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ABSTRACT

Stability of sclutions of abstract haif-space problems of the
type W' (%) = -&p{x}(0 < x < =) is established under perturbations of
the resolvent of the {unbounded) positive self-adjoint operator A.

Applicaticns are given to Sturm-Licuville type diffusion equations.

I. INTRODUCTION

In this article we investigate the stability of solutions of

the boundary value probiem

WhHx) = ~Ap(x) (0 < x < =) (1.1
Qu(0) = ¢, (1.2)
Held ] = 0(1) (x =+ =) (1.3}

under perturbations of A. Throughout T and A are defined on the

Hilbert space #, T is bounded, self-adjoint and injective, Q, and Q_
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298 VAN DER MEE

are the orthogonal projections ¢f H onto the maximal positive and
negative T-invariant subspaces and A is positive self-adjoint and Fred-
holm. {Thus A has closed range and finite-dimensional nuil space but

[,

may be unbounded). Special instances cccur in neutron transport

(3]

radiative transferiz] and Fokker-Planck models under steady state
conditions with boundary conditions appropriate to incoming flux
specification. We shall prove the stability of solutions to this prob-
iem under resolvent perturbations of A and give new applications to
Sturm-Liouville type diffusion equations.

Stability resuits of fhis type were derived by Van der Mee[41 for
the case when A is a compact perturbation of the identity and is either
strictly positive or has a one-dimensional null space. The proof used
stability properties of an equivalent vector-valued Wiener-Hopf equation
and was inspired by related results of Fe]dman[S]. The results were
generalized by Ran and Rodman[6] to arbitrary A of this type. In Refs.
[4] and [6] the stability was obtained under perturbations of A in the
operator norm. Recently, Hange]broek[7] proved a stability result for
arbitrary bounded and strictly positive self-adjoint A using the func-

18]

tional formulation and existence and uniqueness results of Beals

1 in the

We shall prove stability results under perturbations of {A+K)”
norm, using Beals' functional formulation.

In Section 2 we prove the basic stability resuit. Section 3 is
devoted to Sturm-Liouville type applications. In Section 4 we make

some remarks on related stability problems.
2. THE BASIC STABILITY THEOREM

Let H
.81

T denote the completion of H with respect to the inner

produc
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(h,K) = (171K, (2.1)

Let HA denote the direct sum of the null space Ker A and the comple-

tion of the domain D{A) of A with respect to the inner producttg]
(h,K)A = (AR,K}. {2.2)
Then HA = D(A]/E)CHCHT and HA allows the decompositionEEO’]]’121
HA = ZO o Z1

with the follewing properties: (i) Zy = Ker(T_IA)2 kas finite dimen-
sion, contains Ker A.and is invariant under T"1A, {ii) Z] is an HA-
¢losed T_1A-invariant subspace and 5 = (T_]AjZ )"1 is bounded and
(.,.)A—selfadjoint on Z], and (i1i} {Th,K) = é for all h ¢ ZO and
Ke 21. Using the Spectral Theorem we may construct three bounded and
complementary projections PO,Pl and PI on Hy satisfying: (i} Ran PG

1

= I, and Ran Pl  Ran P_ = Z,, and (1) (+ S¢huh)y > 0 for all

h £ Ran Pl . We may then define HS as the direct sum of ZG and the

completion of HA with respect to the inner producttg]
1 1
(hBK)S_g = (ls‘l IhSK)A = (T(P+ = P_}h:K). (2.3)

If {.,.} is an arbitary inner product on the finite-dimensional space
Zy, we may identify Hy and K 1f (and only if) for some constants
C1s €y > 0
2 z
crlIhllT < (Pyh,PshY + ((I-F’U)h,(I-PO)h)S1 <collnllf hek, .
(2.4)

For ail our models we shall assume the norm equivalence (2.4). This

equivalence is valid if either A is bounded[gl, or T is a multiptication
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by an indefinite weight and A is a differential operator of Sturm-

Lipuville type[]S}. If Ker A = {0}, then ZG = {0} and PO = 0; we shall

then drop the subscript 1 of Pl, PE and 5y.

1

LEMMA 2.1. For all non-real X the gperators (A-AT)_], (1~ A—A)"] and

{AT'1-A)'] are defined as bounded operators on H.

Proof. Let (hn)n be an H-bounded sequence in D{A) and let X be a non-
real number satisfying [|(A-2T}h |} ~ 0. As [Imx| # O, we find
(Ahn,hﬂ) + 0 and (Thn,hn} + 0. Thus if A is strictly positive, we have

1

|Jhn][ + 0 and {A-AT)" ' bounded on its closed demain. However, since

[Ran(A-AT)]' = Ker(A*-3T*) = Ker(A-AT) = {0},

we have (A-AT)'] bounded on H. Cn the other hand, if A has a non-zero
null space, we change A into a strictly positive operator Ag satisfying
Al, = A,l, (see Refs. [11,12]), observe that (A-AT)|, has a bounded
4o B %y
inverse on T[Z.], exploit (A -AT)|, = (A-xT)!, and obtain the same
0 g Z1 Z]

result. Finally, we notice the equalities

a0 = (T, Ty = 1Ty,

which imply the boundedness of (T_Ifl\-}\)'T and (AT_1-A)'1. g

e

LEMMA 2.2, Let us assume that (An) is a sequence of positive self-
n=1

adjoint Fredholm operators on H satisfying

3K > 02 Vim [[(A O ()T = 0. (2.5)
o0

Then for every i in the resolvent set p(T_lA) gf_T-lA there exists

m = m(x.K) such that A e (T 'A ) for n > m and
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tin (1170 237 - (17N = o (2.6)
N-oc
vin 1A T 07T - o - o (2.7)

=
Proof. It is easy to prove the following: If ¢ ¢ p{A), then z ¢ p(An)
for sufficiently large n and uniformly on compact subsets of p{A)
} -1 -1 _
Vin [J(A )" - (A-5)7]) = o,
N

Indeed, for B, = (ﬁ\n+K)_-I and B8 = (A+K)_] we may write
-1 _ -1 -1 _ -1
{A-c) " = BtI-{k+c)B 17, (A-r)™" = B{I-(k+A)B} .

Since [{Bn—Bij + 0 as n-«, the above statement, including the uniformity
part, is clear.

K150, if £ ¢ p{T 'A), then ¢ ¢ o(T7A.) for sufficiently Targe n,
white Egs. (2.6) and (2.7) with X replaced by ¢ would imply {2.6) and

{2.7) themselves. Thus it suffices te prove the identities

1
o

Tim II(T_]AH-@Y1 - ()

R~

tim (1A T 1-0)7! - g = o

N3
for some ¢ £ p(A) n p(T']A}, uniformly in ¢ on compact subsets of

plA) n p(T_!A). Indeed, Tet us first compute
(A-) (A -T) = 1+ c(h =) (1-T) + (ae0) N AmT)
as h + ., We then have

(A=) = (o (a0 DT A )T o ()]

(T']An-;)'] = {An-gT)qlT »r(T'xA—c)_]
(31707 = 1A =) - (T
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as n + e, uniformly in z on compact subsets of p(T'IA). A1l Timits have
been taken in the operator norm on H. E

Put

= g1 -1 -1 -1t -1 -1 -1 -1
K, = (T A -t} =(T'A2) s K= (AT -2) (AT "-z) .
Then Kn and K; are bounded operators on H satisfying TKn = K:T. e
. . =~ +
then easily obtain that K, and K, = (q, - Q_)Kn(Q+ - QU) are bounded

operators on H having the property

for f, g £ H. Hence[]ql, Kn estends to a bounded operator on HT
satisfying

~ +
HKn”HT = maX(HKni [H’HKHI lH) = max{ | K, [:]1K,1 fH)=

whence

vin [0 ) T ) T, < 00 2 e o(TTTA),

Moo T

(2.8)
uniformly in ¢ on compact subsets of p(T—1A). As a consequence of
(2.8} and the zero eigenvalue of TU4 (when present) being isolated,
there exists an interval [-L,L] and m e N such that (i)
3= o(T ) 0 [-L,L] < {0} and (1), for m > my, 5, = o(T A} o [-L,L]
consists of finitely many eigenvalues whose algebraic multiplicities
add up to the algebraic multiplicity of the zero eigenvalue of T_1A.
Moreover, if T is the positively oriented rectangle with vertices
+ L + i, then the spectral projections QO,n satisfy 1im llQO,n_?GI\H =0,
N T

where

(T-!A-C)_1dk.

r

Po = i%T.
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PROPOSITION 2.3. For n > my, let Q, pand Q_  be the spectral projec-

tions of T_1An corresponding to the parts of the spectrum on {L,») and

(-=,L), respectively. We then have
. 1 . 1
Vim {[[Q, -P.dn|[- =0, Tim{[[Q_ -P In||, = 0, (2.9)
L 1110, p-PIb 17 = 0, Tini[00_ - D0l Iy (

where h ¢ HT is arbitrary.

Proof. Each of the subspaces QO n{HT] and PD[HT] is a nondegenerate
H]
indefinite inner product space£1]’]2] with respect to the sesquilinear

form

Lh,K] = (Th,k). (2.10)

Defining wo,n by

we have

Tim [fW, -I[], =5,
feseo 0,n HT

and therefore wO,n is invertible on Hp for all n z my (where i, 3_m]).
s -1 =1 . f .
Thus the restriction So,n of wO,nT Anwﬁ,n to PO[HT} 15 a self-adjoint
operator on PO[HT] with vespect to the indefinite inner prodyct (2.10)
which converges to the restriction Sy of T'}A to PD[HT]. If we choose

a fixed "fundamental" decomposition of PU[HT], i.e.,
M, ® M= pylHd,

where (i) +[h,h] > 0 for a1l G5 # h & M, and (i) [h,K] = 0 for ail
h e M+ and K e M_. and define P0,+ and PO,— as the projections of HT
anto M, and M_ along (I'PD)[HT] 8 M, and (I'PG)[HT] ® M,. respectively,

then we may define[Ti’TZ}
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- -1
AB,n - An(I'QO,n} * TwD,n(PO,+ - PO,—)No,n

and obtain Aé1nT as a bounded self-adjoint operator on HT {with

respect to a suitable positive definite inner product) satisfying

T |4 T-A?THH - 0. (2.11)
N T

Here
Ry = AI-PG) = T(P 4 = Py ). (2.12)

1t should be observed that T-IAS n and T_lAB have restrictions to
-
Ker Qg and Ker P, that coincide with the restrictions of T'iAn and

-1

T 'A to the subspaces.

Using the identity
_ -1
n-:;ﬂ) = H‘;(“‘s,n'ﬁ) {I-2T)

where £ > 0, we obtain

-1 Jg (+2[1T
[1(eA  -z)” (gA, -raT)-I{] < , Re ¢ =
I Bsn B:n H ! ! +ﬁ126 )
{2.13)
where o(A a, n)C[é, =) for some § > 0 and n > n,. If this upper bound is

less than one, then for Re £ = 0

(sA_ = 2}')'] I3 _ dzld “”LHT”)]'] 1 ,
88, < 7 2id) A e lP4e’6%)
whence
-1 | (T )T gl 1T]] -
{1 A o) < [1- ] , Re g =020,
: g 11 = v’([c|2+2252) e +67)

and |[|{A T_E-z;)l_1 has the same upper bound. Thus for Re ; =0
Bani

-1 -1 (1+gi T
[z(T As,n-c) ”HT M%J%L

|+9ves) Ag| "+ 8D
(2.14)
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provided the right-hand side of (2.13) is Tess than one. The latter
is satisfied if

2 §

lef < 8T and 1 + T < (TETTTTTT)Z' (2.15)

If we now choose £ = %{fT]{_1 and |¢] < %5 ﬁITJf_], then the conrditions
{(2.18) are fulfiiled and the right-hand side of (2.14) does not exceed
[1-(5/2)/817" = 8.6120, whence, for Re » = o, 2] > 411T||/¢ and a

constant M not depending on n,

1

‘ JA(‘)\—AB,n

-1 -1 -1
Ty < 1A TH ] [1-(572)/8771 < M < w,
{HT < B,n IHT

On the other hand, in order to prove the uniform HT-boundedness of
A(A—Aé1nT)"] for imaginary A with |a| < 4{[T]]/8 and n > Ng» We use Eq.
(2.11), which implies that
3 -1 -1 -1 -1
Hm [[e{T7' )7 - c(T7A L)', =0
fieso B,n B Hy
uniformly in ¢ for +iz e (%6]{T}[_],w) [cf. the second half of the

procf of Lemma 2.2]. Hence, for n 3—”0 and Re X = 8 we have
INO-A DT cncw
Bsn HT” ?

where N does not depend on X and n. We M3y row repeat the argument of
the proof of Theorem VIII 1.15 of Ref. [15], where we exploit the esti-
mate

[ pen ™l D<) - ming1,078

for n ¢ (0,»), K, = Aé}nT and n > n, and the Spectral Theorem, and
obtain the equalities (2.9}. [
If Ker A = {8}, we choose 1/2L as the spectral radius of A_TT.

As a result we obtain



306 VAN DER MEE
Vim [|p, h-P k||, =0, tim||P_ h-P_h|| =0
lim [Py oh-Pihll n»wli - ah-P.

for all h e Hy, where P+’n and P-,n are the spectral projections of
T']An for the positive and negative parts of the spectrum. Since the
urigue solutions P{x) of Eas. (1.1)}-(1.3) and wn(x) of the analegous
problem with A replaced by An have the form

) 'XT_]A

=e Egps ¥ (X} =

-1
-XT "An
n e Enqa+

P(x

where £ = V7! with V= QP + QP and E =V with V= 0P, 4
3
[12]

QP_ . and since
3

HE-Tjl, < 1, [E T < 1s
HT n HT

the identity
Tim ||V _h=¥h =0, hedH.
n |l n IIT T

immediately gives

Vim {0 - v, (0)]]; = 0. (2.16)
]

Also, we may prove
-1
-1 -xT "A
. -xT Apl n i _
Tim| |e P, he (I—QO,H)P+’nh\]T =0, heH.

>

In combination with (2.11) we then get
Tim [e(x) =9 ()]]; .= 0,
tin || NOIIE

which means that for Ker A = {0} the unique solution of Egqs. (1.1) -
{1.3) is stable under perturbations of A.
Let us consider the more compticated case Ker A # {0}. We first

analyze the auxiliary probiem
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T(x) = SAD(X) (0 < x < o) (2.17)
Q,9(0) = 4, (2.18)
O] = 001)  (x » ), (2.19)

where AB is defined by (2.12). It is then easy to prove the identity

Him {[§(x) - 4, ()| [ = 0,

N-rco
where @n(x) is the unique soTution of the analogous problem with AB
replaced by AB,n' In combination with ;lg llQG,n_PDIiHT = 0 we find

Vim | [(1-P)u{x) - (1G5 )4 (x)|[7 = 0.
Ne ’

THEOREM 2.4. If Ker A = {0} or if Ker A = span{gy} with (T¢O,¢D) >0,
and if

K> 0: Tim (A +)T - (k)T - 0 (2.20)

=00

for a sequence (An)  of positive self-adjoint Fredholm operators, then
n=1
the unique sclution in Hy of Eqs. {1.1}-(1.3) is approximated in the

norm of Hp by the unique solution {for sufficiently large n) in Hy of

“Egs. {1.13-(1.3) with A replaced by An. If Ker A = {0} or if Ker A =
span{gy} with (T¢0,¢0) < 0, and 1f there exists K > 0 satisfying (2.20)

for a sequence (A) © of positive self-adjoint Fredholm cperators,
n=1
then the unique solution in HT of the boundary value problem

Tp'(x) = -Ap(x) (0 < x < =) (2.21)
Qu(0) = ¢, {2.22)
Tim [e(x) |1y = 0 (2.23)
N-oo

is approximated in the norm of H by the unique solution {for sufficiently
T

large n) of the anazlogous problem with A replaced by An‘
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For the case when A is a compact perturbation of the identity,
Ran and RodmanEﬁ] have removed all restrictions on the structure of
ker A and have obtained stability as well as non-stability results.
Their method aiso hinges on the auxiliary problem (2.17)-(2.19) in com-
bination with a finite-dimensional stability problem and for this reason

their results allow complete extension to the preseat situation.
Proof of Theorem 2.4. Since we have the identities

vim 10, ~Pelly = 0, lim||Wy -1}l =0
Hmit,n ol A ¥o,n ™t iny

and
Tim ||S, -5 =4,
oo 130, OHPOEHT]

the theovem depends decisively on stability properties of certain in-
variant subspaces of SO‘ If Ker A = {0} or if Ker A = span{¢0} with
(T¢O,¢O) < 0, then the boundary value probiem {2.21) - (2.23) is

uniguely soIvab1e[]5] and the stability result is immediate. If

Ker A = spanigq} with (T¢0,¢0) > 0, then 7, = Ker A has dimensich one

and the stability result is again immediate from the unique so]vabi]ityEEZ}
of Egs. (1.1)-(1.3} in Ky If Ker A = span{¢0} with (T¢D,¢0) = 0, then
To, € (Ker A)* = Ran A implies the existence of ¢, e Z, satisfying
T_1A¢] = ¢0, whence ZO = span{¢0,¢1}. Notice that the So—invariant
subspace Ker A is a stable invariant subspace of S, in the sense of

Ref. [17]. Using Corollary 8.3 of Ref. {17] the above stability result

is immediate. B

3. Applications to Sturm-Liouviile type diffusion equations
{18,191

Let us consider the formal differential operator

Aorma1m 1) = - é%'{P(ﬂ)h'(U)) + q(1)h{n) {3.1)
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oan I = {a,b}, where p{y) > 0 is lTocally absoTutely continuous and gq{u)
ié bounded, continuous and nonnegative, If -»<a < b « w, plu) is
continuous and strictly positive and a{u) is continucus on [a,b], the
endpoints a and b are cailed requiar and {3.1) can Ee turned into a

self-adjoint operator on LZ(I) by imposing the boundary conditions

i
<

cos o h{a) - p(a) sin g h'{a) {3.2)

cos § h{b} - p(h) sin g h'(b) =

i
[

{3.3)

The identity

f {

J (An) ()R du = J {pfh'I2+q]hI2}du+c0tanaJh(a)iz—cotansﬁh{b)l2
I I .

indicates that A will be positive in o A jﬁ%~w and %—ﬂ < B <m, (For

2@ =0o0r B8 =7 the corresponding term is absent). For regular boundary
value probiems A will have a compact resclvent and zero will be a point
af the resolvent of A or a simple isolated eigenvalue, Choosing a
bounded continucus weight function w{u) which changes its sign at the

points a < c] < €y < L. < Cy < b and satisfies the condition
. uj
= +U -c. .
win) = +fu csl vi (1)

[for some aj > 0 and continuously differentiable function vj(u) such

that vj(cj} # 0] in some neighborhood of cj, the boundary value problem

W(u)g%(x,u) (O (0<x<e, wel) (3.4)
V0, = ¢, (w) 3F wlu) > 0 (3.5)

JI;w(ml el B = 001) (x o w) (3.6)

is uniquely so1vab]e[13] if Ker A = {0} or if Ker A = span{¢0} with
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JIW(U)!¢G(u)izdp » 0. If Ker A= {0} or if Ker A = span{¢0} with
JEW(U)1¢O(“)|2d“ < 0, then the boundary value problem {3.4)-(3.6)
where (3.6} is replaced by the condition

lim Lw(u)é (%) |Pdu = 0

Ko

[13.16] also. These vesults remain valid if the

is uniquely solvabie
interval 1 of definition of the differential operator has one or two
singular endpoints and the corresponding seif-adjoint differential
operator A is either strictly positive or is positive with an isolated

simple zero eigenvalue.

Special cases of this result of Beals{TS] are the following:

{1} Electron saatteriggﬁzg]. Here £qs. (3.4)-(3.6) have the form

" %(Xau) = %((1-112)%%) (B <x<o, pe (-1.1)}

pix, + 1) bounded
p(0,) = ¢, () {we (0,1))

1 2
[11u1 el [Zan = 0(1) (x> =),

In this problem A is positive se]f-adjointtz}] with an isolated simple
zero eigenvalue and eigenfunction ¢O(u} = 1. Since w(u) vuand
'| .
J p|¢o(u)!2du = 0, the corresponding half-space problem is uniquely
- [22]

selvable

(I1} Fokker-Planck equation[sl. Equations (3.4)-{3.6) can be written

in the form

2 z
e /2@()(\,):_8_\,_(9-\'/2 %%) (0<x<o, Ve (=)

p(0,v) = ¢2+(V) {v e {0,))
r e 72 w2y = o) (x> =)
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Again A is positive self-adjoint with an isolated simple zero eigen-
value and eigenfunction ¢0(v) =1 when defined on the L,-space with

2 ? P
weight eV /2 since wiv) = ve ¥ 72 and Jm ve " /2 I¢O(v)]2dv =0,

the corresponding half-space problem is uniquely sc]vab]e.[ZS}

(I1I) Example with regular endpoints[24]. Equations (3.4)-(3.6) have

the form ,
sgn(u) - 2 x,u) = %—‘ZQ (0 <x<ew e (-1,1) (3.7)
u
y(x, +1) =0 {3.8)
(0, = ¢ () (ue (0.1)) (3.9)
1
J ]Iw(x,u)fzdu =0(1)  (x~=). (3.10)

Here A is strictly positive self-adjoint and the half-space praoblem is
uniquely so]vab]e.[24] The same result remains true[zazI if sgn{n) is
it 2 I 2

replaced by u and J_}[w(x,u)i dy by J_1qu * Jplx,u) “du.

It should be noted that the differential operators of examples (I}
and (II) have two singular endpoints on their intervais of definition.

For Sturm-Liouville problems of the above type the stability results
of Section 2 are available. Two types of perturbation of the operator
A are of particular interest. First, we take An = A+ EnI for some

sequence g5 > €5 > ... > { with zero limit, i.e., we replace (3.1} by

(R forma1™ (8) = = 4 (PN (1)) + {a(u) + €, Ih(u)

while keeping invariant the boundary conditions. If A is strictly
positive or if A is positive with an isolated simple zero eigenvalue

and ejgenfunction ¢0(u) satisfying

[ )]+ Lo P > 0,
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then the uniaue solutior ¢(x} of Egs. (3.4)-(3.6) is appreximated by
the unique solution of the equation
BL]Jn
wle) o (6ud = -(A (MGG (0 <x<e, e I

with boundary conditions (3.5) and {3.6):

g (000) = o (n) i wip) > C

Tim L (| - Tolxan) = (o) [P = 0,

oo
This situation appiies, in particular, to the above first and third
examples. A second type of perturbation is cbtained by keeping invari-
ant the formal differential aperator (3.1) and by perturbing continuously
the boundary conditions to the differential operater. We would then

find the same stability result as for the first type of perturbation.

For example, if in Egs. (3.7)-(3.19) one replaces the Dirichlet boundary

condition (3.8) by the Neumann boundary condition
p'{x, + 1} =0, (3.11)

one may consider a sequence O Log <ay < ogd ... < % r of angles con-
verging to % 7 and a concomitant sequence of boundary conditions of the
type (3.2) and (3.3) witha = @, and B =7 -a and prove that the
unique solution wn(x) of Egs. (3.7}, (3.9} and (3.10} with the latter
boundary conditions converges to the unique solution of Egs. (3.7),
{3.11), {3.9) and (3.10) as n » =:

1
in [ g0 - vn0owdu = 0.

Nwseo 4 =1

4,  {Concluding remarks

We have developed a stability theory for solutions of abstract
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half-space problems that is sufficiently general to apply to Sturm-
Liouville type diffusion equations. As for these problems Ker A has
at most dimension one, a generalization to more general structures of
Ker A is not reguired, as far as Sturm-Liouville diffusion is concerned.
However, one may use recent results of Ran and Rodman[ﬁ:E to remove ail
restrictions on the structure of Ker A and to arrive at stability as
well as nen-stability results. In particular, if all vectors ¢ ¢ Ker A
satisfy  (T¢.¢) > 0, the unique soclution of Egs. {1.1)-{1.3) is stable
under suitable perturbations of A.

Analogous stability results can be developed also for the finite-

slab boundary value problem

Te' (x) = -Ap(x) {0 < x <1} . (4.1)
Gu(0) = ¢, Qw{rt) = ¢ . (4.2)
More precisé?y, if (An) ® s a sequence of strictly positive self-
} n=1
adjoint operators or positive self-adjoint operators with isolated
zero eigenvlaue, satisfying (2.20) for some K > 0, then the unigue

solution w{x) of Eas. (4.1)-{4.2) can be approximated in HT by the

unique solution of the boundary value problem

Wlx) = Ay (x)  (0<x<1)

Q0] = 0, (1) =6 .

Here ail of the opefators T, An and A sheuld be chosen in such a way

that the space HS and the analogous spaces HSn connected with T and An
can a1l be identified with Hip. We shall omit the details. We observe
that in this way we may generalize recent finite-slab stability results

of Hange]broek£7] for bounded A and An.
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