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I. Introduction 

Linear kinetic equations describing evaporation of a liquid into a half space 
vacuum may be formulated as abstract differential equations of the form 

( T f ) '  (x)  = - A f ( x ) ,  0 < x < o% (1) 

where T and A are self-adjoint operators on a complex Hilbert space H, zero is 
not an eigenvalue of T, and A is positive with closed range and finite dimensional 
kernel. In typical strong evaporation problems (cf. [1, 2, 3]) the Hilbert space H 
is an Lz-space of square integrable functions weighted by a Maxwellian distribu- 
tion, T is an operator of multiplication by an independent variable plus drift 
velocity, I - A is a compact  operator and the null space Ker A of A is non-trivial. 
The solution f ( x )  represents the deviation of the velocity distribution from the 
drift Maxwellian. On Eq. (1) one usually imposes the boundary conditions 

Q + f(0) = f+ (2 a) 

lim II/(x)It -- 0, (2 b) 
X--~ o9 

where Q + is the orthogonal  projection onto the maximal positive T-invariant 
subspace of H, and f+ is a given vector in the range Ran Q + of Q +. Additional 
constraints are imposed corresponding to the relevant conservation laws. 

Cercignani [1] first conjectured that the breakdown of existence of station- 
ary solutions of strong evaporation models would show up in the linear theory 
as a non-completeness result. Such concrete evaporation models have been 
analyzed recently by Arthur and Cercignani [1], and by Siewert and Thomas [2, 
3]. These three papers add up to over 40 pages of mostly computat ional  analysis. 
Still a major purpose is to verify the existence and uniqueness of solutions of 

* Permanent Address: Dept. of Mathematics, Virginia Polytechnic Institute & State University, 
Blacksburg, Virginia 24061, USA 



Vol. 35, 1984 An abstract approach to evaporation models in rarefied gas dynamics 157 

the problem (under additional constraints) for drift velocities below the speed of 
sound of the vapor, and to back up analytically the numerically observed 
breakdown of the existence of solutions for drift velocities above this threshold. 
Our objective will be a concise derivation of these results in a general setting 
which allows for the routine analysis of a large class of similar problems, i.e., one 
dimensional stationary problems with (linear) self-adjoint collision operators. In 
fact we obtain a complete existence and uniqueness theory for the abstract 
boundary value problem (1)-(2), with a simple algorithm for determining the 
location of transitions from existence to non-existence of solutions. 

The mathematical  foundations on which the present study is based were laid 
mainly by Beals, Greenberg, van der Mee and Zweifel [4, 5, 6, 7, 8]. These authors 
studied abstract boundary value problems of the type (1)-(2), but with condition 
(2b) replaced by the condition Ilf(x)IL = 0 ( 1 )  as x ~c~.  (In [8] both asymptotic 
conditions are studied.) Nevertheless, the analysis of [4, 5, 6] can be adapted to 
meet the present situation. As pointed out in [5, 7], the existence and uniqueness 
problem turns out to be a scrutiny of the structure of Ker A. Our main task will, 
indeed, consist of unraveling the structure of this finite dimensional space. 

In Section II we deal with the boundary value problem (1)-(2) in an abstract 
way, utilizing a reduction procedure appearing in [5, 6, 7] to treat the problem 
of non-trivial Ker A. For clarity of exposition we will assume A to be bounded, 
al though it is seen at once from [5, 6] that the results carry over in toto to the 
case A unbounded (but see [6] for restrictions on T when both T, A unbounded).  
We shall actually establish under what conditions the boundary value problem 
is uniquely solvable. The main result of this article, the measure of non- 
completeness theorem presented in Section II, provides a concise computat ional  
prescription for determining existence of solutions. Section III is devoted to the 
applications treated in [1, 2, 3], and we conclude with some remarks related to 
the general abstract problem. 

II. Solutions in abstract Hilbert spaces 

Throughout  this section T and A will be self-adjoint operators on a complex 
Hilbert space H with inner product  (.,.), KerT  = {0}, and A bounded, positive 
and Fredholm. Thus A has closed range and a kernel of finite dimension. Let 
K = T -  1 A be the operator on the (dense) domain {x e H [Ax ~ Ran T} satisfy- 
ing T K  = A. The closedness of T a n d  the boundedness of A imply that K is a 
closed operator. Thus the adjoint K* =__ A T - 1  is closed and densely defined. 
In addition we assume that the zero root linear manifold 

Z o ( K )  = { x ~ D ( K ) 1 3 n : K " x  = O) ~_ D ( T )  

and is non-degenerate: 

{ h ~ Z o ( K ) I ( T h ,  k ) = 0  for all k~Zo(K.)} ={0}.  
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Under these hypotheses we obtain the following result (cf. [5, 6]): 

Lemma. We have the decompositions 

Z o (K) | Z o (K*) ~ = H, Z o (K*) if) Z o (K) • = H,  

where 

A [Z o (K)] ___ Z o (K*) = T [ Z  o (K)], 

A [Z o (K*) l] = Z o (K) • = T [ Z  o (K*) • ~ D (T)]. 

Furthermore, if B is an invertible operator on Z o (K) satisfying ( T B -  1 x, x) > 0 
for x e Z o (K) and P denotes the projection of H onto Zo (K*) • along Z o (K), then 

A s = T B - I ( I - P )  + A P  

is a strictly positive (un)bounded operator satisfying 

A~ 1 T = B Q (T -1A [Zo (~,)l) -1. 

The solution of the abstract boundary value problem is not found in general 
in H. We refer to [5, 6, 8] for a discussion of "weak" solutions. To describe 
solutions we introduce the inner product 

( x , y ) w = ( l T l x ,  y), x , y ~ D ( Y ) ,  

and denote the completion of D (T) with respect to it by H T. The orthogonal 
projection Q+ onto the maximal T-invariant T-positive subspace of H leaves 
invariant D (T), and its restriction to D (T) extends to an orthogonal projection 
on H T, which we also denote by Q +. Then for every 9+ ~ Q + [HT] there exists a 
unique solution 9 of the modified half space problem 

(Y9)' (x) = -- A s 9 (x), 0 < x < ~ ,  

Q + 9 (0) = g+, lim [I 9 (x)I[ T = 0; (3) 
X--+ (X3 

this solution can be described by an invertible operator EB:H r ~ HT, the 
so-called albedo operator, and is written as (cf. [4]) 

g(x) = e-xr-~ABEng+,  0 < X < ~ .  (4) 

Once one has specified B according to the statement of the lemma, every solution 
of Eqs. (1)-(2) has the form (cf. [5, 6]) 

f ( x )  = e - x r - ' A p E n 9 + ,  0 < X < ct3, (5) 

where 9+ is some vector in Q+ [HT] such that 

Q + PEn g + = f+ .  (6) 

Theorem. Given f+ ~ Q+ [HT], the problem (1)-(2) has at most one solution. 
There is a unique solution for every f+ eQ+ [HT] if and only if KerA has the 
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property that (Tx, x) < 0 for all 0 :/= x e KerA. In general, the measure of non- 
completeness for the solution of the problem coincides with the maximal number 
m of linearly independent xl . . . .  ,x, ,~ KerA such that 

(i) (Txj ,xk)=O for j C k ,  

(ii) (Txi,xi)>=O for i = 1 , 2  . . . .  ,m. 

Proof. To establish uniqueness we consider Eqs. (1)-(2) for f+ = 0 and prove 
that the solution is f = 0. However, every solution f of Eq. (1) with boundary 
conditions (2 a) and 

[If(x) lit = 0(1) (x ~ oo) (7) 

is uniquely specified by f+ and its value at infinity ([6], Sec. IV), which implies the 
uniqueness. 

Let us investigate the existence. Suppose that for given f§ e Q + [Hr] there 
exists a solution of Eq. (1)-(2). Then this solution has the form (5), where g§ 
satisfies (6). Now let Q_ denote the orthogonal projection onto the maximal 
negative T-invariant subspace of H. As K e r T =  {0}, one has Q_ = I - Q+. As 
with Q + we may define Q_ on H r. Further we observe that A~ 1 T is self-adjoint 
with respect to the inner product [9] 

(x, Y)A~ = (AB x, y), 

which, because of the invertibility of A~, is complete on H. Let P+ denote the 
(.,.)a~-orthogonal projection onto the maximal positive A~I T-invariant sub- 
space of H. As shown in [4], P+ leaves invariant D (A/71 T) = D (T), and its 
restriction to D(T) can be extended to a bounded projection on Hr ,  also 
denoted by P+. We recall (cf. [4, 5, 6]) that 

P + E s Q + x = E B Q + x ,  x e H  T. 

Returning to Eqs. (1)-(2), we directly infer from Eq. (6) that 

f+ = PEBg+ -- Q_ PEBg+ s R a n P P +  @ RanQ_ ~ H r . 

Thus the measure of non-completeness 6~ for the solution of the problem equals 

fi~ = dim Q+ [/-/r] = dim Hr  (8) 
(RanPP+ |  RanPP+ | RanQ_"  

Because Eq. (1) with boundary conditions (2 a) and (7) always has at least one 
solution [6, 7] and E 8 is an invertible operator on H r [4], one also has 

Ran PP+ �9 Ran Q_ + KerA = H r .  (9) 

Exploiting Eqs. (8) and (9) one obtains 

RanPP+ | RanQ_ + KerA KerA 
6~ = dim = dim 

Ran PP+ �9 Ran Q_ [Ran PP+ | Ran Q_] ~ KerA 
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It should be observed that the subspace 

N_ = [Ran PP+ �9 Ran Q_] c~ KerA 

has the property that (Tx, x) < 0 for all 0 va x ~ N_. Furthermore, any subspace 
L with the same property and satisfying N_ _c L_ _ KerA necessarily coinci- 
des with N_ [5, 6, 7]. Using standard Pontrjagin space theory ([10], Chapter IX) 
we conclude that 5 + coincides with the (uniquely defined) dimension of a sub- 
space N+ of KerA, which satisfies (Tx, x) > 0 for all x e N+ and is maximal in 
this respect. This characterization of 5~- completes the proof of the theorem. 

The set of all f+ ~ Q+ [Hr] for which Eqs. (1)-(2) have a solution has been 
shown to coincide with the finite-codimensional subspace Ran PP+ G Ran Q_ 
of H r. Let us find a more expedient way to specify those f+ for which a solution 
exists. Let us put 

M+ = [Ran PP-v- G Ran Q +] n z o (K), (10) 

where P_ is the (.,.)A~-orthogonal projection onto the maximal negative 
A~ 1 T-invariant subspace of H and where the restrictions of P!-, P and Q+ to 
D (T) have been continuously extended to H r with all notation preserved. It is 
known [5, 6, 7] that (Tx, x) > 0 for all 0 r xeM+ and M+ is maximal in this 
respect, while 

(T [M+]) • = M_ �9 Zo (K*) • 

(where the orthogonal complement is understood in H with respect to (.,.)). Thus, 
one finds 

(T [Ran PP+ | Ran Q_])• = Q+ [M+] | Ran Q_. 

Hence, given f+ e Q+ [D (T)] the boundary value problem (1)-(2) has a solution 
if and only if 

(Tf+, Q+ g) = O, 9eM§ (11) 

If one tries to solve Eqs. (1)-(2) with the additional piece of information that 
f+ eQ+ [KerA], then, of course, f+ = Q + f w h e r e  

f e  [Ran PP+ �9 Ran Q_] c~ KerA = M_ n KerA. (12) 

Conversely, if f+ E Q + f  with f taken as above, then f+ e Ran PP+ @ Ran Q_ 
and Eqs. (1)-(2) have a solution. We now establish 

Corollary. Let KerA ~ Ran Q_ = {0}. Then the codimension in KerA of the 
linear set of those fe  KerA for which f+ = Q + f  has a solution coincides with the 
measure of non-completeness fit. 

Proof. It can be shown (see [5], Sec. V) that M e c~ KerA has the property 
(Tx, x) ~ 0 for 0 • x e M_+ n KerA, and is maximal in this respect. Again from 
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s tandard Pontr jagin space theory [10] one finds that  the codimension of 
M c~ KerA in KerA equal s the maximal  number  m of linearly independent  
x l , . . . ,  Xm ~ Ker A satisfying properties (i) and (ii) in the s tatement  of the theorem, 
which establishes the corollary. 

III. Applications to evaporation problems 

This section is devoted to the evaporat ion models studied in [1, 2, 3]. We 
shall specify H, T and A, and unravel the structure of Z 0 (K). 

1. The one-dimensional B G K  model  equation 

(c + d) ~xx (x, c) + f ( x ,  c) 

where d > 0 is a fixed positive drift velocity. We study this equat ion on the 
Hilbert space H = L 2 (1R)~ of measurable functions h, k: IR--, t12 with inner 
product  

(h ,k)  = 7~ -1 /2  ~ h ( c ) k ( c ) e - C 2 d c ,  
--o0 

and define T and A by 

(Th) (c) = (c + d) h (c) 

( A h ) ( c ) = h ( c ) - T c  -1/2 S {1 + 2 c c ' + 2 ( c  2 - - 1 ) ( c ' 2 - � 8 9  ' 
2 

Then T is unbounded  self-adjoint with zero null space, A bounded positive and 
(incidentally) I - A compact.  The kernel of A is the linear span of the vectors 1, 
c and c 2 --2-'1 So KerA ~ Ran Q_ = {0}. Now we introduce the sesquilinear 
form 

[h,k] = ( rh ,  k) = rc -1/2 ~ (c + d ) h ( c ) k ( c ) e - C 2 h ( c ) d c .  
--0(3 

One easily finds that  {1,c 2 -  � 8 9  c 2} forms a basis of KerA of mutual ly  
[., .]-orthogonal vectors, while 

5 [d c - c 2, - 2 " [1, 11 = d, [c 2 - �89 c 2 - �89 = ad, dc  - c 21 = �89 2 3) 

The only value of d > 0 for which [d c - c 2, d c - c 2] = 0 is d = x / ~ ,  and for 
this sole value of d the zero root  linear manifold Z 0 (K) will strictly contain 
KerA; in this case one has T - 1 A ( c  3 - 3 c )  = dc  - c 2. 
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Let us apply the main theorem. Then for all cases Eqs. (1)-(2) have at most 
one solution, but for 0 < d <,,//3/2 the measure of non-completeness equals 2 
and for d > x / ~  it equals 3. The existence of solutions for all f+ ~ Q + [HT] 
depends only upon the behavior off+ ~ Q + [Hr] n Q + [KerA] = Q + [KerA], and 
so we may study (for c > - d, of course) 

f+ (c) = Ae + 2c(do - d) + (c 2 - �89 (13) 

where A~, d o and AT are dimensionless physical quantities with A~ and AT to 
be fixed by the conservation laws. Indeed, if, for d < x / ~ ,  one chooses do (and 
thus do - d) arbitrarily, there will be precisely one A~ and one ATsuch that Eqs. 
(1)-(2) with f§ given by Eq. (13) have a solution. To see this we observe that for 
d < x / ~ 2  one has [ d c - c  2, d c - c  2 ] < 0 ,  [ 1 , 1 ] > 0  and [c 2 - � 8 9  2 - � 8 9  
whence given d o there exist unique A~ and AT such that f§ = Q+f with 
f e M _ c ~ K e r A .  For d > x / ~  the subspace KerA satisfies (Tx, x)>O for 
x e K e r A ,  whereas (Ty, y) < 0 for all 0 va y e M _ .  Thus M_ c~ KerA = {0} for 
d ->-x/~" Hence for d > x / ~  Eqs. (1)-(2) with boundary data f+ as in Eq. (13) 
are solvable only for f§ = 0. We therefore recover the results of Siewert and 
Thomas [2]. 

2. The three-dimensional BGK model equation 

(c x + d) ~ (x, ~) + f(x,  ~) 

E 1 ~--- T g - 3 / 2  I f ( g , )  + 2 ~" ~' + _ , z  _ e-C'2 d 3 c' 

where d > 0 is a drift velocity in the x-direction. This equation is studied on the 
Hilbert space H = L 2 (]R3)~ of measurable functions h, k: IR - .  II; with inner 
product 

oo 

( h , k ) = ~  3/2 y h(d) k(~)e-C2d 3c, 
- -CO 

while T and A are defined by 

(rh) (~) = (c~ + d) h (~) 

(Ah)(~) = h(~) - rc -3/2 ~ h(g')[1 + 2~-~ '  + ~(c 2 - 3)(c'2 - 3)]e-C'~d3 c'. 
- - c O  

Then T is unbounded self-adjoint with zero null space, A bounded positive and 
(again incidentally) I - A compact. The kernel of A is spanned by the vectors 1, 
cx, c r, Cz and c2 -g-3 With respect to the sesquilinear form 

[h,k] = (Th, k) = n -3/2 ~ (c x + d)h(~)k(~)e-c2 d3 c 
- - C O  
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the set {1, c 2 - 3 d c x, cy, c=, C 2 - -  2 3-} is a basis of K e r A  of mutual ly  or thogonal  

vectors, while 

[1,11 = d, [c2 -3dG,  c 2 - 3 d G ] = 9 d ( d 2 - ~ ) ,  

2d, [c 2 - ~, - ~] = ~d. [ c , , c , ] = G ,  Cz]=l  3 c 2 3 

The only value of d > 0 for which 9d(d 2 - s) = 0 is d = x / ~ ,  and for this sole 
value the space Z 0 (K) strictly contains KerA,  as we may compute:  

T -1 A {d(c 2 - 3c  2) + G (  c2 - ~)} = c2 - 3 d c  x. 

For  this model  Eqs. (1)-(2) have at most  one solution, but  for 0 < d < x / ~  
the measure  of non-completeness  equals 4 and for d >__ ~ it equals 5. Let us 
consider initial values f+ ~ Q + [Ker A] written in the form 

f+(~) = A0 + 2(do - d)G + (c 2 - ~-) A T +  2dycy + 2d~G, 

where we anticipate that  AO, AT, dy and d~ must  be determined by conservat ion 
of mass, energy, and the transverse momenta .  Then f+ is an arbi trary vector in 
{2 + [Ker A], while Ker  A c~ Ran  Q _ = {0}. The corollary does, in fact, imply that  

for d < x / ~  and given d o Eqs. (1)-(2) have a solut ion for unique values of the 
parameters  A0, AT, dy and d=, whereas for d > x /5 /6  Eqs. (1)-(2) are not  (except 
for the trivial case) solvable. 

3. The three-dimensional BGK model in moment form 

f+ (x,c)] 7+ (x,e)] _,/~ 
(c + d) ~ (x, c)J + f _  (x,c)J 

with 

[ 2 2 (C2 -- 2) 3(C --~1) 1 1 + 2 c ~ + 5 ( c  _ ! )  , 2 2 
D (c, ~) 2 

2( e2 __ ,)22 23 

where d > 0 again is a drift velocity. We analyze this equat ion on the Hilbert  
space H = L 2 (IR)o G Lz 0R)o, where L2 (lR)a is the space defined in Sec. III.1. We 
define T and A on H by 

(Th)(c) = (c + d)h(c) 

(Ah)(c)=h(c)--n 1/2 ~ D(c,d)h(d)e-e2dd, 
- o o  

where h (c) is a co lumn vector. Then T is unbounded  self-adjoint with zero null 
space, A bounded  positive and (again incidentally) with zero null space, A 
b o u n d e d  positive and (again incidentally) 1 - A compact .  The kernel of A has 
the form 

KerA = Span{ 'l' = E13dc+c21 = Ice  11} 
1 ' 1 ' 
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where the vectors on the right-hand side are mutually orthogonal with respect 
to the inner product  [h, k] = (Th, k). One computes that 

3 

The only d > 0 for which one of these inner products vanishes is d = ,,/5/6, and 
for this value the space Z o (K) is strictly larger than Ker A; indeed, 

Eqs. (1)-(2) have at most  one solution, but for 0 < d < x / ~ 6  the measure 
of non-completeness equals 2 and for d > x / / ~  it equals 3. Let us consider 

We observe KerA ~ Ran Q_ = {0} and apply the corollary. For 0 < d < x / ~  
and arbitrary do there exist unique A~ and AT for which Eqs. (1)-(2) have a 
solution; for d > x / ~  Eqs. (1)-(2) do not have non-trivial solutions. These are 
the results of Siewert and Thomas [3]. Further, the Wiener-Hopf factorization 
indices of the dispersion matrix of the problem are ~ = x 2 = 1 for d < , v ~ ,  

and x 1 = 1 and ~2 = 2 for d > ~ (see [3], Appendix C). But for d # ,,/5/6 the 
sum n~ + x2 is known to be the measure of non-completeness (cf. [11]; for 
d = w/5/6 the dispersion matrix has zeros on the extended imaginary axis and 
the situation is more complicated) and this corresponds to our result. 

IV. Discussion 

Considerable effort over the past ten years has been devoted to the rigorous 
treatment of various specific linear transport  models. We now have available an 
existence and uniqueness theory for "half range" boundary value problems 
related to the abstract equation (1), for T and A self-adjoint (both possibly 
unbounded)  and A positive Fredholm [5, 6]. The abstract equation models 
numerous transport  phenomena in addition to rarefied gas dynamics, including 
electron and phonon  transport,  radiative transfer, neutron transport, etc. The 
linear problems in gas dynamics illustrated in this article represent, as is typical, 
perturbations of density from the equilibrium distribution. For that reason the 
asymptotic condition (2 b) has been studied. Equally it is possible to obtain an 
analysis of the boundary value problem (1)-(2 a)-(7). However, in this case we 
have: 

(i) existence is guaranteed, i.e., measure of non-completeness is zero. 
(ii) non-uniqueness: measure of non-uniqueness may be described in terms of 

the form x ~ (Tx,  x) on a basis of KerA. 
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The abstract problem with T bounded and A (possibly unbounded) with 
finite dimensional negative part has also been studied [8]. Such problems are 
typical of one-speed (or symmetric multigroup) neutron transport in supercriti- 
cal media, T representing an angular variable and supercriticality reflected in the 
non-positivity of A. Again, results of the sort above are available. In general, for 
this case both existence and uniqueness are lost, and the analysis of measure of 
non-completeness and measure of non-uniqueness is substantially more compli- 
cated. We note in particular that complex zeros of the dispersion function, on 
and off the imaginary axis, also non-simple, are all possible. 

Finally, we note that the compactness of I - A in the examples discussed, 
while irrelevant to the application of the theorem and corollary derived in 
Sec. II, does in fact have the consequence that Eq. (1) can be solved in H rather 
than H r ("strong" solutions, cf. [4, 7, 12]). 
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Abstract 

An efficient algorithm is presented for determining the unique solvability of certain one- 
dimensional stationary transport problems. The non-existence of stationary evaporation states with 
supersonic drift velocities for one and three dimensional BGK model is recovered. 

Sommario 

t~ presentato un algoritmo efficiente per determinare la solubilitfi univoca di alcuni probiemi 
unidimensionali di trasporto stazionario. E ripresa la non esistenza di stati stazionari di evapo- 
razione con velocitfi di deriva supersoniche per modelli BGK a una e tre dimensioni. 
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