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Abstract Anumericalmethod to compute the scattering data for the Zakharov-Shabat
system associated to the initial value problem for the nonlinear Schrödinger equation
is proposed. The method involves the numerical solution of Volterra integral systems
with structured kernels, of structured integral equations in unbounded domains and
the identification of coefficients and parameters appearing in monomial-exponential
sums. Numerical experiments confirm the effectiveness of the proposed technique.
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1 Introduction

The problem we are addressing concerns the numerical computation of the scattering
data of the Zakharov-Shabat (ZS) system associated to the initial value problem (IVP)
for the nonlinear Schrödinger (NLS) equation
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488 L. Fermo et al.

{
iut + uxx ± 2|u|2u = 0, x ∈ R, t > 0

u(x, 0) = u0(x), x ∈ R
(1)

where i denotes the imaginary unit, u = u(x, t) is the unknownpotential, the subscripts
x and t designate partial derivatives with respect to position and time, u0 ∈ L1(R)

is the initial potential and the ± sign depends on symmetry properties of u. The plus
sign regards the focusing case and the minus sign the defocusing case.

This equation has important physical applications, as it arises in modeling signal
processing in optical fibers [12], as well as in surface waves on deep water [1,2].

As Zakharov and Shabat proved [17], Eq. (1) can be associated to the first order
system of ordinary differential equations

iJ
∂�

∂x
(λ, x) − V(x)�(λ, x) = λ�(λ, x), x ∈ R (2)

where λ ∈ C is a spectral parameter and

J =
(
1 0
0 −1

)
, V = i

(
0 u0
v0 0

)
(3)

with v0 = u∗
0 in the focusing case and v0 = −u∗

0 in the defocusing case. Here and in
the sequel the asterisk denotes the complex conjugate.

With the help of this system, known as the ZS system, the solution of the IVP of (1)
can theoretically be obtained from the initial potential u0 by means of the so-called
Inverse Scattering Transform (IST) technique. In fact, it can be obtained by performing
the following three steps:

(a) starting from the initial potential u0, solve the ZS system associated to the NLS
to obtain the initial scattering data;

(b) propagate the initial scattering data in time;
(c) solve the corresponding inverse scattering problem for the ZS system, i.e. deter-

mine the solution of (1) from the scattering data evolved in time.

While an effective numerical method to solve steps (b) and (c) exists [4], to the best
of our knowledge an effective method to compute all the scattering data for the ZS
system does not exist.

The method proposed by Osborne [11], Wahls and Poor [18], in particular, as well
as that one proposed by Trogdon and Olver [14,15] are aimed at approximating only
some of the scattering data, specifically the reflection and transmission coefficients.
Hence, none of these allows one to compute all the initial scattering data needed to
solve steps (b) and (c), which is the aim of this paper. As a result, our method should
be the only numerical method suitable to compute all the scattering data for the ZS
system and then to solve the NLS by means of the numerical method proposed in [4].

The paper is organized as follows. In Sect. 2 we recall the definition of the scattering
data, as well as the properties necessary for the illustration of the various steps of our
method. Section 3 is devoted to the definition and properties of auxiliary functions
which are basic, in our method, to the characterization of the scattering data. In Sect.
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Scattering data computation for the Zakharov-Shabat system 489

4 we illustrate the steps we have to take, once the auxiliary functions have been
computed. The algorithms of the method we propose to compute all the scattering
data for the ZS system are illustrated in Sect. 5. In Sect. 6 we introduce two different
potentials for which the numerical results are given in Sect. 7. Finally, we conclude the
paper by an Appendix concerning the study of the support of the auxiliary functions
introduced in Sect. 3.

2 Definition and properties

To recall the definitions and the most important properties of this paper, we start with
that of Jost solutions [3], that is with the solution of the ZS system which satisfy the
asymptotic conditions

(�̄(λ, x), �(λ, x)) = e−iλJx (I + o(1)), x → +∞ (4)

(�(λ, x), �̄(λ, x)) = e−iλJx (I + o(1)), x → −∞ (5)

where λ ∈ R, I denotes the identity matrix and J is defined in (3).
Since these solutions satisfy the same linear first order system, there exist transition

matrices

A�(λ) =
(
a�1(λ) a�2(λ)

a�3(λ) a�4(λ)

)
, Ar (λ) = A�(λ)−1 =

(
ar1(λ) ar2(λ)

ar3(λ) ar4(λ)

)
(6)

such that

(�̄(λ, x), �(λ, x)) = (�(λ, x), �̄(λ, x))A�(λ)

(�(λ, x), �̄(λ, x)) = (�̄(λ, x), �(λ, x))Ar (λ).

Denoting by C
+ and C

− the upper and lower half plane and by C̄
+ and C̄

− their
closures, respectively, the following analytic properties hold true. The Jost functions
�(λ, x) and�(λ, x) are continuous in λ ∈ C̄

+, are analytic in λ ∈ C
+, and have finite

limits as λ → ∞ in C̄+, whereas �̄(λ, x) and �̄(λ, x) are continuous in λ ∈ C̄
−, are

analytic in λ ∈ C
−, and have finite limits as λ → ∞ in C̄

−. We can then rewrite (4)
and (5) as the Riemann-Hilbert problem

(�̄(λ, x), �̄(λ, x)) = (�(λ, x), �(λ, x)) J S(λ) J

where

S(λ) =
(
T (λ) L(λ)

R(λ) T (λ)

)
.

Here T (λ) represents the transmission coefficient, while L(λ) and R(λ) stand for
the reflection coefficients from the left and from the right, respectively. This spectral
matrix satisfies the following symmetry properties [16]

S†(λ)S(λ) = S(λ)S†(λ) = I (7)
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490 L. Fermo et al.

in the defocusing case and

S†(λ) J S(λ) = S(λ) J S†(λ) = J (8)

in the focusing case, where I denotes the identity matrix and J was introduced in
(3). Here and in the sequel the dagger denotes the matrix conjugate transpose. The
numerical validity of these properties is used in Sect. 7 to check the effectiveness of
our algorithm.

If T (λ) has no poles in the complex upper half planeC+ (as occurs in the defocusing
case), the transmission coefficient and the reflection coefficients are the only scattering
data to identify. Otherwise, denoting by λ1, . . . , λn the so-called bound states, that is
the finitely many poles of T (λ) in C

+, and by m1, . . . ,mn the corresponding mul-
tiplicities, we have to identify the parameters {n,m j , λ j } as well as the coefficients
{(Γ�) js, (Γr ) js} of the initial spectral sums from the left and from the right

S�(α) =
n∑
j=1

eiλ jα

m j−1∑
s=0

(Γ�) js
αs

s! , α ≥ 0 (9)

Sr (α) =
n∑
j=1

eiλ
∗
jα

m j−1∑
s=0

(Γr ) js
αs

s! , α ≤ 0. (10)

In (9) and (10) the coefficients (Γ�) js and (Γr ) js are the so-called norming constants
from the left and from the right, respectively, and 0! = 1.

Our method allows us to compute all the scattering data, i.e. the spectral matrix as
well as the discrete scattering data {λ j , (Γ�) js, (Γr ) js} whenever they exist.

For the identification of the discrete spectral data, a crucial role is played by the
Marchenko kernels from the left Ω�(α) and from the right Ωr (α) whose analytical
characterization is postponed to Sect. 4. These two kernels are connected to the above
spectral coefficients and spectral sums as follows:

Ω�(α) = ρ(α) + S�(α), for α ≥ 0 (11)

Ωr (α) = �(α) + Sr (α), for α ≤ 0 (12)

where

ρ(α) = 1

2π

∫ +∞

−∞
R(λ)eiλαdλ = F−1 {R(λ)} (13)

is the inverse Fourier transform of the reflection coefficient from the right R(λ) and

�(α) = 1

2π

∫ +∞

−∞
L(λ)e−iλαdλ = 1

2π
F {L(λ)} , (14)

apart from the factor 1/2π , is the Fourier transform of the reflection coefficient from
the left L(λ).
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Scattering data computation for the Zakharov-Shabat system 491

We note that Ω�(α) and Ωr (α), respectively, reduce to:

(a) S�(α) and Sr (α) if the reflection coefficients vanish (reflectionless case). This
situation occurs for initial potentials leading to N -soliton NLS solutions.

(b) ρ(α) and �(α) if there are no bound states. This situation occurs in the defocusing
case and whenever ‖u0‖1 = ‖v0‖1 < π

2 [10].

3 Auxiliary functions

In this section we introduce four pairs of auxiliary functions and the Volterra integral
equations that characterize them. Their solution, as shown in the next section (see also
[7,16]), is fundamental for computing the initial Marchenko kernels as well as ρ(α)

and �(α).
Following [7], let us introduce, for y ≥ x , the two pairs of unknown auxiliary

functions

K̄(x, y) ≡
(
K̄ up(x, y)
K̄ dn(x, y)

)
, K(x, y) ≡

(
K up(x, y)
K dn(x, y)

)
,

and, for y ≤ x , the two pairs of unknown auxiliary functions

M̄(x, y) ≡
(
M̄ up(x, y)
M̄ dn(x, y)

)
, M(x, y) ≡

(
M up(x, y)
M dn(x, y)

)
.

For the sake of clarity, let us explain how these functions are connected to the Jost
matrices associated to the ZS system (2).

As in [3,16], we represent the 2 × 2 Jost matrices as the Fourier transforms of the
pairs of auxiliary functions:

(�̄(λ, x),�(λ, x)) = e−iλJx +
∫ ∞

x

(
K̄(x, y),K(x, y)

)
e−iλJy dy, (15)

(�(λ, x), �̄(λ, x)) = e−iλJx +
∫ x

−∞
(
M(x, y), M̄(x, y)

)
e−iλJy dy, (16)

from which inverting the Fourier transforms we get

(K̄(x, y),K(x, y)) = 1

2π

∫ ∞

−∞

[
(�̄(λ, x),�(λ, x)) − e−iλJx

]
eiλJy dλ, (17)

(M(x, y), M̄(x, y)) = 1

2π

∫ ∞

−∞

[
(�(λ, x), �̄(λ, x)) − e−iλJx

]
eiλJy dλ. (18)

Now, for y ≥ x , the pair (K̄ up, K̄ dn) is the solution of the following system of two
structured Volterra integral equations [7,16]:
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492 L. Fermo et al.

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

K̄ up(x, y) +
∫ ∞

x
u0(z) K̄

dn(z, z + y − x) dz = 0

K̄ dn(x, y) −
∫ 1

2 (x+y)

x
v0(z) K̄

up(z, x + y − z) dz = 1
2v0

( 1
2 (x + y)

) (19)

while the pair (K up, K dn) is the solution of the system⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

K up(x, y) +
∫ 1

2 (x+y)

x
u0(z) K

dn(z, x + y − z) dz = − 1
2u0

( 1
2 (x + y)

)

K dn(x, y) −
∫ ∞

x
v0(z) K

up(z, z + y − x) dz = 0.

(20)

Similarly, for y ≤ x the pair (M̄ up, M̄ dn) is the solution of the system of two
structured Volterra equations:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

M̄ up(x, y) −
∫ x

1
2 (x+y)

u0(z) M̄
dn(z, x + y − z) dz = 1

2u0
( 1
2 (x + y)

)

M̄ dn(x, y) +
∫ x

−∞
v0(z) M̄

up(z, z + y − x) dz = 0

(21)

and the pair (M up, M dn) is the solution of the following system

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

M up(x, y) −
∫ x

−∞
u0(z) M

dn(z, z + y − x) dz = 0

M dn(x, y) +
∫ x

1
2 (x+y)

v0(z) M
up(z, x + y − z) dz = − 1

2v0(
1
2 (x + y)).

(22)

From the computational point of view, on the bisector y = x , it is important to
note that each auxiliary function is uniquely determined by the initial solution or its
partial integral energy. In fact, setting y = x in each of the four Volterra systems, we
immediately obtain:

K̄ dn(x, x) = 1

2
v0(x), K̄ up(x, x) = −1

2

∫ ∞

x
u0(z) v0(z) dz, (23)

K up(x, x) = −1

2
u0(x), K dn(x, x) = −1

2

∫ ∞

x
u0(z) v0(z) dz, (24)

M dn(x, x) = −1

2
v0(x), M up(x, x) = −1

2

∫ x

−∞
u0(z) v0(z) dz, (25)

M̄ up(x, x) = 1

2
u0(x), M̄ dn(x, x) = −1

2

∫ x

−∞
u0(z) v0(z) dz. (26)
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Scattering data computation for the Zakharov-Shabat system 493

Moreover, let us mention that the vector functions K̄ andK, as well as the functions
M̄ andM, are related to each other. Indeed, in the focusing case the following symmetry
properties hold true [16]:

⎛
⎝ K up(x, y)

K dn(x, y)

⎞
⎠ =

⎛
⎝−K̄ dn(x, y)∗

K̄ up(x, y)∗

⎞
⎠ ,

⎛
⎝M up(x, y)

M dn(x, y)

⎞
⎠ =

⎛
⎝ M̄ dn(x, y)∗

−M̄ up(x, y)∗

⎞
⎠ (27)

while in the defocusing case the following symmetry relations can be proved:

⎛
⎝ K up(x, y)

K dn(x, y)

⎞
⎠ =

⎛
⎝ K̄ dn(x, y)∗

K̄ up(x, y)∗

⎞
⎠ ,

⎛
⎝M up(x, y)

M dn(x, y)

⎞
⎠ =

⎛
⎝ M̄ dn(x, y)∗

M̄ up(x, y)∗

⎞
⎠ . (28)

Remark 1 Let us note that, in virtue of (27), (28), we only need to solve numerically
systems (19) and (21) or systems (20) and (22) and then compute the remaining
auxiliary functions by resorting to the above symmetry properties .

Remark 2 If the potentials u0 and v0 are even functions, the auxiliary functions M
and M can easily be obtained from the functions K̄ and K as follows:

M up(x, y) = K̄ up(−x,−y) M dn(x, y) = −K̄ dn(−x,−y)

M̄ up(x, y) = −K up(−x,−y) M̄ dn(x, y) = K dn(−x,−y).

Similarly, if the potentials u0 and v0 are odd functions, we have

M up(x, y) = K̄ up(−x,−y) M dn(x, y) = K̄ dn(−x,−y)

M̄ up(x, y) = K up(−x,−y) M̄ dn(x, y) = K dn(−x,−y).

Consequently, in these casesweonlyneed to solvenumerically one system, for instance
system (19).

4 Initial Marchenko kernels, scattering matrix and Fourier transforms
of reflection coefficients

This section consists of two parts. In the first part we recall the Volterra integral
equations that we solve to obtain the initial Marchenko kernels Ω�(α) and Ωr (α).
In the second part we explain how to compute the scattering matrix and the Fourier
transforms of the reflection coefficients R and L .

4.1 Initial Marchenko kernels

Following [16, 2.50a and 2.50b] we can say that, for y ≥ x ≥ 0, theMarchenko kernel
Ω� is connected to the auxiliary functions K dn and K̄ dn as follows:
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494 L. Fermo et al.

Ω�(x + y) +
∫ ∞

x
K dn(x, z)Ω�(z + y) dz = −K̄ dn(x, y). (29)

Similarly, for y ≤ x ≤ 0, the Marchenko kernel Ωr is connected to the auxiliary
functions M dn and M̄ dn in this way:

Ωr (x + y) +
∫ x

−∞
M up(x, z)Ωr (z + y) dz = −M̄ up(x, y). (30)

As a result, assuming known the auxiliary functions, (29) and (30) can be interpreted as
structured Fredholm integral equations of the second kind having the initialMarchenko
kernels Ω� and Ωr as their unknowns.

It is important to note that, from the computational point of view, each Marchenko
kernel can be treated as a function of only one variable, as we only have to deal with
the sum of the two variables.

4.2 The scattering matrix and the Fourier transforms of the reflection
coefficients

Let us begin by recalling that, as proposed in [16], the coefficients of the scattering
matrix S(λ) can be represented as follows:

T (λ) = 1

a�4(λ)
= 1

ar1(λ)
, (31)

L(λ) = a�2(λ)

a�4(λ)
= −ar2(λ)

ar1(λ)
, (32)

R(λ) = ar3(λ)

ar1(λ)
= −a�3(λ)

a�4(λ)
(33)

where the {a�j (λ)} and the {ar j (λ)} denote the entries of the transition matrices from
the left and from the right, respectively. More precisely,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a�1(λ) = 1 −
∫
R+

e−iλz Φ̄ dn(z)dz

a�2(λ) = −
∫
R

e2iλyu0(y)dy −
∫
R

eiλzΦ dn(z)dz

a�3(λ) =
∫
R

e−2iλyv0(y)dy +
∫
R

e−iλzΦ̄ up(z)dz

a�4(λ) = 1 +
∫
R+

eiλzΦ up(z)dz,

(34)

where

Φ̄ dn(z) =
∫
R

u0(y)K̄
dn(y, y + z)dy, Φ dn(z) =

∫ z
2

−∞
u0(y)K

dn(y, z − y)dy,

(35)
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Scattering data computation for the Zakharov-Shabat system 495

Φ up(z) =
∫
R

v0(y)K
up(y, y + z)dy, Φ̄ up(z) =

∫ z
2

−∞
v0(y)K̄

up(y, z − y)dy,

(36)

and ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ar1(λ) = 1 +
∫
R+

eiλzΨ dn(z)dz

ar2(λ) =
∫
R

e2iλyu0(y)dy +
∫
R

eiλzΨ̄ dn(z)dz

ar3(λ) = −
∫
R

e−2iλyv0(y)dy −
∫
R

e−iλzΨ up(z)dz

ar4(λ) = 1 −
∫
R+

e−iλzΨ̄ up(z)dz

(37)

where

Ψ dn(z) =
∫
R

u0(y)M
dn(y, y − z)dy, Ψ̄ dn(z) =

∫ +∞
z
2

u0(y)M̄
dn(y, z − y)dy,

(38)

Ψ up(z) =
∫ +∞

z
2

v0(y)M
up(y, z − y)dy, Ψ̄ up(z) =

∫
R

v0(y)M̄
up(y, y − z)dy.

(39)

While the approximation of T simply requires the computation ofa�4(λ) andar1(λ),
that of ρ and � is more complicated. In fact, to approximate ρ(α) and �(α) we first
have to compute the scattering coefficients by means of (34) – (39), then the reflection
coefficients R(λ) and L(λ) by using (33) and (32) and, finally, ρ(α) and �(α) by
resorting to the inverse and direct Fourier transforms as indicated in (13) and (14).

The stability of this numerical procedure essentially depends on the decay of R(λ)

and L(λ) as λ → ±∞, since the smoother the initial potential the faster their decay.
If the initial potential has jump discontinuities then R and L decay slowly as λ → ∞
while if u0 ∈ C∞(R) then R and L decay superpolynomially.

Hence, this procedure is effective whenever the initial potential is smooth enough,
that is at least u0 ∈ C(R). If this is not the case the Fourier transforms ρ(α) and �(α)

can be approximated by solving the structured Fredholm integral equations stated in
the following theorems. The development of an effective algorithm for solving these
equations is devoted to a subsequent paper.

Theorem 1 The functionρ(α) is the unique solution of each of the followingFredholm
integral equation of the second kind :

ρ(α) +
∫ ∞

0
Φ up(z) ρ(z + α)dz = −1

2
v0

(α

2

)
− Φ̄ up(α), (40)

ρ(α) +
∫ ∞

0
Ψ dn(z) ρ(z + α)dz = −1

2
v0

(α

2

)
− Ψ up(α), (41)
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496 L. Fermo et al.

where Φ up and Φ̄ up are given in (36) and Ψ dn and Ψ up are defined in (38), (39).

Proof Let us first note that from (33)

a�4(λ)R(λ) = −a�3(λ) (42)

where a�4 and a�3 are defined in (34). Introducing the Heaviside function H(z) = 1
for z ≥ 0 and H(z) = 0 for z < 0, taking into account that

R(λ) = F {ρ(α)}

and using (42) we can write

(1 + F {Φ up(−α)H(−α)})F {ρ(α)} = −F
{
1

2
v0

(α

2

)
+ Φ̄ up(α)

}
.

Hence, applying the inverse Fourier transform and the convolution theorem, we have

ρ(α) + (Φ up(−α)H(−α)) ∗ ρ(α) = −1

2
v0

(α

2

)
− Φ̄ up(α),

and then the equation (40) is an immediate consequence of the convolution definition
and the Heaviside function. Equation (41) can be obtained similarly, noting that R(λ)

satisfies the relation

ar1(λ)R(λ) = ar3(λ)

and that

ar1(λ) = 1 + F {
Ψ dn(−α)H(−α)

}
and ar3(λ) = F

{
1

2
v0

(α

2

)
+ Ψ up(α)

}
.


�
We note that, from the numerical point of view, it is irrelevant if we solve (40)

rather than (41), since both are Fredholm integral equations of the second kind, equally
structured.

Applying the same technique we obtain the analogous

Theorem 2 The function �(α) is the unique solution of the two structured Fredholm
integral equations of the second kind:

�(α) +
∫ ∞

0
Φ up(z) �(α − z)dz = −1

2
u0

(α

2

)
− Φ dn(α) (43)

�(α) +
∫ ∞

0
Ψ dn(z) �(α − z)dz = −1

2
u0

(α

2

)
− Ψ̄ dn(α), (44)

where Ψ dn and Ψ̄ dn are defined in (38) and Φ dn and Φ up are given in (35), (36).

123

Author's personal copy



Scattering data computation for the Zakharov-Shabat system 497

We omit the proof, as it is analogous to the previous one, after noting that
a�4(λ)L(λ) = a�2(λ) and ar1(λ)L(λ) = −ar2(λ) with L(λ) = F {�(−α)} .

5 The numerical method

Let us now assume, for computational simplicity, that the support of the initial solution
is bounded, that is

u0(x) = 0, for |x | > L , (45)

which can be considered acceptable whenever u0(x) → 0 for |x | → ∞, provided L
is taken large enough. This hypothesis, as in part already proved in [7], allows us to
greatly simplify the algorithms for the computation of the auxiliary functions and also
those for the computation of the Marchenko kernels and the Fourier transforms of the
reflection coefficients.

The method we propose provides successively the numerical solution of:

1. the four systems (19)–(22) of Volterra integral equations for the computation of
the four pairs of auxiliary functions;

2. the two Fredholm integral equations (29), (30) for the computation of the
Marchenko kernels from the left and from the right Ω� and Ωr , respectively;

3. the transition matrices from the left and from the right, the scattering matrix and
then the inverse Fourier transforms ρ of the reflection coefficients from the right
R and the Fourier transform � of the reflection coefficient from the left L .

Once the Marchenko kernels Ω�(α) and Ωr (α) and the functions ρ(α) and �(α)

have been obtained, the bound states {λ j }nj=1 with their multiplicities {m j }nj=1 and
the norming constants {(Γ�) js, (Γr ) js} are computed by applying to the monomial-
exponential sums (9), (10) the matrix-pencil method proposed in [8] and [6].

5.1 Auxiliary functions computation

As said before, our numericalmethod for the solution of theVolterra systems (19)–(22)
is greatly affected by the hypothesis (45). It implies a reduction of the auxiliary function
supports, which allows us to develop algorithms that are simpler and numerically
stable.

As proved in [7] and in the Appendix of this paper, K̄ up and K̄ dn have the supports
depicted in Fig. 1. Taking into account the symmetry properties (27) or (28) of systems
(19) and (20), it is immediate to check that supp(K up) = supp(K̄ dn) and supp(K dn) =
supp(K̄ up).

For the numerical solution of system (19), the following properties, proved in [7],
are also important:

1. If x ≤ −L , whatever h, K̄ up(x, y) and K dn(x, y) are both constant on the line
y = x+h. For this reason we put K̄ up(x, x+h) = C up

K̄ ,h
and K dn(x, x+h) = C dn

K ,h
for each given value h.

2. If x < −L and x + y > −2L , K̄ dn(x, y) and K up(x, y) are both constant on each
line x + y = −2(L − h) for each 0 < h < 2L .
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Fig. 1 Supports of the auxiliary functions K̄ up and K dn (to the left) and K̄ dn and K up (to the right)
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Fig. 2 Additional properties of K̄ up and K dn (to the left) and K̄ dn and K up (to the right)

These two results are graphically represented in Fig. 2, where K̄ dn(x, x+h) = C dn

K̄ ,h
and K̄ up(x, x + h) = C up

K̄ ,h .
Analogous considerations, based on results reported in [7] and in the Appendix,

allow us to claim that the supports of (M̄ up, M̄ dn) are those depicted in Fig. 3. As
for (K̄ up, K̄ dn) and (K up, K dn) as for the pairs (M̄ up, M̄ dn) and (M up, M dn) we have
additional properties very useful from the numerical point of view. With obvious
meaning of the symbols, they are reported in Fig. 4.

A simple inspection of Figs. 1 and 3 makes it evident that the area where we need
to compute K̄ up and K̄ dn, as well as K up and K dn, is given by the orange triangle
represented in Fig. 5. In the remaining areas of the respective supports their values are
immediately obtained by using those of the orange triangle. The orange line shows,
in particular, the values of the orange triangle we use to compute (K̄ up, K̄ dn) and
(K up, K dn) in the point of the gray area. Similar considerations hold true for the com-
putational area of the pairs (M̄ up, M̄ dn) and (M up, M dn) which is depicted in Fig. 6,
with the analogous meaning of the symbols.
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Fig. 3 Supports of the auxiliary functions M up and M̄ dn (to the left) and M dn and M̄ up (to the right)
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Fig. 4 Additional properties of M up and M̄ dn (to the left) and M dn and M̄ up (to the right)

Fig. 5 Geometrical visualization of the computational area of K̄ up and K̄ dn (to the left) and K up and K dn

(to the right)
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Fig. 6 Geometrical visualization of the computational area of M̄ up and M̄ dn (to the left) and M up and M dn

(to the right)
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Fig. 7 Sorting visualization of collocation points in the triangle of K̄ up, K̄ dn, K up and K dn
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Fig. 8 Sorting visualization of collocation points in the triangle of M̄ up, M̄ dn, M up and M dn

Algorithm

Given the initial solution u0 and v0 = u∗
0 in the focusing case or v0 = −u∗

0 in the
defocusing case, we have to solve the Volterra systems (19)–(22).
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Let us start with the numerical solution of system (19). As noted before, under
the hypothesis (45), we can limit ourselves to solving this system in the triangular
computational area represented in Fig. 5, as the values of K̄ up and K̄ dn in the remaining
parts of their support are then automatically known (Figs. 2, 4).

The algorithm that we propose in this paper ismore effective that the one reported in
[7] whose aim was simply to check the effectiveness of our approach, highlighting the
mathematical problems to overcome to obtain a satisfactory solution of the problem.
Though the collocation strategy, shown in Figs. 7, 8, is the same as used in [7], the
algorithm used here is more complex and effective. In fact, it is based on the combined
use of the trapezoidal rule, the composite Simpson quadrature formula and the 3/8
Simpson quadrature rule [13, Section 3.1], instead of only the composite trapezoidal
quadrature formula used there.

The first step is to fix a proper mesh in the computational area which can be done
by fixing n ∈ N, taking h = L

n and introducing the following mesh points:

Dk = {(xi , xi+2k), xi = ih, i = n − k, n − k − 1, . . . ,−n + 1,−n}

where the index k = 0, . . . , 2n identifies the line y = x + 2kh on which we want to
compute the unknown functions, whereas i labels the abscissa of the i th mesh point
on the line.

For the sake of simplicity, let us hereafter write u and v in place of u0 and v0,
respectively. The computational strategy requires us to compute first K̄ up and K̄ dn in the
nodal points of the bisector (xi , xi ). Consequently, recalling (23) and denoting by K̄

up
r,s ,

K̄ dn
r,s the approximation of K̄ up(x, y), K̄ dn(x, y) in the nodal points ofD0, we canwrite

K̄ up

i,i = −1

2

∫ ∞

xi
u(z)v(z) dz = −1

2

∫ xn+1

xi
u(z)v(z) dz

K̄ dn
i,i = 1

2
vi , i = n, n − 1, . . . ,−n + 1,−n.

Toapproximate the above integral, it is convenient to use different quadrature formulae,
according to the node xi . More precisely for:

• i = n, being involved only two nodal points, we use the trapezoidal rule

K̄ up

i,i = −h

4
{unvn + un+1vn+1} = −h

4
unvn

as, for (23), un+1vn+1 = 0;
• i = n−�, � = 1, 3, 5, . . . , 2n−1, we apply the composite Simpson rule. Recalling
that un+1 = vn+1 = 0, we then obtain

K̄ up

i,i = h

3

⎡
⎢⎣uivi + 4

�+1
2∑

j=1

ui+2 j−1vi+2 j−1 + 2

�+1
2 −1∑
j=1

ui+2 jvi+2 j

⎤
⎥⎦ ;
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• i = n − �, � = 2, 4, 6, . . . , 2n, noting that

∫ xn+1

xi
u(z)v(z) dz =

{∫ xi+3

xi
+

∫ xn+1

xi+3

}
u(z)v(z)dz,

and that the first integral involves four nodes, while the second integral involves
an odd number of nodes, we can apply the 3/8 Simpson rule [13, p. 128] for
computing the first integral and the composite Simpson quadrature formula for the
second one. Hence, recalling again that un+1 = vn+1 = 0, we have

K̄ up

i,i =3

8
h
[
uivi + 3ui+1vi+1 + 3ui+2vi+2 + ui+3vi+3

]

+ h

3

⎡
⎢⎣ui+3vi+3 + 4

�
2∑

j=1

ui+2+2 j + 2

�
2−1∑
j=1

ui+3+2 jvi+3+2 j

⎤
⎥⎦ .

Once K̄ up and K̄ dn on the nodal points of the bisector y = x are known, to evaluate
them on the nodal points of the parallel lines to the bisector, we collocate system (19)
on the nodes of the mesh (xi , xi+2k), taking successively k = 1, . . . , 2n and, fixing k,
assuming i = n − k, . . . ,−n + 1,−n. Hence, we can write

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

K̄ up

i,i+2k +
∫ ∞

xi
u(z) K̄ dn(z, z + 2kh) dz = 0,

K̄ dn
i,i+2k −

∫ xi+k

xi
v(z) K̄ up(z, 2(i + k)h − z) dz = 1

2vi+k .

These formulae, taking into account the support of the functions involved (Fig. 5),
reduce to

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

K̄ up

i,i+2k +
∫ xn−k+1

xi
u(z) K̄ dn(z, z + 2kh) dz = 0,

K̄ dn
i,i+2k −

∫ xi+k

xi
v(z) K̄ up(z, 2(i + k)h − z) dz = 1

2vi+k .

To compute the first integral

I 1k,i =
∫ xn−k+1

xi
u(z) K̄ dn(z, z + 2kh) dz

we use different quadrature formulae, according to the node xi . More precisely, fixing
k, for:
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• i = n − k, being involved only two nodal points, we use the trapezoidal rule and
then take

I 1k,i = h

2

{
un−k K̄

dn
n−k,n+k + un−k K̄

dn
n−k+1,n+k+1

} = h

2
un−k K̄

dn
n−k,n+k,

as the nodal point (xn−k+1, xn+k+1) is outside the support of K̄ dn(x, y);
• i = n− k− �, with � odd and � ≤ 2n− k, applying the composite Simpson’s rule,
we obtain

I 1k,i =
h

3

⎡
⎢⎣ui K̄ dn

i,i+2k + 4

�+1
2∑

j=1

ui+2 j−1 K̄
dn
i+2 j−1,i+2 j−1+2k+2

�+1
2∑

j=1

ui+2 j−1 K̄
dn
i+2 j,i+2 j+2k

⎤
⎥⎦ ,

as K̄ dn
n−k+1,n+k+1 = 0.

• i = n − k − �, with � even and � ≤ 2n − k, noting that

I 1k,i =
{∫ xi+3

xi
+

∫ xn−k+1

xi+3

}
u(z) K̄ dn(z, z + 2kh) dz,

we apply the 3/8 Simpson’s rule for the first integral and the composite Simpson’s
quadrature formula for the second one. Hence, we have

I 1k,i =
3

8
h
[
ui K̄

dn
i,i+2k+3ui+1 K̄

dn
i+1,i+1+2k+3ui+2 K̄

dn
i+2,i+2+2k+ui+3 K̄

dn
i+3,i+3+2k

]

+ h

3

⎡
⎢⎣ui+3 K̄

dn
i+3,i+3+2k + 4

�
2∑

j=1

ui+2+2 j K̄
dn
i+2+2 j,i+2+2 j+2k

+2

�
2−1∑
j=1

ui+3+2 j K̄
dn
i+3+2 j,i+3+2 j+2k

⎤
⎥⎦

as the nodal point (xn−k+1, xn+k+1) is outside the support of K̄ dn(x, y).

The computation of the second integral

I 2k,i =
∫ xi+k

xi
v(z) K̄ up(z, 2(i + k)h − z) dz,

is also based on the use of quadrature formulae, essentially dependent on the line
y = x + 2kh. More precisely, for:

• k = 1, as only two nodal points are involved, we apply the trapezoidal rule,
obtaining

I 2k,i = h

2

{
vi K̄

up

i,i+2 + vi+1 K̄
up

i+1,i+1

}
;
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• k = 2, 4, 6, . . . , 2n, we use the composite Simpson quadrature formula. Proceed-
ing in this way we obtain for i = n − k, . . . ,−n

I 2k,i =h

3

⎡
⎢⎣vi K̄

up

i,i+2k + 4

�
2∑

j=1

vi+2 j−1 K̄
up

i+2 j−1,i−2 j+1+2k

+ 2

�
2−1∑
j=1

vi+2 j K̄
up

i+2 j,i−2 j+2k + vi+k K̄
up

i+k,i+k

⎤
⎥⎦

=h

3
vi K̄

up

i,i+2k + wk,i ,

wherewk,i is the sum of the K̄ up values in the nodal points belonging to the bisector
and the previous parallels. In fact, the K̄ up values of the first sum belong to the
lines y = x + [2k − 2(2 j − 1)]h, those of the second one belong to the lines
y = x + [2k − 4 j]h and the last term to y = x .

• k = 3, 5, 7, . . . , 2n − 1, we write

I 2k,i =
{∫ xi+3

xi
+

∫ xi+k

xi+3

}
v(z) K̄ up(z, 2(i + k)h − z) dz

and then we use the 3/8 Simpson rule for the first integral and again the composite
Simpson quadrature formula for the second one:

I 2k,i =3

8
h
[
vi K̄

up

i,i+2k+3vi+1 K̄
up

i+1,i+2k−1+3vi+2 K̄
up

i+2,i+2k−2+vi+3 K̄
up

i+3,i+2k−3

]

+ h

3

⎡
⎢⎣vi+3 K̄

up

i+3,i+2k−3 + 4

�
2∑

j=1

vi+2+2 j K̄
up

i+2+2 j,i−2−2 j+2k

+ 2

�
2−1∑
j=1

ui+3+2 j K̄
up

i+3+2 j,i−3−2 j+2k + vi+k K̄
up

i+k,i+k

⎤
⎥⎦

=3

8
hvi K̄

up

i,i+2k + wk,i ,

where wk,i is known, being a linear combination of K̄ up values already computed.
Once the integrals have been approximated as described above, we obtain the 2n
following structured systems of order 2(2n + 1 − k), k = 1, . . . , 2n

{
k̄ up

k + Uk,1k̄ dn
k = 0

Uk,2k̄
up

k + k̄ dn
k = vk − wk

(46)
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that allow us to compute the functions K̄ up and K̄ dn in the 2n + 1− k nodal points
of Dk as

k̄ up

k =
(
K̄ up

n−k,n+k, K̄
up

n−k−1,n+k−1, . . . , K̄
up

−n+1,−n+2k+1, K̄
up

−n,−n+2k

)T
k̄ dn
k = (

K̄ dn
n−k,n+k, K̄

dn
n−k−1,n+k−1, . . . , K̄

up
−n+1−n+2k+1, K̄

dn−n,−n+2k

)T
.

Notice that Uk,1, Uk,2 are the following structured matrices:

Uk,2 = −ckh diag(vn−k, vn−k−1, . . . , v−n+1, v−n)

with c1 = 1/2, c2 = c4 = · · · = c2n = 1/3 and c3 = c5 = · · · = c2n−1 = 3/8
and Uk,1 is the following nonsingular lower triangular matrix

Uk,1 = h Ũk,1diag(un−k, un−k−1, . . . , u−n+1, u−n)

where the rows of the matrix Ũk,1 are defined as follows:

(Ũk,1)1 =
(
1

2
0 0 . . . 0 0 0

)

(Ũk,1)2 =
(
4

3

1

3
0 0 . . . 0 0 0

)

(Ũk,1)3 =
(
9

8

9

8

3

8
0 0 . . . 0 0 0

)

(Ũk,1)2i =
(
4

3

2

3

4

3

2

3
. . .

4

3

1

3
0 0 . . . 0 0 0

)
i ≥ 2

(Ũk,1)2i+1 =
(
4

3

2

3

4

3

2

3
. . .

4

3

2

3

1

3

(
1

3
+ 3

8

)
9

8

9

8

3

8
0 0 . . . 0 0 0

)
i ≥ 2.

The most obvious computational strategy is to reduce (46) to a sequence of n −
k systems of order two. However, our numerical experiments indicate that the
numerical stability increases by using a suitable iterative method.
It requires solving iteratively the system

(I − Uk,1Uk,2) k̄
up

k = Uk,1 wk, (47)

and then computing
k̄ dn
k = vk − Uk,2 k̄

up

k . (48)

The matrix of system (47), for h small enough, is diagonally dominant as each
nonzero element ofUk,1Uk,2 contains a factor h2, so that the Gauss-Seidel method
is a suitable choice of iteration method, assuming as an initial vector the values of
k̄ up

k in the previous parallel, that is taking in the (k + 1)th parallel to the bisector

(k̄ up

k+1)
(0) = k̄ up

k k = 0, 1, . . . , 2n − 1. (49)
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As I−Uk,1Uk,2 is lower triangular, it is of course possible to solve it by adescending
technique.

Remark 3 Once we have solved system (19) we can immediately deduce the solution
of system (20) taking into account Remark 1. In any case, we note that, as the com-
putational area of system (19) is the same as that of (20), the algorithm to solve (20)
is analogous to that adopted for system (19).

The same comparative considerations hold true for the computation of (M̄ up, M̄ dn)
and (M up,M dn) in the nodal points of their computational area.Moreover, although the
computational area for (M̄ up, M̄ dn) is not the same as that for (K̄ up, K̄ dn), the technique
for their computation is essentially the same.

Noting that (Figs. 5, 6) the two computational areas are symmetric with respect
to each other, we first have to compute (M̄ up, M̄ dn) in the bisector and then on the
parallel lines y = x − 2kh, k = 1, 2, . . . , 2n. Furthermore, to compute M̄ dn in the
bisector we can adopt the same algorithm for K̄ up as relations (23) and (26) indicate.
A comparison between the systems (19) and (21) also suggests to approximate the
first integral in (21) by a simple adaptation of the method developed for the second
one in (19), as well as the second integral of (21) by adapting the method for the first
integral of (19).

5.2 Marchenko kernel computation

To compute Ω� and Ωr , that is to solve the integral equations (29) and (30), we first
note that (45) implies the boundedness of their supports. In fact, as proved in [7,
Lemma 5.1], (45) implies that

supp(Ω�) ⊂ [0, 2L], and supp(Ωr ) ⊂ [−2L , 0].

For the approximation of Ω� we collocate (29) in the nodal points

{(xn−2i , xn), xn−2i = (n − 2i)h, i = 0, 1, . . . , n} ,

to obtain

Ω�(x2(n−i)) +
∫ xn

xn−2i

K dn(xn−2i , z)Ω�(z + xn)dz = −K̄ dn(x(n−2i), xn). (50)

Now, to compute the above integral we use different quadrature formula by adopting a
steplength δ = 2h that is twice the one considered in the numerical solution of system
(20) to avoid the interpolation among the values of the auxiliary functions computed
before. More precisely, for

• i = 0 we immediately obtain that

Ω�,2n = −K̄ dn
n,n = −1

2
vn

in virtue of (23);
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• i = 1 we use the trapezoidal rule to get

(
1 + δ

2
K dn
n−2,n−2

)
Ω�,2(n−1) = −K̄ dn

n−2,n − K dn
n−2,nΩ�,2n;

• i = 2, 4, 6, . . . we use the Simpson quadrature formula

(
1 + δ

3
K dn
n−2i,n−2i

)
Ω�,2(n−i) = −K̄ dn

n−2i,n

− δ

3

⎛
⎜⎝4

i+1
2∑

j=1

K dn

n−2i,n−2(i− j)Ω�,2(n−2(i− j))

+2

i+1
2 −1∑
j=1

K dn

n−2i,n−2(i− j−1)Ω�,2(n−(i− j−1)) + K dn
n−2i,nΩ�,2n

⎞
⎟⎠ ;

• i = 3, 5, 7, . . . as we can write

∫ xn

xn−2i

K dn(xn−2i , z)Ω�(z + xn)dz

=
{∫ xn−2(i−3)

xn−2i

+
∫ xn

xn−2(i−3)

}
K dn(xn−2i , z)Ω�(z + xn)dz

we approximate the first integral by using the 3/8 Simpson rule and the last integral
by adopting the composite Simpson quadrature formula. Hence we get

(
1 + 3δ

8
K dn
n−2i,n−2i

)
Ω�,2(n−i) =−K̄ dn

n−2i,n − 3δ

8

(
3K dn

n−2i,n−2(i−1)Ω�,2(n−(i−1))

+ 3K dn

n−2i,n−2(i−2)Ω�,2(n−(i−2)) + K dn

n−2i,n−2(i−3)Ω�,2(n−(i−3))

)

− δ

3

⎛
⎜⎝K dn

n−2i,n−2(i−3)Ω�,2(n−(i−3)) + 4

i+1
2∑

j=1

K dn

n−2i,n−2(2i−3− j)Ω�,2(n−(2i−3− j))

+ 2

i+1
2 −1∑
j=1

K dn

n−2i,n−2(2i−4− j)Ω�,2(n−(2i−4− j)) + K dn
n−2i,nΩ�,2n

⎞
⎟⎠ .

An analogous procedure can be applied to approximate Ωr in [−2L , 0]. More pre-
cisely, we collocate (30) in the nodal points

{(x2i−n, x−n), x2i−n = (2i − n)h, i = 0, 1, . . . , n} ,
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to obtain

Ωr (x2(i−n)) +
∫ x2i−n

x−n

M up(x2i−n, z)Ω�(z + x−n)dz = −M̄ up(x(2i−n), x−n). (51)

Hence, by adopting the technique illustrated above,

• for i = 0 we immediately obtain

Ωr,−2n = −M̄ up

−n,−n = −1

2
u−n

in virtue of (23);
• for i = 1 we obtain

(
1 + δ

2
M up

2−n,2−n

)
Ωr,2(1−n) = −M̄ up

2−n,−n − M up

2−n,−nΩr,−2n;

• for i = 2, 4, 6, . . . we obtain

(
1 + δ

3
M up

2i−n,2i−n

)
Ωr,2(i−n) = −M̄ up

2i−n,−n

− δ

3

⎛
⎜⎝4

i+1
2∑

j=1

M up

2i−n,2(i− j)−nΩr,2((i− j)−n)

+2

i+1
2 −1∑
j=1

M up

2i−n,2(i− j−1)−nΩr,2((i− j−1)−n) + M up

2i−n,−nΩr,−2n

⎞
⎟⎠ ;

• for i = 3, 5, 7, . . . as we can write

∫ x2i−n

x−n

M up(x2i−n, z)Ωr (z + x−n)dz

=
{∫ x2(i−3)−n

x−n

+
∫ x2i−n

x2(i−3)−n

}
M up(x2i−n, z)Ωr (z + x−n)dz,
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we approximate the first integral by using the composite Simpson rule and the
second one by adopting the 3/8 Simpson’s quadrature formula. Hence we get

(
1+ 3δ

8
M up

2i−n,2i−n

)
Ωr,2(i−n) =−M̄ up

2i−n,−n− 3δ

8

(
3M up

2i−n,2(i−1)−nΩr,2((i−1)−n)

+ 3M up

2i−n,2(i−2)−nΩr,2((i−2)−n) + M up

2i−n,2(i−3)−nΩr,2((i−3)−n)

)

− δ

3

⎛
⎜⎝M up

2i−n,2(i−3)−nΩr,2((i−3)−n) + 4

i+1
2∑

j=1

M up

2i−3,2(2i−3− j)−nΩr,2((2i−3− j)−n)

+ 2

i+1
2 −1∑
j=1

M up

n−2i,2(2i−4− j)−nΩr,2((2i−4− j)−n) + M up

2i−n,−nΩr,−2n

⎞
⎟⎠ .

5.3 Computation of the scattering matrix and inverse Fourier transforms
of reflection coefficients

In this section we illustrate our method to approximate the scattering matrix, that is to
compute the transmission coefficients T defined in (31) and the reflection coefficients
R and L introduced in (32), (33). Under the additional assumption that u0 ∈ C(R),
which is our working hypothesis, the function ρ and � given in (13), (14) are computed
by resorting to the inverse and direct discrete Fourier transform.

Approximation of the transmission coefficient T

It is based on the two equivalent definitions of the transmission coefficient

T (λ) = 1

a�4(λ)
, T (λ) = 1

ar1(λ)
(52)

that is on the computation of the coefficients of the transition matrices

a�4(λ) = 1 +
∫
R+

eiλzΦ up(z)dz = 1 + 2πF−1 {Φ up(λ)H(λ)} , (53)

ar1(λ) = 1 +
∫
R+

eiλzΨ dn(z)dz = 1 + 2πF−1 {
Ψ dn(λ)H(λ)

}
, (54)

where H denotes the Heaviside function and F−1 {g} stands for the inverse Fourier
transform of g.

Let us only illustrate the algorithm for the computation of the coefficient a�4 as the
computation of ar1 is analogous.
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At first we note that, taking into account (45) and the support of K up, the kernel
Φ up of (40) can be written as follows:

Φ up(z) =

⎧⎪⎨
⎪⎩

∫ L− z
2

−L
v0(y)K

up(y, y + z)dy, for 0 ≤ z ≤ 4L

0, for z > 4L .

(55)

Then, writing, for simplicity, Φ up

j = Φ up(z j ) = Φ up(2hj), j = 0, 1, 2, . . . , 2n−1
we have successively to compute Φ

up

0 , Φ
up

1 , . . . , Φ
up

2n−1 to obtain

Φ
up

j =
∫ (n− j)h

−nh
v0(y)K

up(y, y + 2hj)dy, j = 0, 1, . . . , 2n − 1.

We remark that its computation requires only the values of K up(y, y + 2hj) which
we have already computed since they are the values of Kup on the j th parallel to the
bisector y = x . For this reasonΦ

up

j can be computed by simply adopting the computa-
tional strategy that we developed for computing K up. At this point the approximation
of T (λ), easily follows by using (52).

Approximation of the reflection coefficients R and L

In the matter of the computation of the reflection coefficients, taking into account (33)
and (32), we can write

R(λ) = −T (λ) a�3(λ), L(λ) = T (λ) a�2(λ) (56)

where T (λ) = 1

a�4(λ)
,

a�3(λ) =
∫
R

e−iλy
[
1

2
v0

( y

2

)
+ Φ̄ up(y)

]
dy = F

{
1

2
v0

( y

2

)
+ Φ̄ up(y)

}
,

and

a�2(λ) = −
∫
R

eiλy
(
1

2
u0

( y

2

)
+ Φ dn(y)

)
dy = −2πF−1

{
1

2
u0

( y

2

)
+ Φ dn(y)

}
.

Other equivalent expressions can be deducted by using the definitions of R, L and T
in terms of the coefficients of the transmission matrix from the right.

To approximate a�3, taking into account (45) and the support of K̄ up, first we note
that

Φ̄ up(z) =

⎧⎪⎨
⎪⎩

∫ z
2

−L
v0(y)K̄

up(y, z − y)dy, for |z| ≤ 2L

0, for |z| > 2L .

(57)
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Moreover, adopting the notation used before and noting that Φ̄
up

−n = Φ̄ up(−n) =
Φ̄ up(−2nh) = 0, we can write

Φ̄
up

i =
∫ ih

−nh
v0(y)K̄

up(y, 2hi − y)dy, i = −n + 1, . . . , 0, . . . , n.

Hence Φ̄
up

i , as well as Φ
up

j , can be computed by simply adapting the computational
strategy developed for K up. The approximations of R and L immediately follow by
using (56).

5.4 Computation of the bound states and the norming constants

For the sake of completeness, we now give a brief description of the matrix-pencil
method that we have recently developed for the identification of the bound states
and the norming constants [6,8]. Setting z j = eiλ j , the spectral function sum S�(α)

introduced in (9) can be represented as the monomial-power sum

S�(α) =
n∑
j=1

m j−1∑
s=0

c jsα
s zαj , 00 ≡ 1,

where c js = (Γ�) js/s!.
Letting M = m1 + · · · + mn , the method allows one to compute the parameters

{n,m j , z j } and the coefficients {c js}, given S�(α) in 2N integer values (N > M)

α = α0, α0 + 1, . . . , α0 + 2N − 1, with α0 ∈ N
+ = {0, 1, 2, . . .},

under the assumption that a reasonable overestimate of M is known.
The basic idea of our method is the interpretation of S�(α) as the general solution

of a homogeneous linear difference equation of order M

M∑
k=0

pk Sk+α0 = 0

whose characteristic polynomial (Prony’s polynomial)

P(z) =
n∏
j=1

(z − z j )
m j =

M∑
k=0

pkz
k, pM ≡ 1

is uniquely characterized by the z j values we are looking for. The identification of the
zeros {z j } allows one to compute the coefficients c js by solving in the least squares
sense a linear system.
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For the computation of {z j } and then of the bound states λ j , the given data are
arranged in the two Hankel matrices of order N

(S0�)i j = S�(i + j − 2), (S1�)i j = S�(i + j − 1), i, j = 1, 2, . . . , N .

To these matrices we then associate the M × M matrix-pencil

SMM (z) = (S0NM )∗(S1NM − zS0NM )

where the asterisk denotes the conjugate transpose. As proved in [8], the zeros z j of the
Prony polynomial, with their multiplicities, are exactly the generalized eigenvalues of
the matrix-pencil SMM (z). The simultaneous factorization of the matrices S0NM and
S1NM by the generalized singular value decomposition allows us to compute the zeros
z j and then the bound states λ j , as λ j = −i log z j .

Analogous results can be obtained by a proper factorization of the augmented
HankelmatrixS� = [S0�,1,S1�], whereS0�,1 is the first columnofS0NM andS0� is obtained
by S1� by simply deleting its last column. As shown in [6], the QR factorization of S�

is as effective as its SVD factorization considered in [8], though its computational
complexity is generally smaller.

The vector of coefficients

c = [c1 0, . . . , c1 n1−1, . . . , cL 0, . . . , cL nM−1]T

is then computed by solving (in the least square sense) the overdetermined linear
system

K0
NMc = S0�

where S�
0 = [S�(0), S�(1), . . . , S�(N − 1)]T and K0

NM is the Casorati matrix asso-
ciated to the monomial powers {kszkj } for k = 1, . . . , N − 1.

If m j ≡ 1, the Casorati matrix K0
Nn reduces to the Vandermonde matrix (V )i j =

zi+1
j of order N × n associated to the zeros z1, . . . , zn . The solution of the Casorati

system allows us to immediately compute the norming constants as (Γ�) js = s!c js .
The coefficients {(Γr ) js} are then obtained by solving, in the least square sense, a

linear system whose vector of known data is given by Ωr (α)− �(α) evaluated in a set
of N equidistant points, with a sufficiently large N > M .

6 Examples

Let us now present two examples. The first one is a reflectionless case while the second
one has reflection coefficients different from zero. Either example will be used in the
next section to give numerical evidence of the effectiveness of our method.
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Example 1 (One soliton potential)

Considering the initial potential for the NLS in the focusing case we take

u0(x) = 2iηei(2ξ x+φ)sech(x0 − 2ηx) (58)

where ξ, φ, x0 ∈ R and 0 = η ∈ R. As proved in [9], the corresponding initial value
problem (1) can be solved exactly, as already considered in several papers and in
particular in [5] and [4]. Let us note that 2η > 0 represents the amplitude of the initial
potential and μ0 = x0/2η is the initial peak position.

In this example the norming constants from the left and from the right are [4]:

Γ� = 2iηex0−iφ and Γr = −2iηe−x0+iφ. (59)

Moreover, setting a = η + iξ , as it is immediate to check, the exact solution of the
Volterra system (20) for y ≥ x is

⎛
⎝ K up(x, y)

K dn(x, y)

⎞
⎠ = − 1

1 + e2(x0−2ηx)

⎛
⎝−Γ ∗

� e−a∗(x+y)

|Γ�|2
2η

e−a∗(x+y)−2ax

⎞
⎠ ,

while the exact solution of system (19) can be obtained by resorting to relation (27).
Furthermore, the closed form solution of the Volterra system (22) is

⎛
⎝M up(x, y)

M dn(x, y)

⎞
⎠ = − 1

1 + e−2(x0−2ηx)

⎛
⎝ |Γr |2

2η
ea

∗(x+y)+2ax

−Γ ∗
r ea

∗(x+y)

⎞
⎠ ,

while the solution of system (21) can be deducted by using relation (27). As it repre-
sents a reflectionless case,

ρ(α) = �(α) = 0, α ∈ R,

so that the exact initial Marchenko kernels are [4]

Ω�(x) = Γ�e
−ax ,

Ωr (x) = Γr e
ax .

Finally, the scattering matrix is

S(λ) =
(
T (λ) L(λ)

R(λ) T (λ)

)
=

⎛
⎜⎝

λ + ia∗

λ − ia∗ 0

0
λ + ia∗

λ − ia∗

⎞
⎟⎠ , λ ∈ C

+.
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Example 2 (Gaussian potential)

As a second example of the initial potential for the NLS, we take

u0(x) = q0e
iμx e− x2

σ , (60)

where q0 > 0, σ > 0 and μ ∈ R.
As in [11,18] we investigate the defocusing case in which the scattering coefficients

T (λ), R(λ) and L(λ) are all continuous functions and there are no bound states. Hence,
in this case the following relations hold true

Ω�(α) ≡ ρ(α), Ωr (α) ≡ �(α). (61)

Moreover, we also consider the focusing case. In this case, whenever

q0
√

πσ <
π

2
,

there are no discrete eigenvalues. On the contrary, we have n discrete eigenvalues, all
of them simple and having real part −μ

2 , if [10](
n − 1

2

)
π < q0

√
πσ <

(
n + 1

2

)
π. (62)

As a result the spectral sums from the left and from the right (9) and (10) reduce to

S�(α) =
n∑
j=1

(Γ�) j e
iλ jα α > 0 (63)

Sr (α) =
n∑
j=1

(Γr ) j e
iλ∗

jα, α < 0. (64)

We also remark that the reflection coefficients R(λ) and L(λ) and the transmission
coefficient T (λ) are discontinuous at λ = −μ

2 if [10]

q0
√

πσ =
(
n − 1

2

)
π

for some positive integer n.

7 Numerical results and conclusions

Test 1 (One soliton potential)

Let us consider as in [4] the initial potential (58) with ξ = 1/10, x0 = φ = 0 and
η = 2. In order to compute the non-zero scattering parameters that in this case are the
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norming constants, the bound states and the transmission coefficient, at first we solved
the Volterra’s system (20) and (22) with L = 8 and n = 3000 to obtain the following
relative errors

‖K up − K̃ up‖
‖K up‖ = 1.80e − 06,

‖K dn − K̃ dn‖
‖K dn‖ = 1.04e − 07,

‖M up − M̃ up‖
‖M up‖ = 1.07e − 07,

‖M dn − M̃ dn‖
‖M dn‖ = 1.80e − 06,

where here and in the sequel quantities with ∼ denote the approximation of the exact
function previously given and ‖·‖ denotes themaximumnorm of the function involved
in their computational areas. Identical relative errors are of course obtained for the
remaining auxiliary functions, as a result of the symmetry properties (27) and (28).

Once these auxiliary functions are computed we numerically solved the equations
for the Marchenko kernels from the right and from the left with the following relative
errors:

max
x∈[0,L]

|Ω̃�(x) − Ω�(x)|
|Ω�(x)| � max

x∈[−L ,0]
|Ω̃r (x) − Ωr (x)|

|Ωr (x)| � 3.24e − 07,

where the symbol � means that the left term coincides with the right term up to the
third decimal digit.

At this point, by using such kernels, we applied our matrix pencil method [6] to find
a single bound state term, a norming constant from the left and a norming constant
from the right with the following relative errors:

|λ̃ − λ|
|λ| = 4.11e − 09,

|Γ̃� − Γ�|
|Γ�| � |Γ̃r − Γr |

|Γr | � 3.24e − 07.

Moreover, as a numerical check of our results, we verified the numerical validity
of the algebraic property (8). The results are all satisfactory as Fig. 9 shows, where
the behavior of the error function

Es(λ) =
∥∥∥∥12 (S†(λ)JS(λ) + S(λ)JS†(λ)) − J

∥∥∥∥
is reported for λ ∈ [−2L , 2L] in semilog scale.

Concerning the transmission coefficient, we can compute it by approximating at
first the integral Φ up defined in (36), and then using (52). In Table 1 we give the
following relative errors we obtain for such a coefficient over segment of width 4L of
three different lines

Er (T ) = max
λ∈[a,b]

|T̃ (λ) − T (λ)|
|T (λ)| .
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Fig. 9 Es (λ) in semi
logarithmic scale
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Table 1 Er (T ) in the one
soliton case

[a, b] Er (T )

[−2L , 2L] 2.13e − 07

[−2L + i, 2L + i] 1.54e−07

[−2L + 5i, 2L + 5i] 1.74e−07

Test 2 (Gaussian potential)

Let us consider first the initial potential (60) in the defocusing case with q0 = 1.9, μ =
1, σ = 2 as in [11,18]. To this end, we computed the solution of systems (19)–(22)
considering as in the soliton case L = 8 and n = 3000. Thenwe solved equations (29),
(30), compute the scattering matrix and thus the Fourier transforms of the reflection
coefficients. Our numerical method recognizes that, as theoretically expected, there
are no bound states and relations (61) are numerically satisfied since we have the
following errors:

max
x∈[0,2L] |Ω�(x) − ρ(x)| = 1.08e − 10, max

x∈[−2L ,0] |Ωr (x) − �(x)| = 1.44e − 09.

As in the one soliton case, we checked if our numerical results satisfy the algebraic
property (8) for the scattering matrix, by considering in semi logarithmic scale the
error function

EGD(λ) =
∥∥∥∥12 (S†(λ)S(λ) + S(λ)S†(λ)) − I

∥∥∥∥
for λ ∈ [−2L , 2L]. As shown in Fig. 10 its numerical validity is satisfactory as in the
soliton case.

Now let us investigate the focusing case considering the initial potential (60) with
q0 = 2.5, μ = 1, σ = 2. As a result, inequality (62) implies that we have two simple
bound states {λ1, λ2} whose real part is −1/2. At first we computed the auxiliary
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Fig. 10 EGD (to the left) and EGF (to the right) in semi logarithmic scale

functions by solving systems (19)–(22) with L = 8 and n = 3000, then we solved
equations (29), (30), computed the scattering matrix and the Fourier transforms of the
reflection coefficients. At this point, we applied the matrix pencil method described in
Sect. 5.4 assuming that we have nomore than five bound states. Ourmethod recognizes
that, as theoretically expected, we have two simple bound states having real part equal
to −μ/2. In fact, we get

λ1 = −0.50 + 1.97i λ2 = −0.50 + 0.79i

with the corresponding norming constants

Γ�,1 = 9.28 − 1.50 10−8i Γ�,2 = 3.74 − 1.76 10−11i

Γr,1 = 9.28 + 1.50 10−8i Γr,2 = 3.74 + 1.76 10−11i.

Finally, in Fig. 10 we represent in semi logarithmic scale the error function

EGF (λ) =
∥∥∥∥12 (S†(λ)JS(λ) + S(λ)JS†(λ)) − J

∥∥∥∥
for λ ∈ [−2L , 2L] that we have computed to check the validity of the algebraic
property (7).

8 Conclusions

The numerical results show that our numericalmethod allows us to effectively compute
all the scattering data in both the focusing and defocusing cases, provided the initial
potential decays to zero at infinity and is at least continuous. This positive result is due
to the possibility of knowing each pair of functions on the whole plane, by solving the
corresponding Volterra system on a bounded computational triangle. The accuracy of
the identification of the spectral parameters strongly depends on this result, since all
the subsequent computations require the knowledge of the auxiliary functions on their
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triangles. The computational complexity of our algorithm for evaluating the auxiliary
functions is due to this consideration. As a consequence, it allows us to approximate
them accurately in their unbounded supports and then to estimate at a high level of
accuracy all the scattering data we are looking for.

We believe that themethod can be extended,with the same accuracy of the results, in
the presence of jump discontinuities of the initial potential. To this end, a numerically
stable method for the solution of Fredholm integral equations (40), (41) and (43), (44)
should be developed. The development of such a method should also be accompanied
by an extensive numerical experimentation which requires the exact knowledge of
scattering data in at least one case inwhich the initial potential has jumpdiscontinuities.
Considering that such research takes a rather long time, the development of such a
method is postponed to a next paper.
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Mathematics, Italy). The authors thank the referees for their suggestions and comments which allow us to
improve the readability of the paper.

Appendix: Supports of the auxiliary functions

In this section we determine the supports of the auxiliary functions K (x, y) and
M(x, y) if the potentials u0(x) and v0(x) have their supports in [−L , L]whose identi-
fication, as explained before, is crucial for the computation of the auxiliary functions.
It suffices to prove parts (2) of Lemmas 5.1 and 5.2 in [7], because the proofs of the
other three parts of these two lemmas are immediate and proceed as in the discrete
case.

Put

ν(K̄ up; x) =
∫ ∞

x
|K̄ up(x, y)| dy, ν(K̄ dn; x) =

∫ ∞

x
|K̄ dn(x, y)| dy;

Q(x) = max(|u0(x)|, |v0(x)|), P(x) = ν(K̄ up; x) + ν(K̄ dn; x),

whereQ and P are bounded [16]. Then for x ≤ L and x+y ≥ 2L the integral equations
(3.1) have zero right-hand sides, because v0(

1
2 (x+y)) = 0 for x+y > 2L . Integrating

the absolute values of K̄ up(x, y) and K̄ dn(x, y)with respect to y ∈ (x,+∞), we obtain

ν(K̄ up; x) ≤
∫ L

x
|u0(z)|ν(K̄ dn; z) dz,

ν(K̄ dn; x) ≤
∫ L

x
|v0(z)|ν(K̄ up; z) dz,

so that

0 ≤ P(x) ≤
∫ L

x
Q(z)P(z) dz.
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Hence iterating two times the last inequality we have

P(x) ≤
∫ L

x
Q(z)P(z) dz ≤

∫ L

x
Q(z)

∫ L

z
Q(t)

∫ L

t
Q(w)P(w) dw dt dz

≤
(∫ L

x
Q(w)P(w) dw

)(∫ L

x
Q(z)

∫ L

z
Q(t) dt dz

)

=
(∫ L

x
Q(w)P(w) dw

)(∫ L

x
−1

2

d

dz

(∫ L

z
Q(t) dt

)2

dz

)

=
(∫ L

x
Q(w)P(w) dw

)[
−1

2

(∫ L

z
Q(t) dt

)2 ]z=L

z=x

=
(∫ L

x
Q(w)P(w) dw

)
1

2

(∫ L

x
Q(t) dt

)2

.

Thus iterating n − 1 times we get

0 ≤ P(x) ≤ 1

n!
[∫ L

x
Q(w) dw

]n ∫ L

x
Q(z)P(z) dz.

Taking the limit as n → +∞, we get P(x) = 0 and hence K̄ up(x, y) = K̄ dn(x, y) = 0
for almost every y > x , as claimed. The proof of part (2) of Lemma 5.2 is analogous.
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