∗

2 α β2 0 γ2 β1 γ1
0 0 0 0 γ ∗

2 0 γ ∗

1 β∗

1 β2 0 β∗

2 α γ1 0 γ2 β1
β1 γ1 0 γ2 0 0 0 0 β∗

1 γ ∗

2 0 γ ∗

1 α β2 0 β∗

2
γ2 β1 γ1 0 0 0 0 0 γ ∗

1 β∗

1 γ ∗

2 0 β∗

2 α β2 0
0 γ2 β1 γ1 0 0 0 0 0 γ ∗

1 β∗

1 γ ∗

2 0 β∗

2 α β2
γ1 0 γ2 β1 0 0 0 0 γ ∗

2 0 γ ∗

1 β∗

1 β2 0 β∗

2 α



, (2.6)

where, setting k2 = k2x + k2y ,

α =
8
3

+
4
9
k2h2,

β1 = −
1
3

+
1
9
k2h2

−
2
3
ikyh, β∗

1 = −
1
3

+
1
9
k2h2

+
2
3
ikyh,

β2 = −
1
3

+
1
9
k2h2

−
2
3
ikxh, β∗

2 = −
1
3

+
1
9
k2h2

+
2
3
ikxh,

γ1 = −
1
3

+
1
36

k2h2
− i
(kx + ky)h

6
, γ ∗

1 = −
1
3

+
1
36

k2h2
+ i
(kx + ky)h

6
,

γ2 = −
1
3

+
1
36

k2h2
+ i
(kx − ky)h

6
, γ ∗

2 = −
1
3

+
1
36

k2h2
− i
(kx − ky)h

6
,

and

B =



a b 0 b b c 0 c 0 0 0 0 b c 0 c
b a b 0 c b c 0 0 0 0 0 c b c 0
0 b a b 0 c b c 0 0 0 0 0 c b c
b 0 b a c 0 c b 0 0 0 0 c 0 c b
b c 0 c a b 0 b b c 0 c 0 0 0 0
c b c 0 b a b 0 c b c 0 0 0 0 0
0 c b c 0 b a b 0 c b c 0 0 0 0
c 0 c b b 0 b a c 0 c b 0 0 0 0
0 0 0 0 b c 0 c a b 0 b b c 0 c
0 0 0 0 c b c 0 b a b 0 c b c 0
0 0 0 0 0 c b c 0 b a b 0 c b c
0 0 0 0 c 0 c b b 0 b a c 0 c b
b c 0 c 0 0 0 0 b c 0 c a b 0 b
c b c 0 0 0 0 0 c b c 0 b a b 0
0 c b c 0 0 0 0 0 c b c 0 b a b
c 0 c b 0 0 0 0 c 0 c b b 0 b a



, (2.7)
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where

a =
4
9
h2, b =

1
9
h2, c =

1
36

h2.

Both matrices A and B are Hermitian sparse and block-circulant whose blocks are circulant matrices as well. The same
conclusions hold true if a ≠ b and the mesh decomposition is not uniform (hx ≠ hy). In the inhomogeneous case, A is as
before for the TMmodes while B is not block-circulant and conversely, for the TE modes, B is block-circulant as in (2.7) and
A is not block-circulant.
b. Oblique case. If the 2D photonic crystal is oblique, we make the coordinate transformation

x = col(a1, a2)ξ =


a11 a21
a12 a22


ξ
ζ


= AT ξ, (2.8)

where ξ and ζ are orthogonal coordinates and a1 and a2 denote the transposed rows of A. The finite element schemes for the
TM and TEmodes are easily found by applying the coordinate transformation (2.8) to (2.4) and (2.5), where the integration is
performed over the parallelogram A instead of [0, a]×[0, b]. Omitting the obvious definitions of φ̃j,l and Φ̃j,l, we get instead
of (2.4) (TM mode)

n−1
j′=0

m−1
l′=0

φ̃j′,l′

 1

0
dξ
 1

0
dζ


b1 · ∇ξΦ̃j′,l′

2π
i +

b2 · ∇ξΦ̃j′,l′

2π
j + iΦ̃j′,l′k



×


b1 · ∇ξΦ̃j,l

2π
i +

b2 · ∇ξΦ̃j,l

2π
j − iΦ̃j,lk



= η

n−1
j′=0

m−1
l′=0

φ̃j′,l′

 1

0
dξ
 1

0
dζ ε̃(ξ , ζ )Φ̃j′,l′(ξ , ζ )Φ̃j,l(ξ , ζ ), (2.9)

where i = (1, 0)T and j = (0, 1)T .
Moreover, instead of (2.5) (TE mode) we get

n−1
j′=0

m−1
l′=0

φ̃j′,l′

 1

0

 1

0

dξdζ
ε̃(ξ , ζ )


b1 · ∇ξΦ̃j′,l′

2π
i +

b2 · ∇ξΦ̃j′,l′

2π
j + iΦ̃j′,l′k



×


b1 · ∇ξΦ̃j,l

2π
i +

b2 · ∇ξΦ̃j,l

2π
j − iΦ̃j,lk



= η

n−1
j′=0

m−1
l′=0

φ̃j′,l′

 1

0
dξ
 1

0
dζ Φ̃j′,l′(ξ , ζ )Φ̃j,l(ξ , ζ ). (2.10)

In this case, as in the rectangular case, the initial problem has been converted in the generalized eigenvalue problem (1.9).
As far as the structure of the matrices A and B is concerned, the conclusions are as in the rectangular case.

3. Analysis of the matrix systems

The linear systems (2.4) (TM rectangular), (2.5) (TE rectangular), (2.9) (TM oblique), and (2.10) (TE oblique), obtained by
applying our method, have the form

(A − ηB)φ = 0, (3.1)

where A is a nonnegative Hermitian matrix and B is a positive definite Hermitian matrix, both of ordermn.
The linear system (3.1) is derived by applying the variational principles (2.1) (TM mode) and (2.2) (TE mode) to φ, v

belonging to a suitable mn-dimensional subspace of H1
per.

Since the minimax characterization of the eigenvalues is also valid for (2.1) and (2.2), we easily see that the first
eigenvalue of (2.4), (2.5), (2.9) and (2.10) is larger than (or coincides with) the first eigenvalue of the corresponding
variational problem (2.1) or (2.2). In particular, these numerical principles imply that the matrices A and B in (3.1) are
nonnegative Hermitian and strictly positive Hermitian, respectively. Unless kx = ky = 0, in which case η = 0 is an
eigenvalue, the matrix A has only positive eigenvalues.

Let us now consider the detailed structure of the matrices A and B obtained by applying our FEFD method. The supports
of the spline functionsΦj,l(x, y) andΦj′,l′(x, y) have an intersection of positive measure if and only if j − j′ ∈ {0, 1,−1, n −

1, 1− n} and l− l′ ∈ {0, 1,−1,m− 1, 1−m}. To make this statement more evident, we displayed in Fig. 1 some translates
of the periodic linear spline (2.3) and the corresponding supports.
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This implies that the two-index matrices A and B appearing in the linear systems (2.4)–(2.10), obtained by applying the
FEFD method, are two-index tridiagonal matrices in the sense that their elements A(j,l),(j′,l′) and B(j,l),(j′,l′) vanish whenever
either j − j′ ∉ {0, 1,−1, n − 1, 1 − n} or l − l′ ∉ {0, 1,−1,m − 1, 1 − m}.

The matrices A in (2.4) and (2.9) (TMmode) and the matrices B in (2.5) and (2.10) (TE mode) are also two-index circulant
matrices, in the sense that A(j,l),(j′,l′) and B(j,l),(j′,l′) only depend on the remainders of j − j′ and l − l′ upon division by n and
m, respectively. In all four cases considered, the matrix A is nonnegative Hermitian and the matrix B is positive definite
Hermitian.

In homogeneous media (ε(x, y) ≡ ε constant) the eigenvalues can be explicitly obtained by resorting to the symbols
associated to the circulant matrices A and B, both in the rectangular and in the oblique case. In fact [19–21], it can be proved
that their generalized eigenvalues are given by

ĉ(z, w; k) =
â(z, w; k)

b̂(z, w; k)
, (3.2)

where â(z, w; k) and b̂(z, w; k) are the symbols of A and B, respectively, associated to k and zn = 1 and zm = 1.
Let us consider, for the sake of simplicity, the square case (a = b) and uniform mesh (hx = hy = h). In this case

â(z, w; k) = (α + β2z + β̄2z−1)+ (β1 + γ1z + γ2z−1)w + (β̄1 + γ̄2z + γ̄1z−1)w−1

and

b̂(z, w; k) = (a + bz + bz−1)+ (b + cz + cz−1)w + (b + cz + cz−1)w−1.

Writing z = eiθj with θj =
2π j
n andw = eiϕl with ϕl =

2π l
m , we can write the symbols in the form

â(eiθj , eiϕl; k) =
2
3
(4 − cos θj − cosϕl − 2 cos θj cosϕl)+

h2

9
(2 + cos θj)

× (2 + sinϕl)k2 +
2
3
hkx sin θj(2 + cosϕl)+

2
3
hky sinϕl(2 + cos θj), (3.3)

b̂(eiθj , eiϕl; k) =
h2

9
(2 + cos θj)(2 + sinϕl), (3.4)

where j, l = 0, 1, . . . , n − 1, n being the number of mesh points along the x and y axes.
It can be shown that

â(eiθj , eiϕl; k)

b̂(eiθj , eiϕl; k)
=


kx +

2π j
a

2

+


ky +

2π l
a

2

+ O


1
n2


. (3.5)

If a ≠ b and hx ≠ hy, the right hand side of (3.5) becomes (kx +
2π j
a )

2
+ (ky +

2π l
b )

2
+ O( 1

n2
+

1
m2 ), where n and m are

the number of mesh points along the x and y axes, respectively. As a result of the nonnegativity of the matrices A and B, the
symbols â(eiθj , eiϕl; k) and b̂(eiθj , eiϕl; k) are nonnegative, irrespective of the choice of hx, hy, kx and ky.

The symbol computation in the oblique homogeneous case is a straightforward generalization of that in the rectangular
case and gives results similar to (3.5), i.e. the numerical eigenvalues tend to the exact eigenvalues apart fromanO(n−2

+m−2)
term.

4. Numerical results

In this section we present the most significant numerical results of an extensive experimentation involving the band
spectra of 2D photonic crystals, carried out by using our FEFD method. These results are compared with those obtained by
using both our FDFD method proposed in [7] and the MIT Photonic-Bands software [22].

All computations in this paper were performed using MatLab (version 7.11.0) on an AMD46 computer equipped with an
Intel Core i7 860 processor with a speed of 2.80 GHz.

4.1. 2D band spectra

The photonic crystal configurations considered in this section are those depicted in Fig. 2 in the case of a rectangular
lattice, in Fig. 3 in the case of an oblique lattice, both considered before in [1], and in Fig. 4. More precisely, denoting by a
the lattice constant, we considered the following configurations of photonic crystals:

(a) a square distribution of dielectric rods (ε = 8.9, radius r = 0.2a) embedded in air (top half of Fig. 2);
(b) a square distribution of dielectric veins (ε = 8.9, thickness 0.165a) embedded in air (bottom half of Fig. 2);
(c) a triangular array of air columns drilled in a dielectric substrate (radius r = 0.48a, ε = 13), (Fig. 3);
(d) a square distribution of concentric dielectric rods (ε1,2,3 = 2, 3, 4, radii r1,2,3 = 0.4a, 0.3a, 0.2a) embedded in air (Fig. 4).
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Fig. 2. The top half of the figure shows a photonic crystal composed of a square distribution of dielectric rods (ε = 8.9, r = 0.2a) embedded in air and the
corresponding Brillouin zone. The Γ -point corresponds to kx = ky = 0, the X-point to kx = π/a and ky = 0 and the M-point to kx = ky = π/a, a being
either period. The bottom half of the figure shows a photonic crystal composed of a square distribution of dielectric veins (ε = 8.9, thickness 0.165a) in
air and the corresponding Brillouin zone.

Fig. 3. The figure shows a photonic crystal made of a triangular array of air columns drilled in a dielectric substrate (r = 0.48a, ε = 13) and the
corresponding Brillouin zone. The Γ -point corresponds to kx = ky = 0, the M-point to kx = 0 and ky = 2π/(

√
(3)a) and the K -point to kx = 2π/(3a)

and ky = 2π/(
√
(3)a), where the period parallelogram is a rhombus with sides a.

Fig. 4. The figure on the left shows a photonic crystal made of a square distribution of concentric dielectric rods (ε1,2,3 = 2, 3, 4, radii r1,2,3 =

0.4a, 0.3a, 0.2a) embedded in air, while the figure on the right shows a 3D representation of its fundamental cell where the heights of the dielectric
constants ε1,2,3 are reported on the z-axis.
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Fig. 5. The figure on the left shows the lowest TM and TE spectra obtained by our FEFD method for a square array of dielectric columns in air (top half of
Fig. 2) and on the right for a square array of dielectric veins in air (bottom half of Fig. 2).

Fig. 6. The Figure on the left shows the lowest TM and TE spectra obtained by our FEFD method for a square array of dielectric concentric columns in air
(Fig. 4), while the figure on the right shows the lowest TM and TE spectra for a photonic crystal made of a triangular distribution of rods embedded in a
dielectric medium (Fig. 3).

The photonic cell described in (d) has been introduced to extend the comparison among the results obtained by our FDFD
and FEFD methods and the FE method by using the mentioned MIT Photonic-Bands software [1].

In the rectangular case the band spectrum has been computed by solving the generalized eigenvalue problems (2.4),
(2.5). Since ε(x) is invariant under the group of automorphisms of the square lattice, it is sufficient to consider one eighth of
the Brillouin zone [4] (Fig. 2). Therefore we solve the eigenvalue problems varying k on the boundary of the colored region
shown in Figs. 2 and 3. More precisely, we consider the following (kx, ky) values:

1. kx ∈ [0, π/a], ky = 0,
2. kx = π/a, ky ∈ [0, π/a],
3. kx ∈ [0, π/a], ky ∈ [0, π/a],

in the rectangular case (Fig. 2) and the following (kx, ky) values:

1. kx = 0, ky ∈ [0, 2π/(
√
3a)],

2. kx ∈ [0, 2π/(3a)], ky = 2π/(
√
3a),

3. kx ∈ [2π/(3a), 0], ky ∈ [2π/(
√
3a), 0],

in the oblique case (Fig. 3). The 2D band spectra thus obtained are shown in Figs. 5 and 6. The numerical results are in good
agreement with both the FDFD method [7] and the FE method [1].

In order to assess the effectiveness of our method, let us now preliminarily consider the homogeneous media case
(ε(x, y) ≡ ε constant) where, for a fixed wavevector k, the exact expression of the (j, l)-th eigenvalue is as follows:

η(j,l;k) =


2π j
a

+ kx

2

+


2π l
b

+ ky

2

.
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Fig. 7. The figures show the relative errors E(1)r (j, l; k) (left) and E(2)r (j, l; k) (right) for a photonic crystal made of a cylindrical distribution of dielectric
(ε = 8.9) in air for TM modes.

Denoting by η(j, l; k) the exact (j, l)-th eigenvalue corresponding to the fixed wavevector k and by η̂(j, l; k) its numerical
estimate, we consider the relative error Er(j, l; k) and the relative Euclidean norm of the stack ordered errors Ee(j, l; k) as
follows

Er(j, l; k) =
|η̂(j,l;k) − η(j,l;k)|

|η(j,l;k)|
, Ee(j, l; k) =

∥vec(η̂(j,l;k) − η(j,l;k))∥

∥vec(η(j,l;k))∥
,

and compute their maximal values for each fixed k vector, for j = 0, 1, . . . , n − 1 and l = 0, 1, . . . ,m − 1. The numerical
results, obtained by considering a regular grid of 256×256 points, have been compared with those obtained by considering
the same grid points in the FDFD method and in the above MIT Photonic-Band software.

The reference to such grid parameters is due to our numerical experiments, which highlight that with these settings the
execution times for the estimates of the 30 smallest eigenvalues are essentially the same. In fact, fixing a tolerance value τ
for such relative errors, our numerical tests show that the minimal time necessary to have a relative error lower than τ , for
each fixed wavevector k, is essentially the same. Setting Er = max[Er(j, l; k)] and Ee = max[Ee(j, l; k)], where k varies in
the first Brillouin zone and (j, l) as before specified, we obtained:

FEFD FDFD FE-MIT

104Er 3.2281 2.3764 2.0461
104Ee 1.7570 1.4325 0.4197
CPU time (s) 423.03 308.52 393.18

In the inhomogeneous case we computed the 30 smallest eigenvalues using our FEFD and FDFD methods and calculated
their distance from the corresponding smallest eigenvalues obtained by using the MIT Photonic-Band software mentioned
above. More precisely, for each k chosen in the first Brillouin zone, we computed the following relative errors

E(1)r (j, l; k) =
∥ηFDFD(j,l;k) − ηFE−MIT

(j,l;k) ∥

∥ηFE−MIT
(j,l;k) ∥

, E(2)r (j, l; k) =
∥ηFEFD(j,l;k) − ηFE−MIT

(j,l;k) ∥

∥ηFE−MIT
(j,l;k) ∥

for 5 successive eigenvalues (1–5, 6–10, . . . , 25–30).We then plot E(1)r (j, l; k) and E(2)r (j, l; k) as the values of a surface having
the chosen k as the x-axis and the multiples of the 5 smallest eigenvalues on the y-axis. All cases considered in this paper
show, for roughly the same computing time, that E(1)r (j, l; k) ≤ E(2)r (j, l; k)with differences among them that are irrelevant
from the applicational point of view. As an example,wedisplayed in Fig. 7 and in Fig. 8 such surfaces for the TMandTEmodes,
respectively, when the photonic crystal consists of a cylindrical distribution of dielectricmedium in air. These figures, aswell
as the analogous figures that we have considered in our experimentation, show that the effectiveness of each of the three
methods that we analyzed is essentially the same.

5. Conclusions

Our numerical experiments give numerical evidence of substantial effectiveness among the three methods considered
at almost the same computational complexity. In fact, our numerical computations show that the 10 smallest eigenvalues,
obtained by the three methods, are essentially the same, as shown in Table 1 for a particular structure and a particular
wavevector. The emphasis on these eigenvalues is due to their relevance in the physical application, as the literature [1]
makes it evident.
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Fig. 8. The figures show the relative errors of E(1)r (j, l; k) (left) and of E(2)r (j, l; k) (right) for a photonic crystal made of a cylindrical distribution of dielectric
(ε = 8.9) in air for TE modes.

Table 1
The 10 smallest TM and TE eigenvalues associated to the k = (0.4, 0)
wavevector for the square distribution of dielectric veins in air (bottom
half of Fig. 2).

TM TE
FE FDFD FEFD FE FDFD FEFD

1 0.0782 0.0786 0.0786 0.1002 0.1005 0.1003
2 0.5615 0.5617 0.5614 0.6237 0.6238 0.6236
3 0.6286 0.6283 0.6287 0.7956 0.7951 0.7954
4 0.6456 0.6459 0.6450 0.8263 0.8264 0.8270
5 0.8897 0.8851 0.8835 0.9478 0.9479 0.9472
6 0.9681 0.9664 0.9649 1.0507 1.0513 1.0572
7 1.0363 1.0399 1.0324 1.0721 1.0773 1.0743
8 1.1159 1.1129 1.1172 1.1663 1.1680 1.1636
9 1.1314 1.1318 1.1370 1.1891 1.1841 1.1859

10 1.1856 1.1865 1.1958 1.3115 1.3105 1.3191

Nevertheless, we also investigated the behavior of the three methods calculating the 30 smallest eigenvalues. In the
homogeneous case we noticed that to get a relative error of less than 10−3, all three methods required roughly the same
computing time (5 min for the FDFD method, 6 min for the MIT Photonic-Bands software and 7 min for the FEFD method).
In the inhomogeneous case we studied the distance between the FE eigenvalues obtained by using the MIT Photonic-
Bands software from our FEFD and FDFD eigenvalues, respectively. With this purpose, besides taking into account the usual
photonic crystalmodelsmost considered in the literature, we considered a photonic crystal configuration consisting of three
cylindrical distributions of dielectric media (ε = 4, 3, 2) in air (Fig. 4). In all these cases our results highlight the following:
(a) the 30 smallest eigenvalues obtained by our FDFDmethod are generally closer to those obtained by the FE method than

those obtained by our FEFD method, for roughly the same computing time;
(b) the differences obtained by the three methods are irrelevant from the applicational point of view.

For these reasons we think that any of the three methods that we have considered could be used to validate each other. A
specific field where these validations could be mandatory is the design of either photonic devices or photonic sensors in
waveguides. We remark in particular that, even if the effectiveness of our FDFD and FEFD methods is essentially the same,
both of them are useful for the following reasons:
(a) each method, exploiting properly the periodicity conditions, allows us to compute accurately the band spectra, at a

reduced computational cost, so that they can validate each other’s results;
(b) for regular grids, the choice of using either an FDFD or an FEFD method depends primarily on the user’s ability to deal

with finite difference or finite element methods.

The extension of the FEFD method to the 3D case, as in our FDFD method, though immediate from the theoretical point of
view, is not immediately implemented. For this reason it will be considered in another paper.
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