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ABSTRACT

For abstract-kinetic equations on a half-line the albedo
operator which gives the initial value as a function of the half-
range boundary data, is written in terms of operator-valued
generalizations of Chandrasekhar's H-functions, for which
coupled non-linear equations are derived. Applications are given
to transfer of polarized light, neutron transport and strong
evaporation of liquids.

1. INTRODUCTION
In recent years an intensive study has been made of the
(unique) solvability and functional-analytic aspects of the abstract

boundary value problem

(T£)' (x) = -Af(x) (O<x<=) (1.1)
Q f(0) = £, (1.2)
Heeo [y = 01y ), 1.3)

where T is an injective self-adjoint and A a positive self-
adjoint operator on the Hilbert space H and Q+ is the orthogonal
projection of H onto the maximal positive T-invariant subspau:e.l“4
The solution is usually written in the semigroup form
T 1A
f(x) = e Ef+ (O<x <),
where E is the Larsen-Habetler5 albedo operator. 1In spite of the

many applications of Eqs. (1.1) to (1.3) to one-speed and multi-
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342 VAN DER MEE

group neutron transport,6’7 radiative transfer without polariza-
t:ions-10 and with polarization,s’ll’12 rarefied gas dynamics,13
phonon transportl4 and evaporating liquids,15 the functional-
analytic theory of these equations so far has fallen short of pro-
ducing a general procedure of finding explicit expressions for the
albedo operator. However, once the albedo operator is calculated
Case's method of eigenfunction expansion6’4 can be applied to find
£(x) = £ e 1 A(@,0)4 do()  (0<x<=)
0 a o5 A

>

where p(.) is the spectral measure of T_lA, ¢>Oé ) are (singular or
regular) eigenfunctions of T—lA and A(a,\) are expansion

coefficients, which are given by

Aa,r) = (A) (AEf ,¢a A)H .

The main purpose of this article is to derive, for (non-
self-adjoint) operators A which are compact perturbations of the
identity, an expression for E in terms of operator-valued
generalizations of Chandrasekhar's H—function,8 for which non-
linear integral equations are found. We exploit the equivalence3

of Eqs. (1.1) to (1.3) to the equation

oo

f(x) - Q) H(x-y)Bf (y)dy = w(x) (O<x<=) , (1.4)
-1
where B = I ~ A is compact, w(x) = e_XT f+,
-1

y +’l.‘letT Q+,t>0;
(£) = -1 (1.5)

—TletT Q_’t<09
and Q_ =TI - Q+. In many applications B is an operator of finite

rank. In order to reduce Egqs. (1.1) to (1.3) to a problem, which
is finite~dimensional whenever B has finite rank, we choose a

*
closed subspace B =2 Ran B . If j is the natural imbedding of B

into H and m the orthogonal projection of H onto B, then
Bjm = B (1.6)

and Eq. (1.4) can be reduced to the Wiener-Hopf operator integral

equation
o

g(x) - fO mH(x-y)Big(y)dy = mw(x) (O<x<=), Q.7

where g(x) = mf(x). If the solution g(x) of (1.7) has been com-
puted, then

ALBEDO OPERATORS AND H-EQUATIONS 343

f(x) = wx) + IO H(x-y)Big(y)dy (1.8)

will be the solution of (1.4). Now, using the resolution of the
identity o of the self-adjoint operator T, the "symbol" of Eq.
(1.8) has the form

M2y = I - f e/PrH(e)BidE = T - 2 r L(“l?il 1.9)

This generalization of the dispersion function in neutron trans-
port theory will be the basis on which generalized H-functions
will be constructed.

In the so-called regular case where A is invertible and A_lT
does not have imaginary eigenvalues, Egs. (1.4) and (1.7) may be
solved by Wiener-Hopf factorization.l6 If Eqs. (1.1) to (1.3)
are uniquely solvable, there exists the canonical Wiener-Hopf

factorization
A(Z)_l = Hz(-z)ﬁz(z) », Rez=0, (1.10)

+ -+ . . . .
where the factors HZ and Hr are analytic and invertible in the

closed right half-plane. The unique solution can be written as

@

g(x) = mw(x) + J, v(x,y)mw(y)dy, O<x<e , (1.11)

17,18
while the double Laplace transform of vy(x,y) is given by ’

©

fy dy 1 dz IV s (=) +u(y,2) T = B H,&( ~WH! (v) . (1.12)

Through the relation Ef = £(0) and Egs. (1.8), (l 11) and (1.12)
we express the albedo operator in the functions Hﬂ and H , and
by integrating (1.12) we prove these functions to satlsfy a
coupled system of non-linear integral equations, which generalize
Chandrasekhar's H-equation. For specific transport problems a
similar approach was offered by Burniston et al. 19 (for two-group

20 L. 21
neutron transport) and subsequently by Kelley and Mullikin.
The regular case has applications to neutron transport,

radiative transfer and phonon transport in non-conservative media.
For conservative media and in rarefied gas dynamics the operator
A is not invertible, though T_lA does not have non-zero imaginary
eigenvalues. In these "singulan” cases we employ a modified

Wiener-Hopf method, where the factors are singular at infinity
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but analytic and invertible everywhere else in the closed right
half-plane. Assuming the (unique or non-unique) solvability

of Egqs. (1.1) to (1.3), we choose a corresponding (unique or
non-unique) albedo operator E such that Ef+ = f(0) is the initial
value of a solution for every f+. Putting E, = EQ+, we then

obtain auxiliary representations of ﬂz and Ht of the form

+ —
Hy(-2) = 1 - en(r-z8) E[B) (1.13)
+ -1,

Hr(z) =71 - zn(I—E+)(T—zA) Bi (1.14)
where TE+ = EIT. (Related representations were found before for
the regular case and B = H.22’23’3) The inverses we represent by
the formulas

+ - -

Hy (-2) Lot - e (=D 7B (1.15)
+ — -

H(2)7h = 1 - zn(z-T) a-ehss, (1.16)

where (1.10) is satisfied. Using (1.13) to (1.16) we derive the
previously obtained generalizations of Chandrasekhar's H-equations
and a formula for the albedo operator. We have thus accomplished a
generalization beyond the regular case. Now applications

are given to polarized light transfer, neutron transport and
evaporating liquids. Most well-known expressions for the albedo

)

operator obtained by means of resolvent integration
17,19-21

or Wiener-
Hopf equations could be recovered this way.
Throughout this paper the operator B = I -A is compact and

satisfies the weak regularity condition25

|l+0t) ,

3a>0 : Ran B & RanITiun D(}T (1.17)

which is fulfilled for neutron transport3 with redistribution
function p € L1+s[—1’l]’ radiative transfer3 with phase function

pel [-1,1] and various BGK models in rarefied gas dynamics.

1+e
Integrals of vector- and operator-valued functions are to be

understood as Bochner integrals.26’27

We shall prove the equi-
valence of Wiener-Hopf equation (l.4) and boundary value problem
(1.1) to (1.3) in the Appendix. We shall not investigate the

uniqueness problem for solutions of our generalized H-equations.

ALBEDO OPERATORS AND H-EQUATIONS

2. ALBEDO OPERATOR: REGULAR CASE

Let A be an invertible and B = I - A a compact operator
satisfying (1.17). Suppose that A_lT does not have imaginary
eigenvalues. Then the dispersion function A(z) has a (possibly
non-canonical) Wiener-Hopf factorization.

Theorem 2.1. Assume that Eqs. (1.1) to (1.3) are uniquely
s0lvable for all £, e Q+[D(T)]. 14 o denotes the resclution of
the identity of T and f, e Ran o ([0,b]) fon some ginite b, then
the initial value of the solution Ls given by

LR ot +
Ef+ = f+ + fm fo o O(du)BJHﬁ(-u)Hr(v)ﬂc(dv)f+ (2.1)
I,
and E has an extension zo a bounded operator on Ran Q.
In the isotropic case of one-speed neutron transportl’s’6 one

has

11
H = L,[-1,1], (Th) (W) = wh(y), (Bh)(w) =3¢ fl h(u')du',

* L cyay
where O<c<l. Taking B = Ran B' = span {1}, (vh)(w) = E-fl h(u')du
and o(dp) = dp, Eq. (2.1) reduces to the well-known expression

f+(u) , u0;

(Ef ) (W) = (2.2)
1 b -1
¢ fU v (v-u) H(-u)H(V)f+(v)dv, u<0,

l -
where A(z) = 1 - %-cz fl (z—t)_ldt and A(z) L. H(-z)H(z).

To prove Theorem 2.1 we consider the equivalent Wiener-Hopf
operator integral equation (1.4), reduced to (1.7) by gx) =
mf(x). The unique solution of (1.4) can be written as (1.8),
where g(x) is given by (1.11). For the resolvent kernel y(x,¥)

we derive
17,18,20
Lemma 2.2.

o ey - +
[ dy S dz I M2V (5 (y-2) 4y (3, 2) } = E%%»HZ(—u)Hr(v). (2.3)

Proof. For the factors in the Wiener-Hopf factorization (1.10) one

may find Bochner integrable28 operator functions o and B such that
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+ R S
Hy@) =T+ e t/w a(t)dt,H:(w) I+ e /98 Ctydr, Re w=0,

while the resolvent kernel is given byl6
z
a(y-z) + / oa(y-u)B(u-z)du , 0<z<y<o; (2.4a)
- 0
v(y,2) = v
B(y~z) + fo a(y-u)B(u~z)du , O<y<z<w, (2.4b)
The left-hand side of (2.3) represents the Laplace transform of the

solution of the convolution equation
o]

8,0 = 7 mHxy)Big, (n)dy = &/

I, O<x<w, (2.5)
Extending the equation to the real line and taking Laplace transforms
one obtains

o

0
A y/u y/u b -
(u)/0 e’ g (y)dy + J e’'7g (y)dy = {75 I, Re u = 0.

—~o0

Substituting the factorization (1.10) one gets the Riemann-Hilbert
problem

©

+. -1 / + 0
Hﬂ(_“) fo ey ug\)(y)dy+Hr(u) { ey/ugv(y)dy = ﬂ%% H;(u),Reu =0,

EY

whose unique solution

Y

s eY/

H -
o g,(y)dy = .

Y + +

H, (-~
—v 2* u)Hr(\))
coincides with the right-hand side of (2.3).

Using Ef+ = £(0) and Eqs. (1.8) and (1.11) we find

S -1 © -1
_ . -yT -zT
Ef+ =f + fo H(-y)Bj[me f+ + fo Y(y,z)me f+dz]dy.
(2.6)
- T‘l
We apply the Spectral Theorem to rewrite H(-y), e Y f+ and
-1
e 2T f+, and change the order of integration. We obtain

0 «© _ =) co _
L fm 7 —% o(d“)Bj[fodeodZQY/ue Z/V{d(y-2)+Y(Y,2)}]wc(dv)f+,
vy

where f+ € Ran o([o,b]) for finite b. With the help of (2.3) we
get (2.1).
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Let us prove that E is bounded on Ran Q+. Let Lw(H)z be the
Banach space of strongly measurable functions f:(0,«) - H, which
are bounded with respect to the norm HfH°° = ess sup {\If(x)‘lH |
xe(0,=)}. Then

©

(LE) (x) = fo H(x-y)BE(y)dy (0<x<w)

is a bounded operator on Lm(H); , I - L is invertible and

-1
Ef+ = [(I‘L) wf+](0) s f+ € Q+[D(T)] s

-1
where we (x)=e-XT f+. Hence, E is bounded on Ran Q+ and the proof
+
of Theorem 2.1 is complete.
. + + ,
Theorem 2.3. The functions H, and H_ satisdy the coupled system

o4 equations

o

T-2/ (z+t) % H:(t)ﬂo(dt)Bj ; (2.7a)

+,. 41
HZ(Z)

T-2/ (z+6) "L w0 (-de)BiH, (1) (2.7b)

()7

Proof. Premultiply (2.3) (with u,v replaced by ~t,z) by
by t-lﬂC(—dt)Bj and integrate over (0,«). Then

© o oo

z ot + _ ®  -x/t ~ylz, 1 —dt)BA
fo Py vo(—dt)BjHZ(t)Hr(z) = fodxfodye e fo . mo(-dt)Bj x

x{ 8 (x=y )y (x,¥) }.
Performing the t-integration at the right one finds

oo o £

I wo(-dt)BjHZ(t)Ht(z) -, ﬂH(—x)Bj[fo{d(x—y)+y(x,y)}e—y/zdy]dx_

In terms of the solution of Eq. (2.5) (with v replaced by z) we get

= )

+ .
£ i oA B (O (2) = /| TH(-0Blg, (0dx = g (0L,

where (cf. (2.4b))
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8,0 = I X 2 5(x)+v(0,%) Ydx = T + I e * 20 (Lxyax = il (2).

Thus we have established (2.7b).
Postmultiply (2.3) (with u,v replaced by -z,t) by t_lwo(dt)Bj,
integrate over (0,») and perform the t-integration. We find

@

I R OLMOLEICI I fo[fo{a(x—y)W(x,y)}e‘x/zdx]nu(y)gj_

The expression between square brackets is the solution of the
equation

o

hz(y)‘fohz(x)"H<X—y)Bjdx - e-y/zI’

whence

® o

Z + + .
[ i Hy(@E[()70(de)B) = [ h (y)nH(y)Bidy = b (0)-T.

However, (2.4a) implies
h (0) = foe_xlz{é(X)ﬂ(x,O)}dx =1+ foe_xlza(X)dx = H;:(Z),

which proves (2.6a).

The next theorem provides sufficient conditions for the unique
solvability of Eqs. (1.1) to (1.3). Part (ii) is known for the case
of multigroup neutron transport.7

Theorem 2.4 The boundary value problem (1.1) Zo (1.3) and the
equivalent Wienen-Hopg operator integral equation (1l.4) are uniquely
s0lvable in the following cases:

(1) A 45 a strnictly positive self-adjoint operator;

(i1) B has noam Less than unity;

(iii) A 48 {nvertible and the noam of A1 i Less than unity.
In these cases the H-equations (2.7a) and (2.7b) have solutions.

3,23 for bounded T.

Proof. Part (i) was proved by van der Mee
If T is unbounded, we have to consult the work of Beals2 to find
the unique solvability of (a suitable version of) Egs. (1.1) to
(1.3) on the completion HT of D(T) with respect to the inner

product
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(k) = (|T|h,k).

From this we derive that Eqs. (1.1) to (1.3) (as stated here)
are uniquely solvable for a dense subspace of f+ € Q+[D(T)] in
Q+[HT]’ from which the result is immediate.

If Part (ii) is satisfied, then, because 7 and j have unit

norm,
1a¢2)-1]] < |lz¢z=» 7| ||8]] < [IB]} <1, Re z=o.

Invoking a factorization result for Hilbert space operator functions
2 . .

close to the identity, ? we get the existence of a canonical

factorization of A(z), from which Part (ii) follows. Part (iii) is

proved analogously using
ez rap "1l ] < [lree-2) M| [la7h-1]] < 1, Re z = 0.

The statement about the H-functions is immediate from Theorem 2.3.

3. SPECTRAL ANALYSIS

In the next section we shall extend the results of the pre-
vious section to non-invertible A. The method of proof will
basically consist of replacing A by a finite-dimensional regular
perturbation AB’ for which Egqs. (1.1) to (1.3) (with AB instead of
A) are uniquely solvable. This reduction will require a more
thorough knowledge of the spectral properties of T_lA and some
additional properties of the albedo operators. This knowledge will
be provided here.

Formula (2.1) suggests defining the operator

£

gr o=t o+ 5 2 oawBIE (mE (WTa(dv)E (3.1)
+ TR T e v I \THI + :
wy )

On its domain U {Ran c([O,b])|b finite} one has

+ 0 *®
T . o
Ef -E £ = [ fm c(du)BJHQ(-u)ﬂ‘fDJHr(v)wc(dv)} £,
()
-
so that E-E extends to a bounded (and, because B is compact, even

a compact) operator on Ran Q+. Thus E and E+ both extend to
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bounded operators on Ran Q+. Further, E+ = EQ+ and EI = E+Q+ are

bounded projections on H with kernmel Ran Q_, which satisfy the

intertwining property

it

E [D(T)] = D(T), TE £ E:[Tf for £eD(T). (3.2)

Because

]

-1 d _ -1
B = LD g £100) = Quf + S r(o,ye ¥ %I
where TI'(0,y) is compact and Bochner integrable,28 the operator
E+—Q+ is compact. So both E+ and Ei are compact perturbations
of Q+.

Lemma 3.1. The range of E, (nesp. Ei) L8 Anvariant under
-1 - . L, - -
A TT (resp. TA l), while the restriction of A lT(/'w/.»p. TA l) zo
the nange of E, (resp. EI) has its spectrum in the closed night
hal§-plane.

Proof. We consider the operator on Ran E+ defined by
U+(x)Ef+ = f(x) , Ogx<e ,

where f is the unique bounded solution of Eq. (1.4) with right-
hand side wg . Then U+(x) is well-defined, linear, bounded and
depends on xe[0,») continuously in the strong operator topology.
The latter follows, because the solution f of Eq. (1.4) is bounded
and continuous on [0,») (see Appendix). Furthermore, if
f+sQ+[D(T)] and therefore Ef+eRan P+ N D(T), then f(x)eD(T) (0gx<»)
and (1.1) holds true. It is straightforward to derive that U4(:)

is a bounded strongly continuous semigroup on Ran E+ with infini-
tesimal generator K+, where

-1 -1
D(K,) = Ran E_ N D(T "A) , K.g=-T “Ag.

+g
Hence, Ran E+ is A_lT—invariant and the restriction of A-lT to
Ran E+ has its spectrum in the right half-plane. Because (3.2)
holds true, a similar statement immediately follows for EI.

The existence and uniqueness of the solution of Egs. (1.1)

ALBEDO OPERATORS AND H-EQUATIONS

to (1.3) does not play a significant role in the above proof.
If one replaces Ran E+ by the closure of the subspace of the initial
values £(0) where f+ is ranging over Q+[D(T)], then this subspace
is A-1T~invariant and the above semigroup can be constructed. If
we then replace Ran EI by the closure of the subspice of vectors
Tf(0), where f+ ranges over Q+[D(T)], we get a TA ~-invariant
subspace.

Using Lemma 3.1 the unique solution of Eqs. (1.1) to (1.3)

s 14 .
can be written in the familiar semigroup form

-1
f(x) = e_XT AEf+ , 0<x<w , (3.4)

which converges to zero as x > ®. Another familiar formula is

1
obtained by writing E as the inverse of the Hangelbroek™ operator
= 3.3
v Q+P+ +QP_ (3.3)

where P+ and P_ are complementary projections commuting with A_lT
and Ran P+ = Ran E+. Inlorder to do this, we have to prove that
Ran E+ is the maximal A ~T-invariant subspace of H such that the
restriction of A_lT to it has its spectrum in the closed right

half-plane. For strictly positive A this is a well-known factl—4.

Theorem 3.2. There exists a decomposition
Y, #Y =H

of H into closed A~ r—invaniant subspaces Y L and Y_ such that the
nestriction o4 A7l 2o Y, has the property

o]y ) = (teo(a™T)/Re t 2 0} .
+
14 Eqs. (1.1) to (1.3) are uniquely s0fvable, then Y, = Ran E,.
Proof. The full-line convolution equation

£(x) - / H(x-y)Bf(y)dy = w(x) (~oo<x<™) (3.5)

-0

is uniquely solvable. In fact, there exists a Bochner integrable
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operator function £(-) with compact operators as values such that

o

£(x) = wx) +J Lx-y)u(y)dy (-o<x<e) ,

while
=]

I+ et/xﬂ(t)dt = [I—f e

—co

t/X 30

H(t)Bd;}—l, Re A = 0.
-—C0

If w is bounded measurable, so will f, and w-f will be contin-
uous on R.

Secondly, using the Appendix one sees that for the right-
hand sides

—xT_l
+ e Q+ , x>0

w(x)= -1 (3.6)
- qn,x<0

the bounded solutions of the Wiener-Hopf equation (3.5) satisfy

the equations
(Tf) ' (x) = -Af(x) (O#xeR) (3.7a)
£0h - £007) = w0 - w(©) = h (3.7b)

This problem is, in fact, uniquely solvable. Applying Laplace trans-
formation to (3.5) we find for the solution
-0

e -0

r et e(eyde = [I—f et/*H(t)Bdc]'l 5 e PMuctyae =

()L r-ar-m T = A tTo-aTIm T,

where Re A = 0 and Eq. (1.9) is used. Formally we may write
-1
-xT A
e ¥ P+h, x>0

-1
- e-XT AP_h, x < 0,

+

f(x) = (3.8)

for a suitable pair of complementary projections P, commuting with

ALBEDO OPERATORS AND H-EQUATIONS
A—lT. Let us justify Eq. (3.8). Notice that f has a jump discon~
tinuity at x = 0, and define
+ -
P.h = +£(07) , Ph=-£(0) . (3.9a)
We also define, for z > O,
v, (2)h = £(2) , V_(2)h = ~£(-2) . (3.9b)

Then V+(z) is bounded on (0,x) and strongly continuous, while
V+(O+)_= P, in the strong operator topology. Surely, P _ are
b;unded pr;jections on H which add up to the identity, 6+(z) leaves
invariant the range of P_, while the restriction of V+(z; to Ran P
induces a bounded Co—semggroup on Ran Pt’ whose infingtesimal gen—-
erator K _ is given by

-1

D(K,) =(MnPQnD@4A), K,g =5T AP, .

Hence, Ran P_ is AulT—invariant and the boundedness of the semi-
group implies that the restriction of AT to Ran P, has its
spectrum in the closed right/left half-plane. The Entersection
M of Ran P+ and Ran P_ is a closed A_lT—invariant subspace of H
such that the restriction of A_lT to M has its spectrum on the
imaginary line. As the resolvent set of A_lT does not have
bounded connected components, we have c(A_lT]M) = {0}. Thus if
M # {0}, then A = 0 is an isolated point of this spectrum and
therefore an eigenvalue, which leads to a contradiction. Hence,
M = {0} and P, are complementary projections. We have justified
Eq. (3.8).

Let Lm(H)Z denote the Banach space of strongly measurable

functions f:(a,b) + H, which are bounded with respect to the norm
l]f|im = ess sup{![f(x)llH!a<x<b} .

Introduce the operators [, L+ and L_ on Lw(HZZ, Lw(H): and Lm(ng,
respectively, defined by

353
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© *oo

(LEY(x) = J H(x-y)BEf(y)dy, (L £)(x) = % I HGe-y)BE(y)dy.
= 0

©

Then (I—L+)Q(I—L_) can be identified in a natural way with an
0
operator on Lm(H)—m and the difference between this operator and

the invertible operator I - L is given by

- 9 H(x-y)BE(y)dy, x >0

Ke) (x) = w
- H(x-y)Bf(y)dy, x <0,

which is a compact operator. Thus I - L+ are Fredholm operators
whose indices (i.e., nullity minus deficiency index) add up to
zero. In particular, if Eqs. (1.1) to (1.3) are uniquely solvable,
then I - L+ is invertible and I - L_ is Fredholm of index O.

Let us consider the Wiener-Hopf equation (1.4) on (0,») and

its counterpart on (-»,0), written as

® 0
(I—L+)f =@ on Lw(H)O , (I-L)f = w on L_(H)__, respectively,

where w is given by (3.6). Denote by X+(resp. X_) the (closed)
linear subspace of initial values f(0+)(resp. £(07)) of solutions,
where h ranges over H. For a uniquely solvable right half-space
problem one has X+ = Ran E+. One easily sees that X <= Y _, but

we intend to prove X, =Y_. Certainly, by the equivalence theorems,

we have
+ 00
{£¢07) |feL (@) and (I-L)f = 0} = X, N Ran Q_ = D(T)
+ ® —XT-l
{£(0) [fe L(H)y ; TheD(D:[(I-LDF1(x) = e Qh, x>0} =
= [X+ + Ran Q_] 0 D(T),
and similar identities for the problem on Lw(H)gm. Because the
Fredholm indices of the Fredholm operators I - L+ and I - L add
up to zero, one has
dim[X+ N Ran Q_]- codim[X+ + Ran Q_] =

(3.10)
= - dim{X_ N Ran Q+]+ codim[X_ + Ran Q+].
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However, X, € Y implies
+

dim[X, 0 Ran Q¢] < dim[Y,_ 0 Ran Q¢] H (3.11)
codim[X+ + Ran Q$] > codim[Y_ + Ran Qi]' (3.12)
We now define V by (3.3) and compute

Ker V

[Y+ 1 Ran Q_]Q[Y_ Nl Ran Q+]

Ran V

[Y+ + Ran Q_JN[Y_ + Ran Q+].

1f V would be a compact perturbation of the identity and therefore
Fredholm of index O, we would have dim Ker V = codim Ran V and
thus Eq. (3.10) with X_ replaced by Y,. The latter equation
together with (3.10) t; (3.12) would Emply that equality signs hold
in (3.11) and (3.12), and hence that

X, i Ran Q; = Y, N Ran Qs X, + Ran Q. =Y, + Ran Q_.
These identities together with X & Y, have as a comsequence
X, =Y., and the proof of the th;orem_would be complete.

Because
I-Vs= Q_P+ + Q+P_ = - (Q+‘Q_)(P+—Q+) s
it suffices to prove that P+-Q+ is compact. Let feLm(H)c_ooo be

the unique solution of (3.5), where w is given by (3.6). Using

the resolvent kernel £(.) one finds
o —yT_l

(P+-Q+)h = fO L(-y)e Qhdy ,

and the compactness of P+ - Q+ is clear from the compactness of
- T-l
£(-y) and the Bochner integrability of L(-y)e b Q, on (0,).

The construction and reasoning cf the above proof were applied
before to one-speed nmeutron transport in Lp—spaces.3Z We merely
have constructed semigroups from solutions, as is usual in some
areas. Theorem 3.2 and Lemma 3.1 allow us to extend the Hangelbroekl
originated semigroup approach to various kimetic models beyond
positive (or even self-adjoint)A. The simultaneous unique sol-

vability of Egs. (1.1) to (1.3) and the analogous left half-space
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problem is easily seen to be equivalent to the invertibility of
the operator V in (3.3), and by putting E = V-1 we then define

the albedo operator which solves both half-space problems.

4. GENERALIZED H —EQUATIONS: SINGULAR CASE

In this section we assume that B = I - A is a compact opera-
tor satisfying (1.17) and that TulA does not have non-zero
imaginary eigenvalues. The invertibility assumption on A is
dropped. Though Eqs. (1.4) and (1.7) cannot be solved by Wiener-
Hopf factorization, at least not in the usual sense,16 we shall
nevertheless obtain the results of the previous section for this
"singular" case. We shall rely on the decompositions and semi-
group properties of Section 3.

Theorem 4.1. let E,_ and Ei be profections on H with the
following properties:

1) ED(DI=DD), while TE, = EI T on D(T);

-I- .

(ii) A[Ran E+];Ran E+ H

(iii) Ker E, and Ker Ei are codncdding T-invariant subspaces.
Then we have the factorization

1) = Hy-aEl @) (4.1)
where

H;(—z) =1- zn(T-zA)‘lEIBj ; (4.2)

H:(z) =1~ zn(I—E+)(T-zA)_lBj . (4.3)

The Anverses of these factorns are given by
Hy(-2)7" = T - 2k, (z-1) 785 5 (4.4)
EMOREE zr(z-1) ' (1-ED)Bj . (4.5)

If T is bounded and A (and thus mAj) is invertible, the factors
(4.2) to (4.5) can be found using a factorization principle for

transfer functions.22 We then apply it for

-1
A(z) = (mAj) + nT(T-z) "Bj ,
where TAj = DlDZ with D1 =1 - n(I—EI)Bj and D2 =1 - nE Bj, and
where E, is the "supporting" projection. For strictly positive A
+ ® 23 ‘
22,23,3

and B = H this was done before, but the application of the

ALBEDO OPERATORS AND H-EQUATIONS 357

principle given there (for D1 = 1 and D2 = 7Aj) leads to different
factors not suitable to our purpose. As we intend a generalization
beyond the scope of Ref. 22, we prove (4.1) directly.

Proof of Theorem 4.1. Let us multiply the right-hand sides of

(4.2) and (4.4). We get

- - -1,
[1-27E (z-T) 14 1-27 (T-2A) lEIBj] =1 - znE (z=T)Bj -

-1 4+ . -1 _ —lETB.
-zn(T-zA) "E Bj + znE (2z-T) {(z=T) + (T-zA)}(T-zA) B

Using that

-1+

-1t -1t = E (=T}
E, (T-zA) E_ = (T-zA) "E_ , E (2-T) "E_=E _(z-T) ~ ,

on simplifying the above expression one obtains
- -1t
[I—an+(z-T) lBj][I-ZTr(T-zA) lE+BJ] =1, (4.6)
Let us multiply the right-hand sides of (4.3) and (4.5). As

a result we find

[I—zn(I—E+)(T—zA)_lBj][I—Zﬂ(z—T)_l(I-EI)Bj] =

I - 2n(z-1) N(I-ED)B - 2m(I-E,) (T-28) "B +
+ zw(I-E+)(T—zA)'l{(z-T) + (T—zA)}(Z—T)_l(I-EI)Bj .
Now we use the identities
(I—E+)(T—2A)_1(I—EI) = (I—E+)(T-zA)-1,
(1-£) (e-DHa-ED = -» 7)),
and derive
[I—zw(I—E+)(T—zA)_lBj][I—zv(z—T)—l(I—Ei)Bj] = I. (4.7)
Let us postmultiply the right-hand side of (4.5) by the one
of (4.4). We get
[I—zn(z—T)-l(I—Ei)Bj][I-z1TE+(z—T)_lBj] = I-27E, (2D 'Bj -
- zr(z-D T (1-EDBS + 21 (z=1) " (1-E)) (1-0)E, 2(2-1) B3 .
Now note that
(1-ED (-8)E, = (I-ED{I-(I-E,) - (I-EAE, = (I-ED)-(1-E).
Further, condition (i) implies 4.8)

- - -1,
z(z—T)—l{(I—E+)—(I—Ei)}Z(Z—T) 1. (I-E)z(2-T) Lz (z-m) (I-E).
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Using these two identities one simplifies the above product con-

siderably and obtains
-1 Fog s =1, =1,
[I-z7(2-T) (I—E+)BJ][I—an+(z-T) Bj] = I-zm(z-T) ~Bj=A(z).
(4.9)

The latter equality is immediate from (1.9).

The factorizations (4.6) to (4.9) involve factors that are
compact perturbations of the identity. Thus the right-hand sides
of (4.2) and (4.4) as well as those of (4.3) and (4.5) are
inverses of each other, and Eq. (4.1) is clear.

If A is invertible and Eqs. (1.1) to (1.3) are uniquely solva-
+

+
of the previous section and in this case the functions in (4.2)

ble, then in Theorem 4.1 we could use the operators E+ and E

and (4.3) coincide with the functions Hz’and H: of Section 2, as
we shall see later.

If T is bounded, then the operators
Py = (—Zwi)_lfr(A—cT)_lec , Pg = (~2ﬂi)_lfPT(A—;T)_ldc s
where T is a small positively oriented circle which separates X = 0

from the non-zero part of the (identical) spectra of T-lA and AT ~,

are bounded projections3 onto the finite-dimensional subspaces

= ~-1,\n + o -1n

ZO a1 Rer(T “A) , ZO =~ Ker (AT )" , (4.10)
where Z1 = Ker PO and ZI = Ker Pg are invariant under T—lA and
AT_l, respectively. Furthermore,

T[z,] = z' , Alz.]e z , T(Z.] = Alz.] = 2] ; (4.11)

0 (VI o'~ 70 ? 1 1 1’ :
- * t
z0 @ Z1 =H, Z0 ® Zl =H . (4.12)

If T is unbounded, however, we assume that the subspaces in (4.10)
O'; D(IT]2+a) and Egs. (4.11) and
(4.12) are fulfilled. If A is positive self-adjoint, conditions
33

have a finite dimension, that Z

of this kind were previously known.
Lemma 4.2. Assume that to everny f+eQ+[D(T)] thenre exists a

unique solution of Eqs. (1.1) to (1.3). Then there exist bounded

profections E, and Ei with kernel Ran Q_ such that £(0) = Ef,

48 the initial value of the solutions and conditions (i) to (iii)

04 Theorem 4.1 are fulgilled.
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Proof. On D(T) we define the operator E_by E+h = £(0), where f is

the unique solution of Eqs. (1.1) to (1.3) with initial value

f+ = Q+h. Let us choose a subspace N such that

N & {z0 n E+[D(T)]} =2z (4.13)

0 *
Choose a "matrix" 8 on Z, without imaginary eigenvalues such that
B is reduced by the decomposition (4.13), U(BlN) E;{X[Re A<0} and
o(B[{ZyN E [D(T)]1}) S{A[Re 2>0}. Put

= gt -
Ag = T8 Py + A(I-P).

Then A, is invertible, the operator I-A_ satisfies (1.17), the

B B8
operator
At =g (rla 7L
B8 Z
does not have imaginary eigenvalues and the function
~xT 1A
g(x)=e PoE, £, + (I-PE(x)  (0sx<=)

is a solution of the "regular" boundary value problem
(Tg)"(x) = ~Age(x)  (0sx<w) (4.14)

Qe =1, Hg(x)HH = 0(1) (x>) , (4.15)

to which the theory of Section 3 applies.34 The roles of Y+ and
Y_are now played by Ran E+ and an extension of N, respectively,
so that Egqs. (4.14) and (4.15) are uniquely solvable with E+ as
the albedo operator which maps the boundary data f+ into the
initial value g(0). Thus E, is a bounded projection on H with

kernel Ran Q_, whose range is invariant under A—lT and T_lA .

As obviously Zo N Ran E+j§ Ker A (for otherwisesg Tight be Sn—
bounded as x + «), (3.12) implies that Ran E+ is T+ A-~invariant.
Moreover, there also exists a bounded projection Ei on H with
kernel Ran Q_, such that Ran E+ﬁE D(T) and TE+ = EIT on D(T).
Hence, the conditions of Theorem 4.1 are fulfilled.

The unique solvability of problem (1.1) to (1.3) really needs
not be assumed. It suffices to assume that to every f+eQ+[D(T)]

there exists at least one solution which is representable as
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£(0) = Ef for some linear operator E on D(T). This applies to

positive self—ad301nt A.A’33

The remark we may also make as to
the next two results.

Theorem 4.3. Assume that to every £ eQ, [D(T)] there exists
a unique sofution of Eqs. (1.1) %o (1 3), and put Eh = £(0) with

Qh=f,. Then the functions Hﬂ(z) L and H (z) in (4.4) and (4.5)

are continuous and invertible on the closed n&ght hal §-plane and analytic

on the open rnight half-plane, while HZ(z}_l and H'i:(z)_1 are
bounded for z + » (Re z20). Fuithen,

lim z_1HZ(z) = —7T lP:;E_'_B] s lim z—1H+(z) =
z»~,Re z20 z+o,Re 220 r

Lt (4.16)
= -n(I—E+)T' PBi,

where the pnogectLon of H onto Z akong z A5 denoted by P The
functions HZ and H satisgy the genenaﬂ¢zat¢oné 2.7) of
Chandrasekhar' s H—equaixonb.

Proof. Note that (I-E+)(T-ZA)-1 and (z-T) (I -E ) extend to ana-
lytic functions on the right half-plane, while (T-zA) lET and
E_'_(z-”l.“)_1 extend analytically to the left half-plane. The
analyticity of the factors (4.2) to (4.5) on the respective
half-planes then is immediate. Their continuity one only has

to prove for z + 0 and (if possible) for z + «. Since

z(z-T) Q + 0 in the strong operator topology if z > 0 from

the left/rlght half-plane, we have 23,22,3

||2(z-D) " k|| 0 (2 >0, Re 2 5 0)

+ . -
for all compact operators K. Thus HZ(O ) L = I in the norm,

whence HI(O )—H (0 )=I in the norm. In a similar way, using

z(2-T) Q S strongly if z»o from the left/right-half plane,

+, -1 . + -1 _ o .
HL(W) = I-nE Bj , Hr(w) = I-m(1 E+)Bj. (4.17)

With the help of (4.11) and (4.12) and the projection Pg of H

onto Zg along ZI, we easily prove that

Lin | |r-aa)Na-p eI -
z+»,Re 250
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1im ||W(I—E+)(T—zA)-l(I-Pg)Bj|] =
z+o,Re z20

However, as T-~zA maps ZO onto Zg, one has

(T-28) "Mh = h , heKer A.

Since Ran E_ n Z0 < Ker A and TE, = EIT on D(T), one eventually
obtains (4.16).
Put

o

b (=) = HL ™+ 2f (a4t) Hro(-ar)BIHG (6).

This function is well-defined and continuous on the closed right
half-plane, is analytic on the open right half-plane and satisfies
§£(O+) = I. The limit of ¢l(z) as z »+ © in the closed right half-~
plane exists (cf. (4.16)). Using (1.9) and (4.1) one writes

6,(2) = By (=2)-z [ (2=t) lno(de)BiHy (-2) -

2 S (z+t)-lw0(—dt)BjHZ(—z)+z fo(z+t)_lﬂ0(—dt)BjHZ(t) -

- Hy(-2)+z S IEiQElﬁl-H (-z)+z f ﬂc( dt)Bj E££EE;;9£:? ,
which is continuous on the closed and analytic on the open left
half-plane. This expression is 0(z) as z -+ « in the left half-
plane. Using Liouville's theorem and ¢£(0+) = I, one finds
§E(z) = I, which implies (2.7b). Equation (2.7a) is proved
analogously with the aid of the auxiliary function

@

o (2) = HZ(z)-l+-zfo (z+6) "B (£)mo (ae) B3

Theorem 4.4. Assume that to every f+eQ+[D(T)] Zhere exAists
a unique sclution of Eqs. (1.1) to (1.3), and put Eh = £(0)
with Q. h f+. Then the albedo operator E is given by (2.1),
whenre H@ and H are the functions in (4.2) and (4.3).
Proof. Using (4.3) we compute, for ue(-=,0),

©

S -lL-H+(v)nc(dv) = nT(T—u)-lQ -/

v -1
o oo B N v w(I—E+)(T—vA) (vB)o(dv).
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We now substitute the identity

VB = (v-T) + (T-vA), (4.18)

and, using (v-T)o(dv) = 0, we obtain

L

v o+ -1 - -
o Top B IO = T T (1-E)T(T-0 g, = wE, (1w T,

The integral term in (2.1) now reads (cf. (4.2)):

1 o(@wBiET (-y) E.T(T- y Lo, = 1 etawsE. () lo -
Jeo W Bj y W E, u = L, 9(dwBE, B Q.

o

0 -1_+ -1
- J, o(dw) (uB) (T-nA) E+BE+T(T-u) Q .

Again we involve (4.18) and get for the integral term in (2.1)
0

L, o(@w (1-E)BE,T(T-w) T, . (4.19)

We now employ the identity

+ B + + B +
(1-E)BE, = (I-E){I-(I-E) H(I-E)AE, = E - E_ ,

together with (4.8), to simplify (4.19). As a result we get
0 o

-

w) )

which yields (2.1).

T O(dWBIH, (W] (Wro(dv) = QE,

We have generalized the Wiener-Hopf factorization, the
H-equations and the expression for the albedo operators to the
case when A does not have an inverse. If Egqs. (1.1) to (1.3)
are non-uniquely solvable, several of these factorizations exist
and the behaviour of ﬁZ(z) and H:(z) for z + » must be used to
single out the factors appropriate to the problem. In this
article we shall not elaborate upon the uniqueness problem for
solutions of the generalized H-equations. We remark that gen-
eralized H-equations and a formula for E in terms of H-equations
have been found by many authors. (The literature is too enormous

to cite here). A more or less abstract procedure, with T still
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a multiplication operator symmetric with respect to A = 0, was

given by Kelley.20

5. SOME APPLICATIONS
(a) Transfer of polarized Light in a semi-infinite homogeneous
planetary atmosphere is described by the equationa’12

A D r(,0,0) = & 71 72Tz, e-¢D)I0rut,00)d0 du
s -1 (5.1)

where I(T,u,¢) is the Stokes (four) vector describing the intensity
and state of polarization of a beam with directional parameters
ue[-1,1] and ¢€[0,2m] at optical depth te[0,®). Here Z(u,u',9-¢")
is the phase matrix and O<a<l the albedo of single scattering.
Throughout we use the conventions of Ref. 12.

On applying Fourier decomposition and symmetry properties35’also12
the full equation (5.1) can be aecomposed into twice the set of com~

ponent equations

]
dX- (t,u) . . .
u— + 0w =t a st Wawnxdunde, (5.2)
dt ~ 2 -1 ~ ~
where ue[-~1,1], 1e[0,*) and j = 0,1,2,... . Here the kernel is given
by
. L . P
W(wu) = I QWRRE) , (5.3)
£=j3

where for certain special functions and expansion coefficients

-

[ ] 7 i
Pl(w) 0 0 0 By ¥p 0 O
0 Rg(u) —Tg(u) 0 . Yo % 0 0
J J_oE=3)!
() = . , ,Ez- z~;-
~L 3 3 (L+3)! -
0 —Tz(u) Rz(u) 0 0 0 C[ EZ
]
o o0 0 P)(u) [0 0 ¢ 5,

The physical requirement that the degree of polarization of a beam
does not exceed unity, necessitates imposing the condition that

Z(u,u',$-¢') maps real vectors I = (I,Q,U,V) satisfying
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=V Q2+U2+V2 =0

into vectors of the same type.

Under the boundary conditions
] 3 t gl 2
X (0,0) = ¥ (W) (0=usl), S g (o) | [7du = 0(1) (1) (5.4)
Equation (5.2) is uniquely solvable if the summation in (5.3) is
finite,36 which we shall henceforth assume. Let H be the Hilbert

space of measurable Lz—functions ;:[-1,1]-—-64, and define T, B, A

and Q+ by the equations

(T1) (u)

1 .
wI(w, BD@ =Fa f ¥ u)lua,

I(w), u>0
(AD) (w)

]

1A \ {
IW-=a f ¥ (u,uNI")du', (QI)(w)=
2 -1 +L 0 s u<0.

Then Eqs. (5.2) and (5.4) are an example of problem (1.1) to (1.3),
which is uniquely solvable and for which T—lA does not have non-
zero imaginary elgenvalues?’6 Therefore, there is an albedo operator
E which maps XJ 1nto XJ(O) uniquely.

Let B = span {et klﬂ— 3,341,...503 k=1,2,3, 4}, where L>max(j,2)

and
i 2 (pd i 2 i o_ 5
e[,,l = (PI’,O,O,O), eI_,Z (OsRﬁs TK’O)
b _pd 3 i L |
e£’3 = (0, TZ’RZ’O)’ e£’4 (0,0,0,P!‘).

* 1
Then B2 Ran B , and in the usual inner product of H we have,37’a sol2

; | h| _ . 2 .
(i) (eg,k’er,i)H 0 if either £ # r or k # 1 ;
2 (L+3)! either £ » j and k = 1,4,
i 2l V2T DT it
(ll)lleﬂ,kl‘ﬁ_ or £ > max(j,2) and k = 2,3;
0 otherwise.

Thus B has dimension &4({L-j) + 2 min(j,2). Further, the imbedding pre-
viously devoted by j is the natural imbedding of B into H, while w

is given by
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1= 15 21 o)t (1, )y e
Rl 7 @ el& k'H
k=1,4
+T§ 204 (=Dt o 3y
pemax(j,2) 2 (G 2,k 8%,k
k=2,3

while
(2£+1)Bed = aTJ-—(“')’ ; (831 el
kT TN 2 Smk Z,m -

With respect to the ordered ba51s {ez k}(ﬂ K)=(3,1)seees(Fsb)seres
(L,1),...5(L,4) }(with ez 2 and ez 3 left out for j < £ < max (j,2))

the dispersion matrix has the form

) 1 2 (L)t (peD)!
(] g1y, e,1) = Serbis © 7 32 2mT (BT ()T

4 . . .
J J ol
E 1) leg, (070, ()

utk
x dt .
fl z-t £

This square matrix function of order 4(L-j) + 2 min(j,2) has Wiener-

Hopf factorization
/\(Z)—'1 = Hz(-Z)H:(Z), Re z = 0,

where H[ and H are continuous and invertible on the closed right
half- plane and analytlc in the open right half-plane, HZ<O ) =
Hr(C ) = 1 and Hz(w) = 0(w) and Hr(w) = 0@w)(w+>, Re w > 0). The

H-equations are now given by

+ -1 ~ 1
o@D T g i, 1) = Seefus ~ 7 22 %

xfl du' 5 , 2s+1 (r+j)! (s-j)!
T —i)1 Y1
0 u'+z (s,n) m 2r+1 (r-3)! (s+i)!
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+. ] J ' j '
* DT 010, o,m) Brlmaler e ey @)
+, -1 1
(=) "1 g vy, (r,i) = SerSps ~ 7 22

xf" du' I 2841 (s+i)! (L=
=1 z=u' (s,n) m 2s¥1 (s-j)! (L+j)!

X

+o_ 3 k| 1y .ad '
X [EZ(-u )](s,n),(r,i)[gs]nwgeﬂ,k(u )'es,m(u >

Finally, the albedo operator E is given by (Ezi)(u) = gi(u) for

u > 0, while for u < 0

j 1y -1 4+
EHw =L2as 2 5 5 ¢ pZtl (D! !
+ 2 o u TUp k) (r, 1) (s,n) m 2841 (s+3)! (L=-i)!

iy +o j
R T S SUPN LM CD N P ()
{eg’n(u'){gi (u') }du'.

For j = O the above expressions decouple into pairs of expressions

involving matrices of order 2L.

(b) Newtrhon transport with angularly dependent cross—sections38

may be described by

A eow) + TEGL) = 1T (WYEGut )
Uax s U u s U 72, SU s U M s

where ue[-1,1] and xe[0,») are the angular and position variable,
respectively. This equation is also encountered in phonon transport
in crystalline solids.14 We assume that % and Zs are measurable

1
and satisfy I > ZS = € > 0. Write g = (Zzs)éf, then

1
/() BB, g (aw)= v () £ov i )gl,u)dy'
9x 2 -1

%
where v = (ZS/Z) . We analyze this equation in H = LZ[—l,l]

and define

ALBEDO OPERATORS AND H-EQUATIONS

1
(TGO = uEG) BG4 B G) = F V)L v )dw!

1 1 h(yw) , uzo0
(Ah) (W=h (W= 5 v/ vuHh@)du" , (Qh) (1)=
-1 - <
0 , s 0,
1 _ -
Condition (1.17) is satisfied if and only if fl Zza 1Zs|u[2adu<m

for some o > 0. Under this condition we shall study the boundary

value problem
(Tg) ' (x) = -Ag(x) (O<x<®) (5.5)
Lin| QG [ly = 0 [lgGly = 0) o). (5.6)
X

Then A is positive self-adjoint, B compact and Ker A & span{v}.
There are three cases to be consid?red: (i) Zs(u)iz(u), where
Ker A = {0}, (ii) Zs(u)EE(u) and {l>22(u)du#0, where ZO=Ker A=
span{v}, and (iii) Zs(u)EZ(u) and fluz(u)du=0, where 2. =

span{v,uZ}. Then Eqs.l(S.S) and (5.6) are uniquely solSable,
unless Zs(u)EZ(u) andfluZ(u)du<O, in which'czse there always exists a
solution with measure of non-uniqueness one. So there exists an
albedo operator (unique except for this exceptional case) and the
H-functions can be found.
Let us choose B = span{v}. Then wh = {(h,V)H/]|v|]§}v and
1 1 I (uhdy!

A(z)=l—izf

1zZ(u)-p' ”
This dispersion function we factorize as
M) = By (-2 (2) , Re z = 0,

where Hz and H: satisfy the H-equations

L2 (WE (' /2")
0 zZ(u") + o'

H‘E(z)'l =1 - % z f an'

) By (WHp (-1 /2 (u")
27 zz(u") - '

i
s
!
I
N

+, -1 .
Hr(z) du' .
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The albedo operator then is given by

g_’_(U) s w>0

1t w' I () [2 ! )] ( )
2 wEe Gy [Tan T (Z(u ))g+(” dau's

u < 0.

(B,8,) (W) =

I1f Zs and I are even functions, then Hﬁ = Hr' For this case

related results are obtained by Williams~ using his Wiener-Hopf method.

(c¢) Strong evaporation of a liquid into a half-space vacuum,
with a drift velocity d > 0 at infinity, is described by the

equation15’39

2

() GGG = G S 2w s Dt iy o,

(5.7)

where f(x,v) is the deviation from the drift Maxwellian and v
the velocity. Effects transverse to the x-direction are neglected.

The boundary conditions
£00,v) = agta; vWI + a,(v'= DVZ (v>=d), £(=v) 20 (5.8)

are imposed. Note that f£(0,v) is required to be a collision invariant.
Let H be the Hilbert space of measurable functions h:R - (¢
with inner product
-l§ * — _sz
(hy,k) =7 2 S h@v"kGE"e dv' ,
—

and define on H the operators T, Q,, A and B by

h(v) , v >-d

(Th) (v) = (v+d)h(v) , (@) (V) =

s v < =d

2
h(v) - (Bh)(v), (Bh)(v) = I (h,e;)e (v),
i=0

(Ah) (v)

where we have the orthonormal set
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) =1, e, =vVZ, e,(v) = - DHVT .

Then Ker A = Ran B = span {eo,el,ez} is the set of collision

invariants. Choose B = span {e }. With respect to the

0°%1°%2
basis {eo,el,ez} we have

© ei(v')e.(v'—d) a2

= - =2 v '
[@)]y5 = 655 - F= s A v,

~c0

It is known40 that for this problem Eqs. (1.1) to (1.3) are uniquely

solvable for d > -—\/._and are solvable with measure of non-uniqueness
one for 0<d< —\/— So there exists an albedo operator E (unique

for d > —\/_; and depending on one parameter for 0<d<@—\/—) such

that E f is the initial value of a solution of Egs. (1.1) to (1.3),

given f+eQ+[D(T)]. There are corresponding H-functions satisfying
A(Z) Z( z)H (z), Re z = 0.

The corresponding albedo operator is given by

f+(V) > v > -d H

(BF) 00 = 17 2 + +, ' v
;ﬁ:: fo T §‘0 ei(v)[Hz(-v—d)Hr(v )]ijej(v )f+(v -d)e dv',
1.3= v < ~d,
The H-equations have the form
® 9 e (v')e.(v'-d) 2.y,
+ -1 B z +. k J -viTdv'y
(Hp(2) "155 = 845 - \/— o [ (v 15 paraa
2 e (v'+d)e, (v') 2,
- & ikt k - .
@™ =8y - A= 07 T ] (R e T v

{4/ To k=0

For d>—V/——Eqs. (5.7) and (5.8) do not have non-zero solutions,
whereas for 0 < d < —-Jr_there is a one-dimensional subspace of
boundary data of collision invariants for which a (unique) solution
exists.15’39’40 We may use any of the non-unique above albedo

operators and find this subspace by solving the linear system
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2} a

0
{(E+ei’ej)H}i,j= ol3| =o,

which yields a one-dimensional subspace of ¢3. The admissible
boundary data then are a0e0+alel+a2e2 and the initial value of the
solution E, (a e +a e +a ey).

+7070 171 "2
We remark that in Refs. 15 and 39 a scalar dispersion function

is used, which is the determinant of our matrix dispersion function.

Appendix
Let T be injective self-adjoint on H with orthogonal projection
Q, onto its maximal positive/negative invariant subspace, and define
HEt)(O%tsR) by (1.5). Assume that B is bounded and satisfies (1.17),
and put A = I - B. We define Lm(H); as in Section 2. We have

Theorem A.1. Let w:[0,») »~ H be bounded and continuous, Let
w(x)eD(T) §on O<x<wo, and suppose that T w L& strongly difgerentiable
on (0,=). Then a function £:(0,») + D(T) 4s a solution to the
boundary value problLem

(T£)'(x) = -Af(x) + (Tw)'(x) + w(x) (0<x<w) (A.1)
lim | [Q£G)-Qu(0) |[,; = 0, [[£G) ][], = 0(1) o), (A.2),
x40

if and only Af stm(H)g and satisfies the Wienern-Hopf equation

©

f(x) - J HE-y)Bf(y)dy = w(x), 0<x<=, (A.3)
0

Any such solution 44 bounded and continuous on [0,«).

For bounded T this theorem was proved in Ref. 3. A preliminary
version appeared in Ref. 23. The generalization to unbounded T
causes additional technicalities to resolve, and for this reason
we give a full proof. We need three lemmas.

Lemma A.2. J ||H(t)B||dt<e, f ||TH(t)B]| dt<= .

-0 -0
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Proof. Note the following norm estimates:

IT1%Heey |1 = ocJe|® ™D, [THeey || = ocw) (£70)
-1l-a 9= -1-
T H 1] = odel™™, ) 2o 1] = ocle] ™.
(ttw)
With the help of (1.17) we find B = |7|*, and [1|™*8 = 0, for

bounded Dl and D2, and the lemma follows.

41

Lemma A.3. I§ (E,p) 48 a measure space, T a closed Linear

operator, and if f£:E-D(T) and Tf are Bochner integhable, then
fE £dpeD(T) and

T IE fdp = fE(Tf)dp.

Lemma A.4. Let £:(0,») + H be bounded continuous, and Let T
S, .. -x)1~1
be an infective self-adjoint operaton. Then lim eI ¥T g £(y) =0
y-)oo -
in the weak sense.

Proof. Using the resolution of the identity o(.) of T, Ker T = {0}

(and thus o({0}) = 0) and dominated convergence we have immediately

1 00T QLG = Lim s O Eotanye) -0,

yoe e

where the limit is taken in the weak sense.

Proog of Theorem A.1. Let £:(0,»)*D(T) be a solution to (A.1)
and (A.2), and put X = f-w. Choose 0<x<=, and take 0<x1<x<x2<x3<w.
Then

X X

1 *1
I = HGx-y)Bf(y)dy = / To
0 0

1 ' —(x—y)T_l
Hx=y) 1TX) (934 x(y) My = [e Q+X(Y)

%5 Xy . )T_l x
Ly HEMBEGIAY = 0 HG=n) L0 0+x(n) My = (=" T x>
2

The left-hand sides have strong limits for x.4x, x2+x and x_ -

1 3
(see Lemma A.2, together with the boundedness of f). Thus the right-

hand sides have strong limits for x,4x, x.+x and x . As

1 2 3
Q+x(y)*0 for y¢0 strongly and Lemma A.4 holds, one obtains (A.3)
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as a result, where feLw(H)g.

Conversely, let f be a solution in Lm(H)0 of (A.3). Because
f-w is the convolution product of the Bochner integrable
function H(-)B and a function stm(H);,'it is bounded and con-

tinuous on [0,x). Using Lemma A.3 we prove that

g(x) = f: H(x~y)Bf (y)dy € D(T) (see also Lemma A.2),
while

T f: H(x-y)BE (y)dy = fg TH(x-y)BE (y)dy, Osx<w.

Repeatedly using Lemma A.3 we get for all e>0:

T{g(xte)-g(x)}/e = hy +h, +hy+h,

where
-1 —ET—l k ‘ x
hy =¢ "[e Q. - QIT S H(x-y)Bf(y)dy
0
-1, eTt .
h2 = - [e Q_ - QT fx H{(x~-y)Bf (y+e)dy
’ -1 x+e
h3 = fx TH(x+e-y)BE(y)dy
-1 x+e
h4 = -¢ fx TH(x-y)Bf(y)dy.

X
Let us take e¥0. Using simple semigroup theory, hl - H(x-y)Bf(y)dy.
0

By the continuity of f, dominated convergence26 and the same semigroup
property, h2 - -f: H(x-y)Bf(y)dy. By the continuity of the integrands,
h3 - Q+Bf(x) and h4 + Q_Bf(x). Thus Tg i$ strongly differentiable

on (0,») from the right and

(Tg) ' (x) = -g(X)+Bf(x). (A.4)

Similarly, one proves strong differentiability from the léft. Hence,
Tg is strongly differentiable on (0,~) and (A.4) holds true. However,
(A.3) implies g = f-w, and the function f therefore satisfies (A.1).
The first one of Eqs. (A.2) follows by éubétitution'of x = 0 into

(A.3).

3
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-1 v
xT f+, then (A.3) is equivalent

If f+ € Q+{D(T)] and w(x) = e
to problem (1.1) to (1.3), as one easily sees.

The next theorem is stated without proof. For w as in (3.6)
we find that Eq. (3.5) implies problem (3.7). ‘

Theorem A.5. Let w:R +~ H be bounded and centiniucus, except
for a possible jump discontinuity at x=0. Let w(x) e D(T) and
Tw be strongly differentiable on R\{0}. Then a solution yeL (H)_
of the Wienen-Hopt equation ‘ -

£(x) - [o H(x-y)BE(y)dy = w(x) (xeR) (A.5)
A5 bounded and continuous on R, except possibly for a fump
discontinuity at x = 0 of sdze

vy = v = w@h - s,

and satisgies the veeton-valued differential equation
(TE)' (x) = ~AF (O)+(Tw) ' (x)+0(x) (OfxeR) .

This result can easily be deduced from Theorem A.4 by

decomposing (A.5) in equations on (0,®) and (-«,0).
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ABSTRACT

New characteristic methods for the solution of the x,y geo-
metry discrete ordinates neutron transport equation have recently
been introduced. Five polynomials, without any continuity requi-
rement are defined on each mesh cell. A polynomial of order k is
used to approximate the angular flux inside the cell, while poly-
nomial approximations of order % are used along the cell edges.

Error bounds for a pure absorber calculation by this Ck&
characteristic method are given here for 2 lower or equal to 1
and for the simplest case. In this case, that we shall call the
exceptional case, a uniform spatial mesh grid with rectangles of
length Ax and height Ay is used, and the angular quadrature di-

rections w = (u,v) verify the condition

HAYIz o-
Vhx| 1 (the characteris

tic lines are the diagonals of the cells).

It is proved that, in a discrete 12 norm, the Ck2 method
has a convergence rate equal to Min (k+2, 28+1) for regular data

and solution, and equal to Min (k+1,% +1) for more realistic si-

tuations. We also provide some numerical results that show that
the asymptotic values of the computed convergence rates are iden-
tical to the theoretical ones.

INTRODUCTION
The first formulation of a characteristic method which pre-
serves flux spatial moments and satisfies a balance equation is

due to Lathrop 1. But Lathrop's step characteristic scheme, which
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