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PARAMETER ESTIMATION OF MONOMIAL-EXPONENTIAL SUMS
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�
Abstract. In this paper we propose a matrix-pencil method for the identification of parameters and coefficients

of a monomial-exponential sum which can be considered as an extension of existing matrix-pencil methods for the
parameter estimation of exponential sums. The technique adopted is based on properties of the finite difference
equations and it overcomes the difficulty of their extension via the invertibility of the generalized Vandermonde
matrix. As a result, a matrix-pencil method based on the GSVD or the SVD is proposed which allows us to identify
both simple and multiple parameters. Applications of this method to various examples show its effectiveness.
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1. Introduction. Because of its relevance in science and engineering, several papers
have been published on parameter estimation in exponential sums of the form

(1.1) �������
	 �������� ����������
where � � �� ����� are complex or real numbers and �� �� ����� are distinct complex parameters.
The problem is to identify the !�" parameters � �  �  �� from a given set of !�# ( #%$&" ) values
of ���'��� in equidistant points of ( . This problem arises, for instance, from the propagation of
signals [13, 15], electromagnetics [2, 21] and high-resolution imaging of moving targets [11].

The two mostly used methods are the Prony-like (or polynomial) methods and the matrix-
pencil methods. The first ones are based on the paper by G. de Prony [6] who was the first
to investigate this problem. The method is principally based on the solution of two linear
systems characterized by a Hankel and a Vandermonde matrix, respectively. The first system
furnishes the coefficients of a polynomial (the so-called Prony polynomial) whose roots ) 
allow one to determine the parameters   (being )  	 � � � ), while the second system provides
the coefficients �  . Several extensions have been proposed (see, for instance, [10, pp. 458-
462], [5, 22, 23, 25], and more recently [16, 17, 18]) to apply this polynomial method also
to the case where " is only approximately known or the data are affected by noise. The
matrix-pencil technique has been developed more recently [12]. As the Prony-like methods,
one recovers the coefficients �  by solving a Vandermonde system. But the computation
of the parameters   is reduced to only one step; see, for instance, [21]. In fact, it allows
one to estimate the zeros of the Prony polynomial and then   without passing through the
computation of its coefficients. This is the main difference with the Prony-like methods and
it makes this kind of method more computationally efficient.

A close connection between the two methods mentioned above has been observed in
[19], which allows one to obtain a unified approach in the case where an approximate upper
bound of " is given. In this context two algorithms have been proposed [19], based on a *,+
factorization and on a SVD decomposition of a rectangular Hankel matrix, respectively. The
second algorithm makes it equivalent to the ESPRIT (Estimation of Signal Parameters via
Rotational Invariance Techniques) method (see, for instance, [20]) which is often used by en-
gineers. But this method fails whenever two or more eigenvalues coincide, since this implies-
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that the corresponding parameters   are equal, in contrast with the assumption in (1.1). This
difficulty can be overcome by generalizing (1.1) to a monomial-exponential sums of the type
(1.2) below. This problem is of primary interest, for instance in the direct scattering prob-
lem concerning the solution of nonlinear partial differential equations (NPDEs) of integrable
type. In this field, which is of major interest to us, we need to estimate the parameters of
monomial-exponential sums of the form (see more details in Section 4.1)

(1.2) �������
	 ������ 0 �21 �� 3 �54 �  3 � 3 � �6�7� �
where � �  3 � �98 0 �:1 ����� 8 3 �54 and ��  � ����� are complex or real parameters and ��;  � ����� are positive
integers. In the case ; � 	<;>=?	A@�@B@C	<; � 	ED , the monomial exponential sum ���'���
reduces to the exponential sum (1.1). More precisely, settingF 	G; �IH ;>= H @B@�@ H ; � �
the problem we are addressing is to recover the

F H " parameters of � given !J# ( #K$ F )
observed data.

Some attempts to treat problem (1.2) with limitations on the choice of the integers ; 
have been made in particular in [3, 4]. However, these papers do not contain any proof of
unique reconstruction of the parameters from the data matrix, nor a comparison of numerical
results obtained by other methods.

In this paper we propose a matrix-pencil method which allows one to solve this problem,
overcoming the difficulty of the matrix-pencil methods mentioned above in the case of re-
peated values. For noiseless data, we prove the uniqueness of the recovery of the parameters
from the data matrix. In the presence of noisy data, our numerical experiments show that our
method is also effective under the hypothesis that a reasonable upper bound of

F
is known.

This paper is organized as follows. In Section 2 we illustrate our numerical method,
assuming that

F 	L; �CH ;M= H @B@�@ H ; � is exactly known. In Section 3 we describe the
changes needed if only an upper bound of

F
is known. Section 4 is devoted to the results of

our numerical experiments, with conclusions following in Section 5.

2. The numerical method. The numerical method we propose to recover all parame-
ters appearing in the monomial-exponential sum (1.2) reduces the non-linear approximation
problem to two problems of linear algebra. The first one is a generalized eigenvalue problem,
which allows us to recover " ,   and ;  . The second one is the solution of a linear system
with a Casorati matrix to compute the parameters �  3 .First we note that, setting )  	 � � �ON	QP , we can rewrite the monomial exponential
sum (1.2) as a monomial-power sum

���'���R	 ������ 0 � 1 �� 3 �54 �  3 � 3 ) ��S
Moreover, we assume that !�# sampled data with #T$ F ,

F 	U; �VH S�SBS H ; � ,

���XWY�I	 ������ 0 � 1 �� 3 �54 �  3 W 3 )[Z � P 4]\ D
are given for the !�# values W^	_W 4 � W 4`H D � S�SBS � W 4�H !�#ba,D with W 4dc>egf 	h�iP � D � ! � SjSjS � W 4 � SkSjS � .
Preliminarily, we arrange the !J# given data in the following square Hankel matrices of order
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l Z:mnCn 	 opppq ���rW 4 � ���XW 4CH D`� SBS�S ���rW 4sH #ta&Di����rW 4sH D`� ���XW 4CH !u� SBS�S ���rW 4sH #v�

...
...

...
...���rW 4sH #wa&Di�x���rW 4sH #v� SBS�S ���XW 4CH !J#wab!J�

y{zzz|
	~} � Z m � � Z m f ��� S�SBS ��� � Z m f n 1 �����(2.1)

l Z:m f �nCn 	 opppq ���rW
4 H D`� ���rW 4 H !u� S�SBS ���XW 4 H #v����rW 4 H !u� ���rW 4 H�� � S�SBS ���rW 4 H # H D`�
...

...
...

...���XW 4sH #v�x���rW 4sH # H D`� S�SBS ���rW 4sH !�#ta�D`�
y zzz|

	�} � Z m f �`� � Z m f = � SBSBS � � Z m f n � S(2.2)

Notice that
l Z:m f �nCn is essentially a shift of

l Z:mnCn , as the first #<a�D columns of
l Z:m f �nsn

coincide with the last #wa&D columns of
l Z:mnCn apart from the last entry.

In the following we will often write
l Z mn�� and

l Z m f �nC� , each of order #�� F with#�$ F , for the submatrices of the Hankel matrices
l Z mnCn and

l Z m f �nCn formed by their firstF
columns, respectively.
The next lemma contains two properties of these Hankel matrices that are relevant to our

method. Such properties have already been proved in [18, 19] for the special case of distinct)  values. Here we prove the result in the general case, by giving a proof based on the theory
of linear difference equations with constant coefficients.

LEMMA 2.1. Assume
F

is known and the sampled data are noiseless. Then
(a) The matrices (2.1) and (2.2) have rank

F
, that is�:���Y� l Z mnsn 	 �:���Y� l Z m f �nsn 	 F S

(b) The following relation holds

(2.3)
l Z:m f �nC� 	 l Z:mn��O� � ���d� �

where � � �r�d� is the companion matrix of the Prony polynomial, i.e.,

� � ���d�I	 opppq P�P S�SBS P aV� 4D�P S�SBS P aV� �
...

...
...

...P�P S�SBS D�aV� � 1 �
y{zzz| S

Proof. To prove ����� , we interpret ���rWY� as the general solution of the following homoge-
neous linear difference equation of order

F
(2.4)

��Z �54 � Z � Z f 0 	_P � � � 	hD �
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whose characteristic polynomial is the Prony polynomial, i.e., the monic polynomial of de-
gree

F
having )  as the � th zero with multiplicity ; 

(2.5) �^��)9�I	 ������ �r),a�)  � 0 � 	 ��Z �54 � Z ) Z � � � \ D S
It is well known (see, for instance, [14]) that, regardless of the values ��� Z � � 1 �Z ��4 , (2.4) has

a unique solution � Z , for each given set of
F

initial conditions � Z:m � � Z:m f � � S�SBS � � Z:m f � 1 � .
Since (2.5) is the characteristic polynomial of (2.4), each function �  8 3 �rW��?	�W 3 ) Z � �h	D � SBS�S � " �:� 	 P � D � SBSBS � ;  a_D � is a solution of (2.4). Moreover, they are linearly indepen-
dent [14, Theorem 2.2.3] and represent a basis for the vector space of solutions of (2.4).
Hence the function ���XWY� is the general solution of (2.4) and its coefficients � �  3 � �98 0 �:1 ����� 8 3 �54 can
be uniquely determined by fixing

F
initial values ���rW 4 � � ���XW 4¡H Di� � @�@B@ � ���rW 4¡H F a¢Di� .

Then, if we consider the first
F

columns � 4 � � � � S�SBS � � � 1 � of
l Z mnCn as initial data, we can

see that each column � � � � � f � � S�SBS � � n is a linear combination of the first
F

ones. As
a result, ���J�Y� l Z:mnCn 	 F

. The same conclusion holds if W 4 is replaced by W 4dH D , and�:���Y� l Z:m f �nsn 	 F .
Relation (2.3) is immediate by observing that the product between

l Z:mn�� and the � th
column of � � �r�d� gives the �k� H Di� th column of

l Z:m f �n�� and further, by (2.4), we have

a � 1 ��Z �54 � Z � Z f Z:m 	_� Z:m f � S
The next theorem contains two results essential to our method.
THEOREM 2.2. The zeros of the Prony polynomial, counting their multiplicities, are

exactly the eigenvalues, with the same multiplicity, of the matrix-pencil

(2.6)
l �£� ��)9�I	~� l Z mnC� � � � l Z m f �nC� a�) l Z mnC� � �

where the asterisk denotes the conjugate transpose.
Moreover, the coefficients �  3 in (1.2) are the solutions of the linear system

(2.7) ¤ Z:m�¦¥ 	�� Z m �
where ¥ 	§} � � 8 4J� SkSjS � � � 8 �u¨ 1 �`� SkSjS � � � 8 4u� SjSkS � � � 8 ��© 1 �:�«ª , � Z m 	L} ���XW 4 � � ���rW 4 H Di� � SBS�S � ���rW 4 HF a�D`� � ª and ¤ Z m� is the Casorati matrix
(2.8)¬C m® �¢¯°°°°°±

²  m¨ Z:m ²  m¨ ³6³7³ Z © ¨:´ ¨m ²  m¨ ³6³7³ ²  m© Z:m ²  m© ³6³7³ Z © © ´ ¨m ²  m©²  ¨¨ Z ¨ ²  ¨¨ ³6³7³ Z © ¨:´ ¨¨ ²  ¨¨ ³6³7³ ²  ¨© Z ¨ ²  ¨© ³6³7³ Z © © ´ ¨¨ ²  ¨©
...

...
...

...
...

...
...

...
...²  ® ´ ¨¨ Z ® ´ ¨6²  ® ´ ¨¨ ³6³7³ Z © ¨ ´ ¨® ´ ¨ ²  ® ´ ¨¨ ³6³7³ ²  ® ´ ¨© Z ® ´ ¨6²  ® ´ ¨© ³6³7³ Z © © ´ ¨® ´ ¨ ²  ® ´ ¨©

µ ¶¶¶¶¶· ³
Proof. By using (2.3), we can writel �£� ��)9�I	h� l Z mn�� � � l Z mn�� � � � �r�d�ga�)u¸ �£� � �

where ¸ �£� is the identity matrix of order
F

. Hence, the first statement follows by noting
that¹�º¼» l �½� �r)[�I	 ¹�º¼» �7� l Z:mnC� � � l Z:mn�� � ¹�º¼» � � � ���d�Va¾)[¸ �£� �R	 ¹�ºB» ��� l Z:mn�� � � l Z:mnC� ���^�r)[� �
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and by taking into account that

¹�º¼» �7� l Z mn�� � ��l Z mn�� � N	_P as
l Z mn�� has full rank. Concerning

system (2.7), we note that ¤ Z m� is nonsingular regardless of the W 4 value since it is the Casorati
matrix, which plays in the theory of difference equations the same role as the Wronskian
matrix in the theory of differential equations. Notice that the Casorati matrix coincides with
the Vandermonde matrix ¿ � 	~} ) Z:À � � 1 � 8 �Áj�54 8 ���� when all zeros )  are simple ( ;  \ D ).

2.1. Computation of �`) �� ;  � via the Generalized Singular Value Decomposition
(GSVD). Knowing

F
, finding those parameters can be carried out by solving the following

generalized eigenvalue problem:� l Z:mn�� � � l Z:m f �n�� Â 	U)�� l Z:mn�� � � l Z:mn��ÃÂ � Â N	�Ä S
To this end, considering that both matrices

l Z:m f �nC� and
l Z:mn�� have rank

F
, we imple-

ment a simultaneous factorization of the two matrices by means of the Generalized Singular
Value Decomposition (GSVD) [8]l Z m f �n�� 	_Å nCnÇÆ>È Z:m f ��£�Ä n 1 � 8 �^ÉCÊ �£� �(2.9) l Z:mn�� 	�¿ nCn Æ È Z:m�£�Ä n 1 � 8 �ÃÉCÊ �½� �(2.10)

where È Z m f ��½� and È Z m�½� are two non-negative diagonal matrices of order
F

, Å nCn and¿ nCn are two square unitary matrices of size # , Ê �£� is a nonsingular matrix of order
F

and Ä n 1 � 8 � is the null matrix of order ��#ta F �C� F .
Thus, by using (2.9) and (2.10), we can rewrite the matrix-pencil asl �½� �r)[�I	�� Ê �½� � �?Ë � È Z:m�£� � � Ä � 8 n 1 �ÃÌ �'¿ nCn � � Å nsn Æ È Z:m f ��£�Ä n 1 � 8 �^É Ê �£�a¾)�� Ê �½� � �?Ë � È Z:m�£� � � Ä � 8 n 1 � Ì Æ È Z:m�½�Ä n 1 � 8 �^ÉCÊ �£�	�� Ê �½� � � � È Z m�£� � �ÎÍ �'¿ nC� � � Å n�� È Z m f ��£� a�) È Z m�£�ÃÏ Ê �½�	�� È Z:m�£� Ê �£� �7� � Í �'¿ n�� � � Å n�� È Z:m f ��£� � È Z:m�½� � 1 � a�)u¸ �½� Ï È Z:m�½� Ê �½� S
As a result, the generalized eigenvalues of the matrix-pencil, and thus the zeros of the

Prony polynomial, are exactly the eigenvalues of the matrixÐ �£� 	~��¿ n�� � � Å n�� È Z:m f ��½� � È Z:m�£� � 1 � �
which can be effectively computed by using the eig algorithm of MATLAB.

We note that
Ð �£� is well conditioned, as the generalized singular values of

l Z mn�� andl Z m f �n�� are close to each other and the matrices ¿ n�� and Å n�� are sub-matrices of unitary
matrices.

In this way we compute the zeros )  with their multiplicities ;  and of course " . The
computation of   is immediate as )  	 � �6� , �Ñ	~D � SBSBS � " S

It is worthwhile to note that if #�	 F , the zeros )  of the Prony polynomial can be
computed by considering the simple matrix-pencilÒl �£� ��)9�I	 l Z m f ��£� a�) l Z m�£� S
In this case, as

l Z:m f ��£� and
l Z:m�£� are symmetric, the *ÑÓ technique [8] is effective as well

and numerically stable as explained in [7]. In this paper, we do not consider this case be-
cause in the applications that interest us # is larger than

F
and furthermore our numerical

experiments show that using all available data ���XWY� is more effective.
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2.2. Computation of �i) �� ;  � via the Singular Value Decomposition (SVD). Using
the SVD in place of the GSVD generates a second effective technique for computing the
parameters �`)  � ; �� .

The starting point, as in [19], is to consider the augmented Hankel matrix

(2.11)
l n 8 � f � 	~� l Z mn�� � � Z:m f � �R	h��� Z:m � l Z m f �nC� �

and factorize it by means of the SVD.
Considering that � Z:m f � is a linear combination of the columns of

l Z mn�� , and � Z:m is a
linear combination of the columns of

l Z m f �n�� , and recalling that rank � l Z mn�� �
	 rank � l Z m f �n�� �	 F , we obtain l n 8 � f � 	�Å n�� È �½� ¿ �� 8 � f � �(2.12)

where È �£� 	LÔJÕ��uÖ5��× � � ×Ø= � SBSBS � × � � with × � $h×�=Ù$ SBS�S × �ÛÚ P , Å �n�� Å nC� 	§¸ �£�
and ¿ �� 8 � f � ¿ � 8 � f � 	_¸ � f � 8 � f � .

Hence (2.11) and (2.12) imply thatl Z mn�� 	_Å n��ÝÜC�£� ¿ � 8 Z:m�£� �
and l Z m f �n�� 	UÅ nC� Ü �£� ¿ � 8 Z:m f ��£� �
where ¿ � 8 Z m�£� and ¿ � 8 Z m f ��£� are obtained by deleting the last and the first column of ¿ �� 8 � f � ,
respectively.

As a result, the matrix pencil (2.6) can be rewritten asl �£� �r)[�I	��'¿ � 8 Z m�£� � � � ÈÑÞ � = �'¿ � 8 Z m f ��½� a¾)u¿ � 8 Z m�£� �
and thus the parameters �`)  � ; �� are the eigenvalues with the respective multiplicities of the
square matrix ß �£� 	~��¿ � 8 Z m�£� � 1 � ¿ � 8 Z m f ��£� �
whose condition number is close to that of

Ð �£� . Let us note that

ß �£� is formally anal-
ogous to the matrix àâá9ã�ä� introduced in the formulation of the ESPRIT method for (1.1)
proposed in [19, p. 1033]. It is also worthwhile to note that when applying GSVD or SVD,
the multiplicity of the singular values is irrelevant, unlike what happens in [19], as this con-
trasts the hypothesis that the parameters �� �� are distinct.

2.3. Computation of � �  3 � . Once �i" � )  � ; �� have been computed, we are able to
evaluate the coefficients �  3 , given ���rWY� at

F
distinct points ��W 4 � W 4gH D � S�SBS � W 4VH F a�D � .

Indeed, we can write down the Casorati matrix and then solve the linear system (2.7).
Although theoretically not necessary, our numerical tests suggest to use more than ! F

data. For this reason, whenever it is possible we prefer to use !�# ( # Ú F ) sampled data
and compute the eigenvalues by solving, in the least squares sense, the overdetermined linear
system ¤ Z:m= n 8 �Ã¥ 	�� Z m �
where � Z:m 	å} ���rW 4 � � ���rW 4CH Di� � SBS�S � ���rW 4CH !J#æaUDi� � and ¤ Z:mn�� is the Casorati matrix of
order !J#h� F ( # Ú F ), obtained as a natural extension of (2.8). As expected, this extension
becomes more important when the noise/signal ratio increases.
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3. Without knowing the value of
F

. Now we assume that
F

, the exact number of
terms in (1.2), is unknown and that, as in most applications, only a reasonable upper boundçF

of
F

is given.
Under this hypothesis, we want to recover all of the parameters and coefficients �i" � ;  �  � �  3 � of (1.2), given an estimate of ���rW�� in a set of !J# data ��W 4 � W 4�H D � S�SBS � W 4�H !�#èadD �¡cegf with #Û$ çF . In this case we first have to estimate

F
, which can be done by using the

following theorem.
THEOREM 3.1. In the absence of noise in the data, the rank of the #L� çF Hankel matrix

l Z:mn¡é� 	
oppppq

���rW 4 � ���rW 4sH D`� S�SBS ���XW 4sH çF a�D`����rW 4 H D`� ���rW 4 H !u� S�SBS ���rW 4 H çF �
...

...
...

...���rW 4sH #ta�D`�x���XW 4sH #v� S�SBS ���rW 4sH # H çF ab!J�
y{zzzz|

	h} � Z:m � �gê m f � � S�SBS � � Z m f é� 1 � �X�
which is a natural extension of

l Z:mn�� (
çF $ F ), is exactly

F
.

Proof. By virtue of (2.4), taking the entries of the first
F

arrays } � Z m � S�SBS � � Z m f � 1 = � ofl Z mn¡é� as initial data, we get � Z m f � 1 � as a linear combination of these vectors. By changingF
into

F H D and using } � Z:m f � � SBS�S � � Z:m f � 1 � � as initial data for (2.4), we get � Z:m f � as a
linear combination of such vectors and then of } � Z:m � S�SBS � � Z:m f � 1 = � . Iterating the procedure
we obtain that each column vector } � Z:m f � 1 � � S�SBS � � Z m f é� 1 � � is a linear combination of} � Z m � SBSBS � � Z m f � 1 = � , which means that rank � l Z:mnëé� �I	 F 	 rank � l Z:mn�� � .

In order to evaluate the rank of our matrices we use the rank algorithm of MATLAB
which only gives the exact value of

F
in the noiseless data case. In the presence of noise we

do not obtain the exact value of
F

. Nevertheless, the numerical results are satisfactory when-
ever a reliable overestimate of

F
is known. This assumption, as in many applications [19], is

always satisfied in the application considered in Section 4 which mainly motivates our interest
in the identification of parameters in the sum (1.2).

4. Numerical results. In this section we present the results of extensive numerical ex-
periments of various examples, with some examples already presented in the literature and
others, to our knowledge, never considered before.

To ascertain the effectiveness of our method, in the application considered below we
estimate the relative error in the exponents   and the coefficients �  3 for �ì	íD � SBS�S � " ,� 	�P � S�SBS � ;  a&D , by using the following error estimates� ��î`�
	 ï ��ð���� 8 ³ñ³ñ³ 8 �ëòòòòò D�a

  � òòòòò
�ó� � ¥ �
	 ï ��ð���� 8 ³ñ³ñ³ 8 �3 �54 8 ³ñ³ñ³ 8r0 �21 � òòòòò D�a �

 3� � 3 òòòòò
�

where  � and � � 3 denote the exact values of the parameters. Moreover, denoting by } P ��ô��
the domain of ���'��� of main interest, we adopt the following relative error estimate of the
monomial-exponential sum: � �r���I	�ï ��ð�JõJö òòòò D�a

���'���� � �'��� òòòò �
where ÷%	¢�i� Á 	UÕCøù 4 � ÕV	ìD � SBSBS �Øú P � .
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For Examples 2 and 3 to be discussed in Section 4.2, to compare with the results reported
in [18, 19], we instead adopted the following error estimators:

(4.1) � ��î`�I	 ï ��ð���� 8 ³ñ³ñ³ 8 � òò   a� � òòï ��ð���� 8 ³ñ³ñ³ 8 ��û  � û �ó� � ¥ �
	 ï ��ð���� 8 ³ñ³ñ³ 8 �3 �54 8 ³ñ³ñ³ 8r0 �21 � òò �  3 a � � 3 òòï ��ð���� 8 ³ñ³ñ³ 8 �3 �54 8 ³ñ³ñ³ 8X0 � 1 � û � � 3 û �
and

(4.2) � ���g�I	 ï ��ð�Jõ�ü 4 8 = nRý û �������gab� � ����� ûï ��ð��õ�ü 4 8 = nRý û � � ����� û �
which are the natural extension of those used there, and  � , � � 3 and � � being as mentioned
before.

For each test function we assume that we only know a reliable estimate
çF

of
F

and
consider both exact data and noisy data. In the latter case we consider white noise, i.e., we
assume ���rWY�R	hþ���rWY� Hèÿ � Z � W^	_W 4J� S�SBS � W 4 H !�#ta&D �
where þ���rWY� denotes the exact values of the monomial exponential sum, � Z c } P � D � is a
normally distributed random array and ÿ is the standard deviation of the sampled data.

Moreover, since the numerical results do not change significantly with respect to W 4Ýcegf , we take W 4 	_P in all the examples for the sake of simplicity.
Our numerical experiments highlight that, as expected, using GSVD or SVD in the com-

putation of �`)  � ; �� is essentially equivalent, with a minor difference in favor of GSVD.
Hence, for the sake of simplicity, unless otherwise specified, the results quoted in the follow-
ing tables refer to using GSVD.

We also note that the values of
çF

reported in each table, which represents an overesti-
mate of

F
, are assumed known in advance and that all computations have been carried out

in MATLAB with � 0���� ê Á ��� 	O! S !J!v@VD�P 1 ��� .
4.1. An application to NPDEs of integrable type. An important area where effective

methods for parameter identification in sums of monomial-exponential functions can be very
useful is the class of non-linear partial differential equations (NPDEs) of integrable type. In
this context the non-linear Schrödinger equation (NLS), which governs the signal transmis-
sion in optical fibers [9], plays a special role.

The main characteristic of this class is the fact that any initial value problem associated to
an NPDE of integrable type can theoretically be solved by using the inverse scattering trans-
form technique (IST). This technique is primarily based on the solution of a direct scattering
problem and then on the solution of an inverse scattering problem, starting from the spectral
data previously obtained by time evolution. From the numerical point of view, the first one
is actually the most challenging, at least for the NLS, since the second one can be solved by
using the numerical method proposed in [1].

The numerical solution of the direct scattering problem for the NLS is primarily based on
the computation of the initial Marchenko kernels from the left and from the right, respectively,
see [24]. These kernels, whenever the solution of the NLS is represented by one soliton or by
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a multisoliton (the so-called reflectionless case), can be represented by

	�
 �'���R	 ������ �u1 � �7� 0 �21 �� 3 �54 �� 
 �  3 � 3��� � � c ( f �
	�� �'���
	 ������ � � �7� 0 � 1 �� 3 ��4 �� � �  3 � 3��� � � c ( 1 �

where P 4 \ D and �  are complex or real parameters with + � ���  � Ú P .
The application of our method to

	 

allows us to estimate �i" � ; �� ��� 
 �  3 � , given

	 

in!�# ( # Ú F ) positive integer points, and then to recover ��� � �  3 by solving a linear system

of order # � F , given
	��

in !J# ( # Ú F ) negative integer nodes, in the least squares
sense. The same results can certainly also be obtained by applying first the method to

	�� �����
to identify �i" � ;  � �� � �  3 � and then to

	�
 �'��� to identify ��� 
 �  3 .
Tables 4.1 and 4.2 show the error estimates obtained in the identification of

	�

parameters

with coefficients in the following two cases (representative of four-solitons with 4 simple
bound states, and with a double and two simple bound states, respectively):

(a) "Ý	�� , ; � 	 S�SBS 	�;��]	~D ,� 	 ��64 }kD H�� Õ � D S ! H¾� Õ � D S � H�� Õ � �
H D S � Õ � and � 
 	h}kD H Õ � ! H Õ � �
H Õ � � H Õ � ,
(b) "Ý	 � , ; � 	�! , ;M=â	G; �]	hD ,� 	 ��64 }kD H!� Õ � D S � H"� Õ � � H D S � Õ � and � 
 	�}kD H Õ � ! H Õ � �âH Õ � � H Õ � .

In both cases we considered } P ��ú`� as the interval of effective interest and assumed ô 	 ú . Let
us note that we assume � c # f , where # f is the complex upper half plane, as this hypothesis
is always satisfied for the NPDEs of integrable type.

TABLE 4.1
Error estimates in the multisoliton case $&%(' .# ÿ çF � ��î`� � � ¥ � � �r���

4 0 4 1.02e-10 1.28e-09 4.76e-15
8 0 7 1.33e-11 1.58e-10 1.08e-14
16 0 7 9.90e-14 1.11e-12 3.24e-15
32 0 7 5.86e-13 7.15e-12 3.44e-15
4 D�P 1*) 4 7.13e-05 9.83e-04 2.48e-09
8 D�P 1*) 7 2.70e-07 3.44e-06 2.85e-10
16 DiP 1*) 7 8.14e-08 1.01e-06 2.02e-09
32 DiP 1*) 7 5.79e-09 9.85e-08 3.69e-10
4 D�P 1*+ 4 4.56e-03 6.41e-02 9.25e-08
8 D�P 1*+ 7 3.32e-05 4.63e-04 4.32e-08
16 DiP 1*+ 7 7.33e-06 1.17e-04 1.21e-07
32 DiP 1*+ 7 1.13e-06 1.89e-05 6.06e-08

The results reported in Table 4.1 highlight that the identification of parameters and coef-
ficients is satisfactory in case (a). Table 4.2 shows that the situation is more difficult in the
presence of multiple bound states (case (b)), as known by people working in the NPDEs area
of integrable type. Nevertheless, the results that we obtained are very good in the absence of
noise and still reliable in the presence of noise, even when

F
is not known in advance.
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TABLE 4.2
Error estimates in the multisoliton case $-,.' .# ÿ çF � �rîi� � � ¥ � � �r���

4 0 4 5.13e-06 5.43e-04 4.90e-08
8 0 7 1.49e-06 1.76e-04 1.66e-07

16 0 7 4.85e-07 7.14e-05 2.63e-07
32 0 7 3.18e-07 5.34e-05 3.06e-07
4 D�P 1/) 4 3.17e-04 5.38e-02 3.09e-04
8 D�P 1/) 7 2.45e-04 2.91e-02 2.73e-05

16 D�P 1/) 7 4.04e-05 5.96e-03 2.20e-05
32 D�P 1/) 7 2.49e-05 4.19e-03 2.40e-05
4 D�P 1/+ 4 2.44e-02 2.25e+00 2.17e-04
8 D�P 1/+ 7 3.44e-03 2.95e-01 3.82e-04

16 D�P 1/+ 7 8.83e-04 1.29e-01 4.81e-04
32 D�P 1/+ 7 3.41e-04 5.76e-02 3.28e-04

4.2. Other examples.
Example 1. We consider now the identification of �`)  � and � �  � in the exponential-sum

���'���
	 � 4�������  ) � �
already considered in [18, pp. 624-625], where the coefficients �  are random values on } P � D �
and the values )  are equidistant nodes on three circles having radius 0v	wP S � � P S 1 and P S 2 .
Taking #Q	~!JPJP and

çF 	3�uP we obtain the results reported in Figure 4.1, where the exact
nodes are depicted as circles and their recoveries by solid dots on the left for the exact data
and on the right for inexact data. The figure shows that the evaluation of )  is very accurate
in the absence of noise and reliable in the presence of noise, and increasingly more accurate
as 0 decreases compared with those reported in [18, Figure 1]. The reason is that the distance
between the nodes reduces with the decrease of 0 and the method in [18] fails if two of them
coincide.
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FIG. 4.1. Graphic representation of the nodes of Example 1 for exact data (to the left) and for noisy data with46587�9;:=<�>
(to the right).
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TABLE 4.3
Error estimates with exact data for Example 2.# çF + � ��î`� � � ¥ � � �r���

via GSVD 6 6 6 2.02e-09 1.07e-09 8.63e-15
12 10 6 2.31e-12 2.18e-12 1.84e-13
24 10 6 8.33e-14 3.16e-13 1.82e-13

via SVD 6 6 6 5.37e-09 3.16e-09 4.06e-15
12 10 6 2.44e-11 2.19e-11 1.71e-12
24 10 6 5.03e-13 3.90e-12 2.28e-12

TABLE 4.4
Error estimates with noisy data for Example 2.# ÿ çF + � ��î`� � � ¥ � � �r���

via GSVD 6 D�P 1/) 6 6 6.47e-05 6.94e-05 9.56e-10
12 D�P 1/) 10 11 4.19e-08 1.27e-07 2.14e-10
24 D�P 1/) 10 11 2.64e-10 1.70e-09 4.24e-10

via SVD 6 D�P 1/) 6 6 7.34e-04 4.48e-04 8.31e-11
12 D�P 1/) 10 11 5.67e-07 2.84e-07 6.27e-10
24 D�P 1/) 10 11 1.94e-09 7.06e-09 4.30e-09

Example 2. Let us now consider the exponential sum described in [19, p. 1034] having
the following coefficients �  and zeros )  :

¥ 	
oppppppq
D!�
� ú
�

y{zzzzzz| �@? 	
oppppppq
P S 2�1 ú � a�P S D � ! 1 ÕP S 2�1 ú �CH P S D � ! 1 ÕP S 1�2 �A� a�P S � � P ú ÕP S 1�2 �A�CH P S � � P ú ÕP S 1 Di! � a�P S ú � 2 PJÕP S 1 Di! �RH P S ú � 2 PJÕ

y{zzzzzz| S
In this case, for an immediate comparison of our results with those reported in [19],

we adopted the error estimator proposed there. Considering data without and with noise we
obtain the results reported in Table 4.3 and in Table 4.4, respectively, where

çF
is the upper

estimate of
F 	 � and + is the rank value of

l n 8 é� f � obtained by using the rank algorithm
of MATLAB.

It is worthwhile noting that, in the absence of noise, our method identifies the exact
values of

F
regardless of the number of data. Table 4.4 shows that, if the data are noisy, as it

is to be expected, the estimate of
F

is exact in the case # 	 F and overestimated whenever# Ú F . Nevertheless, as Table 4.4 shows, the identification of both the parameters and the
coefficients is very accurate provided that we can find a reliable estimate of

F
.

Tables 4.3 and Table 4.4 also show that the results obtained by using GSVD are slighthly
better than using SVD.

Let us finally note that, as expected, when the zeros )  are well separated the results
in [19] are equivalent to ours.

Example 3. In order to show that our method is effective in case of multiple zeros, we
now modify Example 2 by setting ) � 	t)i=Ý	tP S 2�1 ú � aGP S D � ! 1 Õ � )B�Ý	t) � 	tP S 1�2 �C� aP S � � P ú Õ , and leaving ) ù and ) � unchanged. In this example, as in the previous one, the errors
are evaluated by using (4.1) and (4.2). Our numerical results in Tables 4.5 and 4.6, show that
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TABLE 4.5
Error estimates with exact data for Example 3.# çF + � ��î`� � � ¥ � � �r���

via GSVD 6 6 6 1.30e-04 3.00e-03 3.09e-07
12 10 6 1.26e-05 4.29e-04 7.52e-07
24 10 6 2.51e-06 1.58e-04 5.89e-06

via SVD 6 6 6 1.40e-04 3.35e-03 3.43e-07
12 10 6 4.76e-06 8.06e-05 3.67e-07
24 10 6 2.52e-06 2.23e-04 7.66e-06

TABLE 4.6
Error estimates with noisy data for Example 3.# ÿ çF + � �rîi� � � ¥ � � �r���

via GSVD 6 D�P 1*) 6 6 3.51e-02 1.98e+00 1.93e-03
12 DiP 1*) 10 11 5.52e-04 1.30e-02 2.65e-05
24 DiP 1*) 10 11 3.17e-05 2.72e-03 5.85e-05

via SVD 6 D�P 1*) 6 6 6.98e-02 2.93e+00 1.90e-03
12 DiP 1*) 10 11 7.10e-04 1.10e-02 5.39e-05
24 DiP 1*) 10 11 1.39e-04 1.31e-02 3.45e-04

the recovery of the parameters is still accurate even if two zeros are double and
çF

is a large
overestimate of

F
.

5. Conclusions. The main contribution of this paper is the extension of matrix-pencil
methods, introduced originally for the identification of the parameters of the exponential
sums, to monomial-exponential sums. An effective matrix-pencil method based on GSVD or
SVD is proposed to identify simple and multiple zeros of the associated Prony polynomials.
The effectiveness of GSVD is in general superior to that of SVD, even though only slightly.
Nevertheless the availability of the two algorithmic variants of the same method is useful in
the sense that they can be used for a mutual validation of the results.

Our extensive numerical experiments show that our method allows us to estimate the
parameters and coefficients of a monomial-exponential sum with good precision, even when
the number of terms is not known, provided with only a reasonable overestimation of it. This
method furnishes very accurate results in the absence of noise and acceptable results in the
presence of a moderately high level of noise, whenever a relatively large number of data,
compared with the number of parameters and coefficients to identify, is available. Finally,
we point out that our method can be considered equivalent to the matrix-pencil SVD version
of the ESPRIT method, recently proposed in [18] if the nodes are well separated, and is
increasingly more effective when the distance between the nodes diminishes.
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