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1. Introduction 

The theoretical interest and the great deal of literature which has been 
published on criticality problems in multiplying media are justified by their 
significance with respect to nuclear reactor applications. The criticality problem 
is usually formulated as arising from the stationary linearized Boltzmann equa- 
tion, either in integro-differential or integral form, and it is studied as an eigen- 
value problem in a suitable functional space. In integral equation form one has 
to face the eigenvalue problem for an integral operator, which has a singular 
kernel depending on the geometry of the medium. 

Much of the literature has been devoted to these topics. In most cases one 
is searching for the eigensolutions of the criticality problem in a Hilbert space 
of square integrable functions. 

Recently some authors have formulated the problem in a space of contin- 
uous functions (see, for example, [4], [6], [21], [22]). 

In the criticality analysis for energy dependent transport, the integral opera- 
tor is not symmetric with respect to the couple x, E (position, energy) and hence 
an  L 2 analysis based on the self-adjointness of the operator is no longer possible. 
On the other hand, the Perron-Fr6benius-Jentsch theory for positive operators, 
as developed in the fundamental paper by Krein and Rutman [14], supplies a 
powerful tool in order to search for eigensolutions in a cone with interior, such 
as the positive cone of C. 

*) Work performed under the auspices of C. N. R. (Gruppo Nazionale per la Fisica-Matematica) 
and partially supported by M.P.I. 
The research leading to this article was completed while the third author was visiting the University 
of Florence in the summer of 1983. 
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However, it is our opinion that a space of summable functions is the most 
appropriate one from a physical point of view, because the L 1 norm of the 
neutron flux is the total number  of particles. Our opinion is shared by several 
authors (see [16], [18], for instance). 

In this paper we study the stationary energy dependent  problem in integral 
form for a multiplying cylindrical medium. This geometry, which leads to a 
rather complicated singular kernel of the integral operator, suffers from a consid- 
erable theoretical gap in comparison with slab and spherical geometry, in spite 
of its actual importance in reactor analysis. 

Our study is carried out in an L1 space, in which the positivity properties 
of the operator still supply a suitable tool for establishing criticality, al though 
the positive cone of L~ has no interior. The concept of u0-positivity, as formulat- 
ed by Krasnosel'skii, replaces the one of strong positivity, and supplies the 
criticality analysis in La space (or, in general, Lp spaces) with a new basis. On 
the other hand, the strict positivity of the transport  operator (namely, its kernel 
is a.e. positive) enables us to show that the critical solution is positive (a.e.). 

Consider a multiplying homogeneous cylinder of infinite height, embedded 
in vacuum or in a purely absorbing medium; under assumptions of isotropic 
scattering the stationary transport  equation for the total neutron flux q)(x, E) 
reads as follows, [3]: 

1 Ere, 

~o(x,E) = c ~ ~ T ( x , x ' , E ) S ( E , E ' )  qo(x',E') dE 'dx ' ,  
0 E,,., 

1 ~'~ +f  x ' e x p [ - - a ( E ) ( x  2 + x  '2 + z 2 - 2 x x  'cosO) 1/2] 
T ( x , x ' , E )  = ~ o -oo x 2 + x '2 + z e - 2 x x '  cosO 

S (E, E') = (E'/E) 1/2 ~r (E') f (E, E'); 

(1) 

dz dO 

(2) 

(3) 

If we recall the definition of c: c a (E) = a~ (E) + v a s (E), (as (E) -= R Z~ (E), Z~ 
being the macroscopic scattering cross-section, aao (E) = R Zj. (E), Z s being the 
macroscopic fission cross-section, and v the average number  of secondaries per 

f (E, E') dE = 1, V E' E [Era, EM]. (4) 
E,. 

where the cylinder radius is normalized to one and a finite interval of admissible 
energies is considered: 0 < E,, __< E _< EM < oo. Here a (E) is the total optical 
thickness, which is equal to the total cross-section ~ (E) multiplied by the cylin- 
der radius R; c is the average number  of secondaries per collision which is 
supposed to be independent of energy. 

f (E, E') is the energy transfer function a n d f  (E, E') dE dE' is the probability 
that a neutron (a neutron packet) with energy in (E', E' + dE') emerges with 
energy in (E, E + dE) after collision, and it is chosen such that 
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fission), (3) can be explicited by means of the energy transfer functions for 
scattering and fission: 

S (E, E') = (E'/E) '/2 (a s (E') f~ (E, E') + vay (E') fs (E, E')), 

where both fs (E, E') and fy (E, E') are normalized with respect to emerging 
energy. 

The existence and uniqueness of the solution of (1) in L 1 space rely on the 
following assumptions on a (E) and S (E, E'), (in order to simplify notations, let 

I = [0,11, U = [Era, EM]): 

A.1 a (E) is a real-valued, essentially bounded function of E, such that 

0 < % _< o-(E)_< aM < C~, a.e. on U. 

A.2 S (E, E') is a non-negative measurable function from U x U into IR. 

A.3 A real-valued, a.e. positive, Lebesgue integrable function r (E) exists such 
that 

S (E, E') _< r (E), for a.e. E, E' e U. 

A.4 S (E, E') has the properties 

0 < m _< ess inf {I S (E, E") S (E", E') dE"; E, E' e U}, 
U 

ess sup {~ S (E, E") S (E", E') dE"; E, E' e U} _< M < + oo. 
U 

Assumptions 1 and 2 are essentially technical; one can remark that A.2 implies 
S(E, E') ~ L 1 (U x U), because of (4). Assumptions 3 and 4 are necessary in order 
to work in an L~ setting; A.3 is anyway consistent with (4) and gives a sufficient 
condition for the weak compactness of the operator S: 

S : L~ (U) ~ L~ (U), 

(S g) (E) = S S (E, E') g (E') dE'; 
u 

A.4 gives a sufficient condition for the uo-positivity of S in L 1. As we shall see 
in-the last section, A.4 can be made far less restrictive, but for the sake of 
simplicity we shall give all proofs with A.4. 

We now give the abstract formulation of our problem, introducing the 
functional space L1 (V), V = I x U, in which we shall look for solutions to Eq. (1). 

Eq. (1) in L1 (V) reads as follows: 

q~ = c K rp, (5) 

where 

K : L I ( V  ) ~ LI (V) ,  

(K f )  (x, E) = ~ S r (x, x', E) S (E, E') f (x', E') dE' dx' 
I U  

with T (x, x', E) and S (E, E') defined by means of (2) and (3). 



Vol. 35, 1984 A stationary criticality problem in general Lp-space 169 

The present work is a continuation of [51 and draws back on some techni- 
ques exploited in [17]. The plan of this paper is the following. In Sec. 2 we shall 
prove that K is a weakly compact operator on Lj  (V) and, hence, that K 2 is 
compact on L 1 (V); moreover, we shall prove that K is a Uo-positive operator. 
Section 3 is devoted to the investigation of the eigenvalue problem; the positivity 
properties of K enable us to state the existence of an a.e. positive eigenfunction, 
corresponding to a (first, simple) dominating eigenvalue )~o- 

In Sec. 4, among other results, we obtain the continuous and monotonical 
dependence of 20 on the radius R characterizing the geometry of the system. 

As far as the physical problem is concerned, we recall that the average 
number c o of secondaries per collision, required to keep critical a cylinder of 
radius R, is equal to 1/2 0. Thus, we give a sufficient condition to warrant that 
the critical solution exists in a multiplying medium situation, i.e. the critical 
eigenfunction corresponds to some c o = 1/2o > 1. 

In the fifth section, after introducing some definitions concerning Riesz 
operators, we shall conclude that the spectrum of K on Lp (1 < p < ~ )  does not 
depend on p. The last section is a discussion about  the generality of our assump- 
tions. Here we shall point out how Assumption A.4 can be generalized. 

2. Properties of the operators K and K z 

Before studying properties of the integral operator K, let us recall the 
following inequality for T (x, x', E), [4], [20]" 

O<x'J<_T(x,x' ,E)<_Ko(%[x--x'I) fora .e .  EeU,  x C x ' ,  (6) 

where K o is the modified Bessel function of zero order, [1], and 

2 J =  
+ o o  

S 
--O0 

exp ( -  a M (4 + z2)1/2)/(4 + z 2) dz > 0. 

Inequality (6) states that T(x, x', E) is a nonnegative kernel with a weak singular- 
ity, since K o (u) ~ - In u as u --+ 0. 

First of all, we state the following proposition: 

Proposition 1. i) K is weakly compact as an operator acting on L 1 (V), hence 
K 2 is compact on L 1 (V); ii) K 2 is bounded as an operator acting from L 1 (V) 
into L~ (V). 

Proof: i) Since the Lebesgue measure of V is finite, it is sufficient to prove 
that for each e > 0, there exists fi > 0 such that: 

S~ I T (x, x', E) S (E, E')I dE dx < e, 
W 
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uniformly with respect to (x', E') e V, for each measurable set W c V, with 
mes (W) < 6, [19]. 

Recalling inequality (6) and applying A.3, one has 

[T(x ,x ' ,E)S(E,E ' )]  < K o ( % l x  -- x'[)r(E), fora .e .  E' e U, x C x'. 

Hence, putting % (x - x') = s, we have for each measurable set W c V 

.[~ t T (x, x', E) S (E, E')f dE dx <_ ~ 1  ~ Ko (1 sl) r (E) dE ds, (7) 
W T (W) 

where T (W) means the transformation of W, because of the change of variable, 
with rues (T (W)) = % rues (W), Ko (]sJ) r (E) ~ L 1 (T (V)), because of the loga- 
rithmic singularity of K o ([ s [); therefore, the absolute continuity of the Lebesgue 
integral ensures that, for each e < 0, there exists 6 > 0 such that  (7) is less than 
5, for each W with rues (W) < 6. 
So K is a weakly compact operator on L1 (V) and hence, K 2 is compact, [8]. 

ii) Directly from the definition of K, one has 

[(K2 f ) ( x ,  E)[ = [~ ~ {~ ~ T(x, x", E) T(x", x', E") S(E,E") S(E",E')dE" dx"} 
I U  I U  

�9 f ( x '  E') dE' dx'l ___ ~ ~ {S Ko (% Ix - x"l)Ko(% Ix"-  x'[) dx"} 
I U  I 

�9 {S S ( E , E " ) S ( E " , E ' ) d E " } .  [ f (x ' ,E ' ) ldE'dx ' ,  (8) 
U 

where we used (6). Consider now the following inequality 
+ ~  

~ K o ( % t x  -- x " t ) K o ( % l x " -  x ' l)dx" < ~ K 2 ( % y ) d y  = ~z2/4a,,, 
I 0 

where, for the computat ion of the latter integral, see [9], page 693. Substituting 
this into (8), one obtains 

[(K2 f ) ( x ,  E)[ _< (rc2/40m) I I {I S(E,E") S(E", E') dE"} I f(x ' ,  g')[ dE' dx'. 
I U  U 

Hence, from A.4 one finally has 

l ( / 2 f )  (x, E)I -< r~ 2 M Ilf 11/4%, for a.e. (x,E) E V, 

and the proposit ion is completely proved�9 [] 
Let us denote by L + the usual cone of a.e. nonnegative functions in L 1 (V). 

We now formulate the following proposition: 

Proposition 2. K is a uo-positive operator, with u o = 1 and exponent equal 
to 2, [11], [12]; i.e., for each f ~  L + (non-zero), there exist two positive numbers 
e, fi (depending on f ) ,  the exponent p = 2 and the positive vector Uo = 1, such 
that 

a ( f )  u o < KP f < fl ( f )  u o. 
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Proof: Let us start proving that c~ ( f )  exists: c~ ( f )u  o <_ K2 f ,  V f  ~ L +. Let f 
be nonnegative; one has: 

(K2 f ) ( x , E )  >- S ~ {~ J 2 x ' x ' d x ' }  {~ S(E,E")S(E",E' )dE"}  
I U  I U 

f (x', E') dE' dx' 

where inequality (6) is used. Then, making use of A.4, we obtain for each f e L +, 
non-zero, 

K2 f > j2 mo~' (f)/2 = c~(f) > O, 

where 

c((f)  = ~ ~ x' f (x', E') dE' dx' > O. 
I U  

The proof that K z f < fi ( f )  Uo, V f e L +, with a suitable fi, follows directly from 
ii) of Proposition 1, putting fi ( f )  = rc 2 M II f II/4 O-r.. 

3. The eigenvalue problem 

The properties we proved in the preceding section enable us to solve the 
eigenvalue, problem in L § connected with Eq. (5): 

(21 - K) ~0 = 0. (10) 

In fact, the positivity of K and the other forementioned properties of K confirm 
the effectiveness of the theory of positive operators in Banach spaces for the 
criticality analysis of a stationary transport process. As regards to the existence 
of a dominant eigenvalue with the corresponding positive eigenfunction, we state 
the following main theorem: 

Theorem 1. Let K :L 1 (V) --. L 1 (V) be a linear integral operator with a.e. 
positive kernel, and let the following assumptions be satisfied: 

i) K is weakly compact; 
ii) for each f e L § (non-zero), there exist two positive numbers ~ = ~ (f), 

fl = fl ( f )  such that 

o~(f) < Ka f <_ f l ( f ) ;  

iii) K 2 maps L 1 (V) into the subspace of bounded functions: 

I / 2 f [  _< M111f II, V f ~ L , ( V ) .  

Then K has one and only one eigenfunction f o e  L+, a.e. positive, and a corre- 
sponding dominant eigenvalue 2 o > 0 (2 o is simple and greater in modulus than 
any other eigenvalue of K). 
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Proof" Assumption i) means that K 2 is a compact operator on L a (V). 
Assumption ii) means that K 2 is Uo-positive, with u o - 1 (see Propositions 1 and 
2). It is well known that a compact linear uo-positive operator has a unique 
nonnegative eigenfunction ([11], Th. 2.2). Let fo be such an eigenfunction of the 
operator K 2, in the cone L +, with the corresponding eigenvalue #o > 0. 

Since K 2 is strictly L+-positive, namely it has an a.e. positive kernel, fo is 
such that 

fo (x, E) = #o a ( K  2 fo) (x, E) > 0, for a.e. (x, E) e V. 

Let us now consider the problem of uniqueness. From assumption iii), for 
each f ~ La (V), non-zero, there exist a natural number p = 1 and a real number 
v = v (f)  > 0, such that 

v(K2)e f = v ( f )  K2 f <_ 1, 

where 1 is the function with respect to which K 2 is uo-positive, and where 
v ( f )  = 1/M 1 II f II. This fact guarantees that #o, the positive eigenvalue of K 2 
corresponding to fo, is simple and greater in modulus than the remaining 
eigenvalues; so, in other words, #0 is the dominant eigenvalue. 

Let us now consider the operator K. 
If we apply K to both sides of the following equation: 

K2 fo = #o fo, one has 

K 2 (K fo) = #o K fo, 

namely, K fo also is an eigenfunction of K 2, corresponding to #o. From the 
geometric simplicity of #o, K fo must be a multiple of fo: K fo = 2o fo. 

If we apply K again, we have 

#ofo = g 2 f o  = 2oK/o  = 22fo, 

and hence 

20 = (#0) 1/2 > 0. 

So K has the same positive eigenfunction fo as  K 2, with the corresponding 
positive eigenvalue 20 = (#0) 1/2. We now apply Theorems 2.10, 2.11 and 2.13 of 
[12] and draw the following conclusions: i) ko is an eigenvalue of K of geometric 
multiplicity one (as well as of rank one), ii) any other eigenvalue 2 of K has the 
property ]2[ < 20, and iii) 2 o is the only eigenvalue of K for which there is a 
corresponding nonnegative eigenfunction. Herewith we have completed the 
proof. [] 

4. Monotonicity of )~o and critical solution 

First of all, let us remark that in the eigenvalue problem (10) one has 2 = 1/c, 
where c is the average number of secondaries per collision. Thus, Theorem 1 also 
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states the existence of Co = 1/2o, where the properties of c o can be derived 
directly from those already proved for 2 o. 

Let us now investigate the dependence of 2 0 = )~0 (R) on the cylinder ra- 
dius R. 

To this purpose we transfer our problem to the space L 1 ((0, R) x (Era, EM)), 
by the change of variable y - - R  x. This leads us to introduce the following 
scaling transformation: 

SR : L 1 ((0, 1) • (Era, EM) ) ~ L 1 ((0, R) x (Era, EM)), 

defined by 

(S R qo) (y, E) = qo (y/R, E). 

Its inverse is given by 

1 (x, = 0 (R x, E). 

The original operator K, (5), enables us to define the following operator, 
acting in the space L 1 ((0, R)x (Em,EM)): 

Ir = SR K S,7 , 

given by 
R EM 

(/r t)) (y, E) = S ~ ~ (Y, Y', E) S (E, E') 0 (Y', E') dE' dy', (11) 
0 Em 

where 
1 2~ +~ y, exp [ -  Z (E)(ya + y,2 + w 2 _ 2 y y' cos 0) 1/2] 

T ( Y ' / ' n )  = 0 / + y'2 + w 2 -   7c7s  d w d 0 ;  

S(E,  E') = (E'/E) ~/2 S (E') f (E, E'). 

It is relevant remarking that the kernel o f / r  does not depend on R. 
We now pay attention to the eigenvalue problem for the opera to r / r  in 

order to find nonnegative 0 E L1 ((0, R) x (Era, EM)), such that 

(21 - / r  0 = 0. (12) 

It is easy to transfer to the operators /~ and/~2 the results of Propositions 
1 and 2 obtained for the operators K and K 2. Thus R 2 is a compact  opera- 
tor on LI((0, R)x  (Em, EM) ) and it is bounded as an operator acting from 
L 1 ((0, R) x (Era, EM)) into L~ ((0, R) x (Era, EM)); moreover /s is vo-positive with 
exponent equal to 2 and v o ---_ 1. 

Theorem 1 enables us to draw the analogous conclusions for / r  and to state 
the following proposition: 

Proposition 3. There exists a unique positive eigenvalue 2 o of/r  (and also K), 
which is dominant  and corresponds to a positive eigenfunction ~o = S~fo,  
where fo is the positive eigenfunction of K, corresponding to 2o. 
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We shall now establish two propositions, in order to compare the values 
assumed by the dominant eigenvalue in correspondence to the variation of the 
cylinder radius. With this aim we list here some results for the non-homogeneous 
equation connected with the eigenvalue problem (10). 

Proposition 4. Consider the equation 

(2I -- K) q) = f (13) 

on L 1 ((0, 1) x (Era, Eg)). Then 

i) for 2 > 2 0 (R) Equation (13) is uniquely solvable; i f f  c L +, then also (p e L + ; 
ii) for 0 < 2 _< 2 o (R) and f e  L +, non-zero, Equation (13) does not have solu- 

tions q~ E L +. 

Proof: i) Note that 20 (R) = r (K), where r (K) is the spectral radius of K. 
As 2 > r (K), one has the invertibility of (21 - K) and 

q ) = ( 2 1 - K )  - i f =  ~ 2 -("+l) K " f > 0  whenever f > 0 .  
n = 0  

ii) Recall that K is uo-positive with respect to a cone on L 1 ((0, 1) x (E,,,E~t)), 
which is reproducing; then the result follows immediately from [12], Th. 2.16. [] 

Proposition 5. Consider the equation 

(2I - - / ( )  ~ = g 

on L 1 ((0, R) • (Era, EM) ). Then 

i) 
ii) 

(14) 

for 2 > 20 (R) Equation (14) is uniquely solvable; ifg ~ L +, then also ~ E L +. 
for 0 < 2 < 2 o (R) and g ~ L +, non-zero, Equation (14) does not have solu- 
tions ~ e L +. 

Proof: It is sufficient to apply the scaling transformation S R to the previous 
Proposition. [] 

Propositions 4 and 5 enable us to state Theorem 2, in which one establishes 
properties of 20 = 20 (R). 

Note that from now on we shall write KR, I(  n instead of K, /s  in order to 
display explicitly the dependence of such operators on the cylinder radius. 

Theorem 2. The function R ~ 20 (R) is: 

i) continuous (in fact, C~176 
ii) strictly monotonically increasing; 

iii) satisfying the following properties: 

lim )~o(R): = )~o(0 +) = 0; 0 < lim 2o(R):= 2o(+Oo) < + o0. 
R ~ 0  + R ~ + o o  
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Proof: i) Let us generalize the operator K R to complex Q in the open right 
half-plane, and let us denote its kernel by N~ (x, x', E, E'). Then 

I No (x, x', E, E')l = NR (x, x', E, E')/R 

where R = Re 9. We can now repeat the proof of Proposition 1 and conclude 
that in this more general situation K 2 is compact too. We notice that Ko is a 
bounded operator on L I(V), which depends analytically on the parameter 9. 
For any real 9 > 0 the dominating positive eigenvalue 2 o (0) is simple in both 
geometric and algebraic sense. Using [10], Theorem VII 1.8, we find that for 
every R > 0 the function 9 ~ 2o (9) has an analytic continuation to a neighbour- 
hood of R. Hence, 2 o (R) is a C~176 on (0, + oo), which proves the continu- 
ity. 

ii) Let 0 < R 1 < R 2 < + o(3 and consider the eigenvalue problem (12) for the 
operator I~R2, corresponding to R = R 2, with 2 = 2 o (R2) and ~ the corre- 
sponding eigenfunction: 

(2 0 (R2) I --/s 0 = 0. (15) 

Written explicitly, this also reads: 

R2 EM 

)~o(R2) 0 (Y,E) - ~ I 
0 Em 

~" (y, y', E) S (E,E') tp (y', E') dE' dy' = O, 

y 6 [0, R2] , E ~ [Era, E~]. 

It is easy to rearrange (15) as follows: 

(R2) I = g ,  (16) 

R2 EM 

where g ( y , E ) =  ~ 
Rt Em 

r (y, y', E) ;~ (E,E') tp (y', E') dE' dy'. 

If the right-hand side of (16) would be zero a.e., then 

7"(y,y' ,E) S(E,E')~p(y',E')=-O fora.e ,  y' ~[Ra,R2] 

y ~ [0, R2] , E, E' ~ [Era, E~t ]. 

This fact, together with the positivity assumption on the energy transfer kernel, 
would imply that 0 is a.e. zero on a set of positive measure contained in 
[0, R2] x [Era, EM] , which is a contradiction. Thus the right-hand side is non- 
negative and different from zero. According to Proposition 5, one has 

Lo (R2) > Zo (R~), 

which proves the strictly increasing monotonicity. 
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iii) Since 2o(R ) = r (/(R) and lira r ( / (R)=  0 as R-- ,  0 +, it is immediate that 
2 o ( 0 + ) = 0 .  To study 2o(+Oo), one considers /s defined on LI((0, 
"-[- 00) X (Em, EM) ) b y  

T(y ,  y', E) S(E,E') O(Y', E') dE' dy'. 
co EM 

(/ co O) (y, E) = f I 
0 Em 

Now/(co  is a bounded operator and 0 < r (/s < oo. 
So 0 < 20 (R) = r (/s < r (/s < o% which implies 0 < 20(+ oo) < oo. [] 

We are now able to discuss the solution of our original physical equation (1), in 
its abstract formulation (5). We remark that the previously established eigensolu- 
tion ~o corresponds to c o (R) = 1/2o (R) > 1, for each value of R. At this point  
note that assumptions A.1 and A.3 imply the following inequalities: 

ess~,~vsup ! s(E)) S (E, E') dE _< r (E) dE - -Stay  < ~ r (E) dE < + oo, 

because r(E) e L 1 (U). 
Since 20 (R) < 20 (+  ~ )  < II gco II, we can now give a sufficient assumption 

for the existence of a critical solution fro, with corresponding co(R), for 
R e (0, + ~) ,  namely the non-multiplying medium condition 

A.5 ~S(E ,E ' ) /S (E)dE  < I  fora .e .  E' <[Em, EM]. 
u 

Note that A.5 merely is a sufficient condition in order that the spectral radius 
r (S/S (E)) < 1, where S is the operator defined in the Introduction. Condit ion 
A.5 is satisfied, in particular, if 

r (E)/Z (E) dE < 1. 
v 

Let us now consider the following inequalities, which can be directly established 
by norm calculations: 

1 
II g co II < ess sup ! - F' S ~  S (E, E') dE _< 1, 

where the last inequality is permitted by A.5. Finally, the results can be sum- 
marized in the following 

Theorem 3. Under  the assumptions A.1-A.5, concerning the physical prob- 
lem (1), there exist a unique critical value co(R ) = 1/2o(R)> 1, for each 
R e (0, + ~ )  and a unique critical neutron flux ~b o = ~o (Y, E) in the cylinder 
such that  

~ o ( y , E ) > 0  a.e. , in LI(O,R)• and 11~011=1. 

The function Co = Co (R) is continuous and strictly monotonically decreasing in R. 
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5. The eigenvalue problem in Lp spaces, 1 < p < ~ .  

The aim of this section is to extend the whole formulation of the problem 
from L 1 to every Lp, 1 <_p < Go. 

First of all, we recall some definitions and we list without proof some results 
about Riesz operators. For an account of Riesz operators theory, the reader is 
referred to Part  2 of [7]. 

Let L (X) be the Banach algebra of bounded linear operators on the Banach 
space X, and let T e  L (X). T is called a Riesz operator if it has the following 
properties: 

i) for every 0 r 2 e C (the set of complex numbers) and each positive integer 
n, the solutions of ()~ I - T)" x = 0 form a finite-dimensional subspace of X, 
which is independent of n provided that n is sufficiently large; 

ii) for every 2 r 0 and each positive integer n, Im (2 1 - T )" is a closed sub- 
space of X which is independent of n provided that n is sufficiently large; 

iii) the eigenvalues of T have at most one cluster point 0. 

Let K (X) the closed two-sided ideal in L (X) formed by the set of compact 
operators on X. T is called asymptotically quasi-compact if 

[inf{H T" -C[[ :C e K ( X ) } ]  1In --+ O, as n --+ oo. 

It is known that the class of Riesz operators coincides with the class of asymptot- 
ically quasi-compact operators ([7], Tb. 3.12, page 73). 

Let T e  L(X). T is said to be a Fredholm operator if Ker T is finite 
dimensional and Im T is closed and finite codimensional. Let n (T) and d (T) 
denote, respectively, dim Ker T and codim Im T; then we define the index of the 
Fredholm operator T to be ind T = n(T) - d(T). n(T)  is called the nullity of 
T, d ( r )  is called the deficiency of T, [15]. 

We return to our problem again. 
Because the operator K is not well-defined on Loo, we introduce the following 
assumption: 

A.6 The nonnegative measurable function S (E, E') is such that 

ess sup ~ S (E, E') dE' = N < + oo. 
E U 

Then K is bounded as an operator acting from L~ to Loo; moreover, for a.e. 
(x, E) ~ I x U 

I(K2J ') (x, E)I --< 1If II ~o " essx.esup ! dx' ! dE' 

�9 ~ dx" ~ K o (% [x - x" l) K o  (am Ix" - x' l) S (E, E") S (E", E') dE" 
I U 

_< M (E m - EM) ~2 ]1 f II ~o/4 %,  
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where [I f II ~ denotes the norm of f in L o~ (I x U), and hence K 2 is also bounded 
on Loo. (Note: this does not  follow from A.6). 

As far as K is concerned as an operator  from L~ to La,  we recall that  K is 
bounded  and K 2 is compact.  

This permits us to interpolate the continuity property of the operator  K and 
the compactness property  of the operator  K 2 and to prove that  K is bounded 
and K 2 is compact  as operators acting from L v to L v, with 1 _< p < 0% ([13], Th. 
3.10, page 57). 

Now we state the following 

Proposition 6. i) K as an operator  from Lp to Lv, with 1 _< p < o0, is a Riesz 
operator;  ii) for every 2, I - 2 K is a Fredholm operator  of index 0. 

Proof:  Recalling the definition of asymptotically quasi-compact operators 
and that  the square of K is compact,  point i) readily follows. 

It  is well-known that  if T is a Riesz operator  then for every 2 the operator  
1 - 2 Tis  a Fredholm operator,  [2]. Moreover,  if T~ L (X) is a Riesz operator,  
then 

dim Ker (I - 2 T) = codim Im (I - 2 T),  

([7], Th. 3.26, page 83). Thus point ii) can be established immediately. [] 
We apply the preceding results to prove the independence of the spectral 

properties of K on the specific Lp setting. 

Proposition 7. The spectrum of the operator  K acting on Lp, with 
1 < p < ~ ,  does not  depend on p. 

Proof: Observe that  Lvl ~ Lp2 for 1 _< Pl  < P2 < oe. Denote  by T~, an opera- 
tor T as one acting on Lv~, i = 1, 2). Then, for every 2 ~ 0, 

Ker  (1 - 2 K)I ___ Ker  (I - 2 K)2 

I m ( I - - 2 K ) l _ I m ( I - 2 K ) 2 .  

Thus recalling the definition of n and d, 

n ( I  - 2 K ) 1  _> n (I -- 2K)2 

d ( I  - 2K)~ _ d (I - 2K)2.  

Since on L m and Lv2 the operator  I - 2 K is Fredholm of index 0, we have also 

n ( I - 2 K ) l = d ( I - 2 K ) l  

n (I -- 2K)2 = d (I -- 2K)2 

Hence, n (I -- 2 K) is the same on L m and Lp2 and d (I - 2 K) is the same on L m 
and Lv~. Moreover,  2-1 ~ a (K) on L m if and only if n (I - 2 K)I = d (I - 2 K) 1 = 0, 
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and also 2-1 ~ o- (K) on Lp2 if and only if n (I - 2 K) 2 = d (I - 2 K)2 = 0.Thus 
from the equivalence of n ( I -  2 K ) =  d ( I -  2K)= 0 in both Lpl and Lp2, it 
follows that a (K) is the same on L m and Lp~. This completes the proof. [] 

We have actually proved that 

n ( I - -  2K)  = d ( I  - 2K) 

is independent of p ~ [1, oo). Hence, the dominant eigenvalue (i.e. simple and 
greater in modulus than the remaining eigenvalues) of K on Lt space also is the 
dominant eigenvalue of K on Lp, 1 _< p < oo. The solution of our cylinder 
criticality problem therefore does not depend on the specific L r space setting. 
If we only consider the independence from the Lp setting for 1 _< p < 2, we may 
drop the assumption A.6, because we would not have to interpolate between L 2 

and L~o. 

6. Discussion 

It is relevant to remark that the research of the existence of a dominant 
eigenvalue, and a corresponding a. e. strictly positive eigenfunction is done under 
a set of assumptions (A.1-A.3) which are suitable (not too strong) in an 
La-setting and which guarantee that K 2 is a compact operator on L~ (V) and K 
is a Riesz operator on Lp (V) (1 _< p _< 2). A.4 may appear as a rather restrictive 
assumption, since it physically means that the energy interval is completely filled 
up after only two successive collisions. The choice of A.4, however, was made for 
the sake of simplicity. 

A more physically appropriate assumption would be, for some n, 

A.4 bis 0 < m _< ess inf{kerS"(E,E'); E,E'e U} 

< ess sup {kerS"(E,E');E,E'~ U} <_ M <oo, 

since in this way the energy interval is completely filled up after n successive 
collisions. Here S was defined in the introduction. 

On the other hand, this more general assumption would not change any- 
thing in our arguments since K" is compact for any n _> 2, and, moreover, (under 
A.4 bis) K is Uo-positive. Thus we could proceed to obtain our results in perfect 
analogy with what we have proved above. In a different geometry an assumption 
of the type A.4 bis was used before by Victory [21]. 
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Abstract 

The energy-dependent neutron transport integral equation in a homogeneous cylinder of 
radius R and infinite height with isotropic scattering is studied as an abstract equation f = K f in 
the space L 1 ((0, 1)X(E m, EM)). By means of techniques based on the theory of positive operators in 
Banach spaces, we prove that the eigenvalue problem for the integral operator K admits as a solution 
a unique a.e. positive eigenfunction to which the leading eigenvalue 2 o corresponds. 

After establishing continuity and strictly increasing monotonicity of 2 o in R we discuss and 
solve the criticality problem under the assumption of subcriticality for a non-multiplying medium. 

The formulation of the eigenvalue problem for K is finally extended to any Lp space, 
1 < p < ~ .  Recalling that K is a Riesz operator in Lp, we prove, as a general result, that the spectrum 
of K, acting on Lp, is independent ofp. 

R~sum~ 

On 6tudie un faisceau de neutrons d'une ~nergie E (comprise entre deux bornes E,, et EM), dans 
un cylindre de rayon 0 ~< r ~< R de hauteur infinie; on consid6re la diffraction comme isotrope. 
L'~quation int6grale du transport de neutrons est formule6 abstraitement par f = K f, o~ K est un 
op+rateur dans l'espace L 1 (r, E) des fonctions int~grables. La th6orie des op&ateurs positifs dans les 
espaces de Banach nous permet de d6montrer que l'op6rateur int6gral K poss6de une fonction 
propre unique, positive presque partout, correspondant fi la valeur propre dominante 2 o. 

Apr6s avoir d6montr6 que 2 o est continue et strictement croissante par rapport fi R, on discute 
et r6sout le probl6me critique sous une hypoth6se bien motiv~e physiquement. 

La formulation du probl6me aux valeurs propres est g6n6ralis6e dans un espace Lp, p quelcon- 
que, K &ant un op6rateur de Riesz; on obtient comme r6sultat que le spectre de K darts Lp est 
ind~pendant de p. 
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