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This paper is focused on the zero-flux attraction-repulsion chemotaxis model

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ut = ∇ · ((u + 1)m1−1∇u− χu(u + 1)m2−1∇v in Ω × (0, Tmax),

+ ξu(u + 1)m3−1∇w)
vt = Δv − f(u)v in Ω × (0, Tmax),
0 = Δw − δw + g(u) in Ω × (0, Tmax),

(�)

defined in Ω, which is a bounded and smooth domain of Rn, for n ≥ 2, with χ, ξ, δ >
0, m1, m2, m3 ∈ R, and f(u) and g(u) reasonably regular functions generalizing the 
prototypes f(u) = Kuα and g(u) = γul, with K, γ > 0 and appropriate α, l > 0. 
Moreover Tmax is finite or infinite and (0, Tmax) stands for the maximal temporal 
interval where solutions to the related initial problem exist. Our main interest is 
to identify constellations of the impacts m1, m2 and m3 of the diffusion and drift 
terms, as well as of the growth l of the production g for the chemorepellent (i.e., w) 
and the rate α of the consumption f for the chemoattractant (i.e., v), which ensure 
boundedness of cell densities (i.e., u). Precisely, for any fixed α ∈

(
0, 1

2 + 1
n

)
and 

l ≥ 1, we prove that whenever

m1 > min
{

2m2 + 1 − (m3 + l),max
{

2m2,
n− 2
n

}}
,

any sufficiently smooth initial data u(x, 0) = u0(x) ≥ 0 and v(x, 0) = v0(x) ≥ 0
produce a unique classical solution (u, v, w) to problem (�) such that its life span 
Tmax = ∞ and, moreover, u, v and w are uniformly bounded in Ω × (0, ∞).
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1. Introduction: presentation of the model in the framework of the literature

We consider a chemotaxis model connecting two classical Keller–Segel systems, widely employed in bi-
ological processes. We refer to the landmark models ([16–18]) idealizing motility phenomena in situations 
where certain cells (populations, organisms) spread while they are attracted by a signal they themselves, in 
one case, produce and, in the other case, absorb. More precisely, in order to define a proper coupling of the 
erstwhile models, another chemical signal, with opposite impact to the first, is considered; subsequently, the 
dynamics of the cell density is governed at the same time by attractive and repulsive effects, coming from 
the drift terms involving the two chemicals and the cells. (Below, we give more precise motivations and ref-
erences on real models of this type.) Moreover, besides this combination, we also introduce nonlinearities in 
the aforementioned diffusive and cross terms. More precisely, if u = u(x, t) is used to denote the population 
density of the cells at the position x and at the time t, and v = v(x, t) and w = w(x, t) stand, respectively, 
for the concentration of the attractive and repulsive chemical signals (chemoattractant and chemorepellent), 
we study the initial-boundary value problem given by

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ut = ∇ · ((u + 1)m1−1∇u− χu(u + 1)m2−1∇v + ξu(u + 1)m3−1∇w) in Ω × (0, Tmax),
vt = Δv − f(u)v in Ω × (0, Tmax),
0 = Δw − δw + g(u) in Ω × (0, Tmax),
uν = vν = wν = 0 on ∂Ω × (0, Tmax),
u(x, 0) = u0(x), v(x, 0) = v0(x) x ∈ Ω̄,

(1)

defined in a bounded and smooth domain Ω of Rn, with n ≥ 2, χ, ξ, δ > 0, m1, m2, m3 ∈ R and some 
functions f = f(s) and g = g(s), sufficiently regular in their argument s ≥ 0, and further regular initial 
data u0(x) ≥ 0 and v0(x) ≥ 0. Additionally, the subscript ν in (·)ν indicates the outward normal derivative 
on ∂Ω, whereas Tmax is the maximal time up to which solutions to the system are defined. We aim at 
extending the mathematical comprehension of this attraction-repulsion Keller–Segel system by analyzing 
aspects which, as far as we know, were not yet faced.

Having in mind the biological interpretation of the original chemotaxis systems, by the purely intuitive 
standpoint, problem (1) idealizes an attraction-repulsion model with production and consumption for which: 
(a) the cells, whose initial distribution obeys the law of u0, move inside an insulated domain (zero-flux on 
the border) accordingly to the competition between the aggregation/repulsion impact from the drift terms 
−χu(u + 1)m2−1∇v/ξu(u + 1)m3−1∇w (increasing for larger sizes of χ and ξ as well as m2 and m3) and 
the diffusion of the cells (stronger and stronger as m1 in (u + 1)m1−1∇u increases); (b) the initial signal v0
dissipates, w diffuses as well but much faster than v, which is consumed by the cells with rate f(u) whereas, 
conversely, w is produced with rate g(u); (c) consumption of v and proliferation of w are higher the more 
the cell density increases. Naturally, all these cross-actions in model (1) might lead to different scenarios 
for the cellular movement, as global stabilization and convergence to equilibrium of the cell distribution 
u, or chemotactic collapse, for which aggregation processes of u, eventually blowing up/exploding at finite 
time, appear. This aspect, mathematically interpreted, means that solutions (u, v, w) can be defined and 
are bounded for all (x, t) in Ω × (0, ∞), or (u, v, w) might cease to exist for larger values than some finite 
(blow-up) time Tmax; in this case, the particle density becomes unbounded approaching Tmax.

In this regard, for the classical signal-production (u produces v throughout time) Keller–Segel model,

ut = Δu− χ∇ · (u∇v) and vt = Δv − v + u in Ω × (0, Tmax), (2)

it is well-established that this secretion of v may break the natural homogenization process of the cells, 
especially in terms of aggregation impact associated to the size of χ, the initial mass of the particle distri-∫

bution, i.e., m = Ω u0(x)dx, and the space dimension. On this subject, in [10,14,32,35,49] (and references 
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therein cited), the interested reader can find several discussions dealing with the existence and properties 
of global, uniformly bounded or blow-up (local) solutions to the Cauchy problem associated to (2).

Conversely, for the signal-absorption (u consumes v throughout time) Keller–Segel model,

ut = Δu− χ∇ · (u∇v) and vt = Δv − uv in Ω × (0, Tmax), (3)

it is difficult to know whether unbounded solutions to the corresponding initial boundary-value problem of 
(3) can be constructed. In fact, only in two-dimensional settings (as a combination of the results in [51] and 
[52], where a more general coupled chemotaxis-fluid model is studied), we know that classical solutions (u, v)
emanating from any sufficiently regular initial data (u0, v0) are uniformly bounded; for n ≥ 3, oppositely, the 
smallness assumption χ‖v0‖L∞(Ω)≤ 1

6(n+1) is required ([39]). Nevertheless, this condition does not exclude 
the possibility that solutions emanating from other initial data may collapse in finite time.

From the perspective of blow-up prevention (or boundedness enforcement, when explosion scenarios are 
not known), the introduction of different external agents is quite efficient in several (but not in all) cases. 
Since the related literature abounds enormously, a detailed description does not seem appropriate, at least 
in this context: despite that, we can say that in this respect the more common variants of models (2)
and (3) may include logistic type sources with dampening effects on the cells’ increasing ([20,23,42,43,55]), 
involve nonlinear diffusion with higher cells’ spread ([5,6,9,12,13,21,41,45,48] and [50]), consider weaker 
(stronger) laws for the production (consumption) of the chemical signal ([22,27,54]) or, more generally, 
suitable combinations of (some of) these actions ([4,33,47,58]). Moreover, for the same boundedness purpose, 
other models take into account an additional chemical signal, produced or absorbed by the same cells but 
repelling them, thus influencing the overall dynamics: in this way, as explained at the beginning of the 
section, model (1) is encompassed in the above casuistry.

To the best of our knowledge, a general n-dimensional understanding of the attraction-repulsion chemo-
taxis system in the form of (1), is not yet available in the literature; hereafter, we aim at providing some 
partial results in this direction. To be precise, problem (1) is a possible counterpart of the situation where 
the chemoattractant and chemorepellent are both produced; this model has a real application ([29]) in 
the description of aggregation phenomena of microglia observed in Alzheimer’s disease. More exactly, for 
the attraction-repulsion system with only production (herein referred to production-production models), 
equipped with Neumann boundary conditions,

{
ut = ∇ · ((u + 1)m1−1∇u− χu(u + 1)m2−1∇v + ξu(u + 1)m3−1∇w)
τvt = Δv − βv + f(u) and 0 = Δw − δw + g(u)

,

in Ω × (0, Tmax), χ, ξ, β, δ > 0, τ ∈ {0, 1}, (4)

the following is known.

� Linear diffusion and drift terms: m1 = m2 = m3 = 1.

◦ When τ = 1 and f(u) = g(u) = u, an attraction-repulsion Stokes system is studied in two-
dimensional settings, and boundedness of classical solutions is achieved for any initial data ([28]);

◦ When τ = 0, f(u) = αu, α > 0, and g(u) = γu, γ > 0, if ξγ > χα (repulsion prevails over attraction), 
in any dimension all solutions are globally bounded, whereas for ξγ < χα (attraction prevails over 
repulsion) and n = 2 unbounded solutions can be constructed ([8,24,40,44,57]. See also [26] for the 
case where also the equation for w is parabolic);

◦ When τ = 0 and f and g generalize the prototypes f(u) = αus, s > 0, and g(u) = γur, r ≥ 1, if 
r > s ≥ 1 (resp. s > r ≥ 1), there exists ξ∗ > 0 (resp. ξ∗ > 0) such that if ξ > ξ∗ (resp. ξ ≥ ξ∗), any 

(resp. small) initial data produce a unique classical and bounded solution ([46]).
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� Nonlinear diffusion and linear drift terms: m1 ∈ R and m2 = m3 = 1. When τ = 1, f(u) = αu, α > 0
and g(u) = γu, γ > 0:

◦ Boundedness is achieved, in any dimension and for any initial data provided m1 > 2 − 2
n , while for 

m1 ≤ 2 − 2
n blow-up solutions can be detected ([25]);

◦ Whenever repulsion dominates or cancels attraction, if m1 > 2 − 4
n+2 , boundedness of solutions is 

established, in any dimension and for any initial data ([15]).

Finally, for the sake of completeness, we also have to refer to [36–38,56]. In these articles, attraction-repulsion 
chemotaxis systems with general production and/or consumption laws, and similarly formulated as in (4), 
are discussed when the evolution of the cell density is as well influenced by logistic terms. To be more precise, 
conditions on involved parameters are established so to address questions on global existence of (classical 
and/or weak) solutions and their long time behavior under specific interplays between the diffusion and the 
chemosensitivities (linear, nonlinear and even degenerate). In this sense, inspired by these researches, alike 
studies for our model (1) may surely represent interesting future projects.

2. Motivations and presentation of the theorem

Conforming to what we have discussed above, specifically with respect to the coaction of diffusion and 
drift terms, together with the laws for the chemorepellent and the chemoattractant, in this research we will 
derive criteria on the data of problem (1) ensuring that the life span Tmax of its solutions is infinity and that, 
moreover, the solutions are bounded. Since, as specified above, a chemorepellent impact and a nonlinear 
diffusion do not suffice, at least in production-production models, to prevent blow-up, we aim at establishing 
how the scenario changes in the investigated consumption-production model. Another motivating reason 
supporting this analysis, is the consideration that if instead of (1) one studies the zero-flux consumption-
logistic model

{
ut = ∇ ·

(
(u + 1)m1−1∇u− χu(u + 1)m2−1∇v

)
+ ku− μu2

vt = Δv − uv
χ, k, μ > 0 and m1,m2 ∈ R, (5)

uniform boundedness of classical solutions (u, v) to the related initial value problem is ensured ([31, Theorem 
2.2], proved in a slightly more general context) under two assumptions: not only m1 > 2m2 − 1, but also μ
large with respect to some function of ‖χv0‖L∞(Ω) (i.e., diffusion and dampening effects strong enough).

Even though none of systems (1), (4) and (5) can be strictly reformulated as a particular case or an 
extension of the other, the following questions appear natural:

Q.1 To what extent are nonlinear diffusive terms more effective toward boundedness in attraction-repulsion 
models with consumption/production of chemoattractant/chemorepellent than in those with only pro-
duction?

Q.2 And, again in terms of boundedness, may one expect that in attraction-repulsion models with consumed 
chemoattractant and produced chemorepellent, the same chemorepellent acts more efficaciously than a 
logistic source does in only attraction models?

As a matter of fact, as a consequence of the forthcoming Theorem 2.1, we can give a quantification to the 
first question and open discussions on the second. (See Remark 1 and Remark 2.)

To this scope, if these assumptions are satisfied,
f, g ∈ C1(R) with 0 ≤ f(s) ≤ Ksα and γsl ≤ g(s) ≤ γs(s + 1)l−1,
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for some K, γ, α > 0, l ≥ 1 and all s ≥ 0, (6)

this result is proved:

Theorem 2.1. Let Ω be a smooth and bounded domain of Rn, with n ≥ 2, and χ, ξ, δ positive. Moreover, let 
f and g fulfill (6), respectively with α ∈

(
0, 1

2 + 1
n

)
and l ≥ 1. Then for any m1, m2, m3 ∈ R satisfying

m1 > min
{

2m2 + 1 − (m3 + l),max
{

2m2,
n− 2
n

}}
, (7)

this conclusion holds true: for any initial data (u0, v0) ∈ (W 1,∞(Ω))2, with u0, v0 ≥ 0 on Ω̄, there exists a 
unique triplet of nonnegative functions

u, v ∈ C0(Ω̄ × [0,∞)) ∩ C2,1(Ω̄ × (0,∞)) and w ∈ C0(Ω̄ × [0,∞)) ∩ C2,0(Ω̄ × (0,∞)),

solving problem (1) and such that for some C > 0

‖u(·, t)‖L∞(Ω) + ‖v(·, t)‖L∞(Ω) + ‖w(·, t)‖L∞(Ω) ≤ C for all t ∈ (0,∞).

Remark 1 (On question Q.1). For the nonlinear diffusion, and linear drift terms and production rate case, 
i.e., m1 ∈ R and m2 = m3 = l = 1, from (7) we have boundedness of solutions to problem (1) provided 
m1 > 1 (uniformly with respect to the space dimension). Seeing that for any n ≥ 2 we have 2 − 4

n+2 ≥ 1, the 
result is consistent with [15, Theorem 1.1] (and also with [25, Theorem 1.1], both already mentioned when 
we dealt with model (4)), since for models with saturated attractive chemical signal an evolution toward 
boundedness is more conceivable than for models with produced chemoattractant.

Remark 2 (On question Q.2). As to the role of the logistic source in (5) and the chemorepellent in (1), we 
observe that the condition m1 > 2m2 − 1 is sharper than m1 > 2m2. Nevertheless, m1 > 2m2 − 1 on its 
own does not imply boundedness; as said, a largeness requirement on μ has to be imposed also. Conversely, 
m1 > 2m2 suffices in this respect, whenever ξ > 0 is arbitrarily small. Moreover, and in this case we can also 
omit to emphasize the size of μ, for m3 > 2 − l, the relation m1 > 1 +2m2 −m3 − l improves m1 > 2m2 −1. 
Furthermore, if we consider that for high values of the cell concentration in problem (1) the chemoattractant 
is consumed with a weaker law than that in (5), an affirmative response to our question might be expected; 
despite that, due to the different ranges for α in these problems (i.e., 0 < α < 1

2 + 1
n vs. α = 1, respectively), 

at least by the theoretical point of view, a direct comparison does not seem well-founded and a deeper 
insight is required.

Remark 3. Let us also discuss some other implications resulting from assumption (7):

(1) For the linear diffusion and drift terms case, i.e., m1 = m2 = m3 = 1, at least a superlinear rate for 
the production g of the chemorepellent w is required to ensure boundedness of u. (See [7] for the linear 
rate case.)

(2) To higher impacts of the drift terms associated to the chemorepellent w and/or to a stronger segregation 
rate of the same chemorepellent, corresponds an increase of the term (m3 + l); in turn this allows one to 
consider smaller values of the parameter m1 responsible for settling tendencies of the cells throughout 

time.
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3. Organization of the paper and background material

3.1. Structure of the paper

In the remaining part of the paper, we first focus on the existence of local classical solutions (u, v, w)
to problem (1), their main properties and the crucial “passage” ensuring uniform-in-time boundedness of 
these solutions toward their Lp-boundedness, for some suitable p > 1 (§4). Then, by studying the evolutive 
behavior of the functional y(t) :=

∫
Ω(u + 1)p +

∫
Ω |∇v|2p, we derive this Lp bound, and prove our main 

result (§5).

3.2. Supporting tools

In our reasoning, we will make use of the following listed relations, some of which are only “formally” 
presented; their rigorous hypotheses and related proofs can be found in the corresponding references.

Let Ω ⊂ Rn, with n ≥ 2, be a bounded and smooth domain. Then

• ([31, Lemma 3.1] and [23, Lemma 2.2], respectively.) For all p > 1, and ψ such ψν = 0 on ∂Ω, if D2ψ

represents the Hessian matrix of ψ and |D2ψ|2 =
n∑

i,j=1
ψ2
xixj

, we have

|D2ψ∇ψ|2 ≤ |D2ψ|2|∇ψ|2, (8)∫
Ω

|∇ψ|2p+2 ≤ 2(4p2 + n)‖ψ‖2
L∞(Ω̄)

∫
Ω

|∇ψ|2p−2|D2ψ|2. (9)

• ([46, Lemma 3.1] and also [53, Lemma 2.2].) For all δ > 0 and g ≥ 0, the solution ψ of the problem

0 = Δψ − δψ + g in Ω and ψν = 0 on ∂Ω,

has the following property: For any ĉ, σ > 0 and p̄ ∈ (1, ∞), there exists c̃ > 0 such that

ĉ

∫
Ω

ψp̄+1 ≤ σ

∫
Ω

gp̄+1 + c̃
(∫

Ω

g
)p̄+1

. (10)

4. Local-in-time classical solutions and their consequential uniform-in-time boundedness

Let us show that system (1) is classically solvable, at least locally. The main idea of the proof follows 
that given, for instance, in [2,11]; nevertheless, since further details are required, we reproduce the proof 
here, also in order to make the research more self-contained.

Lemma 4.1 (Local existence). Let Ω be a bounded and smooth domain of Rn, with n ≥ 2, χ, ξ, δ > 0, 
m1, m2, m3 ∈ R and 0 ≤ f, g ∈ C1(R). Then, for any nontrivial (u0, v0) ∈ (W 1,∞(Ω))2, with u0 ≥ 0 and 
v0 ≥ 0 on Ω̄, there exist Tmax ∈ (0, ∞] and a unique triplet of nonnegative functions

u, v ∈ C0(Ω̄ × [0, Tmax)) ∩ C2,1(Ω̄ × (0, Tmax)) and w ∈ C0(Ω̄ × [0, Tmax)) ∩ C2,0(Ω̄ × (0, Tmax)),

solving problem (1), and such that for the life span Tmax this dichotomy criterion holds true:
either Tmax = ∞ or lim sup
t→Tmax

‖u(·, t)‖L∞(Ω) = ∞. (11)
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Moreover, the u-component obeys the mass conservation property, i.e.
∫
Ω

u(x, t)dx =
∫
Ω

u0(x)dx = m > 0 for all t ∈ (0, Tmax), (12)

whilst the v-component is such that

0 ≤ v ≤ ‖v0‖L∞(Ω) in Ω × (0, Tmax). (13)

Proof. For any R > 0 and 0 �≡ u0 ∈ W 1,∞(Ω) and 0 �≡ v0 ∈ W 1,∞(Ω), such that ‖u0‖L∞(Ω) ≤ R, let us 
consider for fixed T ∈ (0, 1) the Banach space X = (C0([0, T ]; C0(Ω̄)))2 and its closed convex subset

ST = {0 ≤ u and 0 ≤ v ∈ X : ‖u(·, t)‖L∞(Ω) ≤ R + 1, for all t ∈ [0, T ]}.

Once an element (ũ, ̃v) of ST is picked, from properties of g, the solution w to

{
−Δw + δw = g(ũ) in Ω × (0, T ),
wν = 0 on ∂Ω × (0, T ),

(14)

thanks to classical elliptic regularity results ([3, Theorem 9.33]), belongs to C1+δ1(Ω̄), for all δ1 ∈ (0, 1)
and t ∈ (0, T ); in particular, this implies that ∇w ∈ L∞(Ω) for all t ∈ (0, T ). On the other hand, from 
v0 ∈ W 1,∞(Ω) (embedded in all the Hölder continuous functions spaces) and the regularity of f , [19, 
Theorem V 1.1] (see also [30, Theorem 5.1.17]) applied to problem

⎧⎪⎪⎨
⎪⎪⎩
vt − Δv + f(ũ)v = 0 in Ω × (0, T ),
vν = 0 on ∂Ω × (0, T ),
v(x, 0) = v0(x) in Ω,

(15)

gives for some δ̃ ∈ (0, 1) that v ∈ C δ̃, δ̃2 (Ω̄× [0, T ]), so that ∇v ∈ L∞(Ω) for all t ∈ (0, T ) as well. Now, from 
these gained properties of ∇w and ∇v, using u0 ∈ W 1,∞(Ω) and the smoothness of ζ −→ (1 + ζ)ϑ for all 
ϑ ∈ R and ζ ≥ 0, we have again from [19, Theorem V. 1.1] that u ∈ C δ̂, δ̂2 (Ω̄ × [0, T ]), for proper δ̂ ∈ (0, 1), 
solves ⎧⎪⎪⎨

⎪⎪⎩
ut = ∇ ·

(
(ũ + 1)m1−1∇u− χu(ũ + 1)m2−1∇v + ξu(ũ + 1)m3−1∇w

)
in Ω × (0, T ),

uν = 0 on ∂Ω × (0, T ),
u(x, 0) = u0(x) x ∈ Ω.

(16)

In particular, (u, v) ∈ (Cδ, δ2 (Ω̄ × [0, T ]))2, with δ = min{δ̂, ̃δ}, so that this produces some positive constant 
c such that

u(x, t) ≤ u0(x) + ct
δ
2 , (x, t) ∈ Ω × (0, T ), or max

t∈[0,T ]
‖u(·, t)‖L∞(Ω) ≤ ‖u0‖L∞(Ω) + cT

δ
2 .

In this way, for T < c
−2
δ we deduce that

‖u(·, t)‖L∞(Ω) ≤ R + 1 t ∈ (0, T ).

Moreover, since u ≡ 0 is a subsolution of the first equation in (16), and f ≥ 0 in (15), the parabolic 

comparison principle warrants the nonnegativity of u and 0 ≤ v ≤ ||v0||L∞(Ω) on Ω × (0, T ). So, the map 
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Φ(ũ, ̃v) = (u, v), u solving (16) and v (15), is such that Φ(ST ) ⊂ ST and Φ is compact, because the [3, 
Ascoli–Arzelà Theorem 4.25] implies that the natural embedding of (Cδ, δ2 (Ω̄× [0, T ]))2 into X is a compact 
linear operator. Let (u, v) be a fixed point of Φ; first, the elliptic maximum principle and g ≥ 0 in (14) also 
imply w ≥ 0 in Ω × (0, T ). Secondly, by employing the elliptic and parabolic regularity theory to problems 
(14), and (15) and (16) ([3, Theorem 9.33] and [1, Theorem 14.6]), we have w ∈ C2+δ, δ2 (Ω̄ × [0, T ]), and 
u, v ∈ C0(Ω̄× [0, T ]) ∩C2,1(Ω̄× (0, T ]). On the other hand, by integrating over Ω the first equation of (16), 
we easily have 

∫
Ω u =

∫
Ω u(x, t)dx =

∫
Ω u0(x)dx = m on (0, T ). Moreover, since the choice of T depends only 

on ‖u0‖L∞(Ω) and ‖v0‖L∞(Ω), by standard bootstrap arguments, the solution (u, v, w) may be prolonged in 
the interval [0, Tmax), with Tmax ≤ ∞, Tmax being finite if and only if (11) holds. In this way, the obtained 
nonnegativity of u(·, t) in [0, T ], as well as that of v and w, in conjunction with the mass conservation 
property (12) and bound (13) remain preserved up to Tmax.

Uniqueness. By absurdity, let (u1, v1, w1) and (u2, v2, w2) be two different nonnegative classical solutions 
of (1) in Ω × (0, Tmax) with the same initial data u1(·, 0) = u2(·, 0) = u0(x) and v1(·, 0) = v2(·, 0) = v0(x). 
We, thus, have from (14)-(16) and i = 1, 2 these six problems:

{
−Δwi + δwi = g(ui) in Ω × (0, Tmax),
(wi)ν = 0 on ∂Ω × (0, Tmax),

(17)

⎧⎪⎪⎨
⎪⎪⎩

(vi)t = Δvi − f(ui)vi in Ω × (0, Tmax),
(vi)ν = 0 on ∂Ω × (0, Tmax),
vi(x, 0) = v0(x) in Ω,

(18)

and⎧⎪⎪⎨
⎪⎪⎩

(ui)t = ∇ · ((ui + 1)m1−1∇ui − χui(ui + 1)m2−1∇vi + ξui(ui + 1)m3−1∇wi) in Ω × (0, Tmax),
(ui)ν = 0 on ∂Ω × (0, Tmax),
ui(x, 0) = u0(x) x ∈ Ω.

(19)

Now, for all arbitrary T0 < Tmax, we set

s1 = s1(T0) = min
{
‖u1‖L∞(Ω×(0,T0)), ‖u2‖L∞(Ω×(0,T0))

}
,

s2 = s2(T0) = max
{
‖u1‖L∞(Ω×(0,T0)), ‖u2‖L∞(Ω×(0,T0))

}
,

and introduce for s ≥ 0 the function

θ(s) =
{

log(s + 1) if m1 = 0,
(s + 1)m1/m1 if m1 �= 0,

with m1 ∈ R.

Noting that θ′(s) > 0 for all s ≥ 0, we define, in view of forthcoming applications of the Mean Value 
Theorem, the positive constants

{
C1 = C1(T0) = max[s1,s2] |g′|,
C2 = C2(T0) = max[s1,s2] |f ′|,

and C3 = C3(T0) =
{

max[s1,s2] θ
′ if (u1 − u2)Δ(u1 − u2) ≥ 0,

min[s1,s2] θ
′ if (u1 − u2)Δ(u1 − u2) ≤ 0.

(20)

Under such circumstances, by considering problems (17), we have that (w1 − w2) solves −Δ(w1 − w2) +
δ(w1−w2) = g(u1) −g(u2), with Neumann boundary conditions. In light of this, through Young’s inequality, 

an integration by parts provides, taking into account (20), the following estimate
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∫
Ω

|∇(w1 − w2)|2 + δ

∫
Ω

(w1 − w2)2 =
∫
Ω

(g(u1) − g(u2))(w1 − w2) ≤ C1

∫
Ω

|(u1 − u2)(w1 − w2)|

≤ δ

4

∫
Ω

(w1 − w2)2 + C2
1
δ

∫
Ω

(u1 − u2)2 on t ∈ (0, T0),

inferring

∫
Ω

|∇(w1 − w2)|2 ≤ −3
4δ

∫
Ω

(w1 − w2)2 + C2
1
δ

∫
Ω

(u1 − u2)2 ≤ C2
1
δ

∫
Ω

(u1 − u2)2 for all t ∈ (0, T0). (21)

By reasoning as before and by recalling that 0 ≤ vi ≤ ‖v0‖L∞(Ω) on Ω × (0, T0), for i = 1, 2, we can write 
considering the problems in (18) and definitions (20)

1
2
d

dt

∫
Ω

(v1 − v2)2 =
∫
Ω

(v1 − v2)(v1 − v2)t =
∫
Ω

(v1 − v2) (Δ(v1 − v2) − f(u1)v1 + f(u2)v2)

= −
∫
Ω

|∇(v1 − v2)|2 +
∫
Ω

(v1 − v2)(f(u2) − f(u1))v1 −
∫
Ω

f(u2)(v1 − v2)2

≤ −
∫
Ω

|∇(v1 − v2)|2 + ‖v0‖L∞(Ω)

∫
Ω

(v1 − v2)f ′(u)(u2 − u1)

≤ −
∫
Ω

|∇(v1 − v2)|2 +
∫
Ω

(v1 − v2)2 +
C2

2‖v0‖2
L∞(Ω)

4

∫
Ω

(u1 − u2)2 on (0, T0).

(22)

We also get from problems (19)

1
2
d

dt

∫
Ω

(u1 − u2)2 =
∫
Ω

(u1 − u2)(u1 − u2)t

= −
∫
Ω

∇(u1 − u2) ·
(
(u1 + 1)m1−1∇u1 − (u2 + 1)m1−1∇u2

)

+ χ

∫
Ω

∇(u1 − u2) ·
(
u1(u1 + 1)m2−1∇v1 − u2(u2 + 1)m2−1∇v2

)

− ξ

∫
Ω

∇(u1 − u2) ·
(
u1(u1 + 1)m3−1∇w1 − u2(u2 + 1)m3−1∇w2

)
for all t ∈ (0, T0),

where the second, third, and fourth lines are denoted, for simplicity, by I1, I2 and I3, respectively. We now 
estimate these separate terms as follows (recall (20), again, and the definition of θ):

I1 = −
∫
Ω

∇(u1 − u2) · ∇ (θ(u1) − θ(u2))

=
∫
Ω

Δ(u1 − u2)(θ(u1) − θ(u2)) =
∫
Ω

Δ(u1 − u2)θ′(u)(u1 − u2)

≤ C3

∫
(u1 − u2)Δ(u1 − u2) = −C3

∫
|∇(u1 − u2)|2 for all t ∈ (0, T0).

(23)
Ω Ω
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On the other hand, once more the smoothness of ζ −→ (1 + ζ)ϑ for all ϑ ∈ R and ζ ≥ 0, makes that for 
some C4 = C4(T0) > 0 and C5 = C5(T0) > 0 (which we will now use)

⎧⎪⎪⎨
⎪⎪⎩
|u1(u1 + 1)m2−1 − u2(u2 + 1)m2−1| ≤ C4|u1 − u2| in Ω × (0, T0),
u2(u2 + 1)m2−1 ≤ C4 in Ω × (0, T0),
|∇v1| ≤ C4 and |∇v2| ≤ C4 in Ω × (0, T0),

⎧⎪⎪⎨
⎪⎪⎩
|u1(u1 + 1)m3−1 − u2(u2 + 1)m3−1| ≤ C5|u1 − u2| in Ω × (0, T0),
u2(u2 + 1)m3−1 ≤ C5 in Ω × (0, T0),
|∇w1| ≤ C5 and |∇w2| ≤ C5 in Ω × (0, T0).

Henceforth, starting from the identity

I2 = χ

∫
Ω

∇(u1 − u2) ·
(
(u1(u1 + 1)m2−1 − u2(u2 + 1)m2−1)∇v1 + u2(u2 + 1)m2−1∇(v1 − v2)

)
on (0, T0),

and using Schwartz’ inequality we obtain

I2
2 ≤ χ2

∫
Ω

|(u1(u1 + 1)m2−1 − u2(u2 + 1)m2−1)∇v1 + u2(u2 + 1)m2−1∇(v1 − v2)|2
∫
Ω

|∇(u1 − u2)|2

≤ 2χ2
(∫

Ω

|(u1(u1 + 1)m2−1 − u2(u2 + 1)m2−1)∇v1|2 +
∫
Ω

|u2(u2 + 1)m2−1∇(v1 − v2)|2
)∫

Ω

|∇(u1 − u2)|2

≤ 2χ2C2
4

(
C2

4

∫
Ω

(u1 − u2)2 +
∫
Ω

|∇(v1 − v2)|2
)∫

Ω

|∇(u1 − u2)|2 for all t ∈ (0, T0).

Taking the square root, we get by Young’s inequality

I2 ≤ χC4
√

2

⎛
⎜⎜⎝C4

⎛
⎝∫

Ω

(u1 − u2)2
⎞
⎠

1
2

+

⎛
⎝∫

Ω

|∇(v1 − v2)|2
⎞
⎠

1
2
⎞
⎟⎟⎠

⎛
⎝∫

Ω

|∇(u1 − u2)|2
⎞
⎠

1
2

≤ C3

2

∫
Ω

|∇(u1 − u2)|2 + 2χ2C4
4

C3

∫
Ω

(u1 − u2)2 + 2χ2C2
4

C3

∫
Ω

|∇(v1 − v2)|2 on (0, T0).

(24)

Similarly, from

I3 = ξ

∫
Ω

∇(u1 − u2) ·
((
u2(u2 + 1)m3−1 − u1(u1 + 1)m3−1)∇w2

+ u1(u1 + 1)m3−1∇(w2 − w1)
)

on (0, T0),
we obtain, also by employing estimate (21),
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I3 ≤ ξC5
√

2

⎛
⎜⎜⎝C5

⎛
⎝∫

Ω

(u1 − u2)2
⎞
⎠

1
2

+

⎛
⎝∫

Ω

|∇(w1 − w2)|2
⎞
⎠

1
2
⎞
⎟⎟⎠

⎛
⎝∫

Ω

|∇(u1 − u2)|2
⎞
⎠

1
2

≤ C3

2

∫
Ω

|∇(u1 − u2)|2 + 2ξ2C4
5

C3

∫
Ω

(u1 − u2)2 + 2ξ2C2
5

C3

∫
Ω

|∇(w1 − w2)|2

≤ C3

2

∫
Ω

|∇(u1 − u2)|2 + 2ξ2C2
5

C3

(
C2

5 + C2
1
δ

)∫
Ω

(u1 − u2)2 on (0, T0).

(25)

Now for K0 = 2χ2C2
4/C3 let us consider the sum

F(t) := 1
2
d

dt

∫
Ω

(u1 − u2)2 + K0

2
d

dt

∫
Ω

(v1 − v2)2 on (0, T0). (26)

Henceforth, given the gained bounds (22)-(25), expression (26) is estimated above by

(
2χ2C4

4
C3

+ 2ξ2C4
5

C3
+ 2ξ2C2

5C
2
1

C3δ
+

C2
2K0‖v0‖2

L∞(Ω)

4

)∫
Ω

(u1 − u2)2 + K0

∫
Ω

(v1 − v2)2 for all t ∈ (0, T0),

so that (26) becomes for a suitable positive constant C̃

d

dt
F(t) ≤ C̃F(t), t ∈ (0, T0).

We then exploit the nonnegativity of F(t), the initial condition F(0) = 0 (based on u1(·, 0) = u2(·, 0) and 
v1(·, 0) = v2(·, 0)), and Gronwall’s inequality to prove that F(t) ≡ 0. As a result, u1−u2 = 0 and v1−v2 = 0
on Ω × (0, T0) and consequently, recalling again problems (17), we manifestly get w1 − w2 = 0, as well on 
Ω × (0, T0). Since T0 < Tmax is arbitrary, the proof is concluded. �

With a local solution (u, v, w) at our disposal, its uniform-in-time boundedness is ensured whenever a 
uniform-in-time estimate for the Lp-norm of u, for some suitable p > 1, is obtainable.

Lemma 4.2. Under the hypotheses of Lemma 4.1, if the u-component belongs to L∞((0, Tmax); Lp(Ω)), with 
p > 1 arbitrarily large, then the life span Tmax = ∞, i.e. (u, v, w) is global in time. In addition, u, v and w
are uniformly bounded in Ω × (0, ∞), in the sense that for some C > 0

‖u(·, t)‖L∞(Ω) + ‖v(·, t)‖L∞(Ω) + ‖w(·, t)‖L∞(Ω) ≤ C for all t ∈ (0,∞).

Proof. From our hypotheses on u and assumptions on f and g, we also have f, g ∈ L∞((0, Tmax); Lp(Ω)) for 
arbitrarily large p > 1; henceforth, by invoking classical regularity results on elliptic and parabolic equations, 
∇v, ∇w ∈ L∞((0, Tmax); Lp(Ω)), as well. Subsequently, for F (x, t) = −χu(u +1)m2−1∇v+ξu(u +1)m3−1∇w

and D(x, t, u) = (u + 1)m1−1, the first equation of problem (1) reads ut = ∇ · (D(x, t, u)∇u) + ∇ · F (x, t). 
Since F ∈ L∞((0, Tmax); Lq1(Ω)) for every q1 > 1, the conclusion u ∈ L∞((0, Tmax); L∞(Ω)) follows directly 
by relying on [41, Lemma A.1]. Finally, u ∈ L∞((0, Tmax); L∞(Ω)) and v ∈ L∞((0, Tmax); L∞(Ω)) imply 
from the dichotomy criterion (11) that necessarily we must have Tmax = ∞, so that actually u, v, w ∈

L∞((0, ∞); L∞(Ω)). �



12 S. Frassu et al. / J. Math. Anal. Appl. 504 (2021) 125428
5. A priori estimates and proof of the theorem

In the light of what has been established, the key step is controlling the Lp-norm of u, for p > 1: this is 
attained by constructing an absorptive differential inequality for the functional y(t) :=

∫
Ω(u +1)p+

∫
Ω |∇v|2p, 

defined on (0, Tmax). In this direction, some a priori estimates are crucial.
We start with this result, which is the only place where the restriction 0 < α < 1

2 + 1
n on the function 

f , imposing in Theorem 2.1, is needed; indeed, this allows us to control the L2-norm of ∇v, successively 
necessary in the applications of the Gagliardo–Nirenberg inequality.

Lemma 5.1. For any n ≥ 2 and α ∈ (0, 12 + 1
n ), let f comply with assumptions (6). Then, under the remaining 

hypotheses of Lemma 4.1, for some c0 > 0 the v-component is such that

∫
Ω

|∇v(·, t)|2 ≤ c0 on (0, Tmax). (27)

Proof. We distinguish the cases 0 < α ≤ 1
2 and 1

2 < α < 1
2 + 1

n . For 0 < α ≤ 1
2 , from the second equation 

of (1), we have that an integration over Ω, the Young inequality, the bound for v given in (13) and the 
hypotheses on f in (6) lead to

d

dt

∫
Ω

|∇v|2 = 2
∫
Ω

∇v · ∇(Δv − f(u)v) = −2
∫
Ω

(Δv)2 + 2
∫
Ω

f(u)vΔv

= −2
∫
Ω

(Δv)2 + 2
∫
Ω

v(f(u) − 1)Δv − 2
∫
Ω

|∇v|2

≤ −
∫
Ω

(Δv)2 − 2
∫
Ω

|∇v|2 +
∫
Ω

v2(f(u) − 1)2

≤ −2
∫
Ω

|∇v|2 + ‖v0‖2
L∞(Ω)K

2
∫
Ω

u2α

+ 2‖v0‖2
L∞(Ω)K

∫
Ω

uα + ‖v0‖2
L∞(Ω)|Ω| on (0, Tmax).

(28)

Now, from the mass conservation property (12), we have thanks to Hölder’s inequality the uniform-in-time 
finiteness of both 

∫
Ω uα and 

∫
Ω u2α; in this way, there is c1 > 0 such that

‖v0‖2
L∞(Ω)K

2
∫
Ω

u2α + 2‖v0‖2
L∞(Ω)K

∫
Ω

uα + ‖v0‖2
L∞(Ω)|Ω| ≤ c1 with t ∈ (0, Tmax),

so that (28) reads

d

dt

∫
Ω

|∇v|2 ≤ −2
∫
Ω

|∇v|2 + c1 on (0, Tmax),

and a comparison argument entails 
∫
Ω|∇v|2 ≤ max{ c1

2 , 
∫
Ω|∇v0|2} for all t ∈ (0, Tmax).

When, indeed, 1
2 < α < 1

2 + 1
n , we can pick 1

2 < ρ < 1 − n
2
(
α − 1

2
)

and set ζ = 1 − ρ − n
2
(
α − 1

2
)
> 0; 
subsequently, the Gamma function Γ ensures the convergence of this integral:
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t∫
0

(t− s)−ρ−n
2
(
α− 1

2
)
e−λ1(t−s)ds. (29)

On the other hand, through the Hölder inequality, by invoking (6) and once (12), we get

‖f(u(·, t))‖
1
α

L
1
α (Ω)

=
∫
Ω

f(u) 1
α ≤ K

1
α

∫
Ω

u = K
1
αm for all t < Tmax. (30)

As a consequence, from the representation formula for v, we have

v(·, t) = etΔv0 −
t∫

0

e(t−s)Δf(u(·, s))v(·, s)ds for all t ∈ (0, Tmax),

and smoothing properties related to the Neumann heat semigroup (etΔ)t≥0 (see Section 2 of [11] and 
Lemma 1.3 of [49]), provide some λ1 > 0, CS > 0 and c2 > 0, such that, once the bounds v ≤ ‖v0‖L∞(Ω) on 
Ω̄ × (0, Tmax) and (30) are considered,

‖v(·, t)‖W 1,2(Ω) ≤ ‖etΔv0‖W 1,2(Ω)+
t∫

0

‖e(t−s)Δf(u(·, s))v(·, s)‖W 1,2(Ω)ds

≤ CS‖v0‖W 1,2(Ω)+CS

t∫
0

‖(−Δ + 1)ρe(t−s)Δf(u(·, s))v(·, s)‖L2(Ω)ds

≤ CS‖v0‖W 1,2(Ω)+CS‖v0‖L∞(Ω)|Ω| 12
t∫

0

(t− s)−ρ−n
2 (α− 1

2 )e−λ1(t−s)‖f(u(·, s))‖
L

1
α (Ω)

ds

≤ c2

(
1 +

t∫
0

(t− s)−ρ−n
2 (α− 1

2 )e−λ1(t−s)ds
)
.

By recalling the finiteness of (29), relation in (27) is achieved with some computable c0 > 0. �
Remark 4. We observe that the estimate in (27) is crucial when controlling the functional y(t) =

∫
Ω(u +

1)p +
∫
Ω |∇v|2p; indeed, a proper version of the Gagliardo–Nirenberg inequality, as well as the proof of 

Lemma 5.3, strongly rely on this bound. The case α = 1, for which relation (27) does not hold true, cannot 
be discussed in the frame of our computations, and subsequently it is herein excluded.

Let us now analyze, separately in the two following lemmas, the evolution of 
∫
Ω(u + 1)p and 

∫
Ω |∇v|2p, 

for p > 1 and over (0, Tmax).

Lemma 5.2. For any integer n ≥ 2, m1, m2, m3 ∈ R and l ≥ 1 complying with either m1 > 1 +2m2 −m3 − l

or m1 > max{2m2, n−2
n }, let g fulfill assumption (6). Then, under the remaining hypotheses of Lemma 4.1, 

there exists p0 > 1 such that for any p > p0 and some C(p, ξ, γ, m3) and c14 > 0, (u, v, w) satisfies

d

dt

∫
Ω

(u + 1)p ≤ − 2p(p− 1)
(m1 + p− 1)2

∫
Ω

|∇(u + 1)
m1+p−1

2 |2 + p

8(4p2 + n)‖v0‖2
L∞(Ω)

∫
Ω

|∇v|2(p+1)

− C(p, ξ, γ,m3)
∫

(u + 1)m3+p+l−1 + c14 for all t ∈ (0, Tmax).

Ω



14 S. Frassu et al. / J. Math. Anal. Appl. 504 (2021) 125428
Proof. Let p > p0 > 1 −m3; henceforth, upon enlarging p0 when necessary, all the following implications 
are justified for p > p0. Testing the first equation of problem (1) by p(u + 1)p−1 and using its boundary 
conditions provide on (0, Tmax)

d

dt

∫
Ω

(u + 1)p =
∫
Ω

p(u + 1)p−1ut = −p(p− 1)
∫
Ω

(u + 1)p+m1−3|∇u|2 + p(p− 1)χ
∫
Ω

u(u + 1)m2+p−3∇u · ∇v

− p(p− 1)ξ
∫
Ω

u(u + 1)m3+p−3∇u · ∇w.

By putting hp,m3(u) = p(p − 1) 
∫ u

0 û(û+ 1)m3+p−3 dû and recalling the trivial inequality u < (u + 1) we get

p(p− 1)
p + m3 − 1u

p+m3−1 ≤ hp,m3(u) ≤ p(p− 1)
p + m3 − 1 [(u + 1)p+m3−1 − 1] in Ω × (0, Tmax). (31)

Therefore, exploiting the third equation of (1) and the growth of g mentioned in (6) imply

d

dt

∫
Ω

(u + 1)p = −p(p− 1)
∫
Ω

(u + 1)p+m1−3|∇u|2

+ p(p− 1)χ
∫
Ω

u(u + 1)m2+p−3∇u · ∇v + ξ

∫
Ω

hp,m3Δw

≤ −p(p− 1)
∫
Ω

(u + 1)p+m1−3|∇u|2 + p(p− 1)χ
∫
Ω

u(u + 1)m2+p−3∇u · ∇v

+ p(p− 1)ξδ
m3 + p− 1

∫
Ω

(u + 1)p+m3−1w − p(p− 1)ξγ
m3 + p− 1

∫
Ω

ul

− p(p− 1)ξγ
2p−1(m3 + p− 1)

∫
Ω

(u + 1)p+m3+l−1

+ p(p− 1)ξγ|Ω|
m3 + p− 1 for all t ∈ (0, Tmax),

(32)

where in the last implication we have used that δ
∫
Ω w =

∫
Ω g(u) (as a result of an integration over Ω of the 

third equation in (1)), estimate (31) and

(A + B)p ≤ 2p−1(Ap + Bp) with A,B ≥ 0 and p > 1.

Now we focus on the third integral on the right-hand side of (32). Thanks again to the assumptions on g, 
Young’s inequality and (10) with ψ = w and p̄ = m3+p−1

l , give for ε1, σ, ̃σ > 0 and some positive c3

p(p− 1)ξδ
m3 + p− 1

∫
Ω

(u + 1)m3+p−1w ≤ ε1

∫
Ω

(u + 1)m3+p+l−1 + ĉ

∫
Ω

w
m3+p−1

l +1

≤ ε1

∫
Ω

(u + 1)m3+p+l−1 + σ

∫
Ω

(g(u))
m3+p−1

l +1 + c̃

⎛
⎝∫

Ω

g(u)

⎞
⎠

m3+p−1
l +1

≤ (ε1 + σ̃)
∫

(u + 1)m3+p+l−1 + c3

⎛
⎝∫

(u + 1)l
⎞
⎠

m3+p−1
l +1

for t ∈ (0, Tmax).

(33)
Ω Ω
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By exploiting the Gagliardo–Nirenberg interpolation inequality ([34]), we arrive for p > p0 at

θ1 =
n(m1+p−1)

2
(
1 − 1

l

)
1 − n

2 + n(m1+p−1)
2

∈ (0, 1),

and some c4 > 0 provides

c3

⎛
⎝∫

Ω

(u + 1)l
⎞
⎠

m3+p−1+l
l

= c3‖(u + 1)
m1+p−1

2 ‖
2(m3+p−1+l)

m1+p−1

L
2l

m1+p−1 (Ω)

≤ c4‖∇(u + 1)
m1+p−1

2 ‖
2(m3+p−1+l)

m1+p−1 θ1

L2(Ω) ‖(u + 1)
m1+p−1

2 ‖
2(m3+p−1+l)

m1+p−1 (1−θ1)

L
2

m1+p−1 (Ω)

+ c4‖(u + 1)
m1+p−1

2 ‖
2(m3+p−1+l)

m1+p−1

L
2

m1+p−1 (Ω)
on (0, Tmax).

Hence, by recalling the mass conservation property (12), and in view of (m3+p−1+l)
m1+p−1 θ1 < 1, the Young and 

above inequalities entail for c5, c6 > 0 and any ε2 > 0

c3

⎛
⎝∫

Ω

(u + 1)l
⎞
⎠

m3+p−1+l
l

≤ c5

(∫
Ω

|∇(u + 1)
m1+p−1

2 |2
) (m3+p−1+l)

m1+p−1 θ1
+ c5

≤ ε2

∫
Ω

|∇(u + 1)
m1+p−1

2 |2 + c6 on (0, Tmax).

(34)

In turn, the cases m3+l−2m2+m1 > 1 and m1 > max{2m2, n−2
n } are, respectively, addressed. By applying 

twice the Young inequality to the second integral on the right-hand side of (32), we get on (0, Tmax)

p(p− 1)χ
∫
Ω

u(u + 1)m2+p−3∇u · ∇v ≤ p(p− 1)
4

∫
Ω

(u + 1)p+m1−3|∇u|2 + c7

∫
Ω

(u + 1)p+2m2−m1−1|∇v|2

≤ p(p− 1)
4

∫
Ω

(u + 1)p+m1−3|∇u|2 + p

8(4p2 + n)‖v0‖2
L∞(Ω)

∫
Ω

|∇v|2(p+1) + c8

∫
Ω

(u + 1)
(p+2m2−m1−1)(p+1)

p ,

(35)

with positive c7, c8. Since m3 + l − 2m2 + m1 > 1, we deduce that (p+2m2−m1−1)(p+1)
p < (m3 + p + l − 1), 

and Young’s inequality infers for every ε3 > 0, some positive c9 > 0 giving for all p > p0

c8

∫
Ω

(u + 1)
(p+2m2−m1−1)(p+1)

p ≤ ε3

∫
Ω

(u + 1)m3+p+l−1 + c9 on (0, Tmax). (36)

On the other hand, when m1 > max{2m2, n−2
n }, we note (recall that we can enlarge p0 when necessary) 

that m1 > 2m2 and any p > p0 imply (p+2m2−m1−1)(p+1)
p < p, so by means of the Young inequality estimate 

(36) can alternatively read

c8

∫
(u + 1)

(p+2m2−m1−1)(p+1)
p ≤ ε4

∫
(u + 1)p + c10 on (0, Tmax), (37)
Ω Ω
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with ε4 > 0 and positive c10. In turn, a further application of the Gagliardo–Nirenberg inequality yields, for 
all p larger than some appropriate p0 > 1,

θ2 =
n(m1+p−1)

2

(
1 − 1

p

)
1 − n

2 + n(m1+p−1)
2

∈ (0, 1), (38)

so entailing for certain c11 > 0

∫
Ω

(u + 1)p = ‖(u + 1)
m1+p−1

2 ‖
2p

m1+p−1

L
2p

m1+p−1 (Ω)
≤ c11‖∇(u + 1)

m1+p−1
2 ‖

2p
m1+p−1 θ2

L2(Ω) ‖(u + 1)
m1+p−1

2 ‖
2p

m1+p−1 (1−θ2)

L
2

m1+p−1 (Ω)

+ c11‖(u + 1)
m1+p−1

2 ‖
2p

m1+p−1

L
2

m1+p−1 (Ω)
for all t ∈ (0, Tmax).

Similarly to what was done in some previous lines, from (12), and p
m1+p−1θ2 < 1 for m1 > n−2

n , the Young 
inequality implies for any positive ε5 and some positive c12, c13 > 0

ε4

∫
Ω

(u + 1)p ≤ c12

(∫
Ω

|∇(u + 1)
m1+p−1

2 |2
) p

m1+p−1 θ2 + c12 ≤ ε5

∫
Ω

|∇(u + 1)
m1+p−1

2 |2 + c13 on (0, Tmax).

(39)

By plugging estimates (33) and (35) into relation (32), as well as taking into account (34) and (36) (or, 
alternatively to (36), bounds (37) and (39)), imply for proper εi, i = 1, . . . , 5, C(p, ξ, γ, m3) = p(p−1)ξγ

2p+1(m3+p−1)
and some c14 > 0 the claim, having also exploited that 

∫
Ω(u + 1)p+m1−3|∇u|2 = 4

(m1+p−1)2
∫
Ω |∇(u +

1)
m1+p−1

2 |2 on (0, Tmax). �
Lemma 5.3. For any integer n ≥ 2 and α ∈ (0, 12 + 1

n ), let f comply with assumptions (6). Then, under the 
remaining hypotheses of Lemma 4.1, there exists p0 > 1 such that any p > p0 implies that for (u, v, w) the 
estimate

d

dt

∫
Ω

|∇v|2p + p

∫
Ω

|∇v|2p−2|D2v|2 ≤ ε6

∫
Ω

(u + 1)m3+p+l−1

+ p

8(4p2 + n)‖v0‖2
L∞(Ω)

∫
Ω

|∇v|2(p+1) + c19 on (0, Tmax),

holds true for every ε6 > 0 and some positive constant c19.

Proof. The conclusion can be obtained, taking into account the equation for v in (1), by controlling the 
term (|∇v|2)t and by analyzing the temporal evolution of 

∫
Ω |∇v|2p, for some p > p0 > 1. In particular, an 

adaptation to our case of the general framework in [23, Lemma 4.2] (see also [31, Lemma 5.2]), allows one 
to deduce that for certain c15, c16 > 0 (and relying also on estimate (27))

d

dt

∫
Ω

|∇v|2p + p

∫
Ω

|∇v|2p−2|D2v|2 ≤ c15

∫
Ω

u2α|∇v|2p−2 + c16 on (0, Tmax). (40)

Further, a double application of the Young inequality gives for all p > p0 > 1 (properly large), arbitrary 

ε6 > 0 and some c17, c18 > 0
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c15

∫
Ω

u2α|∇v|2p−2 ≤ ε6

∫
Ω

(u + 1)m3+p+l−1 + c17

∫
Ω

|∇v|
2(p−1)(m3+p+l−1)

m3+p+l−1−2α

≤ ε6

∫
Ω

(u + 1)m3+p+l−1

+ p

8(4p2 + n)‖v0‖2
L∞(Ω)

∫
Ω

|∇v|2(p+1) + c18 for all t ∈ (0, Tmax),

(41)

where we used that, by virtue of α < 1, one has 2(p−1)(m3+p+l−1)
m3+p+l−1−2α < 2(p +1). We have the claim by inserting 

relation (41) into (40). �
We are now in a position to show that y(t) is uniformly bounded in (0, Tmax), as a consequence of the 

fact that 
∫
Ω up is actually bounded by a time independent constant on (0, Tmax).

Lemma 5.4. For any integer n ≥ 2, α ∈ (0, 12 + 1
n ), m1, m2, m3 ∈ R and l ≥ 1 complying with either 

m1 > 1 + 2m2 − m3 − l or m1 > max{2m2, n−2
n }, let f and g fulfill assumptions (6). Then, under the 

remaining hypotheses of Lemma 4.1, there exists p0 > 1 such that for all p > p0 the u-component belongs 
to L∞((0, Tmax); Lp(Ω)).

Proof. Once the functional y(t) :=
∫
Ω(u +1)p+

∫
Ω |∇v|2p is considered again, by summing up the expressions 

of Lemma 5.2 and Lemma 5.3, we deduce for c20 > 0 the following estimate

y′(t) + 2p(p− 1)
(m1 + p− 1)2

∫
Ω

|∇(u + 1)
m1+p−1

2 |2 + p

∫
Ω

|∇v|2p−2|D2v|2

≤ (ε6 − C(p, ξ, γ,m3))
∫
Ω

(u + 1)m3+p+l−1

+ p

4(4p2 + n)‖v0‖2
L∞(Ω)

∫
Ω

|∇v|2(p+1) + c20 on (0, Tmax).

(42)

Moreover, from bounds (9), used with ψ = v, and (13) we have
∫
Ω

|∇v|2(p+1) ≤ 2(4p2 + n)‖v0‖2
L∞

∫
Ω

|∇v|2p−2|D2v|2 for all (0, Tmax),

so that by virtue of (recall (8))

|∇|∇v|p|2 = p2

4 |∇v|2p−4|∇|∇v|2|2 = p2|∇v|2p−4|D2v∇v|2 ≤ p2|∇v|2p−2|D2v|2,

for ε6 = C(p, ξ, γ, m3), we can rephrase (42) as

y′(t) + 2p(p− 1)
(m1 + p− 1)2

∫
Ω

|∇(u + 1)
m1+p−1

2 |2 + 1
2p

∫
Ω

|∇|∇v|p|2 ≤ c20 on (0, Tmax). (43)

Successively, for a suitable p0 > 1, let us set for p > p0 and θ2 already defined in (38)

p
np
2

(
1 − 1

p

)

κ1 =

m1 + p− 1θ2 ∈ (0, 1) and κ2 = 1 − n
2 + np

2
∈ (0, 1).
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Then, by relying again on the Gagliardo–Nirenberg inequality, there exist positive constants c21, c22 such 
that ∫

Ω

(u + 1)p ≤ c21

(∫
Ω

|∇(u + 1)
m1+p−1

2 |2
)κ1

+ c21 on (0, Tmax), (44)

(as already done in (39)), and
∫
Ω

|∇v|2p = |||∇v|p||2L2(Ω)≤ c22||∇|∇v|p||2κ2
L2(Ω)|||∇v|p||2(1−κ2)

L
2
p (Ω)

+c22|||∇v|p||2
L

2
p (Ω)

on (0, Tmax).

From this, the L2-bound for ∇v in (27) infers some c23 > 0 leading to
∫
Ω

|∇v|2p ≤ c23

(∫
Ω

|∇|∇v|p|2
)κ2

+ c23 t ∈ (0, Tmax). (45)

As a consequence of all of the above, by arranging inequalities (44) and (45) and successively using the 
results into (43), we can observe also by virtue of (see [31, Lemma 3.3])

Ad1 + Bd2 ≥ 2−d(A + B)d − d3 for any A,B ≥ 0, d1, d2 > 0 and some d, d3 > 0,

that for appropriate positive constants c24 and c25, and κ = min{ 1
κ1
, 1
κ2
}, the functional y solves this initial 

problem
{
y′(t) ≤ c24 − c25y

κ(t) for all t ∈ (0, Tmax),
y(0) =

∫
Ω(u0 + 1)p +

∫
Ω |∇v0|2p.

Finally, by relying on ODE comparison principles, we have that 
∫
Ω up ≤ y(t) ≤ max{y(0), 

(
c24
c25

) 1
κ } for all 

t ∈ (0, Tmax). �
Collecting the derived information, we conclude.

Proof of Theorem 2.1. Since Lemma 5.4 ensures that the u-component of the local solution (u, v, w) to 
problem (1) belongs to L∞((0, Tmax); Lp(Ω)) for arbitrarily large p > 1, we have the claim by invoking 
Lemma 4.2. �
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