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Abstract A new, general, closed-form soliton solution formula for the classical
Heisenberg ferromagnet equation with in-plane asymptotic conditions is obtained
by means of the inverse scattering transform technique and the matrix triplet method.
This formula encompasses the soliton solutions already known in the literature as well
as a new class of soliton solutions (the so-called multipole solutions), allowing their
classification and description. Examples from all classes are provided and discussed.
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1 Introduction

In this paper we show how to construct a formula containing all the reflectionless
solutions of the classical, continuous Heisenberg ferromagnet chain equation [1–4],

This paper is dedicated to Prof. Tommaso Ruggeri, on the occasion of his 70th birthday.

B F. Demontis
fdemontis@unica.it

1 Dipartimento di Matematica e Informatica, Università degli Studi di Cagliari, Viale Merello 92,
09121 Cagliari, Italy

2 Dipartimento di Matematica e Applicazioni, Università degli Studi di Milano Bicocca,
Via Cozzi, 55, 20125 Milan, Italy

3 Department of Mathematics, Physics and Electrical Engineering, University of Northumbria at
Newcastle, Newcastle upon Tyne NE1 8ST, UK

123



F. Demontis et al.

mt = m ∧ mxx , (1a)

to which we impose the in-plane asymptotic condition

m(x) → cos(γ )e1 − sin(γ )e2 as x → ±∞, (1b)

where γ ∈ [0, 2π) is a constant angle, as discussed in [5]. Here

m : R × R → S
2, m(x, t) =

3∑

j=1

m j (x, t) e j , (2)

is the magnetization vector at position x and time t , where the vectors e j , j = 1, 2, 3,
are the standard Cartesian basis vectors for R3, S2 is the unit sphere in R

3 and then
‖m(x, t)‖ = 1.

After the recent, first enucleation and experimental observation in a nano-contact
spin-torque oscillator device ofmagnetic-droplet solitons [6–14], following their theo-
retical prediction [15–23], it has been theoretically shown in [24] how, as an extended
magnetic thin film is reduced to a nano-wire with a nano-contact of fixed size at
its center, the observed excited modes undergo transitions from a fully localized
two-dimensional droplet into a pulsating one-dimensional droplet. This result has
contributed to renew the interest in the study of low-dimensional magnetic solitons as
a tool for better understanding the physics of ferromagnetic systems at the nano-meter
length scale.

In this spirit, the present work aims at extending the analysis carried out in [25] for
the classical, continuous Heisenberg ferromagnet equation with perpendicular (“easy-
axis”) asymptotic conditions, m(x) → e3 as x → ±∞, by constructing a new,
general formula which generates all reflectionless solutions of (1a) under condition
(1b), allowing their classification.

Special soliton solutions of (1a) with (1b) have been also recently constructed by
means of the method of the Darboux transformation [26,27].

In the present work, to reach our goal, that is, to find a general formula for the soliton
solutions of (1a) satisfying condition (1b), we apply the inverse scattering transform
(IST) [28–30] and the matrix triplet method [31–35] to (1a). For the sake of clarity let
us briefly recall how the IST and the matrix triplet method work.

In the first part of this work [5], we have remarked that (1a) admits the following
Lax pair representation

⎧
⎨

⎩

Vx = A V = [iλ(m · σ )] V

Vt = B V = [−2iλ2(m · σ ) − iλ(m ∧ mx · σ )] V,

(3)

It is well-known [28–30] that the knowledge of the Lax pair for (1a) assures that the
inverse scattering transform (IST) can be applied to solve the initial-value problem
[2,3],
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{
mt = m ∧ mxx

m(x, 0) known.
(4)

After the association of (1a)–(3), the following classical diagram shows how the IST
works:

given m(x, 0)

direct scattering problem
with potential m(x,0)−−−−−−−−−−−−−−→ scattering data at time t = 0

⏐⏐�Solution of Heisenberg equation time evolution of
scattering data

⏐⏐�

m(x, t) ←−−−−−−−−−−−−−−−−−−
inverse scattering problem

with time evolved scattering data

scattering data at time t

Let us recall that the initial datum m(x, 0)which appears in (4) (and in the first box
in the diagram) has to be considered as a coefficient in the first equation of system
(3). However, in the first part of this work [5], we have developed the direct scattering
problem—which consists of the construction of the scattering data when m(x, 0) is
assigned—for the first of (3) (horizontal top arrow in the above diagram), we have
discussed the evolution of the scattering data (vertical right arrow in the above diagram)
and, finally, we have formulated the inverse scattering problem—which consists of
the reconstruction of the potential m(x) corresponding to a set of a given scattering
data—in terms of certain Marchenko integral equations (horizontal down arrow in the
above diagram). So, in the first part of this work [5] we have treated the arrows of the
IST scheme.

In the present second part, we are interested in solving explicitly the inverse scat-
tering problem when the reflection coefficient is identically zero, aiming at an explicit
soliton solution formula for (1a) under condition (1b). We will present this soliton
solution formula in the next section. In order to derive the formula, we employ the
matrix triplet method. Indeed, if the reflection coefficient vanishes identically, there
exists a triplet of matrices

(
A, B,C

)
, of sizes 2n̄×2n̄, 2n̄×2, and 2×2n̄, respectively,

such that the Marchenko kernel is given by

Ω(x + y, t) = CetHe−(x+y)AB,

where the 2n̄ × 2n̄ matrices A and H commute and A has only eigenvalues with
positive real parts. Typically, H is a function of A. After solving the Marchenko
equation by separation of variables, in the next section we arrive at the solution of
the initial-value problem in terms of the matrix triplet

(
A, B,C

)
and the matrix H ,

providing the time dependence via (8). The expression obtained can then be written
in terms of elementary functions, and is particularly amenable to computer algebra.

2 Soliton solutions formula

In this section we construct an explicit soliton solution formula for equation (1a) under
the asymptotic condition (1b). To this aim, we apply the IST method (see, for instance
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[28–30] for more details on this method) combined with the matrix triplet technique,
successfully used in [31–35] and more recently in [25] in the context of the classical
Heisenberg ferromagnet equation.

2.1 Inverse scattering transform

Having presented in the first part of this work [5] the direct scattering problem (con-
sisting in the construction of the scattering data when m(x, 0) is known), the inverse
scattering problem (amounting to the construction of m(x) when the scattering data
are given), and the time evolution of the scattering data associated to the first equation
in system (3), we are now ready to discuss how the IST allows us to obtain the solution
to the initial value problem for (1a).

Using the initial condition m(x, 0) given in (4) as a potential in the system (3),
we develop the direct scattering theory as shown in the first part [5] and build the
scattering data. For the sake of clarity, let us recall that the scattering data (see Section
3 of [5] for more details) evolve in time as follows

R(λ, t) = e−4iλ2t R(λ, 0), T (λ, t) = T (λ, 0), N j (t) = e−4ia2j t N j (0), (5)

where R(λ, t) is the reflection coefficient, T (λ, t) the transmission coefficients, and
N j are the norming constants associated to the discrete eigenvalues ia j (see Section
2 in [5] for a detailed description of the scattering data).

As we have seen in the first part of this work [5], the inverse scattering problem
requires one to solve the following Marchenko equation

L(x, y) + Ω(x + y) +
∫ ∞

x
dξ L(x, ξ)Ω(ξ + y) = 02×2, (6)

where the kernel Ω(x) of (6) is given by

Ω(x) =
(

0 Ω(x)
−Ω(x)∗ 0

)
, with Ω(x) = ρ(x) +

n∑

j=1

N j e
−a j x . (7)

The solution of the Heisenberg equation (1a) under condition (1b) is then obtained by
replacing Ω(x) with Ω(x; t) in the Marchenko equation (i.e. taking into account (5))
and using the relation

m(x) · σ = U
(
I2 + L̃(x)†

)
σ3

(
I2 + L̃(x)

)
U−1, (8)

where

U = 1√
2

(
1 −eiγ

e−iγ 1

)
, (9)
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L̃(x) =
∫ ∞

x
dξ L(x, ξ), (10)

and σ is the column vector whose entries are the Pauli matrices

σ1 =
(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

Note that, in the expression ofΩ(x), with ρ(x)we have denoted the Fourier transform
of the reflection coefficient.

2.2 Matrix triplet method

In the remaining part of this work we will focus on the reflectionless case, i.e. the case
R(λ, t) = 0. In this case the expression for Ω(x; 0) is obtained from the expression
of the kernel given above and setting ρ(x) = 0. In particular, we can treat the situ-
ation where the discrete eigenvalues are not necessarily algebraically simple [36] by
generalizing formula (7) as follows:

Ω(x; t) =
n∑

j=1

n j−1∑

k=0

N jk(t)
xk

k! e
−a j x . (11)

In (11), n is the number of discrete eigenvalues {ia j }nj=1, namely the poles of the
transmission coefficient T (λ) inC+ (thus, satisfyingRe(a j ) > 0); the quantities a j are
obtained bymultiplying the discrete eigenvalues by−i ; n j is the algebraic multiplicity

of ia j ; and
{
N jk(t)

}n j−1
k=0 , for all j = 1, 2, . . . , n, are the (time-dependent) norming

constants corresponding to ia j . For algebraically simple eigenvalues ia j we obtain
the norming constants evolving in time according to (5).

To recover the solution of (4) we follow the three steps indicated here below.

(a) Suppose that the scattering data, namely the discrete eigenvalues and the corre-
sponding norming constants,

{ia j }nj=1 and
{
{N jk(t)}n j−1

k=0

}n
j=1

,

are given. Then, we construct Ω(x) as in (7) and let it evolve in time using (11):

Ω(x; t) =
(

0 Ω(x; t)
−Ω(x; t)∗ 0

)
. (12)

(b) We solve the Marchenko integral equation (6):

L(x, y; t) + Ω(x + y; t) +
∫ ∞

x
dξ L(x, ξ ; t)Ω(ξ + y; t) = 02×2.
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where ξ > x and the kernel Ω(x, y) is given in (12).
(c) We construct the potential m(x; t) by using formula(8):

m(x) · σ = U+
(
I2 + L̃(x)†

)
σ3

(
I2 + L̃(x)

)
U−1+ ,

where L̃(x) = ∫ ∞
x dξ L(x, ξ).

Let us follow the above procedure (an analogous procedure can be developed with the
kernel Ω , as per in formula (3.10b) of [5], and solving the corresponding Marchenko
equation for L, that is, equation (3.11) of [5]). We start by disregarding the time
dependence (e.g., we construct Ω(x) assuming no dependence on the time). We will
subsequently show how to take the time dependence into account.

It is well known [37,38] that it is possible to factorize a matrix function which
is in the form (12) with (11) by using a suitable triplet of matrices. More precisely,
let n̄ = ∑n

j=1 n j , and suppose that (A,B, C) be a matrix triplet such that all the
eigenvalues of the 2n̄ × 2n̄ matrix A have positive real parts, B is a 2n̄ × 2 matrix,
and C is a 2 × 2n̄ matrix. We then set

Ω(x) =
(

0 Ω(x)
−Ω(x)∗ 0

)
def= C e−xA B. (13a)

Alternatively, equation (13a) can be written by setting

Ω(x) =
n∑

j=1

n j−1∑

k=0

c jk
xk

k! e
−a j x = C e−x A B, (13b)

with

A =
(

A 0n̄×n̄

0n̄×n̄ A†

)
, B =

(
0n̄×1 B
−C† 0n̄×1

)
, C =

(
C 01×n̄

01×n̄ B†

)
. (13c)

Here A is a n̄ × n̄ matrix whose n eigenvalues
{
a j

}n
j=1 are obtained from the poles

{
ia j

}n
j=1 of the transmission coefficient T (λ) (namely the discrete eigenvalues) by

multiplication by a factor −i (a proof of this fact can be found in [25]); B is a n̄ × 1
matrix; and C is a 1 × n̄ matrix. Furthermore, we assume that the triplet (A, B,C) is
a minimal triplet in the sense that the matrix order of A is minimal among all triplets
representing the same Marchenko kernel by means of (13) [37,38]. As the discrete
eigenvalues

{
ia j

}n
j=1 belong to the upper half-plane C

+, we have Re(a j ) > 0 for
all j , namely all the eigenvalues of the matrix A have positive real parts: this fact is
necessary in order to assure the convergence of the integrals in (15f). Moreover, we
recall that theminimality of the triplet (A, B,C) entails that the geometric multiplicity
of the eigenvalues of A be one (see [31]).

We observe that it is not restrictive (in fact, it is the typical choice) to set the triplet
(A, B,C) as follows [38]:
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An̄×n̄ =

⎛

⎜⎜⎜⎝

A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...

0 0 · · · An

⎞

⎟⎟⎟⎠ , Bn̄×1 =

⎛

⎜⎜⎜⎝

B1
B2
...

Bn

⎞

⎟⎟⎟⎠ , C1×n̄ = (
C1 C2 · · · Cn

)
,

(14a)
where A is in Jordan canonical form,with A j being the Jordan block of dimension n j×
n j corresponding to the discrete eigenvalue ia j , Bj is a column vector of dimension
n j , typically chosen to be a vector of ones; and C j is a row vector of dimension n j ,
typically chosen to be the vector of the norming constants corresponding to the discrete
eigenvalue ia j ,

C j = (
c j,0 c j,1 · · · c j,n j−1

)
, (14b)

so that the elements of C are chosen to be the n̄ norming constants
{
{c jk}n j−1

k=0

}n
j=1

.

For later convenience, we also introduce the matrix P , which is—under the condi-
tions satisfied by our triplet—the unique solution of the Sylvester equation

AP + P A = B C, (15a)

namely

P =
∫ ∞

0
dξ e−ξA B C e−ξA. (15b)

Note that it is also possible to write P as

P =
(
0n̄×n̄ N
−Q 0n̄×n̄

)
, (15c)

where N and Q solve the Lyapunov matrix equations

A† Q + Q A = C† C, (15d)

A N + N A† = B B†, (15e)

that is

N =
∫ ∞

0
dξ e−ξ A B B† e−ξ A†

, Q =
∫ ∞

0
dξ e−ξ A†

C† C e−ξ A. (15f)

By the minimality of the triplet (A, B,C) [38, Sect. 4.1], we see that N and Q are
positive Hermitian matrices and then P is invertible and

P−1 =
(
0n̄×n̄ −Q−1

N−1 0n̄×n̄

)
. (15g)

Now we are ready to express the solution L(x, y) of the Marchenko integral equa-
tion (6) in terms of the triplet (A,B, C) and of thematrixP . Indeed, by substituting the
expression of the kernel (13) into (6), we arrive at the following Marchenko equation
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L(x, y) + C e−(x+y)A B +
∫ ∞

x
dξ L(x, ξ) C e−(ξ+y)A B = 02×2. (16)

Equation (16) can be solved explicitly via separation of variables and we obtain [see
[31,35] for more details on the resolution of (16)]

L(x, y) = −Ce−xA[I2n̄ + e−xAPe−xA]−1e−yAB, (17)

provided the inverse matrix exists for all x ∈ R.
Finally, in order to reconstruct the solution of (4) we have to integrate (17) with

respect to y, obtaining the explicit formula

L̃(x) = −Ce−xA[I2n̄ + e−xAPe−xA]−1e−xAA−1 B. (18)

The right-hand side of (18) is now explicit and we can use such formula to recover
the components m j (x), j = 1, 2, 3, of the vector m(x).

Let us now introduce the dependence on the time t . In order to recover it, we have
to take into account the time evolution of the scattering data expressed by (5). Then
the (reflectionless) Marchenko kernels become:

Ω(x; t) =
n∑

j=1

n j−1∑

k=0

c jk(t)
xk

k! e
−a j x = C e−4i t A2

e−x A B, (19a)

Ω(x; t)∗ =
n∑

j=1

n j−1∑

k=0

c∗
jk(t)

xk

k! e
−a∗

j x = B† e−x A†
e4i t A

†2t C†. (19b)

In other words, we may replace the matrix triplet (A, B,C) for the triplet (A, B,

Ce−4i t A2
) in such a way that, for algebraically simple eigenvalues ia j , (5) are satisfied

(A contains the discrete eigenvalues which are time independent and C the norming
constants). Consequently, the explicit right-hand side of (18) can bewritten as follows:

L̃(x; t) = −C(t) e−xA [
I2n̄ + e−xAP(t)e−xA]−1

e−xAA−1 B(t)

= −C(t)
[
e2 xA + P(t)

]−1 A−1 B(t), (20a)

where

B(t) =
(

0n̄×1 B

−
(
Ce−4i t A2

)†
0n̄×1

)
, C(t) =

(
Ce−4i t A2

01×n̄

01×n̄ B†

)
, (20b)

and

P(t) =
(

0n̄×n̄ N
−Q(t) 0n̄×n̄

)
, (20c)
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with

Q(t) =
∫ ∞

0
dx e−x A†

(
Ce−4i t A2

)†
Ce−4i t A2

e−x A, (20d)

satisfying

A†Q(t) + Q(t)A = (Ce−4i t A2
)†(Ce−4i t A2

). (20e)

Finally, after some algebra, using (8) with (20) and taking into account that L̃(x, y)
belongs to SU2, so that

L̃ =
(
L̃1 −L̃2

∗

L̃2 L̃∗
1

)
, and

[
I2 + L̃

]−1 =
[
I2 + L̃

]† =
[
I2 + L̃

†
]
,

we arrive at the following soliton solution formula of (1a) with asymptotic boundary
conditions (1b)

m1(x, t) = sin2(γ ) m̃1(x, t) + cos(γ ) sin(γ ) m̃2(x, t) + cos(γ ) m̃3(x, t), (21a)

m2(x, t) = cos(γ ) sin(γ ) m̃1(x, t) + cos2(γ ) m̃2(x, t) − sin(γ ) m̃3(x, t), (21b)

m3(x, t) = − cos(γ ) m̃1(x, t) + sin(γ ) m̃2(x, t), (21c)

where (m̃1(x, t), m̃2(x, t), m̃3(x, t)) have the following explicit expression in terms
of the elements of the matrix L̃(x; t)

m̃1(x, t) = −2Re
(
(1 + L̃1(x, t)) L̃2(x, t)

)
. (22a)

m̃2(x, t) = −2 Im
(
(1 + L̃1(x, t)) L̃2(x, t)

)
, (22b)

m̃3(x, t) = 2
∣∣∣1 + L̃1(x, t)

∣∣∣
2 − 1. (22c)

We note that formulae (22) give the soliton solutions of (1a) with the so-called easy-
axis conditions (i.e., m(x) → e3 as x → ±∞, see [25]). Thus, Eq. (21) allow one to
generate the soliton solutions of (1a) with boundary conditions (1b) when a soliton
solutions of (1a) with easy-axis conditions is known.

We observe that the matrix

V = U diag
(
eiδ, e−iδ

)
= 1√

2

(
eiδ −ei(γ−δ)

ei(δ−γ ) e−iδ

)
, (23)

where δ is a constant and the expression of U is given by (9), is such that its columns
form an orthonormal basis of eigenvectors of cos(γ )σ1 − sin(γ )σ2, corresponding to
the eigenvalues 1 and −1, respectively. Consequently, we can replace the matrix U
by the matrix V in formula (8), obtaining a more general formula (indeed, a formula
featuring the additional phase δ). Indeed, the more general reconstruction formula for
the soliton solutions is

m(x) · σ = V
(
I2 + L̃(x)†

)
σ3

(
I2 + L̃(x)

)
V−1, (24)
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where V is given by (23). By using (24) and after some straightforward computations,
we arrive at the the more general soliton solution formula

m1(x, t) = sin(γ ) sin(δ̂) m̃1(x, t) + sin(γ ) cos(δ̂) m̃2(x, t) + cos(γ ) m̃3(x, t),
(25a)

m2(x, t) = cos(γ ) sin(δ̂) m̃1(x, t) + cos(γ ) cos(δ̂) m̃2(x, t) − sin(γ ) m̃3(x, t),
(25b)

m3(x, t) = − cos(δ̂) m̃1(x, t) + sin(δ̂) m̃2(x, t), (25c)

where δ̂ = γ − 2δ.
We conclude this section with two remarks.

Remark 1 By following a procedure analogous to the one that has led to formulae
(25), a similar generalization of the soliton solution formula can be obtained also in
the easy-axis case studied in [25]. In that case what one gets is a rotation of the angle
2δ around the z-axis for the components m1 and m2.

Remark 2 It is worth observing that formulae (21) and (25), which have been obtained
in this paper by means of the IST technique, can be obtained also (and straightfor-
wardly) by employing the symmetries of the classical Heisenberg ferromagnet Eq. (1)
(see, for instance [39,40]).

3 Classes of soliton solutions

In the present section we discuss classes of soliton solutions of (1), as resulting from
the explicit formula (21) with (22) and (20). Moreover, similarly to [25], we provide
several numerical examples, obtained by computing (onMATLAB R2017a) the terms
L̃1 and L̃2 appearing in (22) using formulae (C.2a) and (C.2d) in [25] when x is large
and negative, and formulae (C.2b) and (C.2e) in [25] when x is large and positive.

An immediate classification of the soliton solutions of (1) can be had by con-
sidering the algebraic multiplicity of the eigenvalues of the matrix A in the matrix
triplet (A, B,C) in (13b). Propagating and stationary soliton solutions (the so-called
magnetic-droplet solitons, see [16]) are associated to algebraically simple eigenvalues
of A. Multiple-pole (or, more simply, multipole) soliton solutions are instead associ-
ated to eigenvalues of A having algebraic multiplicity larger than one (i.e., degenerate
eigenvalues). In the following, we choose A to be in Jordan canonical form as in
(14): single eigenvalues on the main diagonal are associated to individual (stationary
or propagating) solitons, whereas Jordan blocks of algebraic multiplicity n j > 1 are
associated tomultipole solutions. No blocks are repeated, as the geometricmultiplicity
of each eigenvalue is one due to the minimality of the triplet [31,38].
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3.1 One-soliton solution

The one-soliton solution corresponds to the choice n = 1, n1 = 1 in (13), so that
n̄ = 1. If we set the matrix triplet (A, B,C) as

A = (a) , B = (1) , and C = (c) ,

we get

N =
(

1

2Re(a)

)
, Q =

( |c|2
2 Re(a)

)
, Q(t) =

(
|c|2 e−4 i Re(a2) t

2Re(a)

)
,

and from (20) we have

L̃1 = − 2 |c|2 Re(a)

a∗
(
|c|2 + 4Re(a)2 e4Re(a) (x−4 Im(a) t)

) ,

L̃2 = 2 c∗ Re(a) e2 a (x+2 i a t)

a∗
(
|c|2 + 4Re(a)2 e4Re(a) (x−4 Im(a) t)

) .

Then we set, without any loss of generality (see [25]),

a = p + i q, p > 0, (26a)

and

c ≡ c(p, q, x0, ϕ0) =

⎧
⎪⎨

⎪⎩

2 i p sign(q)
(
p+i q
p−i q

)
e2 (p+i q) x0−i ϕ0 if q �= 0

2 p e2 p x0−i ϕ0 if q = 0,

(26b)

for some x0, ϕ0 ∈ R. From (22), after some simple algebra, we obtain the in-plane one
soliton solution (m1,m2,m3), via (21), or alternatively via (25), with (m̃1, m̃2, m̃3)

given by:

m̃+ = 2
(p + i q) − (p − i q) e4 p (x−4 q t−x0)

(p − i q)2
[
1 + e4 p (x−4 q t−x0)

]2

× e2 (p+i q) (x−4 q t)−2 p x0−i arg(c) e4 i (p2+q2) t , (27a)

m̃1 =Re (m̃+) , m̃2 = Im (m̃+) , m̃3 = 1 −
2 p2 sech2

(
2 p (x − 4 q t − x0)

)

p2 + q2
.

(27b)
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This solution describes a localized, coherent magnetic configuration travelling at the
constant speed

v = 4 Im(a) = 4 q. (28a)

Furthermore, the exponent of the last exponential term in the right-hand side of (27a)
is a phase factor depending only on the time t . Consequently, the space and time
evolution of the magnetic configuration is entirely described in terms of the constant
speed v and the constant frequency

ω = 4 |a|2 = 4 (p2 + q2), (28b)

which, in turn, depend only on the real and imaginary parts of the eigenvalue a. By
inverting (28a) and (28b),

p = 1

2

√

ω − v2

4
, q = v

4
, (28c)

we immediately obtain the well-known condition for localization (see [16]),

ω ≥ 0, |v| ≤ 2
√

ω. (28d)

On the other hand, via (26b), the norming constant c can be used to give the initial
(t = 0) position x0 of the minimum of m̃3 and the initial phase ϕ0, see [25].

In Fig. 1 we illustrate an in-plane, propagating, one-soliton solution for the choice

v = 1, ω = 2, x0 = −4, and ϕ0 = 0, entailing p =
√
7
4 , q = 1

4 , and

c = −7+i 3
√
7

8 e−2 (i+√
7), for several choices of the asymptotic angle γ .

3.2 Multi-soliton and breather-like solutions

By combining two or more one-soliton solutions, namely choosing n > 1, and n j = 1
for all j , n̄ = n in (13), one can easily construct multi-soliton solutions. In this respect,
we point out once more that formulae (21) as well as (25) are notably amenable to
computer algebra, and allow to obtain explicit expressions (see [25]).

In particular, similarly to the easy-axis case [25], breather-like soliton solutions can
be constructed out of two-soliton solutions, by creating two stationary, or two same-
speed, propagating solitons close to each other. In the case of two stationary solitons
(v(1) = v(2) = 0), namely, in the case of two real eigenvalues a1 = p1 and a2 = p2,
p1 �= p2, it is possible to show that, if the norming constants are chosen as follows

C = (c1, c2) = 2

√
(p1 + p2)2 + (q1 − q2)2

(p1 − p2)2 + (q1 − q2)2
(p1, p2) (29)

with q1 = 0 and q2 = 0, then a single, symmetrical, breather-like soliton solution is
created, with m1 and m2 characterized by two identical, localized extrema oscillating
in time around the origin with period
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Fig. 1 Propagating, one-soliton solution, for different values of the asymptotic angle γ

ν = 2π

4 (p1 + p2) (p1 − p2)
. (30)

Figure 2(a) shows an example of such a breather-like soliton for γ = π
4 , obtained via

(28c) and (29) with

v(1) = 0, ω(1) = 0.8, and v(2) = 0, ω(2) = 0.4,

thus entailing an oscillation in time with period ν � 15.71. Similarly to the easy-
axis case [25], propagating, breather-like solitons can be constructed in the same
way as above, but assigning the same non-zero imaginary part to both of the discrete
eigenvalues. More generally, propagating or stationary, breather-like solitons can be
had by creating two stationary, or two same-speed, propagating solitons close to one
another: in other words, a single, breather-like soliton should always be regarded as
a stable, periodic tangle of two interacting, but individual solitons, associated to two
different eigenvalues in the matrix A (see [25]).
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Fig. 2 Examples of breather-like and multipole solutions for γ = π
4

3.3 Multipole solutions

If n j > 1 for some j , then A features a Jordan block of order n j , and one has multipole
soliton solutions. Multipole solutions of (1) with (1a) are presented here for the first
time. Their analysis can be achieved in analogy to the study of the multipole solutions
of the nonlinear Schrödinger equation [41,42], and is postponed to future investigation.

If n = 1, n1 = 2, n̄ = 2 in (13), then we have a single two-pole soliton solution.
In this case, it is possible to show [25] that, if the associated eigenvalue of A is real

(a = p), so that A =
(

p 1
0 p

)
, if B is chosen as a vector of ones, and if the norming

constants in C are chosen as follows

C = (c1, c2) =
(
4 p2, 4 p [1 + p (2 x0 − 1)]

)
e2 p x0−i ϕ0 , (31)

then a single, symmetrical, two-pole soliton solution is created, with m1and m2 char-
acterized by two minima, constituting two separated branches, that are expected to
propagate in space at a velocity that varies logarithmically in time.

The same technique can be generalized to any value of the algebraic multiplicity n j .
For instance, if n = 1, n1 = 3, n̄ = 3 in (13), then we have a single three-pole soliton

solution: if the associated eigenvalue of A is real (a = p), so that A =
(

p 1 0
0 p 1
0 0 p

)
, if B

is chosen as a vector of ones, and if the norming constants in C are chosen as follows

CT =
⎛

⎝
c1
c2
c3

⎞

⎠ =
⎛

⎝
8 p3

4 p2 [3 + p (4 x0 − 2)]
8 p2 x0 (x0 − 1) + 6 p (2 x0 − 1) + 3

⎞

⎠ e2 p x0−i ϕ0 , (32)

then a single, symmetrical, three-pole soliton solution is created, with m1 and m2
characterized by three minima, constituting three separated branches, propagating in
space at a velocity that varies logarithmically in time, and interacting in x = x0 at
t = 0. Figure 2(b) shows an example of such a solution with γ = π

4 , obtained via
(32) with p = 1, x0 = 0, and ϕ0 = 0.
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