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SunT0, — Si presenta una teoria astratta per problemi stazionari unidi-
mensionali per il semispazio. Sulla base di questa teoria vengono provati aleuni
risultati di esistenza e non esistenza gid noii per modelli di evaporazione.

I. - INTRODUCTION.

In the past few years Arthur and Cercignani [1] and Siewert
and Thomas [2, 8] have analyzed kinetic equations obtained by
linearizing a BGK model equation about a drift Maxwellian. Let us
denote the drift veloeity (in suitable units) by d > 0. If one neglects
transverse effects, one finds for the deviation f(z, ¢) from the drift
Maxwellian the equation (cf. [1, 21)
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If both longitudinal and transverse effects are incorporated, one
finds the coupled system of equations (cf. [3])
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The velocity e runs from — e to c« and the position variable z
from O to c. The boundary conditions to Eq. (1) are of the type

(3) f(0,¢) == g(c} (¢>—d), lim f(z,¢) = 0.

On Eq. (2) one imposes the analogous boundary conditions

) {f+(0,c)}=[m+(6)}(c>_d)’ Iimlf”(m’c)]:(}
.00, ¢) o-(c) e f (z,0)

The functions ¢, ¢, and g_ are of a special type (namely, collision
invariants).

In order to apply Hilbert space methods to the above boundary
value problems we introduce the Hilbert space L.(R, do) of square
integrable functions &, %k : 1R — C with inner product

(5) (B = [ 10 T do(e), 3 = a1 o=

The boundary value problem (1)-(3) can now be reformulated as
the vector-valued differential equation.

{6) (TfY () = —Af(2), 0 <z <
(7) Q. f(0) = o, Jim JIf @) =0

on Ly(1R, do), where T, A and @, are defined by

(ThY (&) = (e + D h(e), (AR) () = hlc) —
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@Q:h) () =h(c) (e>—d) Q. W() =10 (c<—4d).

The boundary value problem (2)-(4) can also be restated as Eqgs.
(6)-(7), but now the relevant Hilbert space is Lo (IR, do) @ L2(R, do)
and T, A and @, are given by
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where k= (k+, h_) is a column vector,

Abstract boundary value problems of the form (6)-(7) have been
investigated intensively sinee the rigorous study by Hangelbroek
[41 of the neutron transport equation below criticality. Concrete as
well as abstract versions abound. Beals [5] and Van der Mee [6]
studies Egs. (6)-(7) on the abstract Hilbert space H, where T is a
bounded injective self-adjoint and A a positive bounded self-adjoint
operator with closed range, while @, is the orthogonal projection
of H onto the maximal positive T— invariant subspace. Further
studies were done in [7, 8, 9] for unbounded A and in [5, 9] for
unbounded 7. Recently the results of [6, 8] were extended in [10]
to non-positive A.

In [1, 2, 8] resulls on the existenece and non-existence of sclu-
tions of the strong evaporation problems (1)-(3) and (2)-(4) were
obtained only after considerable calculations, where ¢ was assumed
to be an arbitrary vector in Q. [Ker A] (see Section III). There
appeared to be a critical drift velocity dy, corresponding to the
speed. of sound of the vapor, with the following properties:

{a) for d = dy there.do not exist non-trivial solutions;

(b} for 0 < d < dy there exist unique values of density and tempe-
rature {(and transverse momenta for the vector
equation) at x == 0 for which a solution exists.

For d = dy the non-existence of stationary non-trivial solutions has
to do with the onset of turbulence at Mach one (i.e, d==dy). For

. —
problem (1)-(3) it was found that dy=— ]/ “2" (see [1, 2]), whereas

=
dM=]/% was found in problem (2)-(4). In the p_resent article we

shall avoid these calculations by deriving these results from the ab-
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stract theory of [5] and [8]. We shall not give detailed proofs but
instead refer for details to the future paper [11].

I, - ABSTRACT HALF-SPACE MODELS,

Let us solve the abstract half-space problem (6)-(7), where T
is a (possibly unbounded) self-adjoint operator with zero null space,
A a bounded positive operator with finite-dimensional null space
and @ the orthogonal projection onto the maximal positive T — in-
variant subspace. Let us assume Ker 4 — {0} first. Then the hypo-
theses of [5] are fulfilled and the operator A-T is self-adjoint
with respect to the Hangelbroek inner product (cf. [4])

(h, B)y = (Al k); hEEH.

Following Beals [5] we define H; as the completion of the domain
D(T) of T with respect to the inner produet

(3) (h, B)r = (|T|h, k),

and Hy as the completion of the domain D(A-*T)=D(T) of A1 T
with respect to the inner product

(9) (B, k) = (|A—2 Tl h ks = (A|A2T| b, B).

It can be shown (see [5]) that the inner products (8) and (9) are
equivalent on D(7T). We may thus identify the completions H, and
Hy. We immediately see that Q. leaves invariant D(T) and that
the restriction of @, to D(T) extends to an orthogonal projection
in Hr. Similarly, let P, be the (., .Js-orthogonal projection of H
onto the maximal (., .),-positive A-1 T-invariant subspace, Then P, -
leaves invariant D(A-*T) and the restriction of P, to D(A*T)
extends to an orthogonal projection in H k. Now exploit that
Hy=H;. As Beals [5] has shown, the operator :

V= Q+P++ (I—Q+) (I“—Pq-)
is well-defined and invertible on H;—=H;. The inverse
E=V1:H,-H,

now maps Q. [Hr] onto P. [H;] and the solution of Egs. (6)-(7) is
unique and has the form
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(10) f(#) = et 4 Ep, 0 <t < 0.

The semigroup in this expression is well-defined, since E¢p € P, [H.].
One thus obtains solutions in the extension space H; of D(T), whe-
never o € D(T). :

As we shall see, the problems (1)-(8) and (2)-(4) give rise to
complications stemming from the non-triviality of Ker A. Under a
minor regularity assumption on T and A (see [9]), the zero root
linear manifolds

Zo(T-14) — f Ker(T-*A), Zy(AT-) — f Ker(AT-1)
b ==

=

have the decomposition properties
{(11) ZoTrAY G Z2(AT- Y = H
(12) Z(AT) @ Zo(T A)L = H,

where the orthogonal complement refers to the original inner pro-
duct of H (see [9]). One observes that T is an invertible operator
from the finite-dimensional space Z,(T-1 A) onto Z,(AT-1), while 4
is an invertible operator from Z,(AT-2)L onto Zo(T-t 4)L. If one
chooses an invertible operator § on Z,(7-* A) such that

(Tgh, R} = 0, heZ,(T*A),

then the linear operator A; on H defined by

-1 -1
(13) an — TH-1h, h€ Zo(T-1 A)
AR, hEZy(AT-Y)L,

is stricily positive self-adjoint on H, while
AT = B@ (T Algyar 'y L)

The use of # does not change the non-zero spectrum of T-!' 4, but
replaces the zero part by the eigenvalues of a non-singular matrix .

Next we use the operator A, to reduce Egs. (6)-(7) to two sub-
problems. Write f = f, 4 71 for the solution, where f, has its values
in Ze(T-* A) and f; in Z,(AT-1)1. Then Eqs. (6)-(7) decompose as
follows: '
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(14) (TFo) (2) == — Afo(®) (0 <2z < w)

(15) (THY (@) = —Afi(2) (0 <z < «),

where [|f1(z)]]— 0 for z—» . Now consider the dummy equation
(16) (Tgay (@) = —Au90(x) (0 < < ).

Also notice that A; and A coineide on Zy(AT-1)  (of. Eq. (13)),
which implies

(17) (Tf1Y () = — Afi () (0 <z < o).

Write g =g, +- f1 ; then Egs. (16) and (17) can be summarized as

(18) (TgY (z) = — Ag(z) O <z <w),

where A, is strictly positive self-adjoint on H. Invoking Beals’
result [5], there exists an invertible operator Ky on H;, which
maps Q.[Hr] onto P,[H,] with P, the (., -Ja, -orthogonal projec-
tion of H(— Hy) onto the maximal {.,.)s ﬁ-positive A;l T-invariant
subspace, The solution of Eq. (18) which vanishes for # » = ge-
nerally has the form

9@ = e T 4 g(0), O<z<w,

where 9(0)eP, [H,]. Because Zy(T-* A) has a finite dimension,
Eq. (14) has the general solution

(— a2y

fol@) = erfo(0) = 5 (-2 Ay £o (0) .

Hence, solutions of Eqgs. (6)-(7) all have the property f,(0) =0 and
the form

(19) F@) = eT4£(0) (0 <2< ),

where f(0) € PP, [H,] and P is the projection of H onto Z, (AT-9)L
along Z, (-1 4) (continuously extended to H,). If one only requires
that [|#(z)|]=0(1) (x — =), then folx} = f, (0) and

(20) f(@) = et g(0) 4 £, (0} 0 <z <o),
where g(0) € PP, [H,] and fo(0)eKer A.
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Formulas (19) and (20) represent general solutions only. As a
final step we have to fulfill the half-range boundary condition
Q. f(0)=¢ in Eq. (7), which gives the necessary and sufficient
condition

(21) @ € PP, [H] 4 (I—@Q,) [Hr]

for the existence of solutions of Eqgs. (6)-(7). Because PP, [H.]
and (I—@Q.) [H;] have zero intersection, such solutions must be
unique. Using the invertibility of E; on H, one may reduce condi-
tion (21) to an analysis on the finite-dimensional space Ker A.
This we shall treat in detail in [11]. Here we state the main result:

THREOREM, - Let us choose a basis z:, ..., #; of Ker A of vectors
satisfying (Ta,, 2;) =0 for 754 j. Among the [ numbers (Tzz, x;) let
My, Mo and m_ the number of positive, zero and negative ones.
Then

(i} Egs. (6)-(7}) have at most one solution, but the linear set of
all 9 €Q,[H;] for which a solufion exists has codimension
My - mo In @ [Hr].

(ii) Eq. (6) with boundary conditions
(22) Q. F(0) = o, ||/ ()] = 0{(1) (- )

has at least one solution for every ¢ € @, [H;], but the linear set

of all solutions of Egs. (6)-(22) with ¢ = 0 has dimension m._.
Thus Eqgs. (6)-(7) have measure of non-completeness m., + m, and
golutions are unique. On the contrary, Egs. {6)-(22) have measure
of non-uniqueness m_ and solutions always exist. For Ker A — {0}
one finds m, —=my==m_=—=0 and Egs. (6)-(7) and Eqgs. (6)-{22)
hoth are uniquely solvable. For non-positive 4 an analogous but more
complicated theorem holds true (see [10]).

HI. - APPLICATION TO STRONG EVAPORATION.

Let us apply the theorem fo Eqs. (1)-(3). One easily computes
{see [11]; cf. [1, 2]) that

KerA = { Ao + Zc(do—d)+(62H%)AT/A@,do,AT arbitrary}.
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As the basis of Ker4 appearing in the theorem we take

wl(C) = 1, .’L'Q(C) == ¢, 553((3) = dC—-—Oz.

o

The =3 numbers (Tay,z,)— f clz(e)2 do(c) appear to be

co

(Twr, m)=d, (Taz, 2) — —;— d, (Tsc3,m3)__—;— d (de_.i)’_) .

2
Hence,
'8
M, =2, M=10, m_=—1 for0<d<l/?
My =2, My=1, m. =— 0 ford:}/%
: ]/3
My =3, M=10, m_ =0 for d > >

Thus m, + my=—=2 for ¢ <d<dy and m, - my=—238 for d > s
( with d,® :g) » which are the measures of non-completeness for

the solution of Egs. (1)-(3). Because of conservation laws one usually
imposes two constraints to the solution and chooses ¢ € @ [Ker A].
For all drift speeds 0 < d < dy there exist unique Ap and AT to
every do, for which Hgs. (6)-(7) with boundary valye funection

@) 0@ = Ao+ 2eW—d) (2— L) a7, 0> g

have a (unique) solution. For. d = dy there are no non-trivial solu-
tions to Egs. (6)-(7), where @ is given by Eq. (238). An analogous
result holds for Eqs. (2)-(4), but now du=V5/6. We thus recovered
the main results of [1, 2, 3] from an abstract theory of half-range
boundary value problems without substantial calculation.
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SUMMARY. — An abstract theory of one-dimensional stationary half-space

problems is presented. On the basis of thiz theory some previously known exi-
stence and nonexistence results for evaporation models are proved.
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