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Abstract
We relate the scattering theory of the focusing AKNS system with equally sized
nonvanishing boundary conditions to that of the matrix Schrödinger equation. This
(shifted) Miura transformation converts the focusing matrix nonlinear Schrödinger
(NLS) equation into a new nonlocal integrable equation. We apply the matrix triplet
method of solving the Marchenko integral equations by separation of variables to
derive the multisoliton solutions of this nonlocal equation, thus proposing a method
to solve the reflectionless matrix NLS equation.

Keywords Miura transformation · Matrix KdV equation · Matrix NLS equation ·
Matrix triplet method · Integrable nonlocal equation
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1 Introduction

Thenonlinear Schrödinger (NLS) equations have served as the basicmodels for surface
waves on deepwaters (Ablowitz 2011;Ablowitz and Segur 1981; Zakharov andShabat
1972), signals along optical fibres (Hasegawa and Tappert 1973; Hasegawa 2002;
Shaw 2004), plasma oscillations (Zakharov 1971), magnetic spin waves (Chen et al.
1994; Zakharov and Popkov 1983), and particle states in Bose–Einstein condensates
(Pethick and Smith 2002; Pitaevskii and Stringari 2016; Kevrekidis et al. 2008). The
NLS equationswith solutions decaying at infinity have been studied in detail (Ablowitz
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et al. 1974; Ablowitz and Segur 1981; Calogero and Degasperis 1982; Faddeev and
Takhtajan 1987; Ablowitz et al. 2004). After finding the Peregrine solutions (Peregrine
1983), various solutions of the NLS equations with nonvanishing boundary conditions
have been presented in Ma (1979), Akhmediev et al. (1985, 2009), Akhmediev and
Korneev (1986), Its et al. (1988), Mihalache et al. (1993), Tajiri andWatanabe (1998),
Zakharov and Gelash (2013).

In 1972 in their seminal paper Zakharov and Shabat (1972), Zakharov and Shabat
showed that the NLS equation can be solved by means of the Inverse Scattering Trans-
form (IST) technique. To this aim, they introduced a scattering problem now known
as the Zakharov–Shabat (ZS) system. The ZS system was used to solve the scalar
NLS system with zero and nonzero boundary conditions (Zakharov and Shabat 1972,
1973). In particular, in Zakharov and Shabat (1973), Zakharov and Shabat considered
the case of nonzero boundary conditions in the defocusing regime, introducing a spec-
tral parameter belonging to a suitable two-sheeted Riemann surface and studying the
analyticity properties of the scattering data on this surface. Moreover, in Ma (1979),
it was proven that, in order to develop the IST for the focusing NLS equation with
nonvanishing boundary conditions, the associated ZS system leads to introducing a
spectral parameter λ which belongs again to a suitable two-sheeted Riemann surface.
The introduction of a two-sheeted Riemann surface evidently makes the study of the
NLS equation with nonvanishing boundary conditions via the IST much more com-
plicated with respect to the vanishing case. Furthermore, in 1974 Ablowitz, Kaup,
Newell and Segur proposed an alternative but equivalent way to develop the IST for
the NLS equation consisting of associating to this equation the so-called AKNS sys-
tem (Ablowitz et al. 1974). In the AKNS system, one (matrix) equation represents the
spectral equation, whereas a second (matrix) equation describes the time evolution of
the scattering data. Similarly to what happens with the ZS system, developing the IST
from the AKNS pairs is significantly more complicated in the nonvanishing cases than
in the vanishing case.

Systematic studies of the inverse scattering transform theory (IST) of the (scalar
and matrix) NLS equation with nonvanishing boundary conditions have been carried
out in the defocusing case in Kawata and Inoue (1977, 1978), Asano and Kato (1981,
1984), Faddeev and Takhtajan (1987), Prinari et al. (2006), Demontis et al. (2013) and
in the focusing case in Biondini and Kovačić (2014), Demontis et al. (2014), Ortiz
and Prinari (2020), Biondini et al. (2021). In Bilman and Miller (2019), the IST with
full account of the spectral singularities leads to rogue wave solutions of the focusing
NLS with nonvanishing boundary conditions.

In all the papers cited above, a ZS system or an AKNS system is associated to
the NLS equation. If one considers the focusing NLS with nonvanishing boundary
conditions, it is customary, as we have remarked above, to introduce a new spectral
complex parameter, say λ, defined as λ = √

k2 + μ2 (it should be noted that λ is
defined through a multivalued function). The study of the analyticity properties of the
scattering data with respect to the parameter λ is quite difficult and requires special
care. In this article, we show how to associate a Schrödinger equation with a vanishing
potential as a spectral problem for theNLSequationwith nonzero boundary conditions.
In this way, to the best of our knowledge, for the first time we develop the IST for
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the focusing NLS system with nonzero boundary conditions without associating to
it the AKNS system (or the Zakharov–Shabat system). The advantage of associating
the Schrödinger equation with vanishing boundary conditions instead of the AKNS
system is immediate because the construction of the scattering data for the Schrö-
dinger equation with zero boundary conditions does not require the introduction of a
new spectral parameter. Consequently, the study of the analyticity properties of these
coefficients can be done in a more transparent way with respect to the analogous
study while using the AKNS system. However, we have achieved the important task
of establishing a connection between the scattering data of the AKNS system and the
scattering data of the Schrödinger equation.

In other words, a major obstacle encountered in the above-cited studies of the IST
for the nonvanishing NLS systems is the change of variable from the initial spectral
parameter k to a new spectral parameter λ = √

k2 + μ2 which complicates analyticity
issues for Jost solutions and scattering coefficients considerably, especially if such
change of variable is considered in the entire complex plane. The main purpose of this
article is to greatly simplify these issues by relating the focusing NLS equation to a
suitable matrix Schrödinger equation, where the spectral parameter (in this case, λ)
is typically chosen in the closed upper half complex half-plane C+ ∪R. Here we can
rely on a substantial body of knowledge on the direct and inverse scattering theory of
the scalar Schrödinger equation on the line (Faddeev 1964; Deift and Trubowitz 1979;
Calogero andDegasperis 1982; Chadan and Sabatier 1989) and thematrix Schrödinger
equation on the half-line (Aktosun and Weder 2018, 2020) and the full-line (Wadati
and Kamijo 1974; Aktosun et al. 2001). In particular, the small λ asymptotics of the
scattering data, which is crucial to a rigorous matrix Schrodinger scattering theory,
has been developed in detail in Aktosun et al. (2001).

In this article, we study the focusing m + m AKNS system

vx = (−ikσ 3 + Q)v, (1.1)

where v = v(x, k) is a vector function with n = 2m components, Im is the identity
matrix of order m, σ 3 = Im ⊕ (−Im), the potentialQ anticommutes with σ 3, and the
complex conjugate transposeQ† = −Q. The potentialQ is to satisfy the integrability
condition

∫ ∞

0
dy (1 + |y|) (‖Q(−y)−Ql‖+‖Q(y) − Qr‖+‖Qy(y)‖+‖Qy(−y)‖) < +∞,

(1.2)
where Qy is the y-derivative of Q and [Qr ,l ]2 = −μ2 In for some μ > 0.

We pursue an approach that is quite different from the one expounded in Biondini
and Kovačić (2014), Demontis et al. (2014), Biondini et al. (2021). Letting L =
iσ 3[∂x In −Q] stand for the AKNS Hamiltonian, we easily verify that L = L2 + μ21
is the matrix Schrödinger Hamiltonian given by

Lv = (L2 + μ21)v = −σ 3[∂x In − Q]σ 3[∂x In − Q]v + μ2v

= −[∂x In + Q][∂x In − Q]v + μ2v

123



   57 Page 4 of 29 Journal of Nonlinear Science            (2022) 32:57 

−
0 +μ−μ0 +0

μi

μ−i

k−region in upper half−plane

k−region in lower half−plane

λ

λ

−region in upper half−plane

−region in lower half−plane

Fig. 1 The regions k ∈ K
± and λ ∈ C

± with manifold boundary

= −vxx + Q2v − Qvx + (Qv)x + μ2v = −vxx + Qv,

where 1 stands for the identity operator on a suitable function space and

Q = Q2 + Qx + μ2 In (1.3)

is amatrix Faddeev class Schrödinger potential obtained fromQ by the (shifted)Miura
transform (Ablowitz and Segur 1981). In other words, ‖Q(·)‖ ∈ L1(R; (1+ |x |)dx).
Then any solution v of the AKNS system (1.1) is also a solution of the matrix Schrö-
dinger equation

Lv = (−∂2x In + Q)v = λ2v, (1.4)

where
λ =

√
k2 + μ2 (1.5)

is the conformal transformation from the complex k-plane K cut along the segment
[−iμ, iμ] onto the complex λ-plane satisfying λ ∼ k at infinity. This transforma-
tion provides a 1, 1-correspondence between the open upper/lower half k-plane K±
cut along [−iμ, iμ] onto the open upper/lower half λ-plane C

± as well as a 1, 1-
correspondence between their boundaries ∂K± and R and their closures K± ∪ ∂K±
and C

± ∪ R (Fig. 1).
In this article, we wish to take advantage of the well-developed direct and inverse

scattering theory of the matrix Schrödinger equation with selfadjoint potential [Agra-
novich and Marchenko (1963), Aktosun and Weder (2018, 2020) on the half-line,
Wadati and Kamijo (1974), Aktosun et al. (2001) on the full line], especially the
established custom of choosing its spectral variable λ in C

+ ∪ R, in deriving the
focusing NLS solutions with nonvanishing boundary conditions. In a previous paper,
Demontis and van derMee (2021), such full-line theory has been made to fit potentials
satisfying

Q† = σ 3Qσ 3. (1.6)
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The traditional applications of the matrix Schrödinger equation to quantum graphs,
quantum wires, and quantummechanical scattering of particles with internal structure
(Berkolaiko 2017; Berkolaiko et al. 2006; Berkolaiko andKuchment 2013; Berkolaiko
andLiu 2017;BomanandKurasov2005;Exner et al. 2008;Gerasimenko1988;Gerasi-
menko and Pavlov 1988; Gutkin and Smilansky 2001; Harmer 2002, 2004, 2005;
Kostrykin and Schrader 1999, 2000; Kuchment 2004, 2005; Kurasov and Nowaczyk
2010, 2005;Kurasov and Stenberg 2002) have led to the almost exclusive development
of matrix Schrödinger scattering theory for selfadjoint potentials satisfying Q† = Q
[see Agranovich and Marchenko (1963), Aktosun and Weder (2018, 2020) for the
half-line theory and Wadati and Kamijo (1974), Aktosun et al. (2001) for the full-line
theory]. Energy losses in such systems naturally lead to potentials whose imaginary
part [Q − Q†]/2i has constant sign. In the present context where Q satisfies (1.6),
we thus require the modified matrix Schrödinger scattering theory given in Demontis
and van der Mee (2021) when solving the focusing matrix NLS equation.

Let us discuss the contents of the various sections. In Sect. 2, we introduce the
Lax pair {L, A} and the AKNS pair {X, T } whose compatibility conditions lead to
an integrable nonlocal equation for Q. We also relate the solutions of this integrable
equation to those of a modified matrix NLS equation which is converted into the usual
matrix NLS equation by a trivial gauge transformation. Next, in Sects. 3–4 we state
the direct and inverse scattering theory of the matrix Schrödinger equation (1.4) with
Faddeev class potentials Q satisfying (1.6), disregarding any time dependence. In
particular, we introduce the Jost solutions and the scattering coefficients, write them
as Fourier transforms of L1-functions, and state the Marchenko integral equations to
solve the inverse scattering problem. We then go on to derive the time evolution of the
scattering data [Sect. 5]. In Sect. 6, we apply the so-called matrix triplet method to
derive the multisoliton solutions of the nonlocal integrable equation and the focusing
matrix NLS equation by separation of variables in the Marchenko integral equations.

We adopt boldface symbols for many of the quantities pertaining to the matrix
Schrödinger equation and calligraphic symbols for many of the quantities pertaining
to the AKNS system. We deviate from the praxis of Ablowitz et al. (1974), Ablowitz
et al. (2004) in allowing right and left to correspond to the real line endpoints involved
in defining the Jost solutions, both in the (matrix) Schrödinger and the AKNS cases.
Hence, we prioritize traditional notations regarding (matrix) Schrödinger equations
(Faddeev 1964; Deift and Trubowitz 1979; Chadan and Sabatier 1989) over those
regarding AKNS systems (Ablowitz et al. 1974, 2004).

2 Lax Pair for the New Integrable Model

It is well-known that the matrix NLS system is governed by a Lax pair {L, A} of linear
operators (Lax 1968; Ablowitz and Segur 1981; Eckhaus and van Harten 1981)

L = iσ 3(∂x In − Q), (2.1a)

A = iσ 3

(
2∂2x In − 2Q∂x − Q

)
, (2.1b)
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where Q is given by (1.3), Lv = kv is the AKNS eigenvalue problem, and vt = Av

describes the time evolution. Then the zero curvature condition

Lt + L A − AL = 0,

where 0 denotes the zero operator on a suitable function space, leads to the integrable
PDE

iσ 3Qt + Qxx − 2Q3 − 2μ2Q = 0n×n (2.2)

which coincides with the usual matrix NLS equation, studied in Ablowitz et al. (2004),
Ablowitz et al. (1974), apart from the extra term −2μ2Q.

Putting L = L2 + μ21 = −∂2x + Q, we now compute

iσ 3[Lt + LA − AL] = iσ 3Qt

− (−∂2x + σ 3Qσ 3)
[
2∂2x − 2Q∂x − Q

]
+

[
2∂2x − 2Q∂x − Q

]
(−∂2x + Q)

= iσ 3Qt + 4(−Qx + 1
2 [Q − σ 3Qσ 3])∂2x

+ 2(−Qxx + Qx + σ 3Qσ 3Q − QQ)∂x

+ Qxx + σ 3Qσ 3Q − 2QQx − Q2.

Then the ∂2x term vanishes iff Q = D + Qx for some D commuting with σ 3 and
vanishing as x → ±∞. Hence, the coefficient of the ∂x term equals 2(D − Q2)x +
2[D,Q] = 0n×n . Putting E = D − Q2 − μ2 In so that E vanishes as x → ±∞, we
obtain Ex + [E,Q] = 0n×n . Writing the latter as

(
e−xQr EexQr

)

x
= −e−xQr [Q(x) − Qr ]exQr

and using that e±xQr = cos(μx)In ± sin(μx)
μ

Qr to arrive at the estimate ‖e±xQr ‖ ≤√
μ2+‖Qr‖2

μ
, we can apply Gronwall’s inequality to the estimate

‖E(x)‖ ≤ μ2 + ‖Qr‖2
μ2

∫ ∞

x
dy ‖E(y)‖‖Q(y) − Qr‖,

to see that E vanishes identically and therefore D = Q2 + μ2 In . Thus, for this
particular choice of D we arrive at the nonlinear evolution equation

iσ 3Qt + Qxx − Q2 + σ 3Qσ 3Q − 2QQx = 0n×n, (2.3)

where

Q(x; t) = Qr −
∫ ∞

x
dy 1

2 (Q − σ 3Qσ 3) , (2.4a)

Q(x; t) = Ql +
∫ x

−∞
dy 1

2 (Q − σ 3Qσ 3) . (2.4b)
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for time invariant matrices Qr ,l satisfying [Qr ,l ]2 = −μ2 In for every t ∈ R.
Conversely, substituting

Q = D + Qx ,

where D commutes with σ 3,Qx anticommutes with σ 3, and D vanishes as x → ±∞,
into (2.3), we obtain

0n×n = iσ 3Dt + (Dx − 2QQx )x + (iσ 3Qt + Qxx − 2QD)x .

Separating the block off-diagonal and block diagonal components, we get

iσ 3Dt + (Dx − 2QQx )x = 0n×n,

iσ 3Qt + Qxx − 2QD = 0n×n,

where Qt , Qxx , and D vanish as x → ±∞. If there exists a solution Q of the
differential Riccati equationQ2 +Qx = Q −μ2 In which anticommutes with σ 3 and
satisfies Q → Qr ,l as x → ±∞, then D = Q2 + μ2 In and

[
iσ 3Qt + Qxx − 2Q3 − 2μ2Q,Q

]
= 0n×n, (2.5a)

iσ 3Qt + Qxx − 2Q3 − 2μ2Q = 0n×n, (2.5b)

where a matrix commutator appears. The gauge transformation

Q(x; t) = e−iμ2tσ 3R(x; t)eiμ2tσ 3 (2.6)

then converts (2.5b) into the usual matrix NLS equation

iσ 3Rt + Rxx − 2R3 = 0n×n,

where the limits Rl,r (t) of R(x; t) as x → ±∞ satisfy [Rr ,l ]t = −2iμ2σ 3Rr ,l .
This is in agreement with Qt vanishing as x → ±∞ and with the well-known time
evolution [see Demontis et al. (2014) for m = 1]

Rr ,l(t) = iμe2iμ
2tσ 3eiθr ,lσ 3(σ2 ⊗ Im),

where σ2 = (
0 −i
i 0

)
denotes the second Pauli matrix, σ2 ⊗ Im =

(
0m×m −i Im
i Im 0m×m

)
is a

Kronecker product (cf. Horn and Johnson 1994), and θr ,l ∈ R are phases. Furthermore,
(2.5b) and (1.3) imply the nonlinear equation (2.3). In fact,

iσ 3Qt + Qxx − (Q − σ 3Qσ 3)Q − 2QQx = Q[Qxx − 2Q3 − 2μ2Q]
− [Qxx − 2Q3 − 2μ2Q]Q − [Qxxx − 2(Q3)x − 2μ2Qx ]
+ [QQxx + QxxQ + 2Q2

x + Qxxx ] − [2QxQ2 + 2Q2
x + 2μ2Qx ]
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− 2[Q2Qx + QQxQ + QQxx ] = 0n×n .

Recall that the Lax pair {L, A} for the modified nonlinear matrix Schrödinger
equation (2.3) is given by (2.1). Let us now derive an AKNS pair {X, T } for the same
equation. Indeed, (2.3) is compatible with the linear system

Lv = λ2v, vt = Av,

where L = −∂2x + Q. We may therefore write

vt = Av = 2iσ 3vxx − 2iσ 3Qvx − iσ 3Qv

= 2iσ 3(Q − λ21)v − 2iσ 3Qvx − iσ 3Qv

= iσ 3

{
(Q − 2λ21)v − 2Qvx

}
.

Let us compute

(vx )t = (Av)x = iσ 3

(
(Q − 2λ21)vx + Qxv − 2Qxvx − 2Q(Q − λ21)v

)

= iσ 3

(
Qx − 2QQ + 2λ2Q

)
v + iσ 3(Q − 2λ21 − 2Qx )vx .

Hence, putting V = (
v
vx

)
we get the linear system

V x = X(x, λ; t)V , V t = T (x, λ; t)V ,

where {X, T } is the AKNS pair given by

X(x, λ; t) =
(

0n×n In
Q(x; t) − λ2 In 0n×n

)
, (2.7a)

T (x, λ; t) =
(

iσ 3(Q − 2λ2 In) −2iσ 3Q
iσ 3(Qx − 2QQ + 2λ2Q) iσ 3(Q − 2λ2 In − 2Qx )

)
. (2.7b)

Then we easily compute

i(σ 3 ⊕ σ 3) (X t − T x + XT − TX) =
(
0n×n 0n×n

E21 0n×n

)
,

where

E21 = iσ 3Qt + Qxx − 2(QQ)x + 2λ2Qx

− σ 3(Q − λ2 In)σ 3(Q − 2λ2 In) + (Q − 2λ2 In − 2Qx )(Q − λ2 In)

= iσ 3Qt + Qxx + Q2 − σ 3Qσ 3Q − 2QQx − 4Qx Q

+ λ2 (2Qx + 2σ 3Qσ 3 + Q − Q − 2Q + 2Qx )
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= iσ 3Qt + Qxx + Q2 − σ 3Qσ 3Q − 2QQx − 2
(
Q2 − σ 3Qσ 3Q

)

= iσ 3Qt + Qxx − Q2 + σ 3Qσ 3Q − 2QQx ,

as claimed. Thus, the zero curvature condition for the AKNS pair {X, T } is equivalent
to the nonlinear evolution equation (2.3).

3 Direct Scattering Theory

In this section, we introduce the Jost solutions and scattering coefficients for thematrix
Schrödinger equation (1.4) with Faddeev class potential Q satisfying (1.6). For the
scalar Schrödinger equation with real Faddeev class potential, the direct scattering
theory is well documented (Faddeev 1964; Deift and Trubowitz 1979; Calogero and
Degasperis 1982; Novikov et al. 1984; Chadan and Sabatier 1989). The matrix theory
is discussed at great length in Aktosun and Weder (2018, 2020) for the half-line and
in Wadati and Kamijo (1974), Aktosun et al. (2001) for the full line. Here Aktosun
et al. (2001) contains the essential small λ asymptotics of scattering coefficients that
is lacking in Wadati and Kamijo (1974). The adjoint symmetry Q requires some
modifications of existing theory (cf. Demontis and van der Mee 2021).

3.1 Jost Solutions of theMatrix Schrödinger Equation

3.1.1 n× n Jost Solutions

Let us define the Jost solution from the left Fl(x, λ) and the Jost solution from the right
Fr (x, λ) as those solutions of the matrix Schrödinger equation (1.4) which satisfy the
asymptotic conditions

Fl(x, λ) = eiλx [In + o(1)] , x → +∞, (3.1a)

Fr (x, λ) = e−iλx [In + o(1)] , x → −∞, (3.1b)

where n = 2m. Calling ml(x, λ) = e−iλx Fl(x, λ) and mr (x, λ) = eiλx Fr (x, λ)

Faddeev functions, we easily define themas the unique solutions of theVolterra integral
equations

ml(x, λ) = In +
∫ ∞

x
dy

e2iλ(y−x) − 1

2iλ
Q(y)ml(y, λ), (3.2a)

mr (x, λ) = In +
∫ x

−∞
dy

e2iλ(x−y) − 1

2iλ
Q(y)mr (y, λ). (3.2b)

Then, for each x ∈ R, ml(x, λ) and mr (x, λ) are continuous in λ ∈ C
+ ∪ R, are

analytic in λ ∈ C
+, and tend to In as λ → ∞ from within C

+ ∪ R. For 0 �= λ ∈ R,
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we can reshuffle (3.2) and arrive at the asymptotic relations

Fl(x, λ) = eiλx Al(λ) + e−iλx Bl(λ) + o(1), x → −∞, (3.3a)

Fr (x, λ) = e−iλx Ar (λ) + eiλx Br (λ) + o(1), x → +∞, (3.3b)

where

Ar ,l(λ) = In − 1

2iλ

∫ ∞

−∞
dy Q(y)mr ,l(y, λ), (3.4a)

Br ,l(λ) = 1

2iλ

∫ ∞

−∞
dy e∓2iλy Q(y)mr ,l(y, λ). (3.4b)

Then Ar ,l(λ) is continuous in 0 �= λ ∈ C
+ ∪ R, is analytic in λ ∈ C

+ and tends
to In as λ → ∞ from within C

+ ∪ R, while 2iλ[In − Ar ,l(λ)] has the finite limit
−�r ,l = ∫ ∞

−∞ dy Q(y)mr ,l(y, λ) as λ → 0 from within C
+ ∪ R. By the same

token, Br ,l(λ) is continuous in 0 �= λ ∈ R, vanishes as λ → ±∞, and satisfies
2iλBr ,l(λ) → −�r ,l as λ → 0 along the real λ-axis.

3.1.2 2n× 2n Jost Solutions

Putting

Fl(x, λ) =
(
Fl(x,−λ) Fl(x, λ)

F ′
l (x,−λ) F ′

l (x, λ)

)
, Fr (x, λ) =

(
Fr (x, λ) Fr (x,−λ)

F ′
r (x, λ) F ′

r (x,−λ)

)
, (3.5)

where the prime denotes differentiation with respect to x , we obtain

Fr (x, λ) = Fl(x, λ)

(
Ar (λ) Br (−λ)

Br (λ) Ar (−λ)

)
, (3.6a)

Fl(x, λ) = Fr (x, λ)

(
Al(−λ) Bl(λ)

Bl(−λ) Al(λ)

)
, (3.6b)

where 0 �= λ ∈ R. Using that Fr ,l(x, λ) satisfies the linear first-order system

(
V
V ′

)′
=

(
0n×n In

Q(x) − λ2 In 0n×n

)(
V
V ′

)
(3.7)

with traceless systemmatrix, we see that, for 0 �= λ ∈ R, Fr ,l(x, λ) has a determinant
not depending on x ∈ R. Using (3.1), we easily verify that det Fr ,l(x, λ) = (2iλ)n

for 0 �= λ ∈ R.
Let us now apply the x-independence (A proof of this property will be given in

Appendix A) of W(x, λ)†(σ2 ⊗ σ 3)V (x, λ), where σ 2 ⊗ σ 3 =
(
0n×n −iσ 3
iσ 3 n×n

)
, for any

two square matrix solutions V and W of (3.7) to derive identities for the A and B
coefficients by equating the asymptotics as x → +∞ to the asymptotics as x → −∞.
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Using V = W = � = Fr e1 + Fle2, where e1 = In ⊕ 0n×n and e2 = 0n×n ⊕ In , we
get

Ar ,l(λ)†σ 3Ar ,l(λ) − Br ,l(λ)†σ 3Br ,l(λ) = σ 3, (3.8a)

Br ,l(λ)† = −σ 3Bl,r (λ)σ 3, (3.8b)

where 0 �= λ ∈ R. Using V = W = Fr ,l , we get

Ar ,l(λ)†σ 3Br ,l(−λ) = Br ,l(λ)†σ 3Ar ,l(−λ), (3.9)

where 0 �= λ ∈ R. Using the x-independence of W(x,−λ∗)†(σ2 ⊗ σ 3)V (x, λ) for
V = Fl and W = Fr , we obtain

Ar (λ)† = σ 3Al(−λ)σ 3, Br (λ)† = −σ 3Bl(λ)σ 3, (3.10)

where 0 �= λ ∈ R. Finally, for V = W = � we get

Ar ,l(−λ∗)† = σ 3Al,r (λ)σ 3, (3.11)

where 0 �= λ ∈ C
+ ∪ R.

3.1.3 Reflection Coefficients

Introducing the reflection coefficients

Rr ,l(λ) = Br ,l(λ)Ar ,l(λ)−1 = −Al,r (λ)−1Bl,r (−λ) (3.12)

and the transmission coefficients Ar ,l(λ)−1, we obtain the Riemann–Hilbert problem

(
Fl(x,−λ) Fr (x,−λ)

) = (
Fr (x, λ) Fl(x, λ)

) (
Ar (λ)−1 −Rl(λ)

−Rr (λ) Al(λ)−1

)
, (3.13)

where thematrix S(λ) containing the A and R quantities is called the scattering matrix
and a discussion of the nonsingularity of Ar ,l(λ) will be presented shortly. Then it is
easily verified that

Rr ,l(λ)† = σ 3Rr ,l(−λ)σ 3, (3.14a)

and
S(λ)†(σ 3 ⊕ σ 3)S(λ) = σ 3 ⊕ σ 3, (3.14b)

provided 0 �= λ ∈ R and det Ar ,l(λ) �= 0.
Above we have defined �r ,l as follows:

�r ,l = lim
λ→0

2iλAr ,l(λ) = − lim
λ→0± 2iλBr ,l(λ),
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where the first limit may be taken from the closed upper half-plane. Then the matrices
�r ,l have the same determinant. If�r ,l is nonsingular, we are said to be in the generic
case; if instead �r ,l is singular, we are said to be in the exceptional case (Aktosun
et al. 2001). We are said to be in the superexceptional case if �r ,l = 0n×n and Ar ,l(λ)

tends to a nonsingular matrix, Ar ,l(0) say, as λ → 0 from within C+ ∪ R.
Throughout this article, we assume the absence of spectral singularities, i.e., the

absence of nonzero real λ for which det Ar ,l(λ) = 0. Under this condition, the reflec-
tion coefficients Rr ,l(λ) are continuous in 0 �= λ ∈ R.

3.1.4 Triangular Representations

The Jost solutions allow the triangular representations

Fl(x, λ) = eiλx In +
∫ ∞

x
dy eiλy K (x, y), (3.15a)

Fr (x, λ) = e−iλx In +
∫ x

−∞
dy e−iλy J (x, y), (3.15b)

where for every x ∈ R

∫ ∞

x
dy ‖K (x, y)‖ +

∫ x

−∞
dy ‖J (x, y)‖ < +∞. (3.16)

The integral equations satisfied by the auxiliary matrix functions K (x, y) and J (x, y)
derived in Demontis and van der Mee (2021) imply that

K (x, x) = 1
2

∫ ∞

x
dy Q(y), J (x, x) = 1

2

∫ x

−∞
dy Q(y). (3.17)

3.1.5 Wiener Algebras

For convenience, we introduce the well-known Wiener algebra (Gelfand et al. 1964).
By the (continuous)Wiener algebraW , wemean the complex vector space of constants
plus Fourier transforms of L1-functions

W = {c + ĥ : c ∈ C, h ∈ L1(R)}

endowed with the norm |c| + ‖h‖1. Here we define the Fourier transform as follows:
ĥ(k) = ∫ ∞

−∞ dy eikyh(y). The invertible elements of the commutative Banach algebra

W with unit element are exactly those c + ĥ ∈ W for which c �= 0 and c + ĥ(k) �= 0
for each k ∈ R (Gelfand et al. 1964).

The algebra W has the two closed subalgebras W+ and W− consisting of those
c + ĥ ∈ W for which h is supported on R

+ and R
−, respectively. The invertible

elements ofW± are exactly those c+ ĥ ∈ W± for which c �= 0 and c+ ĥ(k) �= 0 for
each k ∈ C

± ∪R (Gelfand et al. 1964). LettingW±
0 andW0 stand for the (nonunital)
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closed subalgebras ofW± andW consisting of those c+ ĥ for which c = 0, we obtain
the direct sum decompositions

W = C ⊕ W+
0 ⊕ W−

0 , W0 = W+
0 ⊕ W−

0 .

We denote the (bounded) projections of W onto W±
0 along W∓ by �±.

Throughout this article, we denote the vector spaces of n×mmatriceswith entries in
W ,W±, andW±

0 byWn×m ,W±n×m , andW±
0
n×m

, respectively.Wewrite L1(R)n×m

and L1(R±)n×m for the vector spaces of n × m matrices with entries in L1(R)

and L1(R±), respectively. Using a submultiplicative matrix norm, we can turn all
of these vector spaces into Banach spaces. It is then clear that Wn×n and W±n×n

are noncommutative Banach algebras with unit element and W±
0
n×n

are (nonunital)
noncommutative Banach algebras. As above, we then define �± as the (bounded)
projections ofWn×m ontoW±

0
n×m

alongW∓n×m . The invertible elements ofWn×n

and W±n×n are exactly those elements whose determinants are invertible elements
of W and W±, respectively. Hence, according to (3.15) and (3.16), for each x ∈ R

the Faddeev functions mr ,l(x, ·) ∈ Wn×n+ . We then easily prove with the help of (3.4)
that 2iλ[In − Ar ,l(λ)] belong toWn×n+ and 2iλBr ,l(λ) belong toWn×n .

Assuming the absence of spectral singularities and to be in the generic case, we
proved in Demontis and van der Mee (2021) that the reflection coefficients Rr ,l(λ)

belong toWn×n
0 and the transmission coefficients Ar ,l(λ)−1 toWn×n+ . In the superex-

ceptional case, where �r ,l = 0n×n , we proved in Demontis and van der Mee (2021)
that Ar ,l ∈ Wn×n+ , provided Q ∈ L1(R; (1+|x |)2dx); assuming the absence of spec-
tral singularities and using the nonsingularity of Ar ,l(0), we see that the reflection
coefficients Rr ,l(λ) and the transmission coefficients Ar ,l(λ)−1 belong toWn×n .

At present it is not known if, under the absence of spectral singularities, the reflection
and transmission coefficients belong to Wn×n in any other exceptional case and for
general Q ∈ L1(R; (1 + |x |)dx). Under the condition Q ∈ L1(R; (1 + |x |)dx), the
continuity of the reflection and transmission coefficients at λ = 0 is known for n = 1
(Klaus 1988) and for selfadjoint potentials (Aktosun et al. 2001). In neither case is it
known if these continuous functions belong toW .

4 Inverse Scattering Theory

In this section, we introduce the Marchenko integral equations for the matrix Schrö-
dinger equation (1.4) with Faddeev class potential Q satisfying (1.6). We make use of
the hypothesis that the reflection coefficients Rr ,l ∈ Wn×n

0 , something proved in the
generic case but not in themost general exceptional case. For the sake of simplicity, we
assume that the poles of Ar ,l(λ)−1 in C

+ are simple. The extension to multiple pole
situations is rather technical but straightforward (Demontis and van der Mee 2008a).
Inverse scattering theory is well documented in the scalar case (Faddeev 1964; Deift
and Trubowitz 1979; Calogero and Degasperis 1982; Chadan and Sabatier 1989), in
the matrix half-line case (Aktosun and Weder 2018, 2020), and in the matrix full-line
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case (Wadati and Kamijo 1974; Aktosun et al. 2001). The adjoint symmetry (1.6)
requires some modifications to existing theory (cf. Demontis and van der Mee 2021).

Let us write the transmission coefficients in the form

Ar (λ)−1 = Ar0(λ) +
N∑

s=1

τr;s
λ − λs

, Al(λ)−1 = Al0(λ) +
N∑

s=1

τl;s
λ − λs

, (4.1)

where λ1, . . . , λN are the distinct simple poles of Ar ,l(λ)−1 inC+, τr;s and τl;s are the
residues of Ar (λ)−1 and Al(λ)−1 at λ = λs (s = 1, . . . , N ), and Ar0(λ) and Al0(λ)

are continuous in λ ∈ C
+ ∪R, are analytic in λ ∈ C

+, and tend to In as λ → ∞ from
within C+ ∪R. Then it is easily proved that τr;s = −σ 3τ

†
l;sσ 3 and τl;s = −σ 3τ

†
r;sσ 3

whenever λs = −λ∗
s (cf. Demontis and van der Mee 2021).

Let us write

Rr (λ) =
∫ ∞

−∞
dα e−iλα R̂r (α), Rl(λ) =

∫ ∞

−∞
dα eiλα R̂l(α), (4.2)

where R̂r ,l ∈ L1(R)n×n . In fact, this has only been proved in the generic case and,
under the condition that Q ∈ L1(R; (1 + |x |)2dx), in the superexceptional case.
Using (3.14a), it follows that R̂r ,l(α; t) are σ 3-Hermitianmatrices. Then the following
Marchenko integral equations can be derived [see Demontis and van der Mee (2021)
for details]:

K (x, y) + 	r (x + y) +
∫ ∞

x
dz K (x, z)	r (z + y) = 0n×n, (4.3a)

J (x, y) + 	l(x + y) +
∫ x

−∞
dz J (x, z)	l(z + y) = 0n×n, (4.3b)

where the Marchenko integral kernels are given by

	r (w) = R̂r (w) +
N∑

s=1

eiλswNr;s, (4.4a)

	l(w) = R̂l(w) +
N∑

s=1

e−iλswNl;s . (4.4b)

Here Nr;s and Nl;s are the so-called norming constants defined by

Fr (x, λs)τr;s = i Fl(x, λs)Nr;s, (4.5a)

Fl(x, λs)τl;s = i Fr (x, λs)Nl;s, (4.5b)

where λs is a (simple) pole of Ar ,l(λ)−1 in C+ (s = 1, 2, . . . , N ). Then τr;s and Nr;s
have the same rank and the same null space; the same thing is true for τl;s and Nl;s . As
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in Demontis and van der Mee (2008a), we can prove the adjoint symmetry relations

	r ,l(w) = σ 3	r ,l(w)†σ 3, (4.6)

thus implying the following symmetry relations for the norming constants:

Nr;s = σ 3N
†
r;sσ 3, Nl;s = σ 3N

†
l;sσ 3, (4.7)

provided λs = −λ∗
s is a simple pole of Ar ,l(λ)−1. For the rather tedious details, we

refer to Appendix B of Demontis and van der Mee (2021).
Example. Let us now solve the Marchenko integral equations (4.3) in the one-

soliton case, where 	r (w; t) = e−a0wNr;0(t) and 	l(w; t) = ea0wNl;0(t) for a
suitable eigenvalue λ0 = ia0 ∈ C

+. Then separation of variables yields

K (x, y; t) = −e−a0(x+y)
[
In + 1

2a0
e−2a0x Nr;0(t)

]−1

Nr;0(t), (4.8a)

J (x, y; t) = −ea0(x+y)
[
In + 1

2a0
e2a0x Nl;0(t)

]−1

Nl;0(t). (4.8b)

so that

∫ ∞

x
dy Q(y; t) = −2

[
e2a0x In + 1

2a0
Nr;0(t)

]−1

Nr;0(t), (4.9a)

∫ x

−∞
dy Q(y; t) = −2

[
e−2a0x In + 1

2a0
Nl;0(t)

]−1

Nl;0(t), (4.9b)

where the σ 3-Hermitian norming constants Nr;0(t) and Nl;0(t) will be expressed in
their initial values shortly. The off-diagonal parts of these expressions yield explicit
expressions for Qr − Q(x; t) and Q(x; t) − Ql , respectively.

5 Time Evolution of the Scattering Data

In this section,we establish the time evolutionof the scattering data of thematrixSchrö-
dinger equation. We then go on to derive the Marchenko integral kernels as a function
of time. These results allow us, in Sect. 6, to derive the reflectionless solutions of the
integrable nonlocal equation (2.3) and hence of the focusing matrix NLS equation.

Recall that the integrable equation (2.3) arises as the zero curvature condition of the
AKNS pair {X, T } given by (2.7). Thus, there exist nonsingular matrices CFr (λ; t)
and CFl (λ; t) not depending on x ∈ R such that

Fr (x, λ; t) = V (x, λ; t)CFr (λ; t)−1, Fl(x, λ; t) = V (x, λ; t)CFl (λ; t)−1.
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Then a simple differentiation yields

[
CFr (λ; t)]t CFr (λ; t)−1 = F−1

r T Fr − F−1
r [Fr ]t , (5.1a)

[
CFl (λ; t)]t CFl (λ; t)−1 = F−1

l T Fl − F−1
l [Fl ]t , (5.1b)

where the two left-hand sides do not depend on x ∈ R. Using (2.4), we now compute
the x → ±∞ limits of the two right-hand sides by evaluating the matrix product

1

2iλ

(
iλeiλx In −eiλx In
iλe−iλx In e−iλx In

)( −2iλ2σ 3 −2iσ 3Qr ,l

2iλ2σ 3Qr ,l −2iλ2σ 3

)(
e−iλx In eiλx In

−iλe−iλx In iλeiλx In

)

and obtain

[
CFr (λ; t)]t CFr (λ; t)−1 =

(−

up
r (λ) 0n×n

0n×n −
dn
r (λ)

)
, (5.2a)

[
CFl (λ; t)]t CFl (λ; t)−1 =

(−

up
l (λ) 0n×n

0n×n −
dn
l (λ)

)
, (5.2b)

where



up
r ,l(λ) = 2iλ2σ 3 + 2λσ 3Qr ,l , (5.3a)


dn
r ,l(λ) = 2iλ2σ 3 − 2λσ 3Qr ,l , (5.3b)

are time invariant. Then, using that Q† = −Q and Qσ 3 = −σ 3Q, we arrive at the
symmetry relations



up
r ,l(λ) = σ 3


dn
r ,l(λ)σ 3, (5.4a)



up
r ,l(−λ∗)† = −


up
r ,l(λ), (5.4b)


dn
r ,l(−λ∗)† = −
dn

r ,l(λ), (5.4c)

where λ ∈ C
+ ∪ R. Relating Fr ,l(x, λ; t) by means of the equalities [cf. (3.6)]

Fr (x, λ; t) = Fl(x, λ; t)Ar (λ; t), Fl(x, λ; t) = Fr (x, λ; t)Al(λ; t),

where the factors Ar ,l(λ; t) are given by the matrices

Ar (λ; t) =
(
Ar (λ; t) Br (−λ; t)
Br (λ; t) Ar (−λ; t)

)
, Al(λ; t) =

(
Al(−λ; t) Bl(λ; t)
Bl(−λ; t) Al(λ; t)

)
, (5.5)

for 0 �= λ ∈ R we compute

[Ar ]t = −F−1
l [Fl ]t F−1

l Fr + F−1
l [Fr ]t

= −F−1
l

(
T Fl − Fl

[
CFl (λ; t)]t CFl (λ; t)−1

)
Ar
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+ F−1
l

(
T Fr − Fr

[
CFr (λ; t)]t CFr (λ; t)−1

)

= [
CFl (λ; t)]t CFl (λ; t)−1Ar − Ar

[
CFr (λ; t)]t CFr (λ; t)−1

= Ar

(



up
r (λ) 0n×n

0n×n 
dn
r (λ)

)
−

(



up
l (λ) 0n×n

0n×n 
dn
l (λ)

)
Ar . (5.6)

Using that Al(λ; t) = Ar (λ; t)−1, we obtain from (5.6)

[Al ]t = Al

(



up
l (λ) 0n×n

0n×n 
dn
l (λ)

)
−

(



up
r (λ) 0n×n

0n×n 
dn
r (λ)

)
Al . (5.7)

Therefore, (5.5), (5.6), and (5.7) imply

[Ar ]t = Ar (λ; t)
up
r (λ) − 


up
l (λ)Ar (λ; t), (5.8a)

[Al ]t = Al(λ; t)
dn
l (λ) − 
dn

r (λ)Al(λ; t), (5.8b)

where 0 �= λ ∈ C
+ ∪ R, and

[Br ]t = Br (λ; t)
up
r (λ) − 
dn

l (λ)Br (λ; t), (5.8c)

[Bl ]t = Bl(λ; t)
dn
l (λ) − 


up
r (λ)Bl(λ; t), (5.8d)

where 0 �= λ ∈ R.

Proposition 5.1 The reflection coefficients satisfy the following differential equations:

[Rr ]t = Rr (λ; t)
up
l (λ) − 
dn

l (λ)Rr (λ; t), (5.9a)

[Rl ]t = Rl(λ; t)
dn
r (λ) − 


up
r (λ)Rl(λ; t), (5.9b)

where 0 �= λ ∈ R. Moreover, for fixed λ the matrices σ 3Rr ,l(λ; t) have time invariant
traces.

Proof Using (3.12), we compute

[Rr ]t = [Br A−1
r ]t = [Br ]t A−1

r − Br A
−1
r [Ar ]t A−1

r

=
(
Br


up
r − 
dn

l Br
)
A−1
r − Br A

−1
r

(
Ar


up
r − 


up
l Ar

)
A−1
r

= Br A
−1
r 


up
l − 
dn

l Br A
−1
r = Rr


up
l − 
dn

l Rr ,

where we have not written the dependence on (λ; t). Similarly, we compute

[Rl ]t = [Bl A−1
l ]t = [Bl ]t A−1

l − Bl A
−1
l [Al ]t A−1

l

=
(
Bl


dn
l − 


up
r Bl

)
A−1
l − Bl A

−1
l

(
Al


dn
l − 
dn

r Al

)
A−1
l

= Bl A
−1
l 
dn

r − 

up
r Bl A

−1
l = Rl


dn
r − 


up
r Rl .
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Finally, since σ 3

up
r ,l(λ)σ 3 = 
dn

r ,l(λ), we see that

[σ 3Rr ]t = [σ 3Rr (λ; t),
up
l (λ)], [σ 3Rl ]t = [σ 3Rl(λ; t),
dn

r (λ)], (5.10)

where the square brackets in the right-hand sides are matrix commutators. Conse-
quently, [σ 3Rr ,l ]t are traceless matrices.

Let us now derive the time evolution equations for the norming constants. First,
writing (5.8) in the form

[A−1
r ]t = Ar (λ; t)−1


up
l (λ) − 


up
r (λ)Ar (λ; t)−1,

[A−1
l ]t = Al(λ; t)−1
dn

r (λ) − 
dn
l (λ)Al(λ; t)−1,

and computing the residues at the simple poles λs , we get

[τr;s]t = τr;s(t)
up
l (λs) − 


up
r (λs)τr;s(t), (5.11a)

[τl;s]t = τl;s(t)
dn
r (λs) − 
dn

l (λs)τl;s(t). (5.11b)

Next, using (5.2) we write (5.1) in the form

[Fr ,l ]t = T (x, λ; t)Fr ,l(x, λ; t) + Fr ,l(x, λ; t)
(



up
r ,l(λ) 0n×n

0n×n 
dn
r ,l(λ)

)
. (5.12)

Using the standard block structure T =
(
T1 T2
T3 T4

)
as a 2 × 2 matrix having m × m

entries, from (5.12) we easily arrive at the identities

[Fl(x, λs; t)]t = T1(x, λs; t)Fl(x, λs; t) + T2(x, λs; t)F ′
l (x, λs; t)

+ Fl(x, λs; t)
dn
l (λs), (5.13a)

[Fr (x, λs; t)]t = T1(x, λs; t)Fr (x, λs; t) + T2(x, λs; t)F ′
r (x, λs; t)

+ Fr (x, λs; t)
up
r (λs). (5.13b)

Differentiating (4.5a) with respect to t , utilizing both of (5.13), and applying (4.5a)
as well as its derivative with respect to x , we obtain

Fr
(



up
r τr;s + [τr;s]t

) = i Fl
(

dn

l Nr;s + [Nr;s]t
)

,

where we have omitted the arguments (x, λs; t), λs , and t . With the help of (5.11a),
we write the latter in the form

Frτr;s
up
l = i Fl

(

dn

l Nr;s + [Nr;s]t
)

.

123



Journal of Nonlinear Science            (2022) 32:57 Page 19 of 29    57 

Using (4.5a) once again and considering the x → +∞ asymptotics of the resulting
expression to lose the resulting common factors i Fl , we obtain

[Nr;s]t = Nr;s(t)
up
l (λs) − 
dn

l (λs)Nr;s(t). (5.14)

Analogously, differentiating (4.5b) with respect to t , utilizing both of (5.13), and
applying (4.5b) as well as its derivative with respect to x , we obtain

Fl
(

dn

l τl;s + [τl;s]t
)

= i Fr
(



up
r Nl;s + [Nl;s]t

)
,

where we have omitted the arguments (x, λs; t), λs , and t . With the help of (5.11b),
we write the latter in the form

Frτl;s
dn
r = i Fl

(



up
r Nl;s + [Nl;s]t

)
.

Using (4.5b) once again and considering the x → −∞ asymptotics of the resulting
expression to lose the resulting common factors i Fr , we obtain

[Nl;s]t = Nl;s(t)
dn
r (λs) − 


up
r (λs)Nl;s(t). (5.15)

As in the proof of Proposition 5.1, we can prove that for each λ the matrices σ 3Nr;s(t)
are similar and the matrices σ 3Nl;s(t) are similar. Hence, the traces of σ 3Nr;s(t) and
σ 3Nl;s(t) are time independent. Thus, the ranks of Nr;s(t) and Nl;s(t) are time inde-
pendent. We recall [see (4.7)] that the norming constants corresponding to eigenvalues
symmetrically located with respect to the imaginary axis are each other’s σ 3-adjoints.

Let us now derive the differential equations for the Marchenko integral kernels.
Using (4.2) and (5.3), we obtain the PDEs

[R̂r ]t = −2i
(
[R̂r ]αασ 3 − σ 3[R̂r ]αα+[R̂r ]ασ 3Ql − Qlσ 3[R̂r ]α

)
, (5.16a)

[R̂l ]t = −2i
(
[R̂l ]αασ 3 − σ 3[R̂l ]αα+[R̂l ]ασ 3Qr − Qrσ 3[R̂l ]α

)
, (5.16b)

provided
∫ ∞
−∞ dα (1+ α2)‖R̂r ,l(α; t)‖ converges for every t ∈ R. Here we recall that

R̂r ,l(α; t) are σ 3-Hermitian for all (α, t) ∈ R
2. Using (4.2) and Proposition 5.1, we

see that the traces of σ 3 R̂r ,l(α; t) are time independent. Using (5.16) and (4.4) to
derive PDEs for the Marchenko integral kernels 	r ,l(w; t), we obtain with the help
of (5.14) and (5.15)

[	r ]t = −2i ([	r ]wwσ 3 − σ 3[	r ]ww + [	r ]wσ 3Ql − Qlσ 3[	r ]w) , (5.17a)

[	l ]t = −2i ([	l ]wwσ 3 − σ 3[	l ]ww + [	l ]wσ 3Qr − Qrσ 3[	l ]w) , (5.17b)

where 	r ,l(w; t) are σ 3-Hermitian for all (w, t) ∈ R
2. Hence, the reflection ker-

nels R̂r ,l(w; t) and the Marchenko integral kernels 	r ,l(w; t) satisfy the same PDEs.
Finally, the traces of σ 3	r ,l(w; t) are time independent.
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Recalling thatQr ,l are time independent, we observe that the matrices 

up
r ,l(λ) and


dn
r ,l(λ) are time independent as well. We easily compute

et

up
r ,l (λ) = cos(2λkt)In + sin(2λkt)

2λk

[
2iλ2σ 3 + 2λQr ,l

]
, (5.18a)

et

dn
r ,l (λ) = cos(2λkt)In + sin(2λkt)

2λk

[
2iλ2σ 3 − 2λQr ,l

]
, (5.18b)

where k2 = λ2 −μ2 and the expressions (5.18) are even functions of k for fixed λ [cf.
Demontis et al. (2014) where these matrix groups also appear]. Using that the initial
value problem for the matrix differential equation

Ft = B1F(t) − F(t)B2

has the unique solution

F(t) = etB1F(0)e−tB2 ,

we obtain for the solutions of (5.9a) and (5.9b)

Rr (λ; t) = e−t
dn
l (λ)Rr (λ; 0)et
up

l (λ), (5.19a)

Rl(λ; t) = e−t
up
r (λ)Rl(λ; 0)et
dn

r (λ). (5.19b)

Because of (5.4a), the matrices σ 3Rr (λ; t) are similar and so are the matrices
σ 3Rl(λ; t). In the same way, we get for the time evolution of the norming constants

Nr;s(t) = e−t
dn
l (λs )Nr;s(0)et


up
l (λs ), (5.20a)

Nl;s(t) = e−t
up
r (λs )Nl;s(0)et


dn
r (λs ), (5.20b)

where k2s = λ2s − μ2 and the expressions (5.20) are even functions of ks for fixed λs .
Because of (5.4a), thematrices σ 3Nr;s(t) are similar and so are thematrices σ 3Nl;s(t).
In the same way, we derive from (5.8) the identities

Ar (λ; t) = e−t
up
l (λ)Ar (λ; 0)et
up

r (λ), (5.21a)

Al(λ; t) = e−t
dn
r (λ)Al(λ; 0)et
dn

l (λ), (5.21b)

where 0 �= λ ∈ C
+ ∪ R, and

Br (λ; t) = e−t
dn
l (λ)Br (λ; 0)et
up

r (λ), (5.21c)

Bl(λ; t) = e−t
up
r (λ)Bl(λ; 0)et
dn

l (λ), (5.21d)

where 0 �= λ ∈ R. Observe that (5.21) and (3.12) imply (5.19).
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6 Multisoliton Solutions

In this section,we apply thematrix tripletmethod towrite the reflectionlessMarchenko
integral kernels in separated form and solve the Marchenko equations by separation
of variables. This method has been successfully applied to the Korteweg-de Vries
(KdV) equation (Aden and Carl 1996; Aktosun and van der Mee 2006), the NLS
equation (Aktosun et al. 2007; Demontis and van der Mee 2008b), the sine-Gordon
equation (Schiebold 2002; Aktosun et al. 2010), the modified Korteweg-de Vries
(mKdV) equation (Demontis 2011), the Toda lattice equation (Schiebold 1998), and
the Heisenberg Ferromagnet equation (Demontis et al. 2018, 2019). An introduction
to this method can be found in van der Mee (2013). In contrast to earlier work, we
allow the time factors in these triplets to be absorbed by both the input and output
matrices.

Before solving the Marchenko integral equations (4.4), we write the reflectionless
Marchenko integral kernels in the form

	r (w; t) =
N∑

s=1

e−aswNr;s(t), 	l(w; t) =
N∑

s=1

easwNl;s(t), (6.1)

where as = −iλs (s = 1, . . . , N ). Then it is easily proved that, for s = 1, . . . , N ,
the norming constants Nr;s(t) and Nl;s(t) both have the same time-independent rank
rs . In fact, rs coincides with the ranks of the residues τr;s and τl;s of Ar ,l(λ; t)−1

at λ = λs . Since σ 3Nr;s(t) and σ 3Nl;s(t) have σ 3Nr;s(t) and σ 3Nl;s(t) as their
respective complex conjugate transposes whenever λs = −λ∗

s , there exist n × rs
matrices er;s(t) and el;s(t) having rs = rs orthonormal columns and spanning the
ranges of σ 3Nr;s(t) and σ 3Nl;s(t) and time-independent diagonal rs × rs matrices
dr;s = d†r;s and dl;s = d†l;s having only nonzero diagonal entries such that

σ 3Nr;s(t) = er;s(t)dr;ser;s(t)†, σ 3Nl;s(t) = el;s(t)dl;sel;s(t)†, (6.2)

whenever λs = −λ∗
s . Furthermore,

er;s(t) = e−t
up
l (λs )er;s(0), el;s(t) = e−t
dn

r (λs )el;s(0). (6.3)

If λs = −λ∗
s is purely imaginary and therefore σ 3Nr;s(t) and σ 3Nl;s(t) are Hermi-

tian matrices, the number of positive and negative diagonal entries of dr;s and dl;s
corresponds to the (time-independent) number of positive and negative eigenvalues of
σ 3Nr;s(t) and σ 3Nl;s(t).

Now define the matrix triplets as follows:

Ar = Al = a1 Ir1 ⊕ . . . ⊕ aN IrN , (6.4)

123



   57 Page 22 of 29 Journal of Nonlinear Science            (2022) 32:57 

where Ar ,l are diagonal matrices of order q = r1 + . . . + rN having rs copies of
as = −iλs on the diagonal. Next, we define

Br =

⎛

⎜⎜
⎝

dr;1e†r;1
...

dr;N e†r;N

⎞

⎟⎟
⎠ , Bl =

⎛

⎜⎜
⎝

dl;1e†l;1
...

dl;N e†l;N

⎞

⎟⎟
⎠ , (6.5a)

Cr = (
σ 3er;1 . . . σ 3er;N

)
, Cl = (

σ 3el;1 . . . σ 3el;N
)
, (6.5b)

where we have not written the time dependence. Then the Marchenko integral kernels
in (6.1) are given by

	r (w; t) = Cr (t)e
−wAr Br (t), (6.6a)

	l(w; t) = Cl(t)e
wAl Bl(t), (6.6b)

where the q × q matrices Ar ,l have only eigenvalues with positive real parts, Br ,l(t)
are q × n matrices, and Cr ,l(t) are n × q matrices.

Let us now depart from arbitrary Marchenko integral kernels (6.6), where the q×q
matrices Ar ,l have only eigenvalues with positive real parts, Br ,l(t) are q×nmatrices,
Cr ,l(t) are n × q matrices, and the specific expressions (6.4) and (6.5) need not be
applied. Solving the Marchenko integral equations (4.3), we get

K (x, y; t) = −W r (x; t)e−yAr Br (t), (6.7a)

J (x, y; t) = −W l(x; t)eyAl Bl(t), (6.7b)

where

W r (x; t) = Cr e
−x Ar +

∫ ∞

x
dz K (x, z; t)Cr (t)e

−zAr ,

W l(x; t) = Cl e
x Al +

∫ x

−∞
dz J (x, z; t)Cl(t)e

zAl .

Substituting (6.7) into (4.3) and solving for W r ,l(x; t) we get

W r (x; t) = Cr (t)e
−x Ar

[
Iq + e−x Ar Pr (t)e

−x Ar
]−1

,

W l(x; t) = Cl(t)e
x Al

[
Iq + ex Al P l(t)e

x Al
]−1

,

provided the inverse matrices exist. Here

Pr ,l(t) =
∫ ∞

0
dz e−zAr ,l Br ,l(t)Cr ,l(t)e

−zAr ,l
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are the unique solutions of the Sylvester equations

Ar ,l Pr ,l(t) + Pr ,l(t)Ar ,l = Br ,l(t)Cr ,l(t).

More precisely, given (x, t) ∈ R
2, theMarchenko integral equations (4.3) are uniquely

solvable (in an L1-setting) iff the algebraic equations for W r ,l(x; t) are uniquely
solvable. Consequently,

K (x, y; t) = −Cr (t)e
−x Ar

[
Iq + e−x Ar Pr (t)e

−x Ar
]−1

e−yAr Br (t)

= −Cr (t)
[
Iq + e−2x Ar Pr (t)

]−1
e−(x+y)Ar Br (t)

= −Cr (t)
[
e2x Ar + Pr (t)

]−1
e−(y−x)Ar Br (t), (6.8a)

J (x, y; t) = −Cl(t)e
x Al

[
Iq + ex Al P l(t)e

x Al
]−1

eyAl Bl(t)

= −Cl(t)
[
Iq + e2x Al P l(t)

]−1
e(x+y)Al Bl(t)

= −Cl(t)
[
e−2x Al + P l(t)

]−1
e−(x−y)Al Bl(t). (6.8b)

Using (3.17), we obtain

∫ ∞

x
dy Q(y; t) = −2Cr (t)

[
e2x Ar + Pr (t)

]−1
Br (t), (6.9a)

∫ x

−∞
dy Q(y; t) = −2Cl(t)

[
e−2x Al + P l(t)

]−1
Bl(t). (6.9b)

Consequently,

Q(x; t) = −4Cr (t)
[
e2x Ar + Pr (t)

]−1
Ar e

2x Ar
[
e2x Ar + Pr (t)

]−1
Br (t),

(6.10a)

Q(x; t) = −4Cl(t)
[
e−2x Al + P l(t)

]−1
Al e

−2x Al
[
e−2x Al + P l(t)

]−1
Bl(t).

(6.10b)

Using the partitioning

Cr ,l(t) =
(
Cup
r ,l(t)

Cdn
r ,l(t)

)
, Br ,l(t) = (

Blt
r ,l(t) Brt

r ,l(t)
)
,

and assuming the nonsingularity of Pr ,l(t), we obtain

Q(x; t) = Qr + 2Cup
r (t)Pr (t)

−1Brt
r (t) + 2Cdn

r (t)Pr (t)
−1Blt

r (t)
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− 2Cup
r (t)

[
e2x Ar + Pr (t)

]−1
Brt
r (t)

− 2Cdn
r (t)

[
e2x Ar + Pr (t)

]−1
Blt
r (t), (6.11a)

Q(x; t) = Ql + 2Cup
l (t)P l(t)

−1Brt
l (t) + 2Cdn

l (t)P l(t)
−1Blt

l (t)

− 2Cup
l (t)

[
e−2x Al + P l(t)

]−1
Brt
l (t)

− 2Cdn
l (t)

[
e−2x Al + P l(t)

]−1
Blt
l (t). (6.11b)

If (6.11) are solutions of the differential Riccati equationQ2 +Qx = Q−μ2 In , then
they represent the multisoliton solutions of the focusing matrix NLS equation with
extra term (2.2). Using the gauge transformation (2.6), we then get the multisoliton
solutions of the usual focusing matrix NLS equation.
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AWronskian Relations

In this appendix, we give the details of the proofs of the identities (3.8), (3.9), (3.10),
(3.11). First of all, we prove the following

Proposition A.1 For λ ∈ R, let V (x, λ) and W(x, λ) be two 2n × 2n matrix solutions
of the first-order system (3.7). Then

W(x, λ)†(σ2 ⊗ σ 3)V (x, λ)

is independent of x ∈ R. In particular, its asymptotic forms as x → ±∞ coincide.

Proof It is easily verified by using (1.6) that for λ ∈ R we have

(σ2 ⊗ σ 3)

[
0n×n In

Q(x) − λ2 In 0n×n

]
(σ2 ⊗ σ 3) = −

[
0n×n In

Q(x) − λ2 In 0n×n

]†
.

Then

∂

∂x

[
W(x, λ)†(σ2 ⊗ σ 3)V (x, λ)

]
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= W(x, λ)†
[

0n×n In
Q(x) − λ2 In 0n×n

]†
(σ2 ⊗ σ 3)V (x, λ)

+ W(x, λ)†(σ2 ⊗ σ 3)

[
0n×n In

Q(x) − λ2 In 0n×n

]
V (x, λ) = 02n×2n,

as claimed.

Let us first apply Proposition A.1 to V (x, λ) = W(x, λ) = �(x, λ) and divide
the resulting equation by 2λ. For 0 �= λ ∈ R, we get by equating the x → +∞
asymptotics to the x → −∞ asymptotics and dividing the resulting equation by 2λ

[−A†
rσ 3Ar + B†

r σ 3Br B†
r σ 3

σ 3Br σ 3

]
=

[ −σ 3 −σ 3Bl
−B†

l σ 3 A†
l σ 3Al − B†

l σ 3Bl

]
,

where we have not written the λ-dependence. Consequently, for 0 �= λ ∈ R we have
the equalities

Ar (λ)†σ 3Ar (λ) − Br (λ)†σ 3Br (λ) = σ 3, (A.1a)

Al(λ)†σ 3Al(λ) − Bl(λ)†σ 3Bl(λ) = σ 3, (A.1b)

Br (λ)† = −σ 3Bl(λ)σ 3, Bl(λ)† = −σ 3Br (λ)σ 3. (A.1c)

We observe that (A.1) coincide with (3.8).
Let us now apply Proposition A.1 to V (x, λ) = W(x, λ) = Fr ,λ(x, λ) and divide

the resulting equation by 2λ. For 0 �= λ ∈ R, we get by equating the x → +∞
asymptotics to the x → −∞ asymptotics and dividing by 2λ

[
−A†

rσ 3Ar + B†
r σ 3Br −A†

rσ 3B#
r + B†

r σ 3A#
r

A#
r
†
σ 3Br − B#

r
†
σ 3Ar A#

r
†
σ 3A#

r − B#
r
†
σ 3B#

r

]

=
[−σ 3 0n×n

0n×n σ 3

]
,

[−σ 3 0n×n

0n×n σ 3

]
=

[
−A#

l
†
σ 3A#

l + B#
l
†
σ 3B#

l −A#
l
†
σ 3Bl + B#

l
†
σ 3Al

A†
l σ 3B#

l − B†
l σ 3A#

l A†
l σ 3Al − B#

l σ 3Bl

]

,

respectively, where the short-hand notation C#(k) = C(−k) is adopted. Equating the
block diagonal entries implies (A.1a) and (A.1b). Equating the block off-diagonal
entries implies

Ar (λ)†σ 3Br (−λ) = Br (λ)†σ 3Ar (−λ), (A.2a)

Al(λ)†σ 3Bl(−λ) = Bl(λ)†σ 3Al(−λ), (A.2b)

and these equalities coincide with (3.9)
Finally, let us now apply Proposition A.1 to V (x, λ) = Fl(x, λ) and W(x, λ)

= Fr (x, λ) and divide the resulting equation by 2λ. For 0 �= λ ∈ R, we get by
equating the x → +∞ asymptotics to the x → −∞ asymptotics and dividing the
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resulting equation by 2λ

[ −Ar (λ)†σ 3 Br (λ)†σ 3

−Br (−λ)†σ 3 Ar (−λ)†σ 3

]
=

[−σ 3Al(−λ) −σ 3Bl(λ)

σ 3Bl(−λ) σ 3Al(λ)

]
.

As a result, we arrive at the two identities

Ar (λ)† = σ 3Al(−λ)σ 3, Br (λ)† = −σ 3Bl(λ)σ 3. (A.3)

Identities (A.3) coincide with (3.10).
Equation (3.11) can easily be derived from the x-independence of

W(x,−λ∗)†(σ2 ⊗ σ 3)V (x, λ)

for given solutions V (x, λ) and W(x, λ) of (3.7).
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