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Abstract. In this article the Jost solutions of the AKNS system with suitably weighted
L2 potential are constructed as Hardy space perturbations of their space-infinity asymp-

totics. The reflection coefficients are proven to be L2-functions when the transmission

coefficients are L∞-functions.

1. Introduction. In this article we discuss direct scattering for the AKNS system [16, 1,
12, 6, 2, 3, 13]

iJ
∂X

∂x
(x, λ)− iQ(x)X(x, λ) = λX(x, λ), (1.1)

where

J =

(
Im 0m×n

0n×m −In

)
, Q(x) =

(
0m×m q(x)
r(x) 0n×n

)
, (1.2)

the potentials q(x) and r(x) have their entries in L2(R), λ is a spectral parameter, and
Ip denotes the p × p unit matrix. In the defocusing case (σ = −1) and the focusing case
(σ = 1) we have the symmetry relations r(x) = σq(x)† and hence Q(x)† = σQ(x), where the
dagger denotes complex conjugate matrix transposition. Contrary to the usual situation in
the literature, the potentials are not assumed to be L1 (as in [2, 3, 13]) or to belong to the
Schwartz class (as in [6]) but to satisfy∫ ∞

−∞
dy |y − x| ‖Q(y)‖2 < +∞, x ∈ R. (1.3)

The main application of the direct scattering theory of the Schrödinger equation on the
line and the AKNS system is to solve the Cauchy problem of certain integrable nonlinear
evolution equations by means of the inverse scattering transform (IST) method. This means
that the time evolution of the potential is transformed, by means of the IST, into the
elementary time evolution of the scattering data. This has led to an algorithm to solve
the Korteweg-de Vries (KdV) equation by using the scattering theory of the Schrödinger
equation on the line and an algorithm to solve the nonlinear matrix Schrödinger (NLS)
equation by using that of the AKNS system. A natural question to answer is how to define
a sufficiently extensive class of potentials and a sufficiently extensive class of scattering data
such that there is a 1, 1-correspondence between potentials and scattering data by means of
the IST (the so-called characterization problem).

Characterization of scattering data of linear differential systems similar to (1.1) has a
long history. Melin [11] has characterized the scattering data of the Schrödinger equation
on the line with real potentials Q(x) such that (1 + |x|)Q(x) is integrable. Previous results
for real potentials Q(x) such that (1 + x2)Q(x) is integrable, are due to Marchenko [10].
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For the AKNS system with L1 potentials, Demontis and Van der Mee [5] have given a 1, 1-
correspondence between L1-potentials without spectral singularities and suitable scattering
data. We refer to [15, 3, 4] for prior partial results. Unfortunately, these characterization
results are not invariant under time evolution. In fact, time evolution according to the
matrix NLS equation might lead to potentials and scattering data not belonging to the two
classes in 1, 1-correspondence. Moreover, one cannot formulate even the simplest of the
infinitely many conservation laws for every time dependent potential belonging to the class.

This article is meant as a contribution towards a characterization result, where a large
class of potentials and a large class of scattering data are put in such a 1, 1-correspondence
that either class is invariant under time evolution according to the matrix nonlinear Schrö-
dinger (NLS) equation. Van der Mee [14] has given the following partial solution to the
time-evolution invariant characterization problem:

a) Assuming a reflection coefficient to be continuous in λ ∈ R, vanishing as λ → ±∞,
and L2, plus reasonable bound state data, a unique L2 potential can be constructed;

b) a dense linear subspace of potentials with entries in L1(R) ∩ L2(R) is required to
arrive at scattering data within the designated, time evolution invariant, class.

In this article we focuss on particular details of the construction: How to define Jost solutions
and scattering coefficients for certain non-L1-potentials, and how to prove the reflection
coefficients to be L2.

The AKNS operator iJ d
dxIm+n − iQ can be defined in a natural way on the orthogonal

sum of m + n copies of L2(R) for L1
loc potentials [8]. In the defocusing case the AKNS

operator has a unique selfadjoint extension. For L2 potentials this operator has the same
domain as the free AKNS operator i ddxJ (namely, the direct sum of m+n copies of the first
Sobolev space) and has the real line as its essential spectrum [9].

Let us discuss the contents of the various sections. In Sec. 2 we write the Jost solutions
in triangular representation form and iterate the resulting integral equations for the kernel
functions in the L2 norm. Under condition (1.3), this will lead to Jost solutions which
are still analytic in the spectral variable in the upper or lower half-plane but are no longer
continuous in the spectral variable when approaching the real line. Instead the Jost solutions
will belong to suitable Hardy spaces of analytic functions. In Sec. 3 we construct the
reflection and transmission coefficients as L1

loc functions of λ ∈ R. Assuming the absence of
spectral singularities, the reflection coefficients are shown to have their entries in L2(R).

2. Jost solutions. The Jost matrices Ψ(λ, x) and Φ(λ, x) are those solutions to (1.1) which
behave as e−iλxJ [Im+n + o(1)] as x → +∞ and x → −∞, respectively. They can be
partitioned into Jost solutions as follows

Ψ(λ, x) =
(
ψ(λ, x) ψ(λ, x)

)
, Φ(λ, x) =

(
φ(λ, x) φ(λ, x)

)
,

where ψ(λ, x) and φ(λ, x) are (m+n)×m and ψ(λ, x) and φ(λ, x) are (m+n)×n matrices.
For L1 potentials and λ ∈ R their existence can be proved in the traditional way [2, 3, 13] by
iterating Volterra integral equations. Here we prove their existence, for almost every λ ∈ R,
for potentials satisfying (1.3) by a different technique. For L1

loc-potentials, Klaus [8] has
constructed Jost solutions by using arbitrary bases of the linear spaces of AKNS solutions
that are L2 on either the left or the right half-line. In this article we do not pursue his
construction but follow a more direct route to Jost solutions instead.

Writing the triangular representations

Ψ(λ, x) =
(
ψ(λ, x) ψ(λ, x)

)
= e−iλxJ +

∫ ∞
x

dyK(x, y)e−iλyJ , (2.1a)

Φ(λ, x) =
(
φ(λ, x) φ(λ, x)

)
= e−iλxJ +

∫ x

−∞
dyM(x, y)e−iλyJ , (2.1b)



DIRECT SCATTERING OF AKNS SYSTEMS 1091

where the kernel functions K(x, y) and M(x, y) can be decomposed as

K(x, y) =

(
K

up
(x, y) Kup(x, y)

K
dn

(x, y) Kdn(x, y)

)
, M(x, y) =

(
Mup(x, y) M

up
(x, y)

Mdn(x, y) M
dn

(x, y)

)
,

we obtain the integral equations

K
up

(x, y) = −
∫ ∞
x

dz q(z)K
dn

(z, z + y − x), (2.2a)

K
dn

(x, y) = 1
2r(

1
2 (x+ y)) +

∫ 1
2 (x+y)

x

dz r(z)K
up

(z, x+ y − z), (2.2b)

Kup(x, y) = − 1
2q(

1
2 (x+ y))−

∫ 1
2 (x+y)

x

dz q(z)Kdn(z, x+ y − z), (2.2c)

Kdn(x, y) =

∫ ∞
x

dz r(z)Kup(z, z + y − x), (2.2d)

as well as

Mup(x, y) =

∫ x

−∞
dz q(z)Mdn(z, z + y − x), (2.3a)

Mdn(x, y) = − 1
2r(

1
2 (x+ y))−

∫ x

1
2 (x+y)

dz r(z)Mup(z, x+ y − z), (2.3b)

M
up

(x, y) = 1
2q(

1
2 (x+ y)) +

∫ x

1
2 (x+y)

dz q(z)M
dn

(z, x+ y − z), (2.3c)

M
dn

(x, y) = −
∫ x

−∞
dz r(z)M

up
(z, z + y − x). (2.3d)

For potentials with L1 entries, (2.2) and (2.3) are easily shown to be uniquely solvable by
iteration [2, 13], yielding∫ ∞

x

dy ‖K(x, y)‖+

∫ x

−∞
dy ‖M(x, y)‖ < +∞,

uniformly in x ∈ R.
We now establish the unique solvability of the integral equations (2.2) and (2.3) for

potentials Q(x) satisfying (1.3).

Theorem 2.1. Let
∫∞
x
dz (z − x)‖Q(z)‖2 converge for x ≥ x0. Then for x ≥ x0 the

integral equations (2.2) have a unique solution K(x, y) such that
∫∞
x
dy ‖K(x, y)‖2 and∫∞

x0
dx
∫∞
x
dy ‖K(x, y)‖2 converge. Analogously, if

∫ x
−∞ dz (x − z)‖Q(z)‖2 converges for

x ≤ x0, then for x ≤ x0 the integral equations (2.3) have a unique solution M(x, y) such
that

∫ x
−∞ dy ‖M(x, y)‖2 and

∫ x0

−∞ dx
∫ x
−∞ dy ‖M(x, y)‖2 converge.

Proof. We only prove the first statement. Estimating (2.2a) we get∫ ∞
x

dy ‖Kup
(x, y)‖2 ≤

∫ ∞
x

dy

[∫ ∞
x

dz ‖q(z)‖‖Kdn
(z, z + y − x)‖

]2

≤
(∫ ∞

x

dẑ ‖q(ẑ)‖2
)∫ ∞

x

dz

∫ ∞
z

dŷ ‖Kdn
(z, ŷ)‖2.
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Iterating (2.2b) we obtain∫ ∞
x

dy ‖Kdn
(x, y)− 1

2r(
1
2 (x+ y))‖2

≤
∫ ∞
x

dy

∫ x+y
2

x

dz ‖r(z)‖‖Kup
(z, x+ y − z)‖

2

=

(∫ ∞
x

dẑ ‖r(ẑ)‖2
)∫ ∞

x

dz

∫ ∞
z

dŷ ‖Kup
(z, ŷ)‖2.

Schematically, these two inequalities can be written as

‖Kup
(x, ·)‖22 ≤

(∫ ∞
x

dẑ ‖q(ẑ)‖2
)∫ ∞

x

dz ‖Kdn
(z, ·)‖22, (2.4a)

‖Kdn
(x, ·)− 1

2r(
1
2 (x+ ·))‖22 ≤

(∫ ∞
x

dẑ ‖r(ẑ)‖2
)∫ ∞

x

dz ‖Kup
(z, ·)‖22. (2.4b)

Taking the square root and applying the triangle inequality we obtain

‖Kup
(x, ·)‖2 ≤ [Q](x)

[∫ ∞
x

dz ‖Kdn
(z, ·)‖22

]1/2

,

‖Kdn
(x, ·)‖2 ≤ [Q](x)

{
1√
2

+

[∫ ∞
x

dz ‖Kup
(z, ·)‖22

]1/2
}
,

where [Q](x) =
(∫∞
x
dẑ ‖Q(ẑ)‖2

)1/2
. With some effort we get the estimate

‖Kup
(x, ·)‖22 + ‖Kdn

(x, ·)‖22
[Q](x)2

≤ 1 + 2

∫ ∞
x

dz [Q](z)2 ‖K
up

(z, ·)‖22 + ‖Kdn
(z, ·)‖22

[Q](z)2
.

Using Gronwall’s inequality we get√
‖Kup

(x, ·)‖22 + ‖Kdn
(x, ·)‖22 ≤ [Q](x)e

∫∞
x
dz (z−x)‖Q(z)‖2 ,

where we have used that ∫ ∞
x

dz [Q](z)2 =

∫ ∞
x

dẑ (ẑ − x)‖Q(ẑ)‖2.

Next, put B(x) =
∫∞
x
dz (z − x)‖Q(z)‖2. Then the above inequalities (2.4) imply that

for x1 ≥ x0∫ ∞
x1

dx

∫ ∞
x

dy ‖Kup
(x, y)‖2 ≤ B(x1)

∫ ∞
x1

dx

∫ ∞
x

dy ‖Kdn
(x, y)‖2,∫ ∞

x1

dx

∫ ∞
x

dy ‖Kdn
(x, y)‖2 ≤ B(x1)

[
1 + 2

∫ ∞
x1

dx

∫ ∞
x

dy ‖Kup
(x, y)‖2

]
,

so that the left-hand sides are finite if B(x1) < 2−1/2. Taking points x0 = ξ0 < ξ1 < . . . <

ξm = x1 satisfying
∫ ξs
ξs−1

dx
∫∞
x
dz ‖Q(z)‖2 < 2−1/2, we can apply the same argument on the
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successive intervals [ξs−1, ξs]. In fact, from (2.4) we get∫ ξs

ξs−1

dx ‖Kup
(x, ·)‖22 ≤

[∫ ξs

ξs−1

dx

∫ ∞
x

dz ‖Q(z)‖2
](∫ ξs

ξs−1

+

∫ ∞
ξs

)
dx ‖Kdn

(x, ·)‖22,∫ ξs

ξs−1

dx ‖Kdn
(x, ·)‖22 ≤ 2

[∫ ξs

ξs−1

dx

∫ ∞
x

dz ‖Q(z)‖2
](∫ ξs

ξs−1

+

∫ ∞
ξs

)
dx ‖Kup

(x, ·)‖22

+

∫ ξs

ξs−1

dz [Q](z)2,

which proves the finiteness of
∫ ξs
ξs−1

dx
∫∞
x
dy
(
‖Kup

(x, y)‖2 + ‖Kdn
(x, y)‖2

)
. We have thus

established the finiteness of
∫∞
x0
dx
∫∞
x
dy
(
‖Kup

(x, y)‖2 + ‖Kdn
(x, y)‖2

)
.

The proofs for the other kernel functions are identical.

Theorem 2.1 implies that, under the condition (1.3),∫ ∞
−∞

dλ ‖Ψ(λ, x)− e−iλxJ‖2 = 2π

∫ ∞
x

dy ‖K(x, y)‖2,∫ ∞
−∞

dλ ‖Φ(λ, x)− e−iλxJ‖2 = 2π

∫ x

−∞
dy ‖M(x, y)‖2,

where x ∈ R.
We now introduce the Hardy spaces H2(C±) as the complex Hilbert spaces of those

analytic functions f(λ) in λ ∈ C± such that

‖f‖ =

[
lim
ε→0+

∫ ∞
−∞

dλ |f(λ± iε)|2
]1/2

is finite. Then H2(C±) coincides with the image of the L2 functions supported on R± under
Fourier transformation [7].

Corollary 2.2. Suppose the potential Q(x) satisfies (1.3). Then for each x ∈ R we have
the following:

a. eiλxψ(λ, x)−
(

Im
0n×n

)
has its entries in H2(C−);

b. e−iλxψ(λ, x)−
(

0m×n

In

)
has its entries in H2(C+);

c. eiλxφ(λ, x)−
(

Im
0n×n

)
has its entries in H2(C+);

d. e−iλxφ(λ, x)−
(

0m×n

In

)
has its entries in H2(C−),

where the Jost solutions are defined in terms of the kernel functions by (2.1).

Using JQ(x)J = −Q(x) and assuming X−1 exists, Eq. (1.1) implies that

− i∂Y
∂x

(λ, x)J + iY (λ, x)Q(x) = λY (λ, x), (2.5)

where Y = X−1. Then

∂

∂x
(Y X) = Y [−iλJX + JQX] + [iλY J + Y QJ ]X = Y (JQ+QJ)X (2.6)
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vanishes for any solution X to (1.1) and Y to (2.5). Taking Y = Ψ−1 or Y = Φ−1, we can
derive the triangular representations

Ψ(λ, x)−1 =

(
ψ̆(λ, x)

ψ̆(λ, x)

)
= eiλxJ +

∫ ∞
x

dy eiλyJK̆(y, x), (2.7a)

Φ(λ, x)−1 =

(
φ̆(λ, x)

φ̆(λ, x)

)
= eiλxJ +

∫ x

−∞
dy eiλyJM̆(y, x), (2.7b)

where the kernel functions K̆(y, x) and M̆(y, x) can be decomposed as

K̆(y, x) =

(
K̆ lt(y, x) K̆rt(y, x)

K̆
lt

(y, x) K̆
rt

(y, x)

)
, M(y, x) =

(
M̆

lt

(y, x) M̆
rt

(y, x)

M̆ lt(y, x) M̆ rt(y, x)

)
.

For later use, we proceed as above and derive the analogs of (2.2) and (2.3) as well as
the following results.

Theorem 2.3. Let
∫∞
x
dz (z − x)‖Q(z)‖2 converge for x ≥ x0. Then for x ≥ x0 there

exists a unique kernel function K̆(y, x) such that (2.7a) is satisfied and
∫∞
x
dy ‖K̆(y, x)‖2

and
∫∞
x0
dx
∫∞
x
dy ‖K̆(y, x)‖2 converge. If

∫ x
−∞ dz (x − z)‖Q(z)‖2 converges for x ≤ x0,

then for x ≤ x0 there exists a unique kernel function M̆(y, x) satisfying (2.7b) such that∫ x
−∞ dy ‖M̆(y, x)‖2 and

∫ x0

−∞ dx
∫ x
−∞ dy ‖M̆(y, x)‖2 converge.

Corollary 2.4. Suppose the potential Q(x) satisfies (1.3). Then for each x ∈ R we have
the following:

a. e−iλxψ̆(λ, x)− ( Im 0m×n ) has its entries in H2(C+);

b. eiλxψ̆(λ, x)− ( 0n×n In ) has its entries in H2(C−);

c. e−iλxφ̆(λ, x)− ( Im 0m×n ) has its entries in H2(C−),

d. eiλxφ̆(λ, x)− ( 0n×n In ) has its entries in H2(C+),

where the inverses of the Jost solutions are defined in terms of the kernel functions by (2.7).

3. Scattering data. For potentials satisfying (1.3), the transition coefficients

al(λ) =

(
al1(λ) al2(λ)
al3(λ) al4(λ)

)
, ar(λ) =

(
ar1(λ) ar2(λ)
ar3(λ) ar4(λ)

)
,

can be defined by

al(λ) = Φ(λ, x)−1Ψ(λ, x), ar(λ) = Ψ(λ, x)−1Φ(λ, x), (3.1)

as L1
loc functions of λ ∈ R which do not depend on x ∈ R. It is then easily verified that

al1(λ) and ar4(λ) extend to functions that are analytic in λ ∈ C+, whereas ar1(λ) and
al4(λ) extend to functions that are analytic in λ ∈ C−. In fact, Ψ(x, λ) and Φ(x, λ) are both
square matrix solutions of the same first order system (1.1) and hence one is obtained from
the other by postmultiplication by a square matrix ar/l(λ) not depending on x ∈ R.

In this paper we make the following no-spectral-singularity assumption:1

‖al1(λ)‖ (or ‖ar4(λ)‖) and ‖ar1(λ)‖ (or ‖al4(λ)‖) are both almost everywhere
positive and their reciprocals are essentially bounded in λ ∈ R.

1For L1-potentials this assumption amounts to the absence of spectral singularities adopted in virtually

all publications on the subject. Without such an assumption, no inverse scattering theory for (1.1) has ever
been developed.
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In the defocusing case, this assumption is always satisfied. Under the no-spectral-singularity
assumption, for each x ∈ R the modified Jost matrices

F+(λ, x) =
(
φ(λ, x) ψ(λ, x)

)
= Φ(λ, x)E+ + Ψ(λ, x)E−,

F−(λ, x) =
(
ψ(λ, x) φ(λ, x)

)
= Φ(λ, x)E− + Ψ(λ, x)E+,

where E+ = Im ⊕ 0n×n and E− = 0m×m ⊕ In, extend to matrix functions analytic in
λ ∈ C±. Moreover,

F−(λ, x) = F+(λ, x)

(
Tr(λ) −L(λ)
−R(λ) Tl(λ)

)
, (3.2)

where Tr/l(λ) are transmission coefficients and R(λ) and L(λ) are reflection coefficients.

The transmission coefficients are bounded in λ ∈ R and meromorphic in λ ∈ C+ with the
same finitely many poles. It is easily shown [2, 13] that

R(λ) = −al4(λ)−1al3(λ) = ar3(λ)ar1(λ)−1, (3.3a)

L(λ) = −ar1(λ)−1ar2(λ) = al2(λ)al4(λ)−1, (3.3b)

where R(λ) and L(λ) have their entries in L1
loc(R).

Using (2.7) and (3.1) we obtain

ar(λ)− Im+n=

(
ψ̆(λ, x)φ(λ, x)− Im ψ̆(λ, x)φ(λ, x)

ψ̆(λ, x)φ(λ, x) ψ̆(λ, x)φ(λ, x)− In

)
,

and similarly for al(λ) − Im+n. Using Theorems 2.1 and 2.3 it is easily verified that the
entries of ar/l(λ)− Im+n belong to L2 + L1 and are in fact Fourier transforms of functions

in L2 + C0. Thus, in the absence of spectral singularities, the reflection coefficients R(λ)
and L(λ) belong to L2 +L1. We intend to do better than that, as indicated by the following
theorem.

Theorem 3.1. Under the no-spectral-singularity assumption and the hypothesis (1.3), the
reflection coefficients have their entries in L2(R).

Proof. For L1 potentials Q(x) with L1 entries, we have the following:

1

2π

∫ ∞
−∞

dλ [al1(λ)− Im]eiλy = −
∫ ∞
−∞

dz q(z)K
dn

(z, z + y), (3.4a)

1

2π

∫ ∞
−∞

dλ al2(λ)e−iλy = − 1
2q(

1
2y)−

∫ y
2

−∞
dz q(z)Kdn(z, y − z), (3.4b)

1

2π

∫ ∞
−∞

dλ al3(λ)eiλy = + 1
2r(

1
2y) +

∫ y
2

−∞
dz r(z)K

up
(z, y − z), (3.4c)

1

2π

∫ ∞
−∞

dλ [al4(λ)− In]e−iλy = +

∫ ∞
−∞

dz r(z)Kup(z, z + y), (3.4d)

as well as

1

2π

∫ ∞
−∞

dλ [ar1(λ)− Im]e−iλy = +

∫ ∞
−∞

dz q(z)Mdn(z, z − y), (3.4e)

1

2π

∫ ∞
−∞

dλ ar2(λ)e−iλy = + 1
2q(

1
2y) +

∫ ∞
y
2

dz q(z)M
dn

(z, y − z), (3.4f)

1

2π

∫ ∞
−∞

dλ ar3(λ)eiλy = − 1
2r(

1
2y)−

∫ ∞
y
2

dz r(z)Mup(z, y − z), (3.4g)

1

2π

∫ ∞
−∞

dλ [ar4(λ)− In]eiλy = −
∫ ∞
−∞

dz r(z)M
up

(z, z − y), (3.4h)
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where (3.4a), (3.4d), (3.4e), and (3.4h) have their entries in L1(R+) and the other four equa-
tions have their entries in L1(R). Let us now derive similar estimates under the hypothesis
(1.3). Indeed, writing

Al(y) =
1

2π

∫ ∞
−∞

dλ [al(λ)− Im+n]eiλyJ ,

Ar(y) =
1

2π

∫ ∞
−∞

dλ e−iλyJ [ar(λ)− Im+n],

we can apply Theorem 2.1 to estimate∫ ∞
x0

dy ‖Al(y)‖2 ≤ ‖Q‖22
∫ ∞
x0

dz ‖K(z, ·)‖22 < +∞,∫ x0

−∞
dy ‖Ar(y)‖2 ≤ ‖Q‖22

∫ x0

−∞
dz ‖M(z, ·)‖22 < +∞,

irrespective of the choice of x0 ∈ R. Using (3.3), we now easily prove that, under the no-
spectral-singularity assumption, R(λ) and L(λ) are L2-functions on each right half-line and
each left half-line and hence on the full real line, as claimed.

In the defocusing case the scattering matrix

S(λ) =

(
Sr(λ) L(λ)
R(λ) Tl(λ)

)
(3.5)

is unitary for almost everywhere λ ∈ R. Thus R(λ) and L(λ) are L2- as well as L∞-functions
of λ ∈ R. Moreover, the no-spectral-singularity assumption is always satisfied.

In the focusing case the scattering matrix given by (3.5) is J-unitary in the sense that
S(λ)JS(λ)† = J for almost every λ ∈ R. Thus if the no-spectral-singularity assumption is
satisfied, the reflection coefficients R(λ) and L(λ) are L2- as well as L∞-functions of λ ∈ R.

4. Conclusions. In this article we have made an interesting contribution towards a time
evolution invariant characterization result for the AKNS system. In the defocusing and
focusing cases, we have shown that the reflection coefficients are L2 as well as L∞ if the
hypothesis (1.3) and the no-spectral-singularity assumption are satisfied. On the other hand,
it is known [14] that in the defocusing and focusing cases the potential is L2 if the reflection
coefficients are L2, are continuous, and vanish as λ→ ±∞. Close examination of the proofs
contained in [14] reveals that the potential is L2 if the reflection coefficients are L2 as well
as L∞. The continuity of the reflection coefficients in λ ∈ R is only required to prove the
compactness of the Marchenko integral operators in an L2-setting, while this compactness
property is not used to render the potential obtained by inverse scattering L2.
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