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The abstract Hilbert space equation (Tf)‘(x) = -(Af)(x), x E IR + , is studied 
with a partial range boundary condition (Q+f)(O) =f+ E Ran Q,. Here T is 
bounded, injective and self-adjoint, A is Fredholm and self-adjoin& with linite- 
dimensional negative part, and Q, is the orthogonal projection onto the maximal 
T-positive T-invariant subspace. This models half-space stationary transport 
problems in supercritical media. A complete existence and uniqueness theory is 
developed. 

I. INTRODUCTION 

Considerable effort in linear transport theory has gone into the study of 
various equations of the form 

(W)‘(x) = -A w(x), o<x<m, (1) 

with partial range boundary conditions 

(Q+ v)(O) = f+ 3 II v(x)ll = O(l) (X’ a> (4 

for Q+ an appropriate projection onto “ingoing fluxes.” The specific 
examples studied represent a variety of transport phenomena, usually under 
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steady-state conditions, including neutrons, electrons, rarefied gases, 
phonons, etc. In addition to Hangelbroek’s pioneering investigation of the 
neutron transport equation with isotropic scattering [ 181, we note 
particularly Ball [ 11, Beals [2,3], Greenberg [ 1, 16, 151, Hangelbroek [ 191, 
Lekkerkerker [25], van der Mee [ 16, 17,281 and Zweifel [ 17,351. In each of 
these publications, T and A are either specific or abstract self-adjoint 
operators on a Hilbert space H, the null space of T is trivial, and A is 
Fredholm. Moreover, with the exception of the Ball-Greenberg study [I], in 
all of these the operator A was assumed positive, and in most cases with zero 
null space.’ This restriction to positive A excludes all applications to super- 
critical (we borrow the terminology of neutron transport) media a priori. 

In this article we drop the positivity restriction on A. More precisely, we 
treat the abstract Hilbert space equation (I), with T bounded injective and A 
Fredholm with finite negative part (both self-adjoint). The completion H,4 of 
the domain of A with respect to the form 

(x3 Y)A = (k Y) (4 YE W)) (3) 

now is an indefinite inner product space with finite-dimensional nonpositive 
part. If A is injective, then HA will be nondegenerate (i.e., the set of vectors 
x E HA with (x, y), = 0 for every y E HA is trivial) and therefore HA will be 
a Pontryagin space (cf. [4, Chap. IX]). We note that in this case the operator 
A -IT is self-adjoint with respect to (3). Except for finitely many eigenvalues 
off the real axis with finite algebraic multiplicity, the spectrum of T-‘A is 
real and T-‘A allows a spectral function, as do the usual self-adjoint 
operators (see [21,22]). The major possible complication, in addition to the 
nonreal eigenvalues, arises from the finitely many real eigenvalues where the 
spectral function is unbounded. Throughout all of this paper we shall assume 
the absence of such “irregular critical points” and this assumption we shall 
call the T-regularity of A. 

Unlike the Ball-Greenberg paper [ 11, which deals with a specific example 
from neutron transport, we shall analyze the abstract half-space problem 
(l)-(2), rather than the spectral structure of the operator T-IA. Assuming A 
to be T-regular, we provide a complete existence and uniqueness theory for 
the abstract boundary value problem. In a natural way we arrive at a 
reduction of this problem into two more or less independent subproblems: 

(i) a half-space problem of the form (l)-(2), where A is replaced by 
the strictly positive operator A, that coincides with A on a subspace of H of 
finite co-dimension. 

I Results for the problem treated in [ 11 were claimed independently by R. Hangelbroek 
(oral presentation, “Fourth National Conference on Transport Theory,” 1975) but not 
published. 
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(ii) a finite-dimensional evolution equation on a subspace Z(K), which 
admits an elementary solution. 

For positive A a reduction of this type was exploited previously in 
[28, 17, 161. If A is not T-regular, such reduction is impossible. 

The first subproblem can be solved in two alternative ways, imposing 
different assumptions on T, A and the type of solution. Under general 
assumptions on A the method of Beals [2] leads to solutions in a suitable 
extension of the original Hilbert space H. It was first developed for bounded 
A in [2] and generalized to unbounded A in [3, 16, 171. Under the 
assumption that I - A is a compact operator taking its values in the range of 
1 TI” for some 0 < a < 1, the method of van der Mee [28] yields solutions in 
the original Hilbert space H (strong solutions) rather than in some extension 
of H (weak solutions). One-speed and symmetric multigroup neutron 
transport satisfy the hypotheses of [28]. 

The second subproblem turns out to be an analysis of certain maximal 
positive and negative subspaces of Z(K) with respect to the indefinite inner 
product 

[u, u] = (Tu, u). (4) 

A close connection will be demonstrated between the solvability of the half- 
space problem (l)-(2) and the sign characteristics (with respect to (4)) of 
the restriction of T-IA to Z(K). This method of characterizing self-adjoint 
matrices (with respect to an indefinite inner product) is due to Gohberg, 
Lancaster, and Rodman [ 1 l-141. After the full analysis of both subproblems 
one obtains the solution of the problem (l)-(2) as a corollary. It turns out 
that for invertible A the half-space problem (l)--(2) has a unique solution for 
every f+ E Ran Q, if and only if A is positive. For specific choices of A 
both the uniqueness and the existence of solutions may break down, which 
does not occur for positive A (see [28, 171). 

The method sketched above is a generalization of previous work by 
Zweifel and the authors (cf. [ 171; also [28]), which applies to bounded T 
and positive A. The modifications required for unbounded T (but positive 
unbounded A) were explained in [ 161, but throughout we shall consider 
bounded T only. A new aspect of the present generalization is the connection 
between existence and uniqueness theory and sign characteristics. (For 
positive A this aspect is not useful.) The result will be applied to one-speed 
and symmetric multigroup neutron transport. 

Section II contains preliminaries and decompositions needed to accom- 
plish the reduction of the half-space problem to the above subproblems. Both 
of these subproblems are solved in Section III. The fourth section contains 
solvability criteria in terms of sign characteristics. Sections V and VI are 
devoted to applications, and a comparison with recent results is drawn in the 
last section. 
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II. DECOMPOSITIONS 

Let T be a bounded self-adjoint operator on a complex Hilbert space H 
whose null space Ker T is trivial. Let A be a self-adjoint Fredholm operator 
on H with finite-dimensional negative part; i.e., the spectrum of A on 
(-co, 0] consists of a finite number of eigenvalues of finite multiplicity. By 
the Fredholm assumption K = T- ‘A is densely defined. Since K is closed 
(which follows from the boundedness of T), the adjoint K* is densely 
delined, while K* 2 AT-‘. Because K is densely defined, the operator K* is 
closed. 

Given a linear operator S and a complex number A, we define the I root 
linear manifold Z,(S) by 

Z*(S) = {x E D(S) I3n E N : x E D(S”), (S - ny x = 0). 

If L is not an eigenvalue of S, then, of course, Z,(S) = (0). 
Let 1 r ,..., 1, be the distinct non- (strictly) positive eigenvalues ofA. Put 

Z~o,,,tA) = 1 & Z,i(A) 1: 
j=l 

Then this subspace has finite co-dimension in H, is A-invariant and on this 
subspace the operator A is positive, injective, and has closed range. Also 

D(A)=D(AI zcO,mjuJ 0 1 6 Z,,(A)/ - 
j=l 

Now consider the (indefinite) inner product 

(x3 YL = (Ax, v) tx, Y E WI). (5) 

Let us denote by HA the direct sum of the k finite-dimensional root 
manifolds Zlj(A) (j = l,..., k) and the completion Z, of D(A 1 Z,,,,,(A)) 
with respect to the inner product (5). (Note that (5) is positive definite on 
w I Z(O,rn) (A))). Then HA can be written as the direct sum of (a, a),- 
orthogonal subspaces, 

6 Zaj(A) OZ,(A)OZ,. 
I 

(6) 
j=l 

Ij<O 

In this direct sum the first constituent subspace is strictly negative with 
respect to (5), the subspace Z,(A) = Ker A is (., .),-neutral (i.e., all vectors 
x E Z,(A) satisfy (x, x)~ = 0) and Z, is strictly positive. We remark that 
H,EH. 



ABSTRACT KINETIC EQUATIONS 115 

It is straightforward to exploit the boundedness of T and the closed range 
of A to prove that T-IA is self-adjoint (and not just symmetric) with respect 
to the inner product (5) of HA. First we suppose that Ker A = {O}. Then HA 
is a Pontryagin space with fundamental decomposition (6), where 
Z,,[A) = {0} (cf. [4, Chap. IX]). Standard Pontryagin space theory implies 
the following properties of T-‘A: 

(i) The nonreal spectrum of T- ‘A is symmetric with respect to the 
real line and consists of finitely many eigenvalues of finite algebraic 
multiplicity. If A 6?G R is such an eigenvalue, then the Jordan structure of 
T-‘A at ), coincides with the Jordan structure of T-‘A at 1. 

(ii) The sum of the algebraic multiplicities of the eigenvalues of T-‘A 
in the open upper (or lower) half-plane does not exceed the dimension K of a 
maximal negative subspace of HA. 

(iii) The behavior of the real spectrum of T- ‘A can be described by a 
spectral function E from the real line into the bounded projections on HA, 
which is monotonically nondecreasing except at finitely many so-called 
critical points. 

(iv) The length of a Jordan chain at a real eigenvalue of T-IA does 
not exceed 2~ + 1. 

(v) All critical points are eigenvalues of T-IA. They can be divided 
into the regular critical points, where the spectral function is bounded and 
has a jump discontinuity (in the strong operator topology), and the irregular 
critical points, where the spectral function is unbounded. 

(vi) A real eigenvalue 1 of T-‘A is an irregular critical point if and 
only if 

The spectral function has been analyzed in [21,22]; the elementary 
properties that do not involve the spectral function can be found in [4]. 

If Ker A is nontrivial, Eq. (4) still represents a fundamental decomposition 
of H,, but now Z,(A) # {0} and HA is not a Pontryagin space. It is no 
longer possible to formulate a spectral theorem for T-IA directly. Let us call 
the operator A T-regular at the point 1= 0 if the zero root linear manifold 
Z,(T-‘A) has finite dimension and 

Z,(T-‘A)~{xEH,~(x,y),=0fora11yEZ,(T-’A)}={0}. (7) 

From Eq. (7) and a simple dimension argument one finds that 

Z,(T-‘A) @ ZJAT-‘)l= H, (84 

Z,(AT-‘)@Z,(T-‘A)‘=H. (8b) 

580/57/2-2 
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Using that Z,(T-‘A) E D(A), one also finds 

Z(pA) @ Z,(AFj5~(A(H.“) = H,) @cl 

where the closure is taken with respect to the topology of HA. Because the 
neutral part Ker A = Z,(A) of the fundamental decomposition (6) of H, is 
contained in Z,(T-‘A), the closure of Z,(AT-‘)‘n D(A) in HA is a 
Pontryagin space with respect to (., .)A, in which T-‘A is self-adjoint. The 
restriction of T-IA to this complement of Z,(T- ‘A) in HA now has 
properties (i)-(vi). We call A T-regular if A is T-regular at the point 3, = 0 
and if the restriction of T-‘A to the closure of Z,(AT- ‘)lf~ D(A) in H,4 
does not have irregular critical points. 

In case A is positive, all zero Jordan chains of T-‘A have length one or 
two (see [ 17, Lemma 11) and therefore Z,(T-‘A) has finite dimension. 
Further, A is T-regular at A = 0. To see this, take x E Z,(T-‘A) such that 
(x, Y)~ = 0 for all y E Z,(T-‘A). Then the positivity of A entails x E Ker A. 
Also x E Z,(AT-‘)’ E (Ker K*)’ = Ran K, where K = T- ‘A. Using that T 
is bounded and A has closed range, one finds x = T-‘Ay for some y E 
Z,(T- ‘A). Now (Ay, y) = (TX, y) = (x, Ty) = 0 and therefore TX = Ay = 0 
and x = 0, which proves the T-regularity at A = 0. Notice that on the closure 
of Z,(AT-‘)’ I? D(A) in HA the operator T-IA is self-adjoint in the positive 
definite inner product (., .)A and hence does not have irregular critical 
points. We conclude that A always is T-regular if A is positive. For this 
reason the condition of T-regularity does not appear in [ 171. 

PROPOSITION 1. Let A be T-regular. Then there exists a T-‘A-invariant 
subspace Z(K) of H of Jinite dimension with the following properties: 

(4 Z(K) 0 (T[Z(K)l>’ = H; Pa> 

T[Z(K)] @ Z(K)’ = H. Pb) 

(b) The subspace Z(K) is contained in the domain of A and 

Z(K)O((T[Z(K)l}‘nH,)=H,. (9c) 

(c) The subspace {T[Z(K)]}‘n HA is T-‘A-invariant and strictly 
positive with respect to ( *, .)A . 

Proof: We assume that A is T-regular. Put 

Z = @ Z,(K), 
A 

where the sum is taken over all nonreal eigenvalues, all nonzero critical 
points and the zero eigenvalue of K = T- ‘A. Let K denote the dimension of a 
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maximal (strictly) negative subspace of Hi, which is (temporarily) defined 
as the closure in HA of &(A T-l)’ n D(A). Then the restriction of T- ‘A to 
Hi is a self-adjoint operator on the Pontryagin space Hf, (with respect to 
(., .)a), which has properties (i)-(vi) and does not have irregular critical 
points. Let A denote the sum of the algebraic multiplicities of the eigenvalues 
of T-‘A in the open upper (or lower) half-plane. Because there are no 
irregular critical points, the subspaces Z,(K), with A running through all 
nonzero critical points, are Pontryagin spaces with dimension of maximal 
negative subspace K(A), which satisfy 

c K(n) = K - R 
1 

(cf. (21,221). For every critical point 1 we choose a maximal negative 
T-‘A-invariant subspace MA of Z,(K). Because of Pontryagin’s theorem (see 
[30]; also [4]) such a subspace indeed exists. Now we extend MA to the 
T- ‘A-invariant subspace N,, of Z,(K) spanned by the maximal Jordan 
chains of T-‘A corresponding to the eigenvalue A which have at least one 
vector in MA. Property (iv) now implies that 

dim NA < (2~ + 1) dim MA = (2~ + 1) IC@). 

Next we put 

where [ runs through the nonreal eigenvalues and 1 through the nonzero 
critical points of T-‘A. In this way we find 

dim Z(K) = 2rC + c dim NA + dim Z,(K) 
A 

< 2R + (2~ + l)(~ - K) + dim Z,(K) < co. 

Obviously, Z(K) is T-IA-invariant and contained in D(A). 
Next we exploit the computational rule 

(Ml @ MJ1 = M: n M; 

for closed subspaces and the T-regularity of A (namely, Eq. (7) and the 
converse of property (vi)) and obtain 

Simple dimension arguments imply the decompositions (9a)-(9c). 
Finally, we notice that (i) the constituent subspaces in the decomposition 
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(10) are (a, .),-orthogonal, (ii) the subspace {@,Z,(K)} 0 {@, N1} is a 
Pontryagin space with maximal negative subspace of dimension K + 
CA 4) = 6 and (iii) A [Z(K)] c T[Z(K)], and therefore Z(K) and 
V~ZW)I)+-% are (e, $),-orthogonal. Because 

(T[Z(K)])’ n HA c Z,(Amn D(A)‘HA’ 

and the right-hand side represents a Pontryagin space with maximal negative 
subspace of dimension IC, the subspace T[Z(K)]l n H.,, necessarily is strictly 
positive with respect to (. , .)A. 1 

The construction of Z(K) given above is by no means unique. This is due 
to the non-uniqueness of the maximal (. , .),-negative T- ‘A-invariant 
subspace MA of Z,(K). However, the dimension ~(1) of MA is independent of 
the specific choice of MA. 

If decompositions of the type (9a)-(9c) existed for given operators T and 
A, then T-‘A would be the direct sum of a self-adjoint Hilbert space 
operator and an operator on a finite-dimensional space, which excludes the 
occurrence of irregular critical points (see [21, 221). Thus the T-regularity of 
A cannot be dropped in this proposition. As shown by Jonas and Langer (see 
[23]), it is possible to construct T and A in such a way that Ker A = (0) and 
Z-A has rank one, but A is not T-regular. 

We now generalize a construction from [ 17, 281 that will facilitate the 
reduction of the half-space problem (l)-(2) to one with strictly positive A. 

PROPOSITION 2. Let A be T-regular, and let p be an invertible operator 
on Z(K) that is positive with respect to the indefinite inner product [x, y] = 
(TX, y). Denote by P the projection of H onto (T[Z(K)])l along Z(K). Then 

Ag=TP-‘(I-P)+AP Wa> 

is strictly positive with respect to the original inner product (. , .) of H, while 

Moreover, if I-A is a compact operator with Ran(I - A) E Ran ) T1” for 
some O<a < 1, then I-A, also is a compact operator such that 
Ran(l- A,) E Ran ] T\*. 

Proof. Equation (1 lb) is immediate from Eq. (1 la). Because P is the 
projection of H onto (T[Z(K)])’ along Z(K) and A [Z(K)] G (T[Z(K)]), one 
finds 

(ABx, x) = [/3-l (I - P)x, (I - P)x] + (APx, Px), x E H. 
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As p is positive with respect to [. , . ] and (T[Z(K)])’ is strictly positive with 
respect to (. , .)A, the operator A, is strictly positive. 

Let I -A be compact and let Ran(l -A) G Ran 1 TI” for some 0 < Q < 1. 
Then I-A, is a compact operator. To prove that Ran(l- A,) E Ran 1 TI”, 
it suffices to show that Z,(K) G Ran ( TI” for every eigenvalue A of T- ‘A. 
First suppose Ax = ~Tx; then x = (Z - A)x + 2Tx E Ran 1 TI”, which proves 
that Ker(T-‘A - 2) E Ran 1 TI”. Assuming Ker(T-‘A - l)n c Ran I TI”, we 
suppose (T- ‘A - J)n+ ’ y = 0. Then for z E Ker(T- ‘A - A)’ one has 
(A - Jr>y = Tz, and therefore 

y=(Z-A)y+lTy+TzERan(TI”. 

Hence, Ker(T-‘A -J)“+l c Ran I TI”. Thus we have shown that Z,(K) s 
Ran ITI”. I 

We remark that D(A,) = D(A) and A,‘T is a bounded self-adjoint 
operator on H,,, with respect to the (positive definite) inner product 

(4 YL, = (Aox, Y) tx> Y E WI). (12) 

Since the operators A, and A coincide on the subspace of H of finite co- 
dimension (T[Z(K)])‘, all inner products (e, .)AD are equivalent on D(A). 
Hence, all these inner products make HA into the completion of D(A). 

Now let us define the projection Q, appearing in Eq. (2). Because T is 
self-adjoint with zero null space, the (. , .)-orthogonal projection of H onto 
the maximal (. , .)-positive/negative invariant subspace of T can be defined 
uniquely. We shall denote this projection by Q,. We notice that Q, are 
complementary projections. 

Let us construct analogous projections for A, ‘T. Since A, ‘T is self- 
adjoint with zero null space (with respect to (12)), the (., .),8-orthogonal 
projections P, of HA onto the maximal (a, .),n-positive/negative invariant 
subspace of Ai’T are complementary. The projection P of H onto 
(T[Z(K)])’ along Z(K) also maps HA along Z(K) (&HA) onto the closed 
subspace (T[Z(K)])‘n HA of HA (cf. Eq. (SC)). Since the decompositions 
(9a) and (SC) both reduce Ai’T and the restriction of A,‘T to (T[Z(K)])’ 
does not depend on p (cf. Eq. (1 lb)), the operators PP, on HA are disjoint 
projections that do not depend on fi. In fact, PP, , PP_ , and I - P form a set 
of three disjoint and complementary projections on HA. 

PROPOSITION 3. The subspace 

M, = [Ran PP, 0 Ran Q,] n Z(K) 
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is a maximal strictly positive/negative subspace of Z(K) with respect to the 
indeBnite inner product [x, y] = (TX, y) and 

(Qi = T[M,] @ Z(K)-. 

Proof Take x E [Ran PP- @ Ran Q,] C’ Z(K). Then there exist y E 
Ran PP- G Ran P- and z E Ran Q, such that x = y t z. Then 

0 < (Tz, z> = (TX, x) + KY, Y> - (TX, Y) - KY, xl. 

As TX E T[Z(K)] and Y E (TIZ(K)l)l, one has (TX, y) = (x, Ty) = 0. 
Moreover, y E Ran P_ implies 

KY, Y> = &?TY, Y),, < 0, (13) 

and therefore (TX, x) > 0. If (TX, x) were zero, both (Tz, z) and (Ty, y) 
would vanish, which implies y = z = 0 and x = 0. We then conclude that 
[Ran PP- @ Ran Q,] 1’7 Z(K) is strictly positive. Similarly one shows that 
[Ran PP, @ Ran Q-1 n Z(K) is strictly negative. 

We now calculate that 

(Ran PP,)’ = T[Ran PP*] 0 T[Z(K)], (14) 

(Ran Q,)l = Ran Q, = T[Ran Q,] . (15) 

Therefore, 

CM,)’ = [(Ran PP,)l n (Ran Q,)l] 0 Z(K)’ = T[M,] @ Z(K)‘. 

Hence, 

(M, @ ~4~)~ = (M+)‘n (Me)’ = Z(K)‘. 

This implies 

M+ 0 M- = Z(K), (16) 

and thus M, is a maximal [ ., a]-positive/negative subspace of Z(K). u 

Because (M,)’ = T[M,] @ Z(K)‘, the decomposition (16) is a 
fundamental decomposition of Z(K) with respect to [. , .I. With respect to 
this inner product Z(K) is nondegenerate. 
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III. HALF-SPACE SOLVABILITY 

The (right) half-space problem is the partial range boundary value 
problem (l)-(2) wheref, is a given vector in Ran Q, . The usual method of 
solution consists of the determination of an albedo operator (first introduced 
in [24]) satisfying Ef+ = v(O), after which Eqs. (l)--(2) can be solved with 
the help of standard semigroup theory. To define E on the whole space 
(rather than Ran Q,) one also considers the left half-space problem 

(W)‘(x) = -A v(x), -co<x<o, 

Q-w<O>=f-3 II w(x)ll = O(l) (X’ -=J>, 

(174 

(17b) 

where f- E Ran Q-, and defines Ef- = ~(0). Modified right/left half-space 
problems are defined by requiring the solution v(x) to vanish for x + f co : 

(18) 

Albedo operators (or related concepts) offer interesting perspectives if the 
operator A is positive (cf., e.g., [24, 18, 2,28,3, 17]), because in this case 
half-space problems are usually uniquely solvable. As we shall see, for 
nonpositive A the unique solvability is in fact lost so that albedo operators 
lose their usefulness. Instead we shall describe the measures of non- 
uniqueness and noncompleteness for the solution of these problems. Put 

where 1 runs through all eigenvalues of T-‘A IZCK) in the open right/left half- 
plane and [ through all eigenvalues of this operator on the imaginary axis. In 
order that the solution v(x) of problem (l)-(2) (resp. (17a)-( 17b)) be 
bounded at +co (resp. -co), the initial value ~(0) has to belong to 
Ran PP, @ IK,. In order that the solution of Eqs. (l)-(2) (resp. 
(17a)-(17b)) vanish at too (resp. -co), one has to choose ~(0) in the 
subspace Ran PP, @ IK: , where 

IK; =@Z,(K) 
a 

and ,l runs through the eigenvalues of T-IA l=(K) in the open right/left half- 
plane. For later use we derive 

(IWi = W,I 0 V?, 
(IKO,)‘= T[L’$] @ Z(K)l, 
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where 

and < runs through all eigenvalues of T-‘A lZcK) in the closed right/left half- 
plane. Now let us reduce the right half-space problem (lk(2) to two 
subproblems. Let us apply the projection P of H onto (T[Z(K)])’ along 
Z(K) to both sides of Eq. (1). We then find the following two subproblems: 

(9 VW, l’(x) = -A WI (~1, o<x<oo, 
which must give a solution v,(x) in (T[Z(K)])‘; 

(20) 

(ii) (Two)‘(x) = -A Y,(X), o<x<m, (21) 

which is an evolution equation for v,(x) on the finite-dimensional space 
Z(K). 

The full solution reads 

Y(X) = v/l(X) + w&)3 o<x< 00. 

Equation (21) admits an elementary solution of the form 

Y,(X) = e -xT-‘AyO(0), o<x< m, 

where ~~(0) E IK + if v(x) must be bounded, and v/JO) E IK: if v(x) must 
vanish at infinity. Though a correct specification of the first subproblem will 
follow, in principle standard semigroup theory yields 

y,(x) = e-XTmlAy,(0), o<x< 03, 

where w,(O) E Ran PP,. Now let us add to Eq. (20) the dummy equation 

we)‘(x) = -4340(4~ o<x<co, (22) 

on Z(K), where A, is given by Eq. (1 la) for some [. , *]-positive p. The 
solutions 4,,(x) of Eq. (22) are easy to compute but do not concern us as, 
indeed, we shall project out this part of the solution. The relevant obser- 
vation is that Eqs. (20) and (22) together can be written in the form 

(T@>‘(x) = --A,#(x)> o<x<m, (23) 

where A, is strictly positive with respect to (. , .) and $ = vI + Q,,. Our main 
task is the following: (i) to find the general solution of Eq. (23) that is 
bounded (resp. vanishes) at +co and to project it onto (T[Z(K)])’ along 
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Z(K), (ii) to disregard the part of d(x) obtained from projection onto Z(K) 
along (T[Z(K)])‘, (“‘) t 111 o solve Eq. (21) (which we did) and to write v/= 
P# t vy,, and (iv) to fit the boundary condition Q, y(O) = f+ if possible. 

Let us analyze the operator differential equation (23). If I- A is a 
compact operator such that Ran(l- A) E Ran ) TI” for some 0 < Q < 1, then 
I -A, has the same property (see Proposition 2) and (T, I - A& is a positive 
definite admissible pair on H in the sense of [28]. Then to every 
f+ E Ran Q, there exists a unique vector function 4: (0, ao) -+ H such that d 
can be continuously extended to [0, co), T# is strongly differentiable, $ 
satisfies Eq. (23) and 

Q+ YW = f+, II!Gll= O(l) (X” -+a>; 

this solution g(x) vanishes for x -+ tco (see [28, Sect. IV.31). In more 
general cases, however, the problem of solving Eq. (23) within the original 
Hilbert space H still is open. For our general abstract analysis we will 
employ a different solution method, which was initiated in [2] (where A and 
thus A, is bounded) and further developed in (3, 171 (where A and A, are 
unbounded). This method yields solutions in some extension space of H. Let 
us construct this extension space first. By H, we denote the completion of H 
with respect to the inner product 

CT Y>T = (I Tl x, Y> (-G Y E H), (24) 

and by HK8 the completion of HA with respect to the inner product 

(~3 Y)K~ = (Pi ‘Tl *, Y),, 6, Y E HA), 

where JAD’TI = Ad’T(P+ -Pm). Both inner products are positive definite. 
As A,‘T does not depend on p on the closed invariant subspace 
(T[Z(K)])’ f’J HA of finite co-dimension in HA, for all [., *]-positive /3 the 
inner products (25) are equivalent on HA and therefore we may suppress /I in 
H5b and write HK. It can be proved (see [ 171; also [3]) that there exists a 
unique (but P-dependent) albedo operator E: H, + H,, which is bounded 
and injective, such that 

4(O) = W+ 3 g(x) = cxTml+Ef+, o<x< co. 

This operator E also acts as a bounded operator from H, into H,. The 
range of E is dense in both HK and H,, and its kernel is zero. The albedo 
operator E also generates the solution of the left half-space analogue of 
Eq. (20). We obtain for the solution of Eq. (20) the expression 

w,(x) = e -XT-‘APEf+, o<x<m, 
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where, indeed, P extends to a bounded projection on Hti (with kernel Z(K) 
and range the closure of (T[Z(K)])- in HK). 

Let us now consider the full right half-space problem (l)-(2), requiring 
solutions that either are bounded or vanish at SCO. The unique solvability of 
the related right half-space problem (23) (with similar type of boundary 
conditions) implies 

[Ran PP, n Ran Q-1 c Ran P, C-J Ran QP = (0) (uniqueness), 

GW 
_-_.. ~.~ ____ 

(Ran PP, @ Z(K)) + Ran Q- 2 Ran P, + Ran QP = H (existence), 

(26b) 

where the closure is taken in H. If I-A is compact and Ran(1 -A) s 
Ran 1 T/” for some 0 < a ( 1, in Eq. (26b) no closures are needed. We first 
formulate two theorems. 

THEOREM 1. Let A be T-regular. Then the right/left half-space problem 
(l)-(2) (resp. (17a)-( 17b)) has at most one solution that is bounded at +a~ 
(resp. -~)for everyf, E Ran Q, (resp. f- E Ran Q-) ifand only iflK, is 
positive/negative with respect to [. , -1. Problem (l)--(2) (resp. (17a)--( 17b)) 
has at least one solution that is bounded at +CO (resp. -co) if and only uli, 
is negative/positive with respect to [ ., .I. 

The measure of non-uniqueness 6* for the solution of the right/left half- 
space problem coincides with the dimension of a maximal strictly 
negative/positive subspace of IK * . The measure of noncompleteness y * , being 
the co-dimension in Ran Q * of the closure of the subspace f, E Ran Q, for 
which the right/left half-space problem (l)--(2) (resp. (17a)-(17b)) has at 
least one bounded solution, coincides with the dimension of a maximal 
strictly positive/negative subspace of IL f. These properties will be proved 
together with Theorem 1. 

THEOREM 2. Let A be T-regular. Then the right/left half-space problem 
(l)-(2) (resp. (17a)-(17b)) h as at most one solution that vanishes at +a~ 
(resp. -oo)for every f+ E Ran Q, (resp. f- E Ran Q-) ifand only if IK: is 
positive/negative with respect to [s, .I. Problem (l)-(2) (resp. (17a)-(17b)) 
has at least one solution that vanishes at +oo (resp. -co), if and only if U-“, 
is negative/positive with respect to [a, .I. 

The measure of non-uniqueness 8: for the solution of the right/left half- 
space problem that vanishes at f co, equals the dimension of a maximal 
strictly negative/positive subspace of IK “, . The corresponding measure of 
noncompleteness yt coincides with the dimension of a maximal strictly 
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positive/negative subspace of IL!. These properties may be proved together 
with Theorem 2. 

We only prove the first theorem and the properties of 6* and y* below its 
statement. The proof of Theorem 2 and accompanying properties is 
analogous. First a lemma is needed. 

LEMMA 1. Put 

M, = [Ran PP, @ Ran Q, ] n Z(K). (27) 

Then IK + r’~ M, (resp. IK “, f7 M,) is a maximal strictly positive/negative 
subspace of IK + (resp. IK:) with respect to the inner product [x, y] = (TX, y). 
Moreover, 

(lK+ nM+)@ (IK, nM_)= IK,, (IK~nM+)~(lK~nM_)=lK~, 

(28) 

(IL- +M+)n(L- +M-)=L (iLO +M+)n(P +M-)=U!. 
(29) 

Proof Consider the operator T-‘A lzcI;). Its spectrum consists of the 
different real eigenvalues 1, ,..., 1, and the conjugate pairs of different nonreal 
ewnvalues k, & ,.-, pu,, ii,, all of which have finite algebraic multiplicity. 
Clearly, the subspaces 

Zn,(T-‘A) ,..., ZAk(T-‘A), 

Z,,(T-‘A) @ Z,,(T-‘A),..., ZJT-‘A) @ Z,I(T-‘A) 

are [. , . ]-orthogonal. Because M, is a maximal strictly positive/negative 
subspace of Z(K) with respect to [., .I, its intersection with Z,(T-‘A) (resp. 
Z,j(T-‘A) 0 Z,(T-‘A)) must be a maximal strictly poiitive/negative 
subspace of ZAj(T-‘A) (resp. ZPj(TPIA) @ Z,(T-‘A)) with respect to [. , .I. 
Hence, IK: n M, is a maximal strictly [. , . ]-positive/-negative subspace of 
IKO,. In the same way as in [ 171 we may prove that Ker A n M, is a 
maximal strictly [a, .I-positive/-negative subspace of Ker A. Thus from the 
definition of IK + we find that IK + n M, is a maximal strictly [. , *]-positive/- 
negative subspace of IK + . 

Equations (28) are immediate from the contents of the previous 
paragraph. Using Eqs. (19b) and Proposition 3 one easily finds Eqs. (29). 1 

Proof of Theorem 1. Let us first consider the homogeneous (i.e., f+ = 0) 
right half-space problem (l)-(2). Then ~(0) E Ran PP, @ IK, and 
Q+ w(O) = 0 imply 

w(O) E Ran Q- n [Ran PP, @ IK+]. 



126 GREENBERG AND VAN DERMEE 

The measure of non-uniqueness 6+ equals the dimension of the subspace 
[Ran PP, @ IK,] n Ran Q-, which, because of Eq. (26a), can be written as 

6+ =dim(lK+ nM_), 

where M- is given by Eq. (27). Lemma 1 now implies that 6’ equals the 
dimension of a maximal strictly negative subspace of IK + . 

Next consider the measure of noncompleteness Y+, which is the co- 
dimension in Ran Q, of the closure of the subspace off+ E Ran Q, for 
which Eqs. (1) and (2) have at least one solution. One finds 

yt =codim{[RanPP+ @lK+J +RanQ_}. 

Using Eq. (26b) and the property dim(M/N) = dim(N-/A!‘) for closed 
subspaces A4 and N, one gets 

(Ran PP+)‘n IK; n (Ran Q_)- 
” =dim (RanPP+)‘nZ(K)‘n(RanQ_)” 

With the help of Eqs. (14) and (15) one arrives at the equality 

yt =dim 
T{[RanPP-@1L-]nRanQ+} 

T{Ran PP- r? Ran Q,} * 

NOW substituting the analog of Eq. (26a) gives 

y+=dimT{[RanPP-@IL-]nRanQ+} 

=dim{[RanPP~@II~~]nRanQ+}=dim(L~nM+), 

where M, is given by Eq. (27). Following the method of proof of Lemma 1 
one has at once that U_ _ n M, is a maximal strictly positive subspace of IL ~, 
which establishes the theorem. 1 

IV. SIGN CHARACTERISTICS AND SOLVABILITY 

In this section the measures of non-uniqueness 6* and 8: and noncom- 
pleteness y * and y,’ are related to the sign characteristics of the self-adjoint 
“matrix” T- ‘A IZcKj with respect to the indefinite inner product [. , ~1. The 
sign characteristics were developed in [ 11, 121 and a clear exposition of them 
can be found in [ 13, 141. Let J, ,..., J, be the Jordan blocks of T-IA IZCK) that 
correspond to real eigenvalues. Let J,, , , Jai z ,..., Jots6 be the Jordan blocks 
corresponding to the nonreal eigenvalues ordered in such a way that for k = 
1 ,..., b the corresponding entries of Jo+ Zkp, and Jo+ 2k are complex 



ABSTRACT KINETIC EQUATIONS 127 

conjugates. For i = l,..., a + 2b let P, be the square matrix of the same size 
as Ji with trailing diagonal entries t 1 and elements 0 off the trailing 
diagonal. Define the block diagonal matrix 

p0 
P a+1 

a+2 0 P 

where E, ,..., E, are signs i-1 which will be specified shortly. Then there is a 
similarity transformation S: Z(K) -+ CN, N = dim Z(K), and there are certain 
signs cl,..., E, such that 

S(T-‘A IZcKJ S-’ = diag(J, ,...,Ja+2b), (304 

I-WI = PSX, SY) (4 Y E Z(W), W’b) 

where (., a) is the usual inner product of CN. We call (J, P), where J = 
diag(J 1 ,..., Ja+2b), the canonical form of T-‘A IZCK) with respect to [a, a]. The 
signs E, ,..., E, do not depend on the specific choice of S and are called the 
sign characteristics (or just signs) of T-‘A IZtK) with respect to [., .I. 

Let us reformulate the construction of sign characteristics. Instead of a 
similarity S: Z(K) + CN we employ a special Jordan basis of T- ‘A lZCK) 
which we obtain from the canonical basis of CN consisting of unit vectors by 
applying S-l. Conversely, S is fully specified by this basis. First notice that 
the invariant subspaces of T-IA IZ,Kj that correspond to the different real 
eigenvalue Jordan blocks, to a real and a nonreal eigenvalue Jordan block, or 
to different conjugate pairs of nonreal eigenvalue Jordan blocks, are [ ., .J- 
orthogonal. To each real eigenvalue A corresponding to a Jordan block of 
size n one chooses a Jordan chain zO,zl ,..., z,-, such that 

where fl is the corresponding sign. For each pair of conjugate nonreal 
eigenvalue Jordan blocks one chooses Jordan chains x,, x, ,..., x,_ i and yO, 
y ,,..., yn-i such that 

[xi,xj] = [Vi> Vj] = O (i, j = 0, l)...) n - l), 

[xj,yk]=[Yk,Xj]=~j,n-l-k' 

All these Jordan chains together yield a canonical Jordan basis of T-IA jZCKj 
with respect to [. , -1. 

THEOREM 3. Let 2m, ,.,., 2m, be the even sizes and 2n, + l,..., 2n, t 1 
the odd sizes of the Jordan blocks of T-‘A IzCK, for the positive/negative 
eigenvalues, and let E 1 ,..., E, be the signs of these Jordan blocks of odd size. 
Then the measure of non-uniqueness 6* for the solutions of the right/left 
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half-space problem that are bounded at i co, is the sum of the following three 
contributions: 

(i) The sum of the algebraic multiplicities of the eigenvalues of T- ‘A 
in the quarter plane {,I E C 1 Im L > 0, Re L >< O), and the geometric 
multiplicity of the positive imaginary eigenvalues. 

(ii) The number of negative/positive signs of zero Jordan blocks of 
T- ‘A of order one. 

(iii) (CT=, mi> t (Cj”=, q) t CEjETI 1. 

The measure of non-uniqueness 13; for the solutions of the right/left half- 
space problem that vanish at +a is the sum of the following two 
contributions: 

(i) The sum of the algebraic multiplicities of the eigenvalues of T-‘A 
in the quarter plane (3, E @ 1 Im A > 0, Re 12 0). 

(4 (CFzl mi> t (CJzl nj> t CEjzII 1. 

Proof: Let us first choose, as before, a canonical Jordan basis of 
T-‘/l IL(K) with respect to [. , .I. By sp M we denote the linear span of a 
set M. If the Jordan chain z,,, z, ,..., z,-, corresponds to a real eigenvalue 
Jordan block, then 

SP{Z,, ZI ,***, Z”-I 1 =SP(zo,Zn-,JOSP{Z,,Zn~*} 

0 +f. 0 SP{Z~,,~)~-~, z~,,~J (n even), 

=sP(Zo,Zn-l}OSPIZ*,Zn~*) 

=@...@sp{z (1/2)n~(3/2)~~~I/2~“+~1/2~ 1 

0 s~lz,,,,,,-,,,~,1 (n odd), (314 

is a [., .I-orthogonal decomposition. For k = 0, l,..., integer i(n - 2) we 
have the further [. , . ]-orthogonal decomposition 

SPbk,Z,-1-k) = SPb, + Z,-l-k10 sP1Zk--“-I-k], (3 lb) 

where 

[zk *z,-I-k,Zk f Z,-l-k 1 = *qz,, z,-Il. 

Thus one of the subspaces in the decomposition (3 lb) is strictly positive and 
the other strictly negative. Furthermore, if n is odd, we have 

[Z (l/Z)(n-I)’ ~W2W-lJ = bcl3zn-11, 

which has the same sign as the corresponding Jordan block. 
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If the Jordan chains x,,, x ,,..., x,-, and y,, y, ,..., .v~-~ correspond to 
conjugate nonreal eigenvalue Jordan blocks, then 

SP{Xo,...,Xn-I, YOYY Yn-11 

=SP{xo+Yn~1~xo-Yn-J (32) 

~...~sp{x,~,tY,,x,~,-Y,}o~P~~,-,tYo~~,-~-YoJ 

is a [. , . ]-orthogonal decomposition into two-dimensional subspaces, for 
which one of the two [ ., .I-orthogonal basis vectors is strictly positive and 
the other one strictly negative. 

To calculate the dimension of a maximal strictly negative/positive 
subspace of IK,, which according to the uniqueness part of Theorem 1 
characterizes 6 * , one adds the following contributions: 

(a) all conjugate pairs of nonreal eigenvalue Jordan blocks of 
T-‘/l IZWJ in the open right/left half-plane. As shown by (32), the total 
contribution is the sum of the algebraic multiplicities of the eigenvalues in 
the quarter plane {A E C 1 Re A 5 0, Im L 5 0). Because the spectrum of 
T-IA is symmetric with respect to the real line, it is also the same as the 
sum of the algebraic multiplicities of the eigenvalues in the quarter plane 
@EC]Im1>O,ReII><O}. 

(b) all conjugate pairs of Jordan blocks for nonzero eigenvalues in the 
upper/lower imaginary line. As (32) shows, this contribution is obtained by 
adding the geometric multiplicities of the nonzero eigenvalues on the 
upper/lower (and thus upper) imaginary line. 

(c) the zero Jordan blocks of order one. This contribution is the sum 
of the negative/positive signs of the zero Jordan blocks of order one. 

(d) the Jordan blocks of even size corresponding to positive/negative 
eigenvalues. Their contribution is one half of the size of each such block. 

(e) the Jordan blocks of odd size corresponding to positive/negative 
eigenvalues. If such a block has size 2n + 1 with sign E, the contribution is n 
ifs=+l,andn+I ifs=Fl. 

All contributions are added to find the measure of non-uniqueness 6*. The 
measure of non-uniqueness St is found similarly, with the help of the 
uniqueness part of Theorem 2. 1 

THEOREM 4. Let 2m,,..., 2m, be the even sizes and 2n, + l,..., 24 + 1 
the odd sizes of the Jordan blocks of T-IA jZCK, for the negative/positive 
eigenvalues, and let 2tii, ,..., 2tiii, be the even sizes and 26, t l,..., 2%:+ 1 the 
odd sizes of the zero Jordan blocks of T-IA. Denote the signs of the Jordan 
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blocks of odd size for the negative/positive eigenvalues by E, ,..., E, , and those 
for the blocks of odd size >3 for the zero eigenvalue by FL,..., Q. Then the 
measure of noncompleteness y* for the solutions of the right/left half-space 
problem that are bounded at f co is given by the sum of the following three 
contributions: 

(9 (CT= 1 mi) + (Cj= i nj) + C,= +, 1; 
(ii) (CT=, (tii - 1 >> + <CJz1 Cfij- l)) + Es,=*1 ‘; 
(iii) the sum of the algebraic multiplicities of the eigenvalues of T-‘A 

in the quarter plane {A E C 1 Im il > 0, Re 1 5 0) minus the sum of the 
geometric multiplicities of the positive imaginars eigenvalues. 

The measure of noncompleteness yt for the solutions of the right/left half- 
space problem that vanish at f co is the sum of the following three 
contributions: 

(9 (CL= I mi) t (CL I n.i> + CEix +, 1; 

(4 (C;= 1 *i) + <CJ= 1 *j) + CcjT * 1 1; 
(iii) the sum of the algebraic multiplicities of the eigenvalue of T-IA 

in the quarter plane (A E C 1 Im i, > 0, Re A 5 0). 

Proof According to the existence part of Theorem 1, y * equals the 
dimension of a maximal strictly positive/negative subspace of IL,. To 
compute this dimension we make use of a canonical Jordan basis of 
T-IA 1 Z(K) with respect to [. , .] and repeat the argument of the proof of 
Theorem 3. Now one has to consider the following contributions in order to 
calculate y* : 

(a) all conjugate pairs of Jordan blocks corresponding to the nonreal 
eigenvalues in the open left/right half-plane. Their contribution to y* is the 
sum of the algebraic multiplicities of the eigenvalues of T-IA in the quarter 
plane {LECjIm;l>O, Re13 6 0) with an appropriate subtraction for 
purely imaginary eigenvalues; ’ 

(b) the Jordan blocks of T-IA lZCKj of even size corresponding to the 
negative/positive eigenvalues giving the contribution CL= 1 mi ; 

(c) the Jordan blocks of T-IA IztKj of odd size corresponding to the 
negative/positive eigenvalues giving the contribution Cf=, nj + CEiZ + , 1; 

(d) the zero Jordan blocks of T-IA. 

The latter blocks can be treated for each block separately. Consider a Jordan 
chain x,, x ,,..., x,-, of some canonical Jordan basis of T-‘A lZCKj 
corresponding to some zero Jordan block, and put 

M=T-‘Asp{x,,x ,,..., x,-l}=sp{x,,x, ,..., x,_,). 
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Then 
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M=sp{x,}Osp{x,,x,-,} 0 ‘..0sPlXc,,2)n-,,X(1,2)n} (n even), 

M= {0} (n = 11, 

M= SP{X,} 0 sp{.q,x,-z} 0 **. 0 sP{X~l,z,n-(3,2),X~,,2)n+(1/~)} 

0 sPix~1,2~,-~I/2~1 (n > 3 odd). 

By counting the dimension of a maximal strictly positive/negative subspace 
of M one finds i(n - 2) for n even, zero for it = 1, f (n - 3) + 1 for n > 3 
odd and sign f 1, and f(n - 3) for n > 3 odd and sign F 1. 

The proposition can be found by adding all contributions, as far as y * is 
concerned. The measure of noncompleteness y$ is computed similarly using 
the existence part of Theorem 2. 1 

COROLLARY 1. Let A be positive. Then 

(a) y* =0 and 6* is the number of negative/positive signs for zero 
Jordan blocks of T-‘A of order one. 

(b) 8: = 0 and y$ is the sum of the number of positive/negative signs 
for zero Jordan blocks of T- ‘A of order one and the number of zero Jordan 
blocks of order two. 

ProoJ: For A positive one may take Z(K) = Z,(K). Using that all zero 
Jordan chains have length one or two, one derives the corollary directly from 
Theorems 3 and 4. 1 

Part (a) of Corollary 1 appears as the main result of [ 171, although in 
[ 171 sign characteristics were avoided. Under an extra symmetry condition 
and assuming Z-A compact with range contained in Ran 1 T/” for some 
0 < a < 1, Part (a) was obtained earlier in [28]. 

In order that the right/left half-space problem, with solutions required to 
be bounded, has a unique solution for every f* E Ran Q, , it is necessary 
and sufficient that { T[Z,(K)] }I n HA is strictly positive with respect to 
(., .)A and all zero Jordan blocks of T-‘A have order <3, where the first 
order blocks have positive/negative signs and the third order blocks have 
negative/positive signs. In order that the right/left half-space problem, with 
solutions required to vanish at *co, has a unique solution for every 

f, ERanQ,, it is necessary and sufficient that { T[Z,(K)]}‘n HA is strictly 
positive with respect to (e , .)A and all zero Jordan blocks of T- ‘A have order 
one with negative/positive sign. Note that if Ker A is trivial, then existence 
and uniqueness of the solutions of the right/left half-space problem 
(irrespective of whether bounded solutions are required, or solutions which 
vanish at *a) occur if and only if A is (strictly) positive. 
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1'. ONE-SPEED NEUTRON TRANSPORT EQUATION 

In the one-speed approximation and after Fourier decomposition the 
neutron transport equation for the mth Fourier component f”(x,p), m = 
0, 1, 2,..., of the angular density is written as 

a-” p--(x,I1)+fm(x,B)=~~l g”(P~P”)f%~‘)d~‘~ (33) 

where P E [-1, l] is the cosine of the angle describing the direction of 
propagation and x is a position coordinate in units of neutron mean free 
path. (For the physical background we refer to [6, 7] and for the details on 
the Fourier decomposition to 1271.) The scattering kernel has the form 

g”@, id> = 21’” p(p,u’ + fi- p* cp’* cos a) cos ma da, (34) 

where the redistribution function p is nonnegative, belongs to L , [- 1, I] and 
satisfies the normalization I!, p(t) dt = 2, while c > 0 denotes the number of 
secondaries per collision. It is customary to expand p(t) into a series of 
Legendre polynomials by putting 

A = f j-’ p(t) p,(t) dt (1 = 0, 1, 2 )... ), 
-1 

where P,(t) = (2/l!)-‘(d/dt)‘(t* - 1)’ is the usual Legendre polynomial of 
degree 1. In this way one may write 

where 

Pyyp) = (1 -p*)(“*)m f 

i 1 

m 

P,(P) 

is an associated Legendre function. 
On computing the Fourier components one writes 

where f(x, ,u, 4) is the full (azimuth-dependent) angular density (cf. [ 271). By 
physical necessity one must require that f(x,,u, 4) > 0, which imposes 
additional constraints on the solution of Eq. (33). Similar conditions must be 
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imposed on the functions appearing in the boundary conditions below. 
However, we choose not to deal with such extra constraints and for this 
reason we actually investigate the existence and uniqueness of real (but often 
nonphysical) solutions of Eq. (33). 

We study Eq. (33) with scattering kernel (34) (or (35)) on the Hilbert 
space H=L,[--1, l] and define the operators T, A, Q,, and Q- on this 
space by 

<Q, h)(~) = h(lu) (P i Oh (QJW = 0 (P S 0). 

For the present study it is quite sufficient only to assume that p(t) is a real- 
valued function in L,[-I, I], c E IF?, but still I’, p(t)dt= 2. Then T and A 
are bounded self-adjoint operators, T has zero null space and Q, is the 
orthogonal projection onto the maximal positive/negative T-invariant 
subspace. According to a result of Vladimirov [34, Appendix XII.81 the 
operator Z -A is compact, the associated Legendre functions P?(p) (I > m) 
form a complete and orthogonal set of eigenfunctions of A, while 

AP;” = (1 - cfi) PF, l>m. (36) 

Hence, o(A) = { 1 - cfr 1 Z> m} U { 1). As shown by van der Mee 128, 
Theorem VI. 1.11, one has 

Ran(Z -A) c Ran ( T(” 

for all 0 < a < (r- 1)/2r, whenever p E L,.[--I, 11 with Y > 1. We thus 
conclude that T and A satisfy the general hypotheses of previous sections, 
except possibly the T-regularity ofA. Because Z-A is compact and T is 
bounded, the operator A is T-regular at 1= 0. 

Equation (33) on the half-line x E (0, co) is usually endowed with the 
boundary conditions 

(corresponding to Eqs. (1) and (2)), or with the alternative set of conditions 

(corresponding to Eqs. (1 )-( 18)). 
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LEMMA 2. Corresponding to a nonzero eigenvalue of T- ‘A there exists 
precisely one independent maximal Jordan chain of eigenvectors and 
generalized eigenvectors. 

Proof. If A is invertible (i.e., cf, # 1 for I > m), an induction argument 
shows that for e(p) = (1 - ,D*)(“*)~ the vector (A - ’ T)n e is the product of 
e(p) and a polynomial of degree n (cf. Eqs. (35) and (36)), which means that 
e is a cyclic vector of A ‘T. Thus for invertible A the lemma is obvious. 

Therefore let us assume that A is not invertible. Clearly the solutions of 
Eq. (33) that are vector polynomials in x have the form 

v/(x> = e 
M;’ (-1)” -xr-‘Ah= L ?xx”(T-‘A)” h, o<x<co, 
nzO n. 

where (T-‘A)“‘h = 0 for some NE N. (Thus h E Z,(T-‘A)). It is not 
difficult to prove (e.g., by induction on the above N) that Z,(T-‘A) entirely 
consists of products of e(p) = (1 - ,u~)(“~‘~ and polynomials, simply because 
the associated Legendre functions have this form. The subspace Z,(AT-‘)I 
is T-IA-invariant and may be obtained by taking the closure in L,[-1, l] of 
the set Pm = {h(p)(l - ,u’)~” ( h polynomial} intersected by Z,(AT-‘)I. 
There is a unique bounded operator S on Z,(AT- l)’ such that 

I 

ASk = Tk, k E Z,(A T- ‘)! 

The set Pm n Z,(AT- ‘)l is S-invariant. 
Let e^ denote the (unique) function in Pm n Z,(A T- ‘)’ which is a 

polynomial with leading coefficient 1 and minimal degree multiplied by 
(1 -py)m* w e shall prove that e^ is a cyclic vector for S, i.e., 

{ h(S)6 ( h polynomial} = Pm n Z,(AT-‘)‘. 

First we note that h(S)f = 0 for f E Pm and h a nonzero polynomial implies 
f = 0. Indeed, otherwise one has (S - {) g = 0 for some 0 # g E P” and 
therefore (T - 0 g = -&I-A) g = 6 E Ipm, where &p)( 1 - ,~*)-(i’*)~ is a 
polynomial of degree at most the degree of the polynomial g@)( 1 -1~~)~““~ 
(cf. (35)). Thus 

belongs to Pm, but the left- and right-hand sides are products of 
(1 - d4(1’2)m and polynomials of different degrees, which is a contradiction. 
Hence, we may conclude that f = 0. 
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If q E Pm, put deg q for the degree of the polynomial q(p)(l -P*)-~‘*. 
For the degree of a polynomial h we write deg h. Assume that for II 2 0, 

{h(S)2 ] h polynomial with degree <n} 

={qEiP”]degq<n+dege^}. (37) 

Certainly, deg h(S)& < deg h + deg e” for h # 0. If for some 0 # h C P” one 
would have deg h(S)e” < deg h •l deg e”, then there exists a polynomial r # 0 
such that r(S); = 0, which implies the false statement e^ = 0. Thus 

deg h(S)6 = deg h + deg 2, OfhElPO. 

Next let q E Pm and deg q = n + 1 + deg $. For a suitable constant c # 0 the 
function q - cS ‘+ ‘e^ E Pm has degree strictly less than n t 1 + deg e^. Using 
the induction hypothesis (37) one finds a polynomial r with deg r < n such 
that 

q - cs n + ‘2 = r(S)& 

which implies Eq. (37) with n replaced by n + 1. Hence, e” is a cyclic vector 
for S. I 

If fi = 0 for I > L + 1, the operator Z -A has finite rank. Then the deter- 
minant of the operator (T- z)-‘(T- zA), z & [-I, I], is well defined and 

det(T- z)-‘(T- zA) =A”‘(z), z @c [-I, 11, (38) 

where A”‘(z) is the dispersion function 

A”(z)= 1 +z 
i 

l VYluY P> dp 
--I P--r 

and the characteristic binomial is given by 

v”(o,a)=~c i .w+ 1) 
(I - m)! 
(I + m)! 

gj”(u)( 1 - U*)(“2)m P;“(p). 
I=Vl 

The polynomials g;(r) satisfy the recurrence relation 

W+1W -cfi>t.GW=(~-m+ l>g;"+,(r)+(Etm)g;"_,(r). (39) 

For m = 0 and c ( 1 the relationship (38) between spectral properties of 
T-IA and the well-known dispersion function of transport theory was proved 
by Hangelbroek [ 191, but his proof carries over to general m and C. AS a 
consequence of Lemma 2 and Eq. (38), if fi = 0 for I > L + 1, the algebraic 
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multiplicity of an eigenvalue l/A of T-‘A coincides with the order of the 
zero of Am(z) = 0 at z = 1. 

Let us make a few remarks concerning history. Feldman [8] observed that 
with respect to the basis (P;“),,,>, of L,[-1, l] the operator A -AT has a 
matrix representation of Jacobi type, and from this observation he derived 
Lemma 2 (stated for c > 1). Shultis and Hill [3 I] and Case [S] have 
exploited the recurrence relation (39) to prove the simplicity of the finite 
zeros of Am(z) = 0 for c < 1. The observation (made for m = 0) that, if 
cf, # 1 for 12 m, the vector e(p) = (1 - $)m’2 is a cyclic vector of A ‘T, 
and its major consequences are due to Hangelbroek [ 191 (also [25 1). We 
emphasize that the finite zeros of Am(z) = 0 (and thus the nonzero eigen- 
values of T-IA) may have multiple order and be situated off the real and 
imaginary axes (see [29]). 

In order to develop full and half range theory one must prove the absence 
of irregular critical points of T-IA, and for this purpose it suffices to show 
the absence of eigenvalues embedded in the continuous spectrum. In view of 
(38), this is intimately related to the nonexistence, for v E I-1, 11, of zero 
limiting values of A (u f k) as E + 0. Except for the case u = f 1 and m > 1, 
where zero limiting values may occur, this was shown by Garcia and Siewert 
[lo] (for m = 0 also [9]). Partial results were derived by Hangelbroek [ 191 
(m=O, c< 1, -1 <u< 1) and Lekkerkerker [25] (m=O, c< 1, u=fl). 
We shall give a new and concise proof of these results and at the same time 
establish the T-regularity of A. 

LEMMA 3. If a, = 0 for 1> L + 1 and m = 0, 1, the operator A is T- 
regular. 

Proof Let us search for nonzero solutions of Eq. (33) of the form 

f"(x,p> = eex'"$(u,PU), (40) 

where u E [-I, 11. By substitution in Eq. (33) one gets 

X j1 $(u, 4 PX4 d$. (41) 
-1 

Using the three term recurrence relation for the associated Legendre 
functions one sees that the functions J”\ i #(u, p) Pj”(i) d@ (I > m) satisfy the 
recurrence relation (39), and thus, on proper normalization, one gets 
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As a consequence we have 

(0 -p) @(u,p) = uty”(u,p) tEf U~“(?4P)(1 -P2)(“2)m* (43) 

For either 2, E (-1, 1) or m = 0, 1 the condition d(v, .) E L,[-1, l] implies 
I+?“(u, u) = 0. This in turn implies #(u, =) E Pm, which contradicts the proof 
of Lemma 2. Hence, for either u E (-1, 1) or m = 0, 1 there cannot be any 
eigenvalues of S on [-1, 11. I 

For u = f 1 and m > 1 the operator S cannot have an eigenvalue, in spite 
of the fact that Am(+l) may vanish (see [lo]). The full Hangelbroek 
correspondence (38) between eigenvalues of S and zeros of the dispersion 
function does not carry over to this case. In fact, for this case g,“(l) = 
g,“+,(l) = g,m+,(l) = *** (see [IO]), but this number is nonzero, and 
therefore the function #(l,p) does not belong to L,[-1, l] (otherwise 
((1, .) E Pm). Finally, if u is a finite zero of the dispersion function outside 
[-1, 11, one may use (43a) and #(u, .) & Pm to derive vrn(u, v) # 0. In this 
way we recover another result of Garcia and Siewert [lo] (for m = 0 also 
IS]), which for m = 0 and c < 1 was announced in [ 191. 

If a, = 0 for 12 L + 1, the T-regularity of A enables us to apply the 
abstract theory of the previous section. This is also possible for more general 
cases where A still is T-regular. We note that in the most general case of 
anisotropic one-speed neutron transport, the T-regularity of A is an open 
problem. 

VI. SYMMETRIC MULTIGROUP TRANSPORT EQUATION 

The symmetric multigroup approximation in neutron transport with 
isotropic scattering leads to the coupled set of N equations 

(i= 1,2 Y..., A3 (44) 

where ,B E [--I, l],J(x,p) is the angular density of neutrons with speed l/O, 
(in units of the largest speed) and C = (C,):,,, is a real symmetric matrix. 
We take o,>a,>.,. > uN = 1, denote by Z the diagonal matrix with 
diagonal entries ui ,..., Us, but refrain from the condition C, > 0 (1 < i, 
j<N) required for physical reasons. We also disregard the physical 
necessity that&(x, ,u) be nonnegative (i = 1, 2 ,..., N). 
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We study Eq. (44) in the Hilbert space H of N-vectors h = (hi),:=, of 
functions hi E L,[-1, 11. This space we endow with the inner product 

(h, k) = t ui J”’ hi(p) k;(p) &, h = (hJ;= , , k = (ki):7,. 
i=l -I 

On this space we define the operators T, A, and Q, by 

Cn)i(P) = a, ‘Phi(Pu>3 

(Ah)i(~)=hi(~)-to,~’ E Ciji’ hj(iu’)d~‘, 
j=l -1 

(Q*h)i(Pu) = hi(P) (P i 01, (Q* hIi = 0 (P >< Oh 

where h = (hi);‘,, . Then T and A are self-adjoint, Ker T= {O}, Q, is the 
orthogonal projection onto the maximal positive/negative T-invariant 
subspace of H, I-A has finite rank and satisfies the condition 

Ran(Z -A) E Ran 1 TJ*, o<a<;. 

The operator A is (strictly) positive if and only if 

("[6ij - cij)yj= 1 

is (strictly) positive, and invertible if and only if the above matrix is inver- 
tible. 

LEMMA 4. The operator A is T-regular. 

ProoJ Because T is bounded and I-A compact, the operator A is T- 
regular at ,I= 0. Therefore it suffices to find out if T-‘A has any eigenvalues 
within its continuous spectrum (-co, -11 U [ 1, 00) (which coincides with 
a(T-‘)). 

Let 0 # h = (hi)?= r E H be an eigenfunction of T- ‘A at the eigenvalue 
l/J, where 0 #A E 1-1, 11. We thus assume ah= 7h, which may be 
written as 

(AUi -P) hi(P) 

=+A 5 Cij“ h,(p’)dp’, l<i<N, -1 <,u < 1. (45) 
j=l -1 

Now observe that there exists 1 < i < N (e.g., i = N) such that -1 < Aoi < 1. 
Also observe that Eq. (45) implies that all functions hi are continuous on 
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i-1, 1 ]\@a, T..., no,}. Hence for all i for which loi E [-1, l] the requirement 
hi E L,[-1, 1 ] necessarily entails 4 Cj”= 1 C, SL 1 hj(c1’) &’ = 0, which in 
turn implies hi(p) = 0. Thus T-IA cannot have any eigenvalue within the set 
(-co, -a,] U [a,, co). Now consider l/3, & (-a,, -11 U [ 1, u,), and let a = 
min{i ( ,Ioi @ [-1, l]}. Then hi(p) = 0 for a < i < IV, while 

hi(P) = ~Cj”=lCijJY,hj(~“)d~’ 
2&Ji-pu) ' 

l<i<a. 

Putting 5 = u’ I hi(~) dp)y= 1, we find for 

t 

S,-fi 2 CijJ1 

a 

A,@)= (nui-p)-‘dp 

J-1 -1 1 i,j=l 

that 

We thus conclude that 1 must be an eigenvalue of a truncated symmetric 
multigroup problem, where the only groups to be considered are the ones 
with 1 < i < a. This truncated multigroup problem reads 

P $ txt Pu> + ui gi(x7 Pu> 

where u,>u2> . . . > u. > I/] I /. The eigenvalue 3, of T-IA is a discrete 
eigenvalue of Eq. (46) and the eigenfunction has the form h = (hi)rE 1 with 
h atI=“’ = h, = 0 and (hi)rzl an eigenfunction of Eq. (46) corresponding 
to 1. We now repeat the whole reasoning leading to these conclusions for the 
generalized eigenvectors of T-IA corresponding to A and we argue by 
induction on the length of the Jordan chain. As a result we find that 

-LO-‘4 s Z,,,K’A,) 0 {O}, (47) 

where T, and A, are the analogues of T and A for Eq. (46), Z,,,(T;‘A,) is 
a subspace of the direct sum of a copies of L, [--I, I] and { 0) is the trivial 
subspace of the direct sum of N - a copies of L2[- 1, 11. Now let (Ah, k) = 0 
for some h E Z,,A(T-‘A) and all k E Z1,l(T-‘A), and let us prove h = 0. 
Certainly, hi = ki = 0 for i > a + 1. Put h, = (h ,,..., h,), k, = (k, ,..., k,) and 
I, = (I , ,..., I,), where I = T-‘Ah satisfies li = 0 for i > a + 1. Then 

0 = (4 k) = (7’4 k) = (TJ,, k,) = (A,&, k,), 
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and Au is self-adjoint on the direct sum of CL copies of L, [ - 1, 1 ] weighted by 
u1 ,.a., u,. Because l/n is either an isolated eigenvalue or a regular point of 
T;‘A,, property (vi) of Section II implies that h, = 0, whence h = 0. Again 
using property (vi) of Section II, we find that l/1 cannot be an irregular 
critical point of the restriction of T-‘A to Z,(ATp’)‘, endowed with (a, .)A, 
Hence A is T-regular. 1 

We conclude the discussion of this example with some references. Full- 
range results were derived for strictly positive C - C by Greenberg [IS] and 
Lekkerkerker [26], who both excluded eigenvalues of T-‘A within the 
continuous spectrum. Half-range theory was discussed in [ 171 (also 
128, Sect. VI.71) for (nonstrictly) positive A. 

VII. DISCUSSION 

We have provided a complete theory of existence and uniqueness for 
partial range boundary value problems of type (l)-(2), as well as the 
modified problem (l)-(2~( 18). The indices 6 *, y * and St, yi provide a 
measure for the non-uniqueness and noncompleteness of the solutions of 
these problems. For physical problems, such non-unique or noncomplete 
situations are of considerable importance, as they often reflect the existence 
of conservation laws. See, for example, Section VI.5 of [28], in which the 
neutron current density is shown to be conserved for c = 1; also, strong 
evaporation problems [32, 331. 

The results of Sections III and IV of this paper are in disagreement with 
those in the recent monograph of Kaper et al. [20] concerning indefinite 
collision operators. This monograph treats extensively the one-speed neutron 
transport equation outlined in Section V. The simplicity of the finite zeros of 
the dispersion function Am(z) and the nonexistence of zeros of Am(z) off the 
real and imaginary axes correspond to similar properties of the reciprocals of 
the eigenvalues of T-‘A (cf. (38)). These properties are violated in general in 
the abstract problem, and appear also not to hold for the problem treated in 
the monograph. Indeed, recently it has been shown [29] that A”(z) has zeros 
off the real and imaginary axes for m = 0, c = 9, f, = 0.4, f2 = 4, and f, = 0 
(I > 3). By the continuous dependence of these zeros on the parameters c,fi , 
and f,, the same can be made true under the noncritically assumption& # 4. 
Adaptation of an argument in [29], using the symmetry and continuous 
dependence of the eigenvalues, can also be used to obtain a model with 
nonsimple finite eigenvalues. This mistake in the eigenvalue problem for 
T- ‘A has overwhelming consequences, and is the principal reason why the 
Jordan structure of T-IA and the decompositions in this paper are 
considerably more complicated than the (incorrect) decompositions in the 
monograph. 
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